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Abstract—Precise seizure identification plays a vital
role in understanding cortical connectivity and informing
treatment decisions. Yet, the manual diagnostic methods
for epileptic seizures are both labor-intensive and highly
specialized. In this study, we propose a Hyperdimensional
Computing (HDC) classifier for accurate and -efficient
multi-type seizure classification. Despite previous seizure
analysis efforts using HDC being limited to binary detection
(seizure or no seizure), our work breaks new ground by
utilizing HDC to classify seizures into multiple distinct
types. HDC offers significant advantages, such as lower
memory requirements, a reduced hardware footprint for
wearable devices, and decreased computational complexity.
Due to these attributes, HDC can be an alternative to tradi-
tional machine learning methods, making it a practical and
efficient solution, particularly in resource-limited scenarios
or applications involving wearable devices. We evaluated
the proposed technique on the latest version of TUH
EEG Seizure Corpus (TUSZ) dataset and the evaluation
result demonstrate noteworthy performance, achieving a
weighted F1 score of 94.6%. This outcome is in line with,
or even exceeds, the performance achieved by the state-of-
the-art traditional machine learning methods.
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I. INTRODUCTION

Hyperdimensional (HD) computing, a recent machine learn-
ing paradigm inspired by neuroscience, has attracted significant
attention across various domains and applications. Examples
include text classification [1], language recognition [2], speech
recognition [3] and gesture recognition [4]. Additionally, it is
employed for detecting epileptic seizures from EEG [5]. HD
computing stands out for its exceptional efficiency, boasting re-
duced energy and memory demands. This makes it particularly
appealing for integration into wearable devices [6], [7], and a
compelling alternative to traditional machine learning methods.
Currently, there is a notable increase in research dedicated to
wearable devices for monitoring patients’ disorders. Notably,
one area of focus is epilepsy monitoring, with a specific
emphasis on real-time seizure detection, seizure prediction, and
the classification of specific seizure types.

Epilepsy is widely recognized as one of the most common
neurological disorders, impacting around 50 million individuals
globally. This condition affects a considerable portion of the
world’s population [8]. Seizures present in varied forms, each
demanding a distinct treatment approach. To start treating them
correctly, it’s important to identify the specific seizure type.
Accurately identifying seizure types is crucial for selecting the
right treatment plan. Classifying seizure types is challenging
due to various factors. Some seizures share similar clinical
and electroencephalography (EEG) patterns, making it difficult

Encoded Hypervector

N |
— Query Hypervector |
imilarity

Data Check

Fig. 1: Overview of the basic classification process with HDC

for experienced neurologists to visually distinguish them. Ad-
ditionally, certain cases require extended monitoring, such as
video-EEG monitoring lasting for days, demanding significant
effort and time from neurologists for manual analysis [9].

The state-of-the-art machine learning-based seizure type
classifications pose challenges due to their excessive complex-
ity in terms of computing memory and hardware requirements.
Consequently, they are not practical candidates for imple-
menting efficient low-power wearable devices. In contrast to
conventional machine learning classifications, HD computing
for classification offers reduced computational complexity, re-
sulting in lower energy consumption, minimal memory require-
ments, and a smaller hardware footprint. In our research, we
present a lightweight efficient approach for detecting various
types of seizures through HD single-pass (one epoch) learning.
To the best of our knowledge, our work represents the first
implementation of multi-type epileptic seizure classification
using hyperdimensional computing. This approach stands out
as a significantly less complex alternative compared to conven-
tional machine learning methods while achieving comparable
performance to state-of-the-art research.

II. BACKGROUND ON HD COMPUTING

HD computing employs high-dimensional vectors instead
of traditional computing elements like Booleans and integer
numbers. These HD vectors typically have thousands of dimen-
sions and are composed of pseudo-random components that
are independently and identically distributed. These ultra-wide
vectors introduce redundancy against noise, and are, therefore,
inherently robust. The primary properties of hypervectors are
(1) Almost orthogonality between any randomly chosen pair
of vectors, and (2) A vector formed by summing other vectors
is highly likely to be more similar to its component vectors
than to any other randomly selected HD vector [10].

