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Abstract—Precise seizure identification plays a vital
role in understanding cortical connectivity and informing
treatment decisions. Yet, the manual diagnostic methods
for epileptic seizures are both labor-intensive and highly
specialized. In this study, we propose a Hyperdimensional
Computing (HDC) classifier for accurate and efficient
multi-type seizure classification. Despite previous seizure
analysis efforts using HDC being limited to binary detection
(seizure or no seizure), our work breaks new ground by
utilizing HDC to classify seizures into multiple distinct
types. HDC offers significant advantages, such as lower
memory requirements, a reduced hardware footprint for
wearable devices, and decreased computational complexity.
Due to these attributes, HDC can be an alternative to tradi-
tional machine learning methods, making it a practical and
efficient solution, particularly in resource-limited scenarios
or applications involving wearable devices. We evaluated
the proposed technique on the latest version of TUH
EEG Seizure Corpus (TUSZ) dataset and the evaluation
result demonstrate noteworthy performance, achieving a
weighted F1 score of 94.6%. This outcome is in line with,
or even exceeds, the performance achieved by the state-of-
the-art traditional machine learning methods.
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I. INTRODUCTION

Hyperdimensional (HD) computing, a recent machine learn-

ing paradigm inspired by neuroscience, has attracted significant

attention across various domains and applications. Examples

include text classification [1], language recognition [2], speech

recognition [3] and gesture recognition [4]. Additionally, it is

employed for detecting epileptic seizures from EEG [5]. HD

computing stands out for its exceptional efficiency, boasting re-

duced energy and memory demands. This makes it particularly

appealing for integration into wearable devices [6], [7], and a

compelling alternative to traditional machine learning methods.

Currently, there is a notable increase in research dedicated to

wearable devices for monitoring patients’ disorders. Notably,

one area of focus is epilepsy monitoring, with a specific

emphasis on real-time seizure detection, seizure prediction, and

the classification of specific seizure types.

Epilepsy is widely recognized as one of the most common

neurological disorders, impacting around 50 million individuals

globally. This condition affects a considerable portion of the

world’s population [8]. Seizures present in varied forms, each

demanding a distinct treatment approach. To start treating them

correctly, it’s important to identify the specific seizure type.

Accurately identifying seizure types is crucial for selecting the

right treatment plan. Classifying seizure types is challenging

due to various factors. Some seizures share similar clinical

and electroencephalography (EEG) patterns, making it difficult

Fig. 1: Overview of the basic classification process with HDC

for experienced neurologists to visually distinguish them. Ad-

ditionally, certain cases require extended monitoring, such as

video-EEG monitoring lasting for days, demanding significant

effort and time from neurologists for manual analysis [9].

The state-of-the-art machine learning-based seizure type

classifications pose challenges due to their excessive complex-

ity in terms of computing memory and hardware requirements.

Consequently, they are not practical candidates for imple-

menting efficient low-power wearable devices. In contrast to

conventional machine learning classifications, HD computing

for classification offers reduced computational complexity, re-

sulting in lower energy consumption, minimal memory require-

ments, and a smaller hardware footprint. In our research, we

present a lightweight efficient approach for detecting various

types of seizures through HD single-pass (one epoch) learning.

To the best of our knowledge, our work represents the first

implementation of multi-type epileptic seizure classification

using hyperdimensional computing. This approach stands out

as a significantly less complex alternative compared to conven-

tional machine learning methods while achieving comparable

performance to state-of-the-art research.

II. BACKGROUND ON HD COMPUTING

HD computing employs high-dimensional vectors instead

of traditional computing elements like Booleans and integer

numbers. These HD vectors typically have thousands of dimen-

sions and are composed of pseudo-random components that

are independently and identically distributed. These ultra-wide

vectors introduce redundancy against noise, and are, therefore,

inherently robust. The primary properties of hypervectors are

(1) Almost orthogonality between any randomly chosen pair

of vectors, and (2) A vector formed by summing other vectors

is highly likely to be more similar to its component vectors

than to any other randomly selected HD vector [10].

These hypervectors are generally categorized into two types:

binary and non-binary. For this work, we employ binary vectors



TABLE I: (TUSZ) dataset seizure types and descriptions

Label Seizure Type Description

SEIZ Seizure Basic annotation for seizures.

