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Abstract
Comprising more than 1,400 species, bats possess adaptations unique among mam-
mals including powered flight, unexpected longevity, and extraordinary immunity. 
Some of the molecular mechanisms underlying these unique adaptations includes 
DNA repair, metabolism and immunity. However, analyses have been limited to a few 
divergent lineages, reducing the scope of inferences on gene family evolution across 
the Order Chiroptera. We conducted an exhaustive comparative genomic study of 
37 bat species, one generated in this study, encompassing a large number of line-
ages, with a particular emphasis on multi-gene family evolution across immune and 
metabolic genes. In agreement with previous analyses, we found lineage-specific ex-
pansions of the APOBEC3 and MHC-I gene families, and loss of the proinflammatory 
PYHIN gene family. We inferred more than 1,000 gene losses unique to bats, includ-
ing genes involved in the regulation of inflammasome pathways such as epithelial de-
fence receptors, the natural killer gene complex and the interferon-gamma induced 
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1  |  INTRODUC TION

Comparative genomics provides a framework for identifying the 
molecular mechanisms underlying unique organismal adaptations, 
in their endless forms. To date, comparative genomic approaches 
have revealed the mechanisms underlying terrestrial adaptations 
in mudskipper fish (You et al., 2014), heat tolerance in coral (Bay 
et al., 2017), cold stress tolerance in Draba (Nowak et al., 2020), and 
extreme longevity in naked mole rats (Zhou et al., 2020). In most 
cases the search for molecular adaptations has focused on orthol-
ogous single-copy genes, but gene loss and duplication can also 
be adaptive and are critical to understanding of how phenotypic 
adaptations evolve. Analyses based on highly contiguous genome 
assemblies have uncovered gene expansions probably associated 
with production of urushiol and anthocyanins in mango (Wang, Luo, 
et al., 2020), the earliest events of gene duplication in cytoskeletal 
and membrane-trafficking families in eukaryotic cellular evolution 
(Vosseberg et al., 2020), pseudogenization in genes associated with 
testicular descent in afrotherian mammals (Sharma et al., 2018), 
gene losses associated with diving–related adaptations in cetaceans 
(Huelsmann et al., 2019), and losses associated with physiological 
and metabolic adaptations in fruit bats (Sharma, Hecker, et al., 2018). 
Given the importance of gene family evolution, multiple large-scale 
genome sequencing consortia such as the Earth BioGenome Project 
(Lewin et al., 2018), the Vertebrate Genomes Project (Rhie et al., 
2020), and Bat1K (Teeling et al., 2018) aim to generate high-quality 
genome assemblies for species spanning entire clades and even the 
entire phylogenetic “Tree of Life”, thereby enabling greater confi-
dence in analyses of gene loss and gene family evolution.

Gene family expansions and contractions are influenced by 
selection, including from biological factors such as pathogens. 
Host-pathogen interactions are shaped by reciprocal selection, an 
evolutionary arms race which has forced hosts to evolve complex 
immune defence mechanisms (Papkou et al., 2019; Sironi et al., 
2015). Vertebrates have two types of immune response: innate 

immunity, which is nonspecific and acts as a first line of defence; and 
adaptive immunity, which is highly specific and generates immune 
memory (Delves et al., 2017; Janeway et al., 2001). Several immune-
related gene families that have experienced substantial evolutionary 
changes during mammal evolution. While many important facets 
of the immune system are conserved, immune gene families have 
high rates of evolution whether measured via substitution rate ra-
tios or birth–death turnover (Bernatchez & Landry, 2003; Goebel 
et al., 2017; Minias et al., 2019; Santos et al., 2016; Shultz & Sackton, 
2019; Van Oosterhout, 2009). This is especially true of the major 
histocompatibility complex (MHC), which is responsible for generat-
ing cell surface proteins that play essential functions in the adaptive 
immune system (Janeway et al., 2001).

This combination of highly conserved, and highly variable com-
ponents of the immune system, is particularly intriguing among bats. 
Among mammals, bat diversity is second only to that of rodents, 
and encompasses over 1,400 species that occupy a broad diversity 
of ecological niches on six continents (Fenton & Simmons, 2015; 
Nogueira et al., 2018). The success of bats is probably related to a 
suite of adaptations unique both to the clade as a whole and to var-
ious subclades within the Order Chiroptera. The most obvious of 
these is powered flight, allowing bats to occupy a unique aerial niche 
not utilized by any other mammal. While this unique niche limits body 
size, within that constraint bats have been exceptionally successful 
and have diversified in ways unparalleled among other mammals. For 
example, bats evolved virtually every mammalian dietary strategy 
(e.g., frugivory, carnivory, nectarivory, piscivory) and have done so 
in a relatively short evolutionary time frame (Dumont et al., 2012). 
Another less obvious but probably more interesting adaptation is 
the exceptional longevity and increased health span (the period of 
life during which an organism is in generally good health) exhibited 
by many bat species given their body size. Many species such as the 
Bechstein's bat (Myotis bechstein) the little brown bat, Brandt's bat 
(Myotis brandtii), greater mouse-eared bat (Myotis myotis) and greater 
horseshoe bat (Rhinolophus ferrumequinum) have unexpectedly long 
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pathway. Gene set enrichment analyses revealed genes lost in bats are involved in 
defence response against pathogen-associated molecular patterns and damage-
associated molecular patterns. Gene family evolution and selection analyses indicate 
bats have evolved fundamental functional differences compared to other mammals in 
both innate and adaptive immune system, with the potential to enhance antiviral im-
mune response while dampening inflammatory signalling. In addition, metabolic genes 
have experienced repeated expansions related to convergent shifts to plant-based 
diets. Our analyses support the hypothesis that, in tandem with flight, ancestral bats 
had evolved a unique set of immune adaptations whose functional implications re-
main to be explored.