These hypervectors are generally categorized into two types:
binary and non-binary. For this work, we employ binary vectors



TABLE I: (TUSZ) dataset seizure types and descriptions

Label Seizure Type ‘ Description

SEIZ Seizure Basic annotation for seizures.

FNSZ Focal non-specific seizure | Seizures occurring in a specific focality.

GNSZ Generalized non-specific | Seizures occurring throughout the entirety of the brain.

seizure

SPSZ Simple partial seizure Brief seizures begin in one part of the brain where the patient is fully
aware.

CPSZ Complex partial seizure Similar to simple partial seizures but with impaired awareness.

ABSZ Absence seizure Sudden and brief seizures involving a lapse in attention. Commonly
found in children and usually last under 5 s.

TNSZ Tonic seizure Seizures involving stiffening of muscles. Commonly, albeit not always
linked with tonic-clonic seizures.

TCSZ Tonic-clonic seizure This seizure type is often linked with violent muscle contractions and
loss of consciousness.

MYSZ Myoclonic seizure A seizure occurring with brief involuntary twitching.

with components set to either O or 1. This selection minimizes
memory requirements and facilitates simpler operations [11].

In HD computing with binary hypervectors, the primary
operations include bit-wise addition, multiplication, and per-
mutation. Addition, also known as bundling, is performed bit-
wise, denoted as A + B. The resulting vector is maximally
similar to the original vectors. The multiplication of two HD
vectors, known as binding and represented as A x B, yields
a third vector that is dissimilar (approximately orthogonal) to
the original two. This operation is specifically designed for
information association, such as assigning values to variables.
Permutation is a unary operation that shuffles the hypervector,
generating a dissimilar hypervector from the input. This opera-
tion facilitates the assignment of specific orders to hypervectors
within the hyperspace. To assess the similarity between two
binary vectors, one effective approach is to employ Hamming
distance as the similarity metric. Normalized hamming distance
of two vectors A and B with the length of bitstream equal to
D can be calculated by Equation (1):
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If the Hamming distance of two hypervectors is close to 0, they
are defined as similar. In the case of two orthogonal HD vectors
the hamming distance is equal to 0.5 and if two HD vectors are
opposed, the similarity is 1. As illustrated in Figure 1, a basic
HDC classifier learns hypervectors corresponding to different
classes during training. In the testing phase, hypervectors
generated from test data (query hypervectors) are compared
with class hypervectors stored in the associative memory.
An associative search is then conducted to predict the most
probable class for a given query hypervector [12].

III. HDC MULTI-TYPE SEIZURE CLASSIFICATION
FRAMEWORK

A. EEG Dataset

In this study, to ensure a robust comparison with state-
of-the-art machine learning classifications, we employed the
TUSZ, the only open-source EEG dataset that contains an-
notations of multiple seizure types. The TUSZ dataset stands
out as the most extensive publicly accessible collection of
EEG recordings [13]. The TUSZ dataset comprises 30,000+
clinical scalp EEG recordings gathered since 2002. These
recordings originate from diverse medical settings. The raw

EEG signals consist of multi-channel recordings, with the
number of channels varying between 20 and 128, and the
frequency of the samples ranges from 250 to 1024 Hz. Table
I illustrates various types of seizures and their correspond-
ing descriptions. Epileptic seizures are categorized into: focal
non-specific seizure (FNSZ), generalized non-specific seizure
(GNSZ), simple partial seizure (SPSZ), complex partial seizure
(CPSZ), absence seizure (ABSZ), tonic seizure (TNSZ), tonic-
clonic seizure (TCSZ) and myoclonic seizure (MYSZ). Similar
to previous state-of-the-art studies, we did not include the
MYSZ seizure type in our analysis due to its rarity in the
dataset. MYSZ seizure type is only recorded from two patients
in the recently released version. In our experimental setup, we
specifically considered data from 20 channels (FP1, FP2, F3,
F4, C3, C4, P3, P4, F7, F8, T3, T4, TS, T6, O1, 02, Al, A2,
FZ, CZ).

