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Abstract. Graph neural network (GNN) explainers identify the impor-
tant subgraph that ensures the prediction for a given graph. Until now,
almost all GNN explainers are based on association, which is prone to
spurious correlations. We propose CXGNN, a GNN causal explainer via
causal inference. Our explainer is based on the observation that a graph
often consists of a causal underlying subgraph. CXGNN includes three
main steps: 1) It builds causal structure and the corresponding structural
causal model (SCM) for a graph, which enables the cause-effect calcula-
tion among nodes. 2) Directly calculating the cause-effect in real-world
graphs is computationally challenging. It is then enlightened by the re-
cent neural causal model (NCM), a special type of SCM that is trainable,
and design customized NCMs for GNNs. By training these GNN NCMs,
the cause-effect can be easily calculated. 3) It uncovers the subgraph that
causally explains the GNN predictions via the optimized GNN-NCMs.
Evaluation results on multiple synthetic and real-world graphs validate
that CXGNN significantly outperforms existing GNN explainers in exact
groundtruth explanation identification®.

Keywords: Graph neural network explanation - Neural causal model

1 Introduction

Graph is a pervasive data type that represents complex relationships among
entities. Graph Neural Networks (GNNs) [6,13,15,44], a mainstream learning
paradigm for processing graph data, take a graph as input and learn to model
the relation between nodes in the graph. GNNs have demonstrated state-of-the-
art performance across various graph-related tasks such as node classification,
link prediction, and graph classification, to name a few [42].

Explainable GNN provides a human-understandable way of the prediction
outputted by a GNN. Given a graph and a label (correctly predicted by a GNN
model), a GNN explainer aims to determine the important subgraph (called
explanatory subgraph) that is able to predict the label. Various GNN explanation
methods [3,5,8,9,14,18,21,26-28,30,33,39,40,46-50] have been proposed, wherein
almost all of them are based on associating the prediction with a subgraph that
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has the maximum predictability (more details see Section 2). However, recent
studies [7,32,41] show that association-based explanation methods are prone
to biased subgraphs as the valid explanation due to spurious correlations in
the training data. For instance, when the groundtruth explanatory subgraph is
the House-motif, it often occurs with the Tree bases. Then a GNN may not
learn the true relation between the label and the House-motif, but the Tree
base, due to it being easier to learn. We argue a truly explainable GNN should
uncover the intrinsic causal relation between the explanatory subgraph and the
label, which we call the causal explanation [4,10,29]. Note that a few GNN
explanation methods [19, 20, 32| are motivated by the causality concepts, e.g.,
Granger causality [11]?, but they are not causal explanations in essence.

Our GNN causal explainer: In this paper, we take the first step to propose
a GNN explainer via causal inference [24], which focuses on understanding and
quantifying cause-and-effect relations between variables in the task of interest. In
the context of GNN causal explanation, we base on a common observation that
a graph often consists of a causal subgraph and a non-causal counterpart [7,19,
20,32,38,41]. Then given a graph and its (predicted) label, we aim to identify the
causal explanatory subgraph that causally yields such prediction. Our key idea
is that the causal explainer should be able to identify the causal interactions
among nodes/edges and interpret the label based on these interactions.

Specifically, we propose a GNN causal explainer, called CXGNN, that consists
of three steps. 1) We first define causal structure (w.r.t. a reference node) for the
graph, which admits structure causal models (we call GNN-SCM). Such GNN-
SCM enables interventions to calculate cause and effects among nodes via do-
calculus [24]. 2) In real-world graphs, however, it is computationally challenging
to perform do-calculus computation due to a large number of nodes and edges. To
address it, we are inspired by the recent neural causal model (NCM) [43], which
is a special type of SCM that can be trainable. We prove that, for each GNN-
SCM, we can build a family of the respective GNN-NCMs. We then construct
a parameterized GNN-NCM such that when it is optimized, the cause-effects
defined on the GNN-NCM are easily calculated. 3) We finally determine the
causal explanatory subgraph. To do so, we first introduce the node expressivity
that reflects how well the reference node is in the causal explanatory subgraph.
Then we iterate all nodes in the input graph and identify the trained GNN-NCM
leading to the highest node expressivity. The underlying causal structure of this
GNN-NCM is then the causal explanatory subgraph.