K E Y W O R D S
adaptive immunity, gene family evolution, inflammatory pathway, innate immunity, 
metabolism, viral tolerance
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health spans, living 30–40 years (Fleischer et al., 2017; Foley et al., 
2018; Podlutsky et al., 2005; Seim et al., 2013; Wilkinson & Adams, 
2019). Such longevity defies the expectation that large species are 
longer-lived than small species; despite constrained body size, bats 
live longer than other mammals of similar size (Austad & Fischer, 
1991; Healy et al., 2014). Bat longevity and health span may be in-
fluenced by their exposure to extrinsic mortality factors. Powered, 
mostly nocturnal flight may lower bats’ exposure to some sources of 
extrinsic mortality, including predation (Healy et al., 2014). Yet, the 
risk of exposure to another extrinsic source of mortality, contagious 
infection, increases among bat species that roost in large colonies 
(Brook & Dobson, 2015; Han, Wen, et al., 2015). Thus, to achieve 
such longevity and decreased senescence, long–lived bat popula-
tions must overcome the burden of infectious diseases.

The uniqueness of bats extends to the immune repertoire. Early 
in the age of whole-genome analyses, it was clear that inflammation-
related gene families had expanded or contracted, and certain 
single–copy genes associated with immunity and cell repair had ex-
perienced selection in bats (Zhang et al., 2013). There is still debate 
as to whether bats harbour a disproportionately large number of 
viruses, or whether viral load is simply a function of species rich-
ness (Mollentze & Streicker, 2020; Moratelli & Calisher, 2015; Olival 
et al., 2017). However, there is no doubt that several recent viral 
intrusions into our own species ultimately originated from bat hosts 
(Drexler et al., 2012; Goldstein et al., 2018; Hu et al., 2017; Memish 
et al., 2020; Towner et al., 2007). This probably includes the cur-
rent SARS-CoV-2 pandemic (Boni et al., 2020; Lau et al., 2020). Bats 
appear to have the ability to tolerate these viruses with few health 
impacts, hence recent studies have focused on bat comparative ge-
nomics (Jebb et al., 2020) and its emphasis on viral response (re-
viewed in Gorbunova et al., 2020; Hayman, 2019). Although little is 
known from this perspective, there is a growing body of functional 
analyses showing that bats are unusual among mammals in how they 
deal with viruses (Ahn et al., 2019; Banerjee et al., 2020; Miller et al., 
2016; Schountz et al., 2017; Xie et al., 2018).

The “inflammosome” is typically highly conserved across mam-
mals, but bats exhibit a reduced inflammatory response that may be 
tied to their ability to cope with viral infection while experiencing 
minimal impact (Pavlovich et al., 2018). For example, the PYHIN gene 
family, namely, appears to have been almost completely lost in bats 
(Ahn et al., 2016; Zhang et al., 2013) while at least one PYHIN gene 
can be found in all other eutherians examined. Similarly, in bats, the 
inflammatory function of interferons (Zhang et al., 2013) appears 
distinct among bat species, where IFN contractions and constitutive 
expression of IFN-α has been observed in some bats (Zhou, 2016), 
and the APOBEC3 repertoire, which is associated with antiviral re-
sponse, is expanded (Hayward et al., 2018; Jebb et al., 2020). All of 
these functional patterns suggest an overall dampened inflamma-
tory reaction despite a robust immune response to viruses whose 
origins may lie in the gene repertoires available to bats (Banerjee 
et al., 2017, 2020).

Gene family evolution also probably plays a role in the unique 
dietary ecology of bats. Several studies have found a variety of 

mechanisms influencing dietary adaptation. For example, conver-
gent amino acid substitutions in several lineages of frugivorous 
bats have occurred independently (Gutiérrez-Guerrero et al., 2020; 
Shen et al., 2012; Teeling et al., 2018; Wang, Tian, et al., 2020), and 
are associated with the shift to a high-sugar diet. Another strategy 
has been to repurpose a given gene to accommodate such dietary 
shifts (Shen et al., 2013). With the exception of olfactory receptors 
(Hayden et al., 2014; Hughes et al., 2018; Tsagkogeorga et al., 2017), 
the roles of gene loss and gain in shaping dietary evolution of bats 
have not been comprehensively explored.

Here, we investigate bat gene family evolution related to immunity, 
metabolism, and dietary adaptations, using the most extensive ge-
nomic sampling within bats to date. Despite variability in quality of as-
semblies, the ecological diversity of lineages for which assemblies are 
available allows, for the first time, an investigation of gene family evo-
lution across 10 families, two suborders, and a complete coverage of 
the entire range of diets. We found two major patterns. First, system-
wide gene losses related to inflammatory response and selection on 
genes associated with antiviral immunity appear to have influenced 
bat lineages. This suggests that bats, compared to other mammals 
such as cow, dog, horse, pig, mouse and human, have evolved com-
plex, complementary adaptations across multiple functional pathways 
to simultaneously reduce inflammatory response while maintaining 
strong antiviral defences, potentially underlying their suspected tol-
erance of viruses. Second, the move from the ancestral arthropod diet 
to high-sugar nectar and fruit-based diets is associated with lineage-
specific gene family expansions in metabolic gene families.

2  |  MATERIAL S AND METHODS

2.1  |  Whole genome sequencing

We generated a whole genome assembly for a male Phyllostomus 
hastatus, PE091, collected in Jenaro Herrera, Peru. Field-collected 
tissues from Phyllostomus hastatus specimen PE091 were lawfully 
collected under permit #0122–2015–SERFOR–DGGSPFFS, ex-
ported under SERFOR permit #0002287, and imported under USFW 
3–177 2015MI1694291.

Samples were preserved in RNAlater for one week before 
flash–freezing in a liquid nitrogen dry shipper, following previously 
published protocols (Yohe et al., 2019). High molecular weight ge-
nomic DNA was extracted from flash-frozen liver using the Qiamp 
DNA Micro Kit (Germantown) and sequenced on a PromethION 
instrument (Oxford Nanopore Technologies) at Cold Spring Harbor 
Laboratory. Additionally, short-read Illumina whole genome se-
quencing was performed at Novogene Inc. Genomic DNA from lung 
was randomly fragmented to 350 bp, end-repaired, adenylated, li-
gated with Illumina sequencing adapters, and further PCR–enriched. 
The final libraries were purified (AMPure XP system) and library 
quality and size verification were assessed on an Agilent 2100 
Bioanalyser (Agilent Technologies). Molar concentration was as-
sessed using real-time PCR.
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De novo genome assembly was performed using fLyE v.2.7.1 
(Kolmogorov et al., 2019) using default --nano-raw parameterization. 
The obtained preassembly was polished using Illumina short-reads 
with pOLcA tool built-in MaSuRCA genome assembly and analysis 
toolkit (Zimin et al., 2013).