FNSZ Focal non-specific seizure Seizures occurring in a specific focality.

GNSZ Generalized non-specific
seizure

Seizures occurring throughout the entirety of the brain.

SPSZ Simple partial seizure Brief seizures begin in one part of the brain where the patient is fully
aware.

CPSZ Complex partial seizure Similar to simple partial seizures but with impaired awareness.

ABSZ Absence seizure Sudden and brief seizures involving a lapse in attention. Commonly
found in children and usually last under 5 s.

TNSZ Tonic seizure Seizures involving stiffening of muscles. Commonly, albeit not always
linked with tonic-clonic seizures.

TCSZ Tonic-clonic seizure This seizure type is often linked with violent muscle contractions and
loss of consciousness.

MYSZ Myoclonic seizure A seizure occurring with brief involuntary twitching.

with components set to either 0 or 1. This selection minimizes

memory requirements and facilitates simpler operations [11].

In HD computing with binary hypervectors, the primary

operations include bit-wise addition, multiplication, and per-

mutation. Addition, also known as bundling, is performed bit-

wise, denoted as A + B. The resulting vector is maximally

similar to the original vectors. The multiplication of two HD

vectors, known as binding and represented as A ∗ B, yields

a third vector that is dissimilar (approximately orthogonal) to

the original two. This operation is specifically designed for

information association, such as assigning values to variables.

Permutation is a unary operation that shuffles the hypervector,

generating a dissimilar hypervector from the input. This opera-

tion facilitates the assignment of specific orders to hypervectors

within the hyperspace. To assess the similarity between two

binary vectors, one effective approach is to employ Hamming

distance as the similarity metric. Normalized hamming distance

of two vectors A and B with the length of bitstream equal to

D can be calculated by Equation (1):

Ham(A,B) =
1

D

D∑

i=1

1A(i) ̸=B(i) (1)

If the Hamming distance of two hypervectors is close to 0, they

are defined as similar. In the case of two orthogonal HD vectors

the hamming distance is equal to 0.5 and if two HD vectors are

opposed, the similarity is 1. As illustrated in Figure 1, a basic

HDC classifier learns hypervectors corresponding to different

classes during training. In the testing phase, hypervectors

generated from test data (query hypervectors) are compared

with class hypervectors stored in the associative memory.

An associative search is then conducted to predict the most

probable class for a given query hypervector [12].

III. HDC MULTI-TYPE SEIZURE CLASSIFICATION

FRAMEWORK

A. EEG Dataset

In this study, to ensure a robust comparison with state-

of-the-art machine learning classifications, we employed the

TUSZ, the only open-source EEG dataset that contains an-

notations of multiple seizure types. The TUSZ dataset stands

out as the most extensive publicly accessible collection of

EEG recordings [13]. The TUSZ dataset comprises 30,000+

clinical scalp EEG recordings gathered since 2002. These

recordings originate from diverse medical settings. The raw

EEG signals consist of multi-channel recordings, with the

number of channels varying between 20 and 128, and the

frequency of the samples ranges from 250 to 1024 Hz. Table

I illustrates various types of seizures and their correspond-

ing descriptions. Epileptic seizures are categorized into: focal

non-specific seizure (FNSZ), generalized non-specific seizure

(GNSZ), simple partial seizure (SPSZ), complex partial seizure

(CPSZ), absence seizure (ABSZ), tonic seizure (TNSZ), tonic-

clonic seizure (TCSZ) and myoclonic seizure (MYSZ). Similar

to previous state-of-the-art studies, we did not include the

MYSZ seizure type in our analysis due to its rarity in the

dataset. MYSZ seizure type is only recorded from two patients

in the recently released version. In our experimental setup, we

specifically considered data from 20 channels (FP1, FP2, F3,

F4, C3, C4, P3, P4, F7, F8, T3, T4, T5, T6, O1, O2, A1, A2,

FZ, CZ).