We evaluate CXGNN on multiple synthetic and real-world graph datasets
with groundtruth explanations, and compare them with state-of-the-art association-
based and causality-inspired GNN explainers. Our results show CXGNN signifi-
cantly outperforms the baselines in exactly finding the groundtruth explanations.
Our contributions are summarized below:

— We propose the first GNN causal explainer CXGNN.

2 Granger causality can only identify that one variable helps predict another, but it
does not tell you which variable is the cause and which is the effect.
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— We leverage the neural-causal connection, design the GNN neural causal
models and train them to identify the causal explanatory subgraph.
— CXGNN shows superiority over the state-of-the-art GNN explainers.

2 Related Work

Association-based explainable GNN: Almost all existing GNN explainers
are based on association. These methods can be roughly classified into five types.
(i) Decomposition-based methods [8, 27] consider the prediction of a GNN model
as a score and decompose it backward layer-by-layer until it reaches the input.
The score of different parts of the input can be used to explain its importance
to the prediction. (ii) Gradient-based methods [3, 27] take the gradient of the
prediction with respect to the input to show the sensitivity of a prediction to
the input. The sensitivity can be used to explain the input for that prediction.
(iii) Surrogate-based methods [5, 14, 26, 33, 50] replace the GNN model with a
simple and interpretable surrogate one. (iv) Generation-based methods [18, 30,
40,477 use generative models or graph generators to generate explanations. (v)
Perturbation-based methods [9, 21, 28, 39, 46, 48, 49] aim to find the important
subgraphs as explanations by perturbing the input. State-of-the-art explainers
from (iii)-(iv) show better performance than those from (i) and (ii).
Causality-inspired explainable GNN: Recent GNN explainers [7,19,20,32,
38,41] are motivated by causality. These methods are based on a common obser-
vation that a graph consists of the causal subgraph and its non-causal counter-
part. For instance, OrphicX [20] uses information-theoretic measures of causal
influence (2|, and proposes to identify the (non)causal factors in the embedding
space via information flow maximization. CAL [32] introduces edge and node
attention modules to estimate the causal and non-causal graph features.
CXGNN vs. causality-inspired explainers. The key difference lies in CXGNN
focuses on identifying the causal explanatory subgraph by directly quantifying the
cause-and-effect relations among nodes/edges in the graph. Instead, causality-
inspired explainers are inspired by causality concepts to infer the explanatory
subgraph, but they inherently do not provide causal explanations.

3 Preliminaries

In this section, we provide the necessary background on GNNs and causality to
understand this work. For brevity, we will consider GNNs for graph classification.
Notations: We denote a graph as G = (W, ), where V and & are the node set
and edge set, respectively. v € V(G) represents a node and e, , € £(G) is an
edge between u and v. Each graph G is associated with a label yo € Y, with )
the label domain. An uppercase letter X and the corresponding lowercase one x
indicate a random variable and its value, respectively; bold X and x denote a set
of random variables and its corresponding values, respectively. We use Dom (X))
to denote the domain of X, and P(X) as a probability distribution over X.
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Graph neural network (GNN): A GNN is a multi-layer neural network that
operates on the graph and iteratively learns node/graph representations via mes-
sage passing. A GNN mainly uses two operations to compute node representa-
tions in each layer. Assume a node v’s representations in the (I — 1)-th layer is
learnt and denoted as hq(}lfl). In the I-th layer, the message between two con-
nected nodes v and v is defined as mfw = MSG(R1 L e, ). The aggregated
message for node w is then defined as w’s representation in the current layer I:
hl, = AGG(m!, , : v € Ni(u)). Assume L layers of computation, the final repre-