2.2  |  Genome database construction

Publicly-available genome assemblies for an additional 36 bat spe-
cies (Table S1) were downloaded from open-source databases to 
maximize bat taxonomic sampling (Dong et al., 2017; Eckalbar et al., 
2016; Gutiérrez-Guerrero et al., 2020; Jebb et al., 2020; Parker et al., 
2013; Seim et al., 2013; Wang, Tian, et al., 2020; Zepeda Mendoza 
et al., 2018; Zhang et al., 2013; Yates et al., 2020). Assemblies were 
masked with REpEATMASkER v.4.1.0 (Smit et al., 2021) using a custom 
library combining known mammalian transposable elements (TE) 
from Repbase (v20181026), a de novo mammalian TE library gener-
ated using assemblies from the Zoonomia Project (Genereux et al., 
2020) and the dfAM database, and a custom bat–specific TE library 
generated by manual curation (Jebb et al., 2020).

All assemblies were annotated or reannotated with the MAkER 
annotation pipeline v.2.31.10 (Holt & Yandell, 2011) to avoid bias in 
downstream analyses caused by differences in genome assembly an-
notation quality. Two iterations of MAkER were performed for each spe-
cies. During the first run we provided expressed sequence tags (ESTs) 
and transcriptomic data as inputs (Davies et al., 2020; Potter et al., 
2021; Table S2). If species-specific transcriptomic data were unavail-
able, we used information from a related species of the same genus. 
We used two databases for protein homology the Uniprot/Swiss-Prot 
protein sequence database (Bateman, 2019) and a bat–specific pro-
tein database obtained from high-quality genome annotations for six 
bat species (Jebb et al., 2020). Repeat evidence was provided using 
the repeat annotation GFF3 file generated by RepeatMasker. Gene 
models generated on the first run were used for gene predictions 
with two gene software packages, SNAP (Korf, 2004) and Augustus 
(Stanke & Waack, 2003). Only gene models with an AED score < 0.25 
and with more than 50 amino acids were retained. For the second 
run, focusing on reannotation, the MAKER control file was edited to 
include the GFF3 output file from the first run gene predictions gen-
erated by SNAP and the Augustus gene prediction species model as 
inputs. Functional annotation was performed with BlastP (Camacho 
et al., 2009) using the Uniprot/Swiss-Prot database and protein do-
main annotation with InterProScan (Jones et al., 2014).

2.3  |  Homology inference

Protein homology was inferred among the proteins of 43 mammals: 
Including Homo sapiens and Mus musculus, two well-studied model 
organisms, and more closely related species from the superorder 
Laurasiatheria: Sus scrofa, Bos taurus, Equus caballus, Canis lupus 
familiaris, and the 37 bat species (Table S1). Orthologous groups 

(orthogroups) were assigned with ORThOfINdER v.2.4.0 (Emms & Kelly, 
2019). When no orthologues were inferred for the Chiroptera in a 
given orthogroup, we independently analysed the genome data to 
confirm gene losses in bats (Figure S1). To this end, we performed a 
bLAST search against the 37 bat genomes using the following criteria: 
an e-value of 1e-6 and an identity and protein coverage >80%. Then, 
genomic regions with a bLAST hit were extracted along with 200 bp 
upstream and downstream. Sequences were aligned with the MAffT 
aligner tool v.7.402 (Katoh & Standley, 2013) and visualized using 
gENEIOuS version 11.1.3 (Kearse et al., 2012) to discriminate annota-
tion errors. Additionally, bLAST searches were also performed against 
transcriptomic data from 22 bat species (Table S2; Potter et al., 
2021). For these searches, potential matches were filtered more 
strictly, and those with identity and protein coverage ≥90% were re-
tained. Subsequent blast hit extraction, alignment and visualization 
were as for the genome searches.

2.4  |  Enrichment in chiropteran gene losses

We conducted pathway enrichment analyses with the final list of 
genes missing from all bat species using two databases: bIOpLANET 
(Huang, Grishagin, et al., 2019) and dIcE gONET (Pomaznoy et al., 
2018). In each case, we used the list of gene symbols as input with a 
cutoff value of 0.05 (BioPlanet) and a similar p–value in the dIcE gONET 
biological process classification for the mouse model. In both cases, 
all genes found to be missing were used as input and compared to 
a reference set of genes annotated in the corresponding database.

2.5  |  Inferring bat phylogeny

To infer gene family evolution, we first inferred an ultrametric phy-
logenomic tree based on 350 single copy orthologous genes (207,551 
amino acid sites). All the orthologues were concatenated into a sin-
gle 207,551–amino acid “contig” and sequence alignment was per-
formed using the MAffT aligner tool v.7.402 (Katoh & Standley, 2013). 
We evaluated the best-fit models of protein evolution with pROTTEST 
v.3 (Darriba et al., 2011) using two criteria: the Akaike information 
criterion (AIC) and the Bayesian information criterion (BIC) (distribu-
tion JTT, +G +I +I +G and 80% consensus threshold). A maximum 
likelihood tree was inferred for the concatenated data set with RAxML 
v.8 (Stamatakis, 2014). Estimation of species divergence times was 
performed with Bayesian phylogenetic methods using the McMcTREE 
tool in the pAML v.4.9 package (Yang, 2007). We calibrated diver-
gence dates using six points based on fossil records: Icaronycteris, 
considered as one of the oldest echolocating fossil bats, dated at 
52 million years ago (Ma) (Gunnell & Simmons, 2005; Simmons et al., 
2008); Tachypteron, the oldest known emballonurid fossil from the 
early Middle Eocene, with an age range of 48.6–40  Ma (Storch 
et al., 2002); Hipposideros africanum, the oldest fossil record of 
the family Hipposideridae, its records date at 41.3 Ma (Ravel et al., 
2016); Vespertillionidae indet. (41.3  Ma) (Eiting & Gunnell, 2009); 
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Phyllostomidae indet. (30 Ma) (Czaplewski, 2010), and Palynephyllum 
(11.8 Ma) (Czaplewski et al., 2003; Dávalos et al., 2014). Additionally, 
we included and corroborated the molecular dates for the base of 
the ingroup root estimated by Teeling et al., (2005).