B. Feature Extraction and Selection

In our feature extraction process, we integrated multiple fea-

tures, following a precedent set by previous studies in seizure

classification. These works have demonstrated that combining

different features results in performance improvements [14],

[7]. We derive 55 distinct features, including mean amplitude,

power spectral density (PSD), and features from a 7-level

discrete wavelet transform (DWT) decomposition for each

window segment of EEG data. These features have proven

highly effective in capturing essential details within EEG

seizure signals. Recent leading studies in multi-type seizure

classification often employ extensive feature extraction, such

as MP-SeizNet [15], which handles 252 features per signal

segment. However, one of the main advantages of utilizing

HDC techniques is to eliminate the need for significant data

preprocessing and extracting a large number of features. we

first filter the EEG signal using a bandpass filter with cutoff

frequencies at 0.3 Hz and 45 Hz. Subsequently, we utilize

DWT features to decompose the signal and extract permutation

entropy, Shannon entropy, Rényi entropy, and Tsallis entropy

for detail coefficients at levels 3, 4, 5, 6, and 7. Each of these

entropy measures offers unique insights into different aspects

of the signal’s randomness or complexity. We estimate the band

power in the following frequency bands: delta [0.5, 4] Hz, theta

[4, 8] Hz, alpha [8, 12] Hz, beta [12, 30] Hz, gamma [30, 45]

Hz and also [0, 0.1] Hz, [0.1, 0.5] Hz, [12, 13] Hz. These cutoff

frequencies represent a balance between preserving relevant

neural information and filtering out unwanted noise, providing
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Fig. 2: Overview of the proposed HDC classification algorithm

a common range that has been found effective in EEG signal

processing. For each band, we obtain the relative power to

the total power. Relative power calculation in each band is

important for comparing EEG features across individuals or

different recording conditions.

C. Proposed HDC Multi-type Seizure Classifier

In the proposed implementation, we initially discretize the

signal into non-overlapping windows, each with a duration of

2 seconds. As illustrated in Figure 2, during the signal window

prepossessing, features are extracted and quantized to 20 levels

for each channel of the signal window. These normalized

features are then mapped into HD space. In the Hypervector

Generator block, a random hypervector is generated for each

channel, ensuring that these hypervectors are orthogonal. The

hypervectors representing channels and features are stored in

item memory (IM). Each feature has a discrete quantized

value regulated to 20 levels, resulting in the generation of

20 random feature value hypervectors that are not orthogonal.

The reason for this non-orthogonality is that these hypervectors

correspond to a range of discrete feature values; hence, starting

from the hypervector for the smallest value, subsequent levels

are generated to be increasingly further apart. These feature

value hypervectors are stored in the continuous item memory

(CIM). In the Encoding Engine, for each channel, the feature

hypervectors and their corresponding feature level values are

selected and bound together using bitwise XOR. All bound

vectors are then bundled by bitwise summing them. The result

is normalized to a binary representation and then bound with

the channel vector representing the current channel. The final

result for each channel is summed together and rounded to a

binary representation. The obtained hypervector demonstrates

the spatial information between the channels for the given

signal window. Temporal correlation is captured as this process

is repeated for each 2-second window of the signal.

In the last stage, the Associative Memory (AM) holds

prototype hypervectors for each data class. In the training

phase, it performs bundling on the hypervectors obtained from

the encoding block to represent the classes. To classify, the

incoming hypervector is compared with each stored prototype

using Hamming distance. The predicted class is the one with

the smallest distance. The Hamming distance assesses the

dissimilarities between two hypervectors by counting differing

positions. It binds the query hypervector with each prototype

hypervector for the respective classes. Subsequently, it selects

the class label based on the minimum population count among

the bound hypervectors.