sentation for v is z, = hq()L) and Z = {2, }yey. GNN can add a predictor on top

of Z to perform graph-relevant tasks. For instance, when graph classification is
the task of interest, GNNs use Z to predict the label for a whole graph.
Structural Causal Model (SCM): SCMs [23] provide a rigorous definition of
cause-effect relations between random variables. An SCM M is a four-tuple M =
(U, V,F,P(U)), where U is a set of exogenous (or latent) variables determined
by factors outside the model and they are the only source of randomness in an
SCM; V is a set {V1,Va,...,V,} of n endogenous (or observable) variables of
interest determined by other variables within the model, i.e., in UU V; F is set
of functions (define causal mechanisms) {fv,, fv,, ..., fv, } such that each fy, is
a mapping function from Uy, | JPay, to V;, where Uy, C U and Pay, C V\ V;
is the parent of V;. That is, v; < fv,(pay,,uy;) and F forms a mapping from U
to V. P(U) is the probability function over the domain of U. With SCM, one
can perform interventions to find causes and effects and design a model that has
the capability of predicting the effect of interventions.

Definition 1 (Intervention and Causal Effects). Interventions are changes
made to a system to study the causal effect of a particular variable or treatment
on an outcome of interest. An SCM M induces a set of interventional distri-
butions over V, one for each intervention do(X = x) (short for do(x)), which
forces the value of variable X C 'V to be x. Then for each Y CV:

pMyldo(x))= > P(u). (1

{ulYx(w)=y}

In words, an intervention forcing a set of variables X to take values x is
modeled by replacing the original mechanism fx for each X € X with its cor-
responding value in x. The impact of the intervention x on an outcome variable
Y is called potential response Yy (u), which expresses causal effects and is the
solution for Y after evaluating: Fyx := {fy, : V; e VA X} U{fx + z: X € X}.

One possible strategy to estimate the underlying SCM of a task is using
its observational inputs and outputs. However, a critical issue is that causal
properties are provably impossible to recover solely from the joint distribution
over the input graphs and labels [24]. In this paper, we are inspired by the
emerging Neural Causal Model (NCM) [43], which is a special type of SCM that
is amenable to gradient descent-based optimization.

Neural Causal Model (NCM): A NCM [43] M(6) over variables V with pa-

rameters 0§ = {0y,; V; € V} is an SCM estimation as: M\(G) = (U,V, F,P(U)),
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where 1) U C {Ug; C C V}, with each U associated with some subset of vari-
ables C C V, and Dom(U) = [0,1]; 2) F = {fy, : Vi € V}, with each
J/C\Vi a neural network parameterized by 0y, that maps IAJV; U Pay, to V;, and
Uy, = {Uc : V; € C}; 3) P(U) : U ~ Unif(0,1),vU € U.

[43] shows that NCM is proved to be as expressive as SCM, and hence
all NCMs are SCMs. However, expressiveness does not mean the learned NCM
model has the same empirical observations as the SCM model. To ensure equiva-
lence, there should be a necessary structural assumption on NCMs, called causal
structure consistency. More details are referred to [43] and Appendix B.

4 GNN Causal Explanation via NCMs

In this section, we propose our GNN causal explainer, CXGNN, for explaining
graph classification. Our explainer also utilizes the common observation that a
graph consists of a causal subgraph and a non-causal counterpart [7,19,20,32,38,
41]. The overview of CXGNN is shown in Figure 10 in Appendix and all proofs
are deferred to Appendix C.

4.1 Overview

Given a graph G = (V,€&) and a ground truth or predicted label by a GNN
model, our causal explainer bases on causal learning and identifies the causal
explanatory subgraph (denoted as I') that intrinsically yields the label.

Our CXGNN consists of three key steps: 1) define the causal structure G
for the graph G and the respective SCM /\7(g) (we call GNN-SCM) to enable
causal effect calculation via interventions; 2) However, directly calculating the
causal effect in real graphs is computationally challenging. We then construct
and train a family of parameterized GNN neural causal model M (G, 0)) (we call
GNN-NCM), a special type of GNN-SCM that is trainable. 3) We uncover the
causal explanatory subgraph (denoted as I") based on the trained GNN-NCM
that best yields the graph label. Next, we will illustrate step-by-step in detail.

4.2 Causal Structure and Induced SCM on a Graph

In the context of causality, the problem of GNN explanation can be solved by
cause and effect identification among nodes and their connections in a graph. In-
terventions enable us to interpret the causal relation between nodes. To perform
interventions on a graph, one often needs to first define the causal structure for
this graph, which involves the observable and latent variables.

