Brain-Inspired Hypervector Processing
at the Edge of Large Language Models

Alaaddin Goktug Ayar, Sercan Aygun, M. Hassan Najafi, and Martin Margala

University of Louisiana at Lafayette, LA, USA {alaaddin.ayarl, sercan.aygun, najafi, martin.margala} @louisiana.edu

Abstract—Brain-inspired hypervector processing, also known as hyper-
dimensional computing (HDC), has received significant attention in the
last-decade computing era. However, only a few studies have explored
its application as an intermediary tool to develop efficient language
processing machine learning systems, particularly targeting large language
models (LLMs). This research introduces the integration of brain-inspired
hypervector processing into the BERT, Disti1BERT, and GPT-2 language
model classifier components to alleviate network load and reduce classifier
model size. Compared to conventional machine learning classifiers achiev-
ing similar accuracy levels, hypervector encoding and processing offer a
lightweight and cost-effective alternative for language models. Utilizing the
IMDDbD dataset for sentiment analysis, the proposed architecture achieves up
to 83% classification accuracy while maintaining only a 9KB model size,
rendering it highly deployable to edge devices compared to fundamental
machine learning-based models like support vector machine (SVM), multi-
layer perceptron (MLP), and random forest.

I. INTRODUCTION

The birth of brain-inspired computing approaches in machine learn-
ing systems marks a significant evolution beyond traditional neural
networks. Achieving a lightweight and hardware-aware design for
neural systems necessitates the transformation of intricate architec-
tures into streamlined versions. Hyperdimensional computing (HDC)
systems offer a promising solution by efficiently processing data
through the representation of hypervectors instead of fixed or floating
point processing. Hypervectors encode scalars or symbols using binary
values, where randomly occurring +1 (logic-1) and —1 (logic-0)
values are manipulated through logic operations to form holographic
representations of the data. Holographic (or holistic) representations
encompass multiple data dimensions [1], [2], ideally incorporating
various features within a single embedded dimension akin to the brain’s
structure in living beings.

In the past decade, language models have gained significant attention
in machine learning and artificial intelligence, necessitating an integra-
tion of two emerging sciences: brain-inspired computing and language
processing. Like HDC, input data in language models is “encoded” to
represent various linguistic elements. While encoder models manipulate
data using fractional fixed or floating point values, this paper explores
the potential advantages of binary hypervectors instead of scalars.

This study presents a novel approach for representing the BERT,
DistilBERT, and GPT-2 based encoders in hypervectors, with
a distinctive method involving the utilization of adjustable weights
tailored for the HDC classifier. A key innovation of this method lies
in its integration of on-the-go training for encoder values created
by large language models (LLMs) [3], such as the BERT encoder,
enabling seamless mapping into HDC space. During this process,
encoder values (F) are multiplied by specific weights (w), which
are trained using sigmoid activations. As a result, all trained encoder
values and their corresponding weights are mapped into a single-
dimensional (of size D) hypervector corresponding to a distinct class.
This unique methodology underscores the adaptability and efficiency
of hypervector-based representations in language processing tasks.

This paper compares our proposed architecture with conventional
machine learning approaches, providing insights into the potential ben-
efits of hypervector-based encoding. After giving the proposed method
in Section II, Section III discusses the design and implementation
results, while Section IV presents conclusions.

II. PROPOSED METHOD

This section presents the proposed method behind HDC architectures
that can be used for the language models. The architecture contains
three modules for the training phase. We target different language

I
IMDb

If you like original gut
wrenching laughter you
will like this movie...
(+) Positive Comments

So im not a big fan of
Boll's work but then
again not many are...

(=) Negative Comments

Models er[ez[es]-eres)

w2 | w3 |- |Ww76
Trainable Weights

.3
Act. | f 1***Eorward
[_, i**Backprop
A ' i* w Update
[[w2 [u3 [|uzeg
Trained Weights ™\
[conventional domain [mapping domain\‘

Encoder Output III 5@"9@_;@"2@%""
JElelsl Fal] & & IE o - Jroennl

6
. X Exw else]

Language attention | T gncoder Output
/Mechanism_

(awlw] fou [[E1FTET]3] & [HTaTel T3]
from floating point ---> binary Class Hypervector

"] Mapping domain |

] HDC domain

Fig. 1. The overall proposal. Step I illustrates the IMDb dataset [4], comprising
40,000 training samples and 10,000 test samples, employed to train various
models, including BERT, Disti1BERT, and GPT-2. This extensive collection
of data provides a robust foundation for analyzing sentiment, where reviews
are classified as either positive or negative. Step II is an intermediary step in
mapping into the HDC domain. Training weights better transfer encoder values
into the hypervector space. Step III is the HDC in binary; random hypervectors
are accumulated & thresholded for class hypervector generation in holistic form.

models to align HDC systems with larger language models for future
research. BERT, DistilBERT, and GPT-2 language models are
targeted for this late-breaking work. Each language architecture has
core attention mechanisms inside having the encoders [5]. These en-
coders, while considering positional language-word-linguistic informa-
tion, serve the purpose of numerical coding representation. Therefore,
our research endeavors to present this data in a more efficient manner,
leveraging the emerging computing paradigm of HDC.