IV. RESULTS AND ANALYSES

In this section, we present the outcomes of our experiment

on multi-type seizure classification employing hyperdimen-

sional computing. Due to the class imbalance issue present in

the TUSZ dataset, the accuracy metric alone is not a reliable

measure of performance. Therefore, to ensure the robustness of

our results, we employ the weighted F1-score as an evaluation

metric for our proposed approach. Weighted F1-score combines

the F1-scores of individual classes by weighting them accord-

ing to the relative frequency or sample count of each class. The

F1-score for each class is computed as the harmonic mean of

the True Positive Rate (TPR) and the Positive Predictive Value

(PPV). The weighted F1-score formula is as follows:

Weighted F1-score =

∑
N

i=1
wi · F1i

∑
N

i=1
wi

(2)

F1i = 2 ·
TPRi · PPVi

TPRi + PPVi

(3)

wi =
Number of samples in class i

Total number of samples
(4)

In this evaluation, we assess the model using 5-fold cross-

validation. The TUSZ dataset shows a significant disparity

in signal duration among seizure types, with FNSZ, GNSZ,

and CPSZ signals notably longer than others. The dataset’s

imbalance poses a challenge to achieving reliable accuracy

results in predictive modeling. In our evaluation, We only

utilized a subset of the total duration of FNSZ, GNSZ, and

CPSZ signals, ensuring a balanced representation of patients.

However, for the remaining classes, we employed the entire

duration of the signal provided in the main dataset. This

approach enabled us to maximize the utility of available



Fig. 3: Performance of single-shot HDC trained with different

lengths of bitstream for seven classes of seizures

Fig. 4: Confusion matrix of single-shot HDC trained with

10000 lengths of bitstream for seven classes of seizures

data while optimizing computational resources. The data is

divided into 5 folds ensuring each fold contains a proportional

distribution of all classes. The model undergoes training using

4 folds while reserving the remaining fold for evaluation. This

iterative process continues until each fold has been utilized

as the test data. In the end, the average weighted F1 score is

computed across the 5 folds to provide an overall evaluation

metric for the model’s performance. Figure 3 shows the F1

score obtained by a single-pass training using different lengths

of bitstream. Increasing the dimension of the high-dimensional

(HD) space from 1000 to 10000 enhances the model’s per-

formance by 29%. We achieve a weighted f1 score equal to

94.67% when the length of the hypervectors is 10000 bitstream.

In typical machine learning approaches, reducing the size of the

training dataset often leads to lower classification performance.

However, our results demonstrate that the evaluated F1 score of

the proposed model, trained on a subset of the dataset, is both

acceptable and comparable to state-of-the-art machine learning

research, which trained models using the entire dataset. The

result of the confusion matrix of 7-class classification is shown

in Figure 4. According to the confusion matrix, the true positive

Fig. 5: Performance of the proposed classifier, retrained with

different numbers of epochs

(TP) values for the seizure types ABSZ, TCSZ, CPSZ, TNSZ,

SPSZ, GNSZ, and FNSZ respectively reach 0.83, 0.96, 0.95,

0.97, 0.94, 0.98 and 0.92. The F1 score for the absence seizure

type (ABSZ) is relatively lower compared to other seizure

types. This discrepancy is primarily due to the significantly

shorter duration of absence seizures in the dataset compared

to other seizure types.

Figure 5 illustrates the impact of retraining iterations on

the performance of the model trained with shorter bitstream

lengths. One of the key advantages of the proposed HDC

classifier is its ability to achieve high performance with a

single-shot training process. However, to further reduce com-

putational complexity, latency, and power consumption during

inference, the model can be retrained using shorter bitstreams.

As shown in Figure 5, retraining the model with 5000-bit

streams for 5, 10, and 15 iterations enhances performance

by 6%. Additionally, for a 4000-bit stream length, the F1

score improves from 85% to 91% after 15 iterations. These

findings are particularly valuable for the development of real-

time wearable seizure classification devices, which often face

hardware resource constraints.

V. CONCLUSION

In this study, we successfully applied Hyperdimensional

Computing (HDC) for multi-class classification of epileptic

seizures, demonstrating its effectiveness in distinguishing seven

different types of seizure. Our evaluation, conducted using

a balanced subset of the TUHZ dataset and a 5-fold cross-

validation technique, highlights the robustness and reliability

of our model. By addressing the class imbalance issue in-

herent in the dataset, we ensured a fair and comprehensive

assessment of the model’s performance. Employing HDC for

seizure-type classification leads to more efficient hardware

implementation for wearable devices compared to state-of-

the-art machine-learning approaches. This efficiency is due to

the simplicity of the computations involved and the reduced

memory requirements, making HDC a promising solution for

developing advanced, real-time seizure detection systems in

wearable healthcare technology.
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