Observable and latent variables in a graph: Given a G = (V,€). For
each node v € V, there are both known and unknown effects from other nodes
and edges on v, which we call observable variables (denoted as V,) and latent
variables (denoted as U,), respectively. With it, we define a congruent causal
structure for enabling the graphs to admit SCMs.
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Definition 2 (Causal structure of a graph). Consider a graph G = (V,€),
we define the causal structure G of G as a subgraph that centers on a reference
node v and accepts the SCM structure:

G(G) = {Vv ={yo} U{yw; 1 vi € N<i(v)}, Uy = {Uy, 1 v; € N (0)} U {Uvuu; @ €0y, € 8}},
2

where v is to be learnt (see Section 4.4), y., is the node v;’s label, N<(v) means

nodes within the k-hop neighbors of v, U,, is v;’s latent variable, called node

effect; and U, ,, the edge e, ,, latent variable, called edge effect. In practice, we

can specify U,,, and U, ,,, as random variable, e.g., from a Gaussian distribution.

With a causal structure for a graph, we can build the corresponding SCM in
the following theorem:

Theorem 1 (GNN-SCM). For a GNN operating on a graph G, there exists
an SCM M(G) w.r.t. the causal structure G of the graph G.

Appendix A shows an example on how to compute the causal effects on a
toy graph via a SCM truth table.

4.3 GNN Neural Causal Model

In reality, it is computationally challenging to build a truth table for variables
in GNN-SCM and perform do-calculus computation due to the large number of
nodes/edges in real-world graphs. Such a challenge impedes the calculation of
causal effects. To address it, we are motivated by estimating the causal effect via
NCM (see Section 3). Specifically, Definition 6 in Appendix shows: to ensure the
equivalence between NCM and SCM, NCM is required to be G-constrained. How-
ever, the general G-constrained NCM cannot be directly applied in our setting.
To this end, we first define a customized G-constrained GNN-NCM as below:

Definition 3 (G-Constrained GNN-NCM (constructive)). Let GNN-SCM
M(G,0) be induced from the causal structure G(G) on a graph G. Then GNN-

NCM /T/l\(g,e) will be constructed based on the causal structure G(G).

This construction ensures that any inferences made by Myec M (G, 0) respect
the causal dependencies as captured by G(G). Note that /\7(9,9) represents
a family of GNN-NCMs since the parameters 6 of the neural networks are not
specified by the construction. Next, we propose a construction of a G-constrained
GNN-NCM, following Definition 3.

GNN Neural Causal Model Construction One should consider the sound
and complete structure of GNN-NCMs that are consistent with Definition 2.
Here, we define the general GNN-NCM structure as shown in below Equation 3,
which is an instantiation of Theorem 2.

V= V(o) o

U :={U,,;,v; € V(G}, P(U) := {U,, ~ Unif(0,1)} U {Tk,o, ~N(0,1): k € {0,1}}
log O'(ffvi (G‘Uz‘ R a”iv“j 2 ) ifk=1
log(1 — o (f fu; (o, , Uo; 0,5 600,))) if k=0,

(3)

M(G,0) =

Jo; (Ao, To, o)) == arg, max Ti.v, + {

P APy )
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Algorithm 1 GNN Neural Causal Model Training

Input: The causal structure G (including a reference node v, its within k-hop neighbors

N<i(v), and set of latent variables U, ), node label y,

Output: An optimized GNN-NCM M\(Q, 0*) for the causal structure G centered at v
: Build the GNN-NCM M(G, 6) based on G and Eqn. 3

: for each node v; € N<x(v) do
/\7<g,0>(

1

2

3: Calculate p Yo | do(v;)) via Eqn. 4
4: end for

5: Calculate p™(99 (y,) via Eqn. 5

6: Calculate the loss £(M(G,6);v) via Eqn. 6
7

: Minimize the loss to reach the GNN-NCM ﬂ(g, 0")

Theorem 2 (GNN-NCM). Given causal structure G of a graph G and the

underlying GNN-SCM M(G), there exists a G-constrained GNN-NCM /\//T(Q,t‘))
that enables any inferences consistent with M(G).