2.6  |  Gene family evolution

While previous studies that included bat species have analysed 
signals of positive selection across bats (e.g., Parker et al., 2013), 
fewer have explicitly centred on gene family evolution (Jebb et al., 
2020; Tsagkogeorga et al., 2017). To analyse our comprehensive bat-
focused sample, we modelled gene family expansions and contrac-
tions using computational analysis of gene family evolution (cAfE) 
v.4.2.1 (Han et al., 2013). cAfE fits a birth and death parameter (λ) 
to estimate the probability of gene gains or losses across a speci-
fied phylogeny (Hahn et al., 2005), and we used the newly inferred 
phylogeny to this end.

When we included all species in the cAfE analysis, we observed a 
systematic bias in gene family contractions among fragmented ge-
nomes. This effect of genome quality on downstream gene predic-
tions is well documented and leads to an overestimation of gene gains 
and losses (Denton et al., 2014; Tsagkogeorga et al., 2017). To mitigate 
the bias, only genome assemblies with BUSCO completeness scores 
over 80%, totalling 34 species (28 bat species and six outgroup mam-
mals) were used for cAfE. This smaller subset of protein sequences 
was filtered, retaining only the longest isoform. Homology clustering 
was performed with ORThOfINdER v.2.4.0 (Emms & Kelly, 2019).

We filtered the final input for CAFE to reduce systematic bias in 
inferring gene family evolution. First, we retained only gene fami-
lies present at the most recent common ancestor of the phylogeny, 
with at least one gene present in each of the four clades assigned: (i) 
Euarchontoglires (Homo sapiens and Mus musculus), (ii) non-Chiroptera 
Laurasiatheria (Bos taurus, Canis familiaris, Equus caballus, Sus scrofa), 
(iii) Yangochiroptera, and (iv) Yinpterochiroptera. Second, gene fam-
ilies missing in more than 50% of bat species were excluded. Finally, 
families with large gene copy number variance (≥100  gene copies) 
were excluded for the global birth and death (λ) rate inference.

To analyse families with at least one gene copy across the taxa sam-
pled, we first estimated a global λ for all branches. The global model 
was compared against a three multi-λ model that fits each lineage with 
its own gene family evolution rate. To test which model fits better 
with our data set, we performed a likelihood ratio test for 100 gene 
family evolution simulations. We ran cAfE in error correction mode 
to account for genome assembly and annotation errors and estimate 
the global distribution of error with the assumption that all branches 
share a unique λ rate (λ = 0.0033734) as described in Han et al., (2013). 
Finally, we used complementary tools; the protein analysis through 
evolutionary relationships (pANThER v.15; Mi et al., 2019) and Gene on-
tology analysis (GOnet) to annotate genes with gene ontology (GO) 
terms (Ashburner et al., 2000; Carbon et al., 2019) and assign them to 
gene families, pathways, and biological process categories.

2.7  |  Selection tests

We identified genes under positive selection by evaluating 268 
single–copy genes involved in immune response, based on a curated 
database of 1,793 genes downloaded from the IMMPORTDB repos-
itory (Bhattacharya et al., 2014) available at: https://www.immpo​
rt.org/home. Gene alignments were built with MAffT v.7.402 (Katoh 
& Standley, 2013) and manually filtered to remove sequences with 
<70% of protein coverage based on the homologous human protein. 
Only alignments represented by at least 30% of the species were 
used for downstream analysis. For each gene in the codeml analy-
ses, we built a phylogeny with RAxML (Stamatakis, 2014) and a codon 
alignment for each gene with pAL2NAL (Suyama et al., 2006).

We tested for evidence of positive selection among sites along 
bat lineages using the strict branch–site model (Yang et al., 2005; 
Zhang et al., 2005) with maximum-likelihood estimations imple-
mented in codeml in pAML v.4.9 (Yang, 2007). We implemented 
model 2 as this allows the dN/dS ratio (ω) to vary across branches 
and sites and to detect if selection differs in a few amino acid resi-
dues in specific lineages (foreground branches). We compared two 
hypotheses, assigning the 37 bat species as foreground branches: 
(i) the null hypothesis with a fixed ω (ω  =  1) for all branches does 
not allow for positive selection, and (ii) an alternative hypothesis as-
suming that the foreground branches have a greater proportion of 
sites under positive selection (ω > 1) than the background branches. 
The null hypothesis was tested against the alternative model with 
the likelihood-ratio test (LRT); the p-value was calculated under a 
chi-square distribution with 1  degree of freedom, additionally we 
adjusted the p-value using the false discovery rate (FDR) correction. 
To detect sites under positive selection, we used the Bayes Empirical 
Bayes (BEB) (Yang et al., 2005) approach to calculate posterior prob-
abilities that a site has a significant value of ω > 1. The residues with 
a high posterior probability (p > 95%) were considered.

To determine how robust the signals of positive selection de-
tected were, we used the adaptive branch-site random effects 
likelihood (aBSREL; Smith et al., 2015) model, as implemented in 
HyPhy (Kosakovsky Pond et al., 2005). The aBSREL model explores 
whether a proportion of sites have evolved under positive selection 
in each branch of the phylogeny, and was applied to all alignments 
using their respective gene trees. The false discovery rate method of 
multiple testing correction was applied to all p-values generated for 
each branch and gene.

3  |  RESULTS

3.1  |  Genome sequencing

The final assembly for P. hastatus comprised 2.1 Gb and has a N50 
contig length >39  Mb. Assembly quality completeness was esti-
mated at 95.4%. These values are similar to those observed for bat 
assemblies inferred using similar methods (Jebb et al., 2020).

https://www.immport.org/home
https://www.immport.org/home
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3.1.1  |  Homology inference

BUSCO analysis results indicated that the bat genome assemblies 
contained between 68.5 and 96.5% of the single–copy orthologues 
present among mammals (Figure 1). Orthologues were grouped into 
42,441 groups, of which 1,193 were single copy. In total, 5,528 or-
thogroups had at least one representative in each of the entire set 
of 43  species that were analysed. In contrast, 1,055 orthogroups 
were represented in at least 50% of bat species but missing from the 
six outgroup taxa (Table S3). To annotate diets, we used the semi–
quantitative database compiled by Rojas et al., (2018), which focuses 
on neotropical noctilionoids (Yangochiroptera), supplemented with 
summaries from Animal Diversity Web (https://anima​ldive​rsity.
org/).