In HDC, data is encoded in random binary vectors, which we utilize
to represent floating-point values in random hypervectors. The initial
step involves obtaining the output of the language model, referred to
as the encoder output. Fig. 1 depicts this in Step I. While encoder
outputs could be directly embedded into hypervectors, we propose
a transition step for HDC to adjust trainable weights in conjunction
with each separate encoder value. This adjustment is facilitated by a
simple learning model employing sigmoid activations, thereby creating
a simplistic HDC model within the conventional machine learning
domain; there will be no need to reiterate training over the binary
values for a better accuracy outcome of the model [6].

In Step II of the training model, trainable weights are randomly
assigned and subsequently trained using conventional neural network
steps, including forward path, backpropagation, and weight update.
Given the nature of the problem, sigmoid activations are employed.
At this stage, conventional machine learning and HDC methodologies
converge, characterized by random assignments and approximate bina-
rizations through sigmoid functions. These steps align with the multiply,
add, and sign operation characteristic of conventional HDC [7].

The multiplied weights and encoder values in random hypervectors
are utilized in HDC. E' X w are in the unit interval, where 0 scalars
are represented by ‘00...000" binary hypervector, and / scalars are
represented by ‘11...111" binary hypervector. Intermediate values are
represented proportionally based on the total number of 1s and Os in
a ratio. For instance, a value of 0.5 is represented as ‘11..11..00..00°,
containing D/2 of Is and D/2 of 0s randomly distributed within a
D-sized hypervector [8].

Upon obtaining the hypervectors, the summation of each bit posi-
tion across all encoding hypervectors is conducted. This summation,
depicted in Step III of Fig. 1, accumulates values in identical positions
throughout the vectors. Subsequently, the final HDC step involves
determining the sign (or binary logic value in memory) [9]. In the
binary domain, this approximate sign resembles a threshold function.
At each training sample, the contributing binary vector is cumulatively
recorded into the vector. This is executed in the framework without
floating-point format, wherein a dynamic adder checks for the threshold
at each bit addition. If the total accumulation exceeds half the size of
(threshold x S), a binary I is recorded in the final class hypervector.
Here, S represents the total number of samples for the corresponding
class, while the threshold (¢) denotes the size of the language model
encoder. The maximum achievable accumulation is (threshold x S),
with its half-size serving as the reference point for / or 0 binarization.

The training concludes after obtaining the class hypervector for each
class, with no further iterative training steps in HDC. This streamlined
approach significantly contributes to the classifier’s lightweight nature.
Ultimately, the binary encoding of the language model encoder using
trained weights as mappers into the HDC domain yields binary class
models, echoing the brain-inspired holistic representation.

During inference, the process involves following the encoder outputs
with the trained weight multiplications in the random vectors. This
yields an output test hypervector akin to obtaining the class hyper-
vector. Subsequently, this test hypervector is compared with all class
hypervectors in binary. The class with the highest similarity (cosine
similarity score [10]) to the test sample’s hypervector is assumed to be
the label of the test sample. This straightforward inference mechanism
effectively leverages the encoded language model representations and
trained weights within the HDC domain.

III. DESIGN AND IMPLEMENTATION

This section evaluates the implementation of both training and infer-
ence processes. The deployed model in an edge device is experimented
with for runtime. These experiments encompass three LLMs: BERT,
DistilBERT, and GPT-2. During the training phase, alongside the
HDC classifier, conventional machine learning models such as support
vector machine (SVM), multi-layer perceptron (MLP), and random
forest are also employed.

Table I presents the performance of the embedding models, con-
sidering iso-accuracy values of HDC versus other machine learning
classifiers. Referring back to Fig. 1, Step II comprises the encoder
outputs inputted directly to traditional machine learning algorithms
for conventional models. However, inherently complex and iterative
algorithms, such as SVM, bring about a complex structure. The
common benchmark among these models is the iso-accuracy derived
from HDC, representing the accuracy level achievable by powerful yet
resource-intensive machine learning models. Remarkably, for this level
of accuracy, the HDC-based model demonstrates a model size of merely
9 kilobytes (KB). HDC’s compact model size is a result of its binary
vector encoding strategy, which simplifies complex linguistic informa-
tion into a form that is both easy to handle and requires less storage
space. This binary format, unlike the floating-point representations used
by more traditional machine learning algorithms such as SVM, MLP,
and random forest, is key to HDC’s reduced size.