In Equation 3, V are the nodes in the causal structure G(G); each T, is a
standard Gaussian random variable; each ff,, is a feed-forward neural network
on v; parameterized by 6,, (note one requirement of f f,, is it could approximate
any continuous function), and o is sigmoid activation function. The parameters
{0y, } are not yet specified and must be learned through training the NCM.
Training Neural Networks for GNN-NCMs We now compute the causal
effects on a target node v. Based on Definition 1 and the constructed GNN-
NCM M\(Q,H) in Equation 3, the causal effect on v of an intervention do(v;)
(v; € Nq1(v)) is pM9 9 (y,|do(v;)). This do-calculus then can be calculated as
the expected value of nodes and edges affects values for v shown below:

M(G,6 PN
POy, | do(v)) =By | [T For(@y 8]
(v,v5)€E(G)

L N ~
~ m Z H Jo; (uvj7uv,v]-). (4)

v EN< (v) (v,05)EE(G)

Then one can calculate the probability of the target node label ¥, as the expected
value of all the effects from the neighbor nodes on v:

M99 () = By [ﬁ} ~ mﬁ 3% MO0y, =y do(v)  (5)
€

yeY v €N (v)

The true GNN-SCM induces a causal structure that encodes constraints over
the interventional distributions. We now first investigate the feasibility of causal
inferences in the class of G-constrained GNN-NCMs. These models approximate
the likelihood of the observed data based on the graph’s latent variables. The
cross-entropy loss measures the discrepancy between the target node’s label pre-
diction and its true label. Inspired by [43]|, we define the GNN-NCM loss as:

LOM(G.0)i0) = — 3 o log(@™ @ (y,)) (6)

Yv €Y
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Algorithm 2 CXGNN: GNN Causal Explainer
Input: Graph G with label, and expressivity threshold §

Output: Explanatory subgraph I

1: for each node v € V(G) do

2: Build G, based on the ngerence node v

3: Train the GNN-NCM M (G,, ;) via Alg. 1 and calculate the node expressivity

exp, (M(Gv, 07))

4: end for .
: Find v* = argmax, ¢ y(g)exp, (M(Go, 03));
6: Return the explanatory subgraph I" induced by G,=

ot

To train neural networks for GNN-NCMs, one should generate samples from
the GNN-SCM. If provided, it is the specific realization of the interventions.
Specifically, GNN-NCMs are trained on node effects @1,, and edge effects 0, o,
on the target node, as shown in Equation 3, and should specify ﬁ, (Qy,, Oy, 0, )-
Then a model, denoted as 6*, is achieved by minimizing the GNN-NCM loss:

6" € argmin L(M(G,0);v) (7)

Details of training GNN-NCMs are shown in Algorithm 1. Basically, this algo-
rithm takes the causal structure G with respect to a reference node v as input
and returns an optimized GNN-NCM model M(G, 6%).

4.4 Realizing GNN Causal Explanation

The remaining question is: how to find the causal explanatory subgraph I" from
a graph G to causally explain GNN predictions? The answer is using the trained
GNN-NCMs M(G, 6*). Before that, the first step is to clarify a node’s role in
GNN-NCMs for explanation.

Theorem 3 (Node explainability). Let a prediction for a graph G be ex-
plained. A node v € G is causally explainable, if p(9(G)0) (3.} can be computed.

The G-constrained GNN-NCM is trained on interventions and can interpret
the GNN predictions. Moreover, the information extracted from interventions
can be used for interpreting nodes. Specifically, we define expressivity to measure
the information for an explainable node.

Theorem 4 (Explainable node expressivity). An explainable node v has
expressivity defined as exp,(M(G,0)) =3, Yop™90) (y,).

In other words, the node expressivity reflects how well the node is in the
causal explanatory subgraph. Now we are ready to realize GNN causal explana-
tion based on learned GNN-NCMs. Given a graph G, we start from a random
node v, and build the causal structure G centered on v. By Algorithm 1, we can
reach an optimized GNN-NCM M(G, 6*) and obtain the v’s expressivity.