3.2  |  Enrichment in chiropteran gene losses

We inferred the first densely sampled chiropteran phylogeny based 
on hundreds of loci (Figure 1). Our results confirmed the monophyly 
of the suborders Yinpterochiroptera and Yangochiroptera but the 
phylogeny of the neotropical leaf-nosed bats (family Phyllostomidae) 
differed from previous phylogenies (Davalos et al., 2020), in the 
paraphyly of plant-eating lineages. As the obtained phylogeny is the 
best supported by all genome-scale analyses available thus far (S. J. 
Rossiter and M. Hiller, personal observation), we used this phylogeny 
for gene family evolution analyses.

A total of 1,115  genes (Table S4) were identified as missing 
in bats, even after filtering BLAST searches against the genomes 
and transcriptomes. Based on this list, we identified eight over-
represented pathways in BioPlanet (Table S5) and 63 GO terms in 

GOnet (Table S6). While the former included 104 genes, of which 
49 were unique, the latter included 339 unique missing genes. As 
expected (Tsagkogeorga et al., 2017, over-represented categories 
included chemosensory gene losses in the categories of olfactory 
transduction, G-protein–coupled receptors (GPCR), and signal 
transduction. BioPlanet pathways were also enriched for less com-
mon categories including immune system pathways that include 
alpha and beta defensins, antigen process and presentation, and 
graft-versus-host disease (Table S5). GOnet analyses also identi-
fied the expected enrichments in chemosensory gene losses and 
general response to stimuli categories, but also included many 
more immune categories. Of the latter, the categories compris-
ing the most genes were defence response (58  genes), defence 
response to other organism (54), response to bacterium (53), in-
nate immune response (46), defence response to bacterium (44), 
humoral immune response (34), adaptive immune response based 
on somatic recombination of immune receptors built from immu-
noglobulin superfamily domains (23), lymphocyte mediated immu-
nity (23), and leucocyte mediated immunity (23). Although these 
categories share many genes across them, a preponderance of im-
mune system losses is evident in Table S6. We used BioRender to 
summarize the immune gene ontology categories and connections, 
highlighted in Figure 2.

3.3  |  Gene family evolution

To determine branches and gene families with significant gene 
family expansions and contractions, we analysed 14,171 ortho-
groups under two models: a global rate of gene family evolu-
tion, and a three multi–λ model. The three–rate model best fit the 

F I G U R E  1  Phylogeny, dietary diversity, and BUSCO completeness across bat genomes. (a) Species tree based on >300 genome-wide 
loci dated using penalized likelihood smoothing. *Genomes excluded from CAFE analyses. (b) Diet composition and relative reliance 
indicated by colour intensity (Rojas et al., 2018). (c) BUSCO completeness for the corresponding genome
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data (p <  .01), this analysis estimated a higher rate of gene family 
turnover (λYangochiroptera = 0.0048) in the ancestral Yangochiroptera 
lineage than in the Yinpterochiroptera ancestral lineage 
(λYinpterochiroptera  =  0.0024), with the lowest turnover rate for out-
group lineages (λOutgroups = 0.0017).

With an estimated error distribution of 0.049 (i.e., 4.9% of 
gene families showed an error in gene size), we identified 2555 
orthogroups with significant expansions or contractions along at 
least one of the branches in the species tree (Table S7). Given our 
focus on immune system and metabolic evolution, we extracted 
PANTHER annotations for the most frequent (900 orthogroups) 
biological process categories: immune response, metabolic pro-
cess, and cellular process. All GOnet annotations were used and 
binned into immune, metabolic, and two additional processes: re-
sponse to stress (271 orthogroups) and autophagy (19). PANTHER 
and GOnet annotations were mostly complementary; orthogroups 

were often annotated in one database but not the other (1268 or-
thogroups). When annotations were available from both databases, 
these tended to agree on both immune and metabolic categories 
(594 orthogroups), or to agree on one or the other (404), with only 
48 orthogroups disagreeing completely in immune and metabolic 
annotations between the databases. The remaining 241 were not 
annotated in either database. Categories, locations, and size of sig-
nificant gene family changes were summarized using tools in the R 
package ggtree (Yu et al., 2017) and are shown in Figure 3. Although 
several pairs of sister species showed apparently large differences 
along corresponding tips (e.g., Rhinolophus, Miniopterus), such vari-
ation is common in analyses that include genome assemblies of 
varying quality (Denton et al., 2014; Tsagkogeorga et al., 2017). 
Therefore, we focus our discussion on the more robust inference 
of gene family expansions and contractions for nonsister lineages in 
immunity and metabolism genes.

F I G U R E  2  Graphical summary of the cellular location and biological process categorization for genes involved in the inflammasome 
activation pathway found to be missing across all bats. (a) Gene loss ofspecific epithelial α and β defensins. (b) Gene losses of NKG2D ligands 
RAET1 and H60, involved in recruiting NK cells and IFN-γ stimulation. (c) Losses in IFN-γ activating PYRIN and HIN domain (PYHIN) gene 
family (AIM2, IFI16, PYHIN1), along with the IFN-γ inducible related GTPase genes (IRGM1, IRGM2, IGTO, IIGP, TGTP2); loss of IRGM1 and 
two results in increase macrophage survival and CD4+ T cells apoptosis
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3.4  |  Selection tests

Branch–site selection tests identified 37 of 268 single–copy genes 
with evidence for positive selection, of which 27 remained after 
false discovery rate correction (Table 1). This subset included genes 
involved in interferon-gamma (IFNG) signalling, inflammatory re-
sponse, as well as cytokines, chemokines, and interleukins. A total of 
16,979 branches across 268 genes were analysed using the aBSREL 
model in HyPhy. After FDR correction, 683 branches from 191 gene 
trees were found to be significant, 25 of which were consistent with 
CODEML results (Table S8).