Disti1BERT emerges as the optimal LLM for HDC, a significant
outcome considering the lightweight nature of the “distil” architecture
[11]. As anticipated, HDC also surpasses in terms of training time,
owing to its lightweight learning approach to holistic representation.
In contrast, conventional machine learning algorithms exhibit larger
model sizes and training times (up to 4x longer) than HDC for the
same level of accuracy.

Furthermore, inference time is also considered for ARM processor-
based edge device testing. The HDC model proves to be 6x faster
than traditional SVM, 3 x faster than MLP, and 5x faster than random
forest. These improvements are attributed to HDC’s reliance on binary
data. Specifically, the inference process involves only adding the binary
vectors, then the thresholded accumulation is dynamically compared

TABLE I
HDC vs. ML ALGORITHMS USING LLM-BASED TEXT EMBEDDINGS

Embedding Model Algorithm Iso-Accuracy Training Time (sec.) * Model Size Inference Time (sec.)*

SVM 946.32 213.51 MB 6.3357
MLP 300.21 18.05 MB 3.3300
BERT Random Forest o1 534.59 63.50 MB 57673
HDC 272,94 9KB 1.0180
SVM 800.45 95.58 MB 45522
ieriimgre MLP . 590.75 1.81 MB 2.9476
Random Forest ’ 519.53 55.76 MB 4.8522
HDC 269.41 9KB 1.0127
SVM 750.45 229.67 MB 6.5548
MLP 343.52 542 MB 32187
GPT-2 Random Forest 1% 458.48 55.44 MB 4.8012
HDC 306.41 9KB 1.0200

* Inference conducted on an edge device equipped with a 1.2GHz quad-core ARM Cortex-A53 CPU, 1GB
of RAM, and 64-bit architecture.

<*Embeddings for this study were generated by LLMs utilizing an NVIDIA RTX A1000 GPU, while the HDC
and machine learning models were trained on a 12th Gen Intel® Core™ i7-12800H CPU with 20 logical
cores.

to the class hypervectors. Overall, this study advocates for the utiliza-
tion of Disti1BERT LLM in conjunction with the HDC classifier.
Leveraging Disti1BERT’s lightweight architecture, combined with
a lighter classifier, promises a design with the lowest training time,
smallest model size, and lowest inference time.

Consolas

IV. CONCLUSIONS

In conclusion, this study demonstrates the significant advantages
of HDC as an effective and compact approach to utilize advanced
LLMs like BERT, Disti1BERT, and GPT-2 for processing language
tasks. By employing HDC for the task of binary classification on
the IMDDb dataset, we have effectively transformed complex language
data into a binary vector space, achieving high levels of accuracy
while maintaining a very small model size. Our method captures
the indirect differences in language that distinguish positive from
negative movie reviews, achieving accuracy levels of up to 83% with
a model size of just 9KB. This breakthrough in merging HDC with
advanced language models not only underscores HDC’s potential to
make natural language processing applications more accessible and
practical for tiny device computations but also outlines a scalable and
cost-effective approach. This aligns with cognitive computing goals,
thereby expanding the possibilities for tackling language processing
challenges on computationally constrained edge devices.

REFERENCES

[1] P. Kanerva. Hyperdimensional computing: An introduction to comput-
ing in distributed representation with high-dimensional random vectors.
Cognitive Computation, 1(2):139-159, Jun 2009.

[2] D. Kleyko et al. A survey on hyperdimensional computing aka vector sym-
bolic architectures, part ii: Applications, cognitive models, and challenges.
ACM Comput. Surv., 55(9), jan 2023.

[3] N. Muennighoff et al. MTEB: Massive text embedding benchmark. In
A. Vlachos and 1. Augenstein, editors, /7th Conference of the European
Chapter of the Association for Computational Linguistics, May 2023.

[4] A. L. Maas et al. Learning word vectors for sentiment analysis. In 49th
Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, 2011.

[5] K. Clark et al. What does BERT look at? an analysis of BERT’s attention.
In T. Linzen et al., editors, ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, 2019.

[6] M. Imani et al. Quanthd: A quantization framework for hyperdimensional
computing. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 39(10):2268-2278, 2020.

[7]1 S. Duan et al. Lehdc: learning-based hyperdimensional computing classi-

fier. In DAC’22, 2022.

L. Ge and K. K. Parhi. Classification using hyperdimensional computing:

A review. IEEE Circuits and Systems Magazine, 20(2):30-47, 2020.

[91 S. Aygun et al. Learning from hypervectors: A survey on hypervector
encoding, 2023. arXiv, 2308.00685.
[10] F. Asgarinejad et al. Enhanced noise-resilient pressure mat system based
on hyperdimensional computing. Sensors, 24(3), 2024.
[11] V. Sanh et al. Distilbert, a distilled version of bert: smaller, faster, cheaper
and lighter, 2020.

[8

—

	Introduction
	Proposed Method
	Design and Implementation
	Conclusions
	References