We repeat this process for all nodes in the graph G and find the node v* with
the associated M(G, 6*) yielding the highest expressivity exp,,-(M(G, 6*)). The
underlying subgraph of the causal structure centered by v* is then treated as
the causal explanatory subgraph I'. Algorithm 2 describes the learning process.
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Table 1: Dataset statistics.

Avg. #nodes Avg. #edges #test graphs

BA-+House 11.97 18.17 500
BA+Grid 15.96 24.20 500
BA+Cycle 10.0 10.5 500
Tree+House 12 13 500
Tree+Cycle 13 13.50 500
Tree+Grid 24 27 500
Benzene 20.48 21.73 100
Fluoride carbonyl 20.66 22.03 100

5 Experiments

5.1 Experimental Setup

Datasets: Following prior works [19, 46], we use six synthetic datasets, and
two real-world datasets with groundtruth explanation for evaluation. Dataset
statistics are shown in Table 1.

— Synthetic graphs: 1) BA+House: This graph stems from a base random
Barabasi-Albert (BA) graph attached with a 5-node “house"-structured mo-
tif as the groundtruth explanation; 2) BA+Grid: This graph contains a
base random BA graph and is attached with a 9-node “grid" motif as the
groundtruth explanation; 3) BA+Cycle: A 6-node “cycle" motif is ap-
pended to randomly chosen nodes from the base BA graph. The “cycle" motif
is the groundtruth explanation; 4) Tree+House: The core of this graph is
a balanced binary tree. The 5-node “house" motif, as the groundtruth ex-
planation, is attached to random nodes from the base tree. 5) Tree+Grid:
Similarly, binary tree a the core graph and a 9-node “grid" motif as the
groundtruth explanation is attached; 6) Tree-+Cycle: A 6-node “cycle"
motif, the groundtruth explanation, is appended to nodes from the binary
tree. The label of the synthetic graph is decided by the label of nodes in
the groundtruth explanation. Following existing works [19,46], a node v’s
label y, is set to be 1 if v is in the groundtruth, and 0 otherwise. Hence, in
these graphs, the base graph acts as the non-causal subgraph that can cause
the spurious correlation, while the attached motif can be seen as the causal
subgraph, as it does not change across graphs and decides the graph label.

— Real-world graphs: We use two representative real-world graph datasets with
groundtruth [1]. 1) Benzene: it includes 12,000 molecular graphs extracted
from the ZINC15 [31] database and the task is to identify whether a given
molecule graph has a benzene ring or not. The groundtruth explanations
are the nodes (atoms) forming the benzene ring. 2) Fluoride carbonyl:
This dataset contains 8,671 molecular graphs with two classes: a positive
class means a molecule graph contains a fluoride (F-) and a carbonyl (C=0)
functional group. The groundtruth explanation consists of combinations of
fluoride atoms and carbonyl functional groups within a given molecule.
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Models and parameter setting: In CXGNN, we use a feedforward neural
network to parameterize GNN-NCM. The neural network consists of an input
layer, two fully connected hidden layers, and an output layer. ReLU activation
functions is used in all hidden layers, while a softmax activation function is ap-
plied to the output layer. The input to the network is the target node v’s node
effects and edge effects (see Equation 2), whose values are sampled from a stan-
dard Gaussian distribution, and the output is the predicted causal effect on v.
The detailed hyperparameters are shown in Appendix D.1. The hyperparameters
in the compared GNN explainers are optimized based on their source code.
Baseline GNN explainers: We compare CXGNN with both association-based
and causality-inspired GNN explainers. We choose 4 representative ones: gradient-
based Guidedbp [12], perturbation-based GNNExplainer [46], surrogate-based
PGMExplainer [33], and causality-inspired GEM [19], RCExplainer [38], and
OrphicX [20]. We use the public source code of these explainers for comparison.
The causality-inspired explainers are inspired by causality concepts to infer the
explanatory subgraph, but they inherently do not provide causal explanations.
Evaluation metrics: Given a set of testing graphs G. For each test graph
G € G, we let its groundtruth explanatory subgraph be Iz and the estimated
explanatory subgraph by a GNN explainer be I'. We use two common metrics,
i.e., graph explanation accuracy and explanation recall from the literature [1]. In
addition, to justify the superiority of our