4  |  DISCUSSION

Gene losses in inflammation–related gene families and positive se-
lection in single–copy genes associated with immune and cell repair 
functions in mammalian models have been evident since the very 
first bat genome assemblies were published (Zhang et al., 2013). 
Although subsequent studies have confirmed those initial results 
(Ahn et al., 2016; Seim et al., 2013), confidence in assessing both 
gene losses and gene family expansions has strengthened only re-
cently, with the publication of highly contiguous assemblies for a few 

bat species (Jebb et al., 2020; Scheben et al., 2020). Examining a 
comprehensive sample of bat lineages while checking against high 
quality genome assemblies and multiorgan RNA Seq, our analyses 
reveal system wide gene losses with the potential to modify the sen-
sitivity, targets, and magnitude of immune responses across all bats. 
These inferred losses are particularly concentrated along inflammas-
ome activation pathways, which are triggered by the innate immune 
recognition of pathogenic signals through both pathogen-associated 
molecular patterns (PAMPs) and damage associated molecular pat-
terns (DAMPs). In contrast with more pathogen–driven PAMPs, 
DAMPs result from host cellular distress signals such as mitochon-
drial stress and reactive oxygen species (ROS) (Zheng et al., 2020), 
which bats produce during active flight (Costantini et al., 2019). Bat 
cells, in turn, display exceptional mechanisms of repair (Pickering 
et al., 2014) and resist damage (Harper et al., 2007), connecting mo-
lecular signalling and cell processes to extreme longevity (Salmon 
et al., 2009; Wilkinson & Adams, 2019).

Based on our genomic surveys, immune-related losses can be 
divided into three categories: the epithelial defence receptors (de-
fensins), the natural killer gene complex (NKC) and the interferon-
induced pathway (IFI; HIN; PYHIN) (Figure 2). This particular 
combination of losses in crucial components of immune activation 
seems contradictory, as it would imply that these losses could lead to 

F I G U R E  3  Gene ontology categories, phylogenetic locations, and relative size of significant gene family expansions (a) and contractions 
(b) inferred using CAFE. “Other” category comprises mostly Panther cellular processes, and GOnet response to stress and autophagy. Pie 
sizes are relative to a maximum of 594 expansions and 579 contractions
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an ineffective immune response in bats. This contradiction notwith-
standing, these results complement previous findings indicating that 
bats have evolved efficient mechanisms of regulation that allow them 
to mount a low intensity immune response to primarily intracellular 
pathogens. Integrating these genomic findings with published func-
tional data suggests complex, systemic adaptation, in line with both 
previous analyses of bat immune system responses (Banerjee et al., 
2020; Basler, 2020; Zhou, 2020) and the growing body of evidence 
for cellular mechanisms underlying longevity (Huang et al., 2020; 
Huang, Whelan, et al., 2019; Kacpryzk et al., 2017). We review these 
losses in a stratigraphic order, from the outer cellular matrix to the 
inner cellular pathways, starting with the defensins.

While defensins are the primary barrier of the immune system, 
with broad antimicrobial activity that covers bacteria, fungi, and vi-
ruses (Semple & Dorin, 2012; Xu & Lu, 2020), bat defensin losses 
consist mainly of orthologues of genes localized to epithelial cells. 
Our results indicate that both α and β defensin genes have under-
gone a rapid evolutionary change through either loss or positive 
selection (Table 1, Figure 2a, Table S4). Rapid evolution and diver-
sification of defensins, driven by the microbiome, varies consider-
ably among species, even in closely related species (Tu et al., 2015). 
Among vertebrates, an expansion of β defensins occurred in mam-
mals, with bovines having the largest number of copies (Tu et al., 
2015), while α defensins, exclusive from mammals (Xiao et al., 2004), 
are lost in bovines (Fjell et al., 2008).

Defensins can function as modulators of the host's cell surface 
receptors, and α and β defensins genes have pleiotropic effects on 
the regulation of carcinogenesis and inflammation (Xu & Lu, 2020). 
By acting as chemokines to alter the adaptive immune response, de-
fensins also serve as a bridge between innate and adaptive immunity 
(Grigat et al., 2007). In humans, defensins can elicit proinflammatory 
cytokine production (Niyonsaba et al., 2010; Wiens et al., 2014), 
but overexpression of certain defensins can actually enhance viral 
infection (Rapista et al., 2011). We hypothesize that specific defen-
sin losses in bats (Figure 2a) complement several other mechanisms 
(Ahn et al., 2019; Banerjee et al., 2017; Xie et al., 2018) contributing 
to a dampened inflammatory response, reduced host–driven dam-
age from viral infections, and enhanced longevity (Baker & Schountz, 
2018; Brook & Dobson, 2015; Gorbunova et al., 2020). For exam-
ple, modifying defensin repertoires on epithelial cells would result 
in fewer instances of both immune cell recruitment and initiation of 
inflammatory pathways known to damage healthy tissue (e.g., focal 
necrosis in lungs, spleen and lymph nodes during the inflammatory 
response during SARS-Cov2 infection [Merad & Martin, 2020]). In hu-
mans, loss of β-defensins prevents the inhibition of neutrophil apop-
tosis and thus averts the production of proinflammatory cytokines 
and chemokines (Nagaoka et al., 2008), avoiding the amplification of 
the immune response, and may have a similar effect in bats. Losses 
of some epithelial surface defensins would thus reduce inflammation 
without compromising responses to intracellular pathogens.

Another result with inferred implications for reducing proinflam-
matory reactions involves losses of Natural Killer (NK) receptors that 
play an important role in the recognition of MHC-I molecules and 

regulation of cytotoxic activity against virus–infected cells. While 
killer-cell immunoglobulin like receptors (KIR) and killer cell lectin-
like receptors (KLR) receptor losses has been previously reported 
for Pteropus alecto and Myotis davidii (Papenfuss et al., 2012; Zhang 
et al., 2013), our analyses confirm these losses across Chiroptera 
(Table S4). Although the killer cell lectin like receptor K1 (KLRK1 or 
NKG2D) gene is present in bats, its ligands, gene subfamilies RAET1 
and H60 responsible for binding and activating NKG2D receptors, 
recruiting natural killer cells, and stimulating them to secrete inter-
feron gamma (IFN-γ) (Zhi et al., 2010), were absent in all bat species 
(Figure 2b).