B. Feature Extraction and Selection

In our feature extraction process, we integrated multiple fea-
tures, following a precedent set by previous studies in seizure
classification. These works have demonstrated that combining
different features results in performance improvements [14],
[7]. We derive 55 distinct features, including mean amplitude,
power spectral density (PSD), and features from a 7-level
discrete wavelet transform (DWT) decomposition for each
window segment of EEG data. These features have proven
highly effective in capturing essential details within EEG
seizure signals. Recent leading studies in multi-type seizure
classification often employ extensive feature extraction, such
as MP-SeizNet [15], which handles 252 features per signal
segment. However, one of the main advantages of utilizing
HDC techniques is to eliminate the need for significant data
preprocessing and extracting a large number of features. we
first filter the EEG signal using a bandpass filter with cutoff
frequencies at 0.3 Hz and 45 Hz. Subsequently, we utilize
DWT features to decompose the signal and extract permutation
entropy, Shannon entropy, Rényi entropy, and Tsallis entropy
for detail coefficients at levels 3, 4, 5, 6, and 7. Each of these
entropy measures offers unique insights into different aspects
of the signal’s randomness or complexity. We estimate the band
power in the following frequency bands: delta [0.5, 4] Hz, theta
[4, 8] Hz, alpha [8, 12] Hz, beta [12, 30] Hz, gamma [30, 45]
Hz and also [0, 0.1] Hz, [0.1, 0.5] Hz, [12, 13] Hz. These cutoff
frequencies represent a balance between preserving relevant
neural information and filtering out unwanted noise, providing
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Fig. 2: Overview of the proposed HDC classification algorithm

a common range that has been found effective in EEG signal
processing. For each band, we obtain the relative power to
the total power. Relative power calculation in each band is
important for comparing EEG features across individuals or
different recording conditions.

C. Proposed HDC Multi-type Seizure Classifier

In the proposed implementation, we initially discretize the
signal into non-overlapping windows, each with a duration of
2 seconds. As illustrated in Figure 2, during the signal window
prepossessing, features are extracted and quantized to 20 levels
for each channel of the signal window. These normalized
features are then mapped into HD space. In the Hypervector
Generator block, a random hypervector is generated for each
channel, ensuring that these hypervectors are orthogonal. The
hypervectors representing channels and features are stored in
item memory (IM). Each feature has a discrete quantized
value regulated to 20 levels, resulting in the generation of
20 random feature value hypervectors that are not orthogonal.
The reason for this non-orthogonality is that these hypervectors
correspond to a range of discrete feature values; hence, starting
from the hypervector for the smallest value, subsequent levels
are generated to be increasingly further apart. These feature
value hypervectors are stored in the continuous item memory
(CIM). In the Encoding Engine, for each channel, the feature
hypervectors and their corresponding feature level values are
selected and bound together using bitwise XOR. All bound
vectors are then bundled by bitwise summing them. The result
is normalized to a binary representation and then bound with
the channel vector representing the current channel. The final
result for each channel is summed together and rounded to a
binary representation. The obtained hypervector demonstrates
the spatial information between the channels for the given
signal window. Temporal correlation is captured as this process
is repeated for each 2-second window of the signal.

In the last stage, the Associative Memory (AM) holds
prototype hypervectors for each data class. In the training
phase, it performs bundling on the hypervectors obtained from
the encoding block to represent the classes. To classify, the
incoming hypervector is compared with each stored prototype

using Hamming distance. The predicted class is the one with
the smallest distance. The Hamming distance assesses the
dissimilarities between two hypervectors by counting differing
positions. It binds the query hypervector with each prototype
hypervector for the respective classes. Subsequently, it selects
the class label based on the minimum population count among
the bound hypervectors.