We hypothesize that these losses lead to low recruitment of 
proinflammatory NK cells and reduce B cell signalling (Arapović 
et al., 2009; Stolberg et al., 2014; Takada et al., 2008; Wortham 
et al., 2012), as they do in mice and humans. Loss of this particular 
mechanism of activation of the MHC-I pathway prevents prolifer-
ation of immune cells, which can be cytotoxic, proinflammatory, 
and targets of viral infections (Djelloul et al., 2016; Wortham et al., 
2012). For example, NKG2D–deficient mice infected with influenza 
viruses exhibit less airway damage and reduced inflammation with-
out compromising viral clearance; similarly, knockout of NKG2D in 
mice and humans during cytomegalovirus infection helps to avoid 
the destruction of noninfected cells by NK (Muntasell et al., 2010; 
Slavuljica et al., 2011). NKG2D stimulation is a central pathway 
to tumor, stress and viral-mediated NK cell hyper responsiveness 
(Wortham et al., 2012) and has been shown to be involved in au-
toimmune disorders, such as rheumatoid arthritis, type I diabetes, 
and coeliac disease (reviewed in Caillat-Zucman, 2006; Guerra 
et al., 2013), and inflammatory diseases such as Crohn's disease 
(Vadstrup et al., 2017), chronic respiratory diseases (Guerra et al., 
2013; Wortham et al., 2012) and more recently with age-dependent 
COVID–19 severity (Akbar & Gilroy, 2020). During viral exposure, 
rarer activation of NKG2D function would therefore lead to less in-
flammatory exacerbation. Reducing instances of NKG2D activation 
might also reduce B cell signalling, as it occurs in NKG2D–deficient 
mice (Lenartić et al., 2017; Zafirova et al., 2009), and complements 
losses of immunoglobulin heavy chain variable regions IGHV1, 
IGVH3, and IGHV14 genes that modify the B cell receptor signal-
ling pathway, and thus B lymphocyte differentiation (Banerjee et al., 
2002; McHeyzer-Williams et al., 2012; Reddy et al., 2010). Based on 
the roles of both NKG2D and B cell activation in promoting inflam-
mation in viral infection, and since some viral proteins have been 
shown to specifically target the NKG2D receptor via the RAET1 
and H60 loci (Arapović et al., 2009), we propose that these losses 
resulted from selection during viral infections early in the evolution-
ary history of bats. While the functional implications for bats need 
to be tested, in humans, lack of specificity of the T and B cells in chil-
dren results in a broader immune response to novel viruses (Pierce 
et al., 2020), and it may confer analogous advantages in bats.

Complementing losses in defensins and NK signalling, the 
third large group of gene losses involves the IFN-γ pathway 
(Figure 2c). While representatives of the PYRIN and HIN domain 
(PYHIN) gene family, immune sensors of cytosolic DNA activating 
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the inflammasome and IFN-γ, are present in all mammals, they have 
not been found in any of the bat genomes analysed thus far examined 
(Ahn et al., 2016; Jebb et al., 2020; Zhang et al., 2013). Previous ge-
nomic analyses linked losses in this inflammasome pathway not only 
to immune implications, but also to the unique demands of bat flight 
and in response to increased ROS production (Zhang et al., 2013). 
In other mammals, the presence of dsDNA, DAMPs and PAMPs, 
or, especially, bacteria and DNA viruses, induces the (PYHIN) AIM2 
inflammasome, while the IFI16 inflammasome (interferon-inducible 
protein 16, also missing in bats) recognizes viruses replicating in the 
nucleus (Zheng et al., 2020). Hence, these bat gene losses could un-
dermine innate defence against viruses. We hypothesize that bats 
have evolved mechanisms to overcome this potential disadvantage 
in rapid recognition and response against viruses through expansion 
of MHC-I class genes (Table S7). These genes are involved in the 
recognition and binding of intracellular peptides, and previous stud-
ies have described a unique 5–amino acid insertion at the exon 2 
peptide binding region (PBR) on bats which may allow the host to 
recognize longer peptides (Ng et al., 2016; Papenfuss et al., 2012). 
In addition to implications for immunity, IFN-γ pathway gene losses 
also point to changes in autophagy. In mice, loss of the IFN-γ induc-
ible immunity related GTPase gene (IRGM1 and IRGM2) results in 
an IFN-γ induced autophagic death program in lymphocytes (Feng 
et al., 2008). Along with the loss of other IFN-γ related genes (IGTO, 
IIGP, TGTP2), these losses may help achieve apoptosis of infected 
cells without runaway inflammation.

While some mechanisms of activation of IFN-λ are lost in bats, 
IFN-γ itself is under positive selection within branches (Table 1, 
Table S7). IFN-γ is a crucial part for the first line of defence against 
viruses, helps shape adaptive immune memory (Schroder et al., 
2004), and its deficiency increases inflammation (Loo et al., 2017). 
Thus, evolutionary adaptation may have shaped bats’ unique ability 
to induce a rapid antiviral response without triggering runaway in-
flammation. This fine-tuned response may be achieved by express-
ing high levels of IFN-γ early on, which recruits broad-spectrum 
immune cells to the site of injury, while negatively regulating the 
IFN-γ pathway receptors that trigger inflammation (Ahn et al., 2019; 
Ferber et al., 1996).

By generating a controlled induction of immune response, bats’ 
unique regulatory mechanisms, have sparked an extraordinary im-
mune tolerance against viruses, a key factor in bats as natural viral 
reservoirs. Evidence of this viral tolerance has been observed in bats 
with high viral load (reviewed in Irving et al., 2021; Subudhi et al., 
2019). In addition, in silico experiments have shown that a trade-off 
of this viral tolerance in bats is the rapid spread of viruses within the 
host; thus, favoring viruses to evolve adaptations that increase their 
replication rates (Brook et al., 2020). While this rapid transmission 
may not have a significant harmful effect in bats, it could be detri-
mental for other species, as recent spillovers have shown.