IV. RESULTS AND ANALYSES

In this section, we present the outcomes of our experiment
on multi-type seizure classification employing hyperdimen-
sional computing. Due to the class imbalance issue present in
the TUSZ dataset, the accuracy metric alone is not a reliable
measure of performance. Therefore, to ensure the robustness of
our results, we employ the weighted F1-score as an evaluation
metric for our proposed approach. Weighted F1-score combines
the F1-scores of individual classes by weighting them accord-
ing to the relative frequency or sample count of each class. The
F1-score for each class is computed as the harmonic mean of
the True Positive Rate (TPR) and the Positive Predictive Value
(PPV). The weighted F1-score formula is as follows:

N
) i - F1;
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In this evaluation, we assess the model using 5-fold cross-
validation. The TUSZ dataset shows a significant disparity
in signal duration among seizure types, with FNSZ, GNSZ,
and CPSZ signals notably longer than others. The dataset’s
imbalance poses a challenge to achieving reliable accuracy
results in predictive modeling. In our evaluation, We only
utilized a subset of the total duration of FNSZ, GNSZ, and
CPSZ signals, ensuring a balanced representation of patients.
However, for the remaining classes, we employed the entire
duration of the signal provided in the main dataset. This
approach enabled us to maximize the utility of available
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Fig. 4: Confusion matrix of single-shot HDC trained with
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data while optimizing computational resources. The data is
divided into 5 folds ensuring each fold contains a proportional
distribution of all classes. The model undergoes training using
4 folds while reserving the remaining fold for evaluation. This
iterative process continues until each fold has been utilized
as the test data. In the end, the average weighted F1 score is
computed across the 5 folds to provide an overall evaluation
metric for the model’s performance. Figure 3 shows the F1
score obtained by a single-pass training using different lengths
of bitstream. Increasing the dimension of the high-dimensional
(HD) space from 1000 to 10000 enhances the model’s per-
formance by 29%. We achieve a weighted fl score equal to
94.67% when the length of the hypervectors is 10000 bitstream.
In typical machine learning approaches, reducing the size of the
training dataset often leads to lower classification performance.
However, our results demonstrate that the evaluated F1 score of
the proposed model, trained on a subset of the dataset, is both
acceptable and comparable to state-of-the-art machine learning
research, which trained models using the entire dataset. The
result of the confusion matrix of 7-class classification is shown
in Figure 4. According to the confusion matrix, the true positive
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Fig. 5: Performance of the proposed classifier, retrained with
different numbers of epochs

(TP) values for the seizure types ABSZ, TCSZ, CPSZ, TNSZ,
SPSZ, GNSZ, and FNSZ respectively reach 0.83, 0.96, 0.95,
0.97, 0.94, 0.98 and 0.92. The F1 score for the absence seizure
type (ABSZ) is relatively lower compared to other seizure
types. This discrepancy is primarily due to the significantly
shorter duration of absence seizures in the dataset compared
to other seizure types.

Figure 5 illustrates the impact of retraining iterations on
the performance of the model trained with shorter bitstream
lengths. One of the key advantages of the proposed HDC
classifier is its ability to achieve high performance with a
single-shot training process. However, to further reduce com-
putational complexity, latency, and power consumption during
inference, the model can be retrained using shorter bitstreams.
As shown in Figure 5, retraining the model with 5000-bit
streams for 5, 10, and 15 iterations enhances performance
by 6%. Additionally, for a 4000-bit stream length, the F1
score improves from 85% to 91% after 15 iterations. These
findings are particularly valuable for the development of real-
time wearable seizure classification devices, which often face
hardware resource constraints.

V. CONCLUSION

In this study, we successfully applied Hyperdimensional
Computing (HDC) for multi-class classification of epileptic
seizures, demonstrating its effectiveness in distinguishing seven
different types of seizure. Our evaluation, conducted using
a balanced subset of the TUHZ dataset and a 5-fold cross-
validation technique, highlights the robustness and reliability
of our model. By addressing the class imbalance issue in-
herent in the dataset, we ensured a fair and comprehensive
assessment of the model’s performance. Employing HDC for
seizure-type classification leads to more efficient hardware
implementation for wearable devices compared to state-of-
the-art machine-learning approaches. This efficiency is due to
the simplicity of the computations involved and the reduced
memory requirements, making HDC a promising solution for
developing advanced, real-time seizure detection systems in
wearable healthcare technology.
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