In contrast to a pattern of proinflammatory signal losses common 
to all bats, most other variation in gene families within Chiroptera 
corresponded to cell processes and metabolic functions with the 
notable exceptions of APOBEC3 and MHC-I. Besides confirming 

the previously reported APOBEC3 expansion in Pteropus vampyrus 
(Hayward et al., 2018), we also inferred expansions in the common 
ancestors of Desmodus and Artibeus, of Vespertilionids, Myotis, and 
of M. brandtii and lucifugus, including species-specific expansions in 
the latter. With this denser sampling, expansions formerly traced 
to Myotis myotis and Pipistrellus kuhlii (Jebb et al., 2020), are instead 
part of broader vespertilionid dynamics especially within Myotis. 
Other species-specific expansions were inferred in the phyllosto-
mids Tonatia saurophila and Desmodus rotundus, both of which shift 
from an ancestral bat insectivorous diet to one including verte-
brates, exclusively so for Desmodus. While MHC-I expansions have 
been highlighted in Pteropus alecto (Ng et al., 2016) and Rousettus ae-
gyptiacus (Pavlovich et al., 2018), here we find much greater expan-
sions in neotropical noctilionoids including Noctilio, Mormoops, and 
especially within Phyllostomidae including Artibeus, Sturnira, Tonatia, 
Leptonycteris, Musonycteris, Anoura, Desmodus, and Macrotus. As 
with APOBEC3, MHC-I evolution in vespertilionids was found to be 
dynamic, with significant expansions inferred for every Myotis spe-
cies, as well as Pipistrellus and Eptesicus. While APOBEC3 function 
has been examined in Pteropus alecto (Hayward et al., 2018), our 
analyses highlight the need for characterization in vespertilionids. 
With greater potential for ligand binding, rich MHC-I repertoires 
may provide both better self recognition for NK tuning and finer 
resolution of MHC-I pathogen mimics (Parham & Moffett, 2013), 
suggesting further research avenues in phyllostomids, vespertilion-
ids, and Miniopterus. Our analyses overlooked both the potential for 
unique MHC-I features that alter antigen presentation, as in Pteropus 
alecto, and population variation, already found in the phyllostomids 
Carollia perspicillata (Qurkhuli et al., 2019), suggesting these as po-
tential research avenues.

Expansions and contractions in metabolic genes were common 
throughout the bat phylogeny (Figure 3), but many ecological differ-
ences across species (e.g., biogeography, hibernation, life history) 
could be driving these changes (Han, Zheng, et al., 2015; Seim et al., 
2013). Taking advantage of our relatively dense taxon sampling 
within bats (Figure 1), we focus on parallel adaptation to plant–rich 
diets across suborders Yinpterochiroptera and Yangochiroptera, a 
set of traits of known metabolic implications (Voigt & Speakman, 
2007). Shifts from the ancestral bat insectivorous diet to including 
nectar and fruit and the resulting mutualistic relationships between 
bats and plants appear to have led to elevated rates of diversifica-
tion and the evolution of new morphological traits (Dumont et al., 
2012; Jones et al., 2005), but gene family evolution has remained 
underexplored. Regarding significant expansions (Table S7), we 
identified few —only nine— sets of duplications independently rep-
licated across all pteropodids and phyllostomids with convergent, 
plant–based diets (Figure 1). In addition to a trace amine associated 
receptor (TAAR) of unknown chemosensory function (Liberles & 
Buck, 2006) and a putative homologue of the yeast protein trans-
port protein YIP1, two genes stand out as candidates for diet–
linked adaptive gene family evolution: those encoding homologues 
of inositol monophosphatase 1 (IMPA1) and integrin alpha-D/beta-2 
(ITAD). Glycolysis, the metabolic pathway that breaks down 
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glucose to ultimately phosphorylate more ADP into ATP than the 
reverse, begins with the phosphorylation of glucose into D-glucose 
6-phosphate (Berg et al., 2002). This metabolite, however, cannot 
diffuse through the membrane and is thus highly osmotic; its accu-
mulation would cause cells to swell. Through the synthesis of myo-
inositol from D-glucose 6-phosphate, IMPA1 provides one avenue 
to protect cells, particularly in the brain (Parthasarathy et al., 1997), 
from the osmotic stress of this glucose metabolite (Rafikov et al., 
2019). We found independent IMPA1 duplications in the pteropo-
did ancestor, A. jamaicensis, A. caudifer, P. discolor, and the common 
ancestor of phyllostomids and Mormoops. Except for the aerial 
insectivore Mormoops, all the lineages with IMPA1 duplications 
include nectar and fruit in their diet (Figure 1), are expected to at 
least occasionally experience high blood glucose levels (Amitai et al., 
2010; Ayala-Berdon & Schondube, 2011; Kelm et al., 2011; Meng 
et al., 2016; Welch et al., 2008), and therefore require options for 
processing metabolites from glycolysis. Although beta integrins, in-
cluding ITAD, are regulators of leucocyte function and therefore not 
annotated as directly involved in metabolism, leukocyte adhesion 
has been found to modulate glucose homeostasis via lipid metabo-
lism (Meakin et al., 2015). Specifically, mice deficient in a paralogous 
beta-2 integrin become spontaneously obese in old age despite a 
normal diet (Dong et al., 1997), and when fed a fat rich diet show 
obesity, inflammation, high neutrophil activity and insulin resistance 
in skeletal muscle (Meakin et al., 2015). Likewise, mice deficient in 
this same integrin are unable to respond to fasting by increasing fat 
uptake and reduce insulin levels slowly compared to normal mice 
(Babic et al., 2004). We found single ITAD duplications in lineages 
that include sugar rich foods in their diet: ancestral pteropodids 
and phyllostomids, as well as Leptonycteris yerbabuenae, two each in 
Macroglossus, Anoura, and Tonatia, and three in Artibeus jamaicensis. 
While the function of these lineage–specific bat paralogues remain 
unknown, their phylogenetic distribution warrants future explora-
tion and functional analysis.

In summary, our results, grounded on the most comprehensive 
survey of bat genomes to date, suggest bats have evolved complex 
mechanisms of inflammasome regulation. These may have evolved 
to prevent uncontrolled inflammatory response against DAMPs 
byproducts of the high metabolic rate required for powered flight 
(Banerjee et al., 2017, 2020; Subudhi et al., 2019; Xie et al., 2018), 
to better respond against intracellular pathogens such as viruses, or 
some combination of both. Regardless of the ecological origin of se-
lection, compared to mammals such as humans or mice, bat genomes 
reveal systemwide immune evolution that prevents or dampens ag-
gressive inflammatory responses. In contrast with these gene losses, 
we found significant expansions in gene families involved with glu-
cose degradation, coinciding with the transition from a diet based 
mainly on insects to a high-glucose content diet that includes fruit 
and nectar.

By undertaking large-scale comparative genomic analyses en-
compassing many ecologically divergent lineages, the present study 
demonstrates the impact of genomics in non-model organisms. Such 
analyses allow elucidating the broad evolutionary mechanisms in a 

given clade, with potential for functional implications. Yet, hetero-
geneity in assembly quality continues to limit the scope of inference. 
Hence, the need to generate high quality genomes for future studies 
endures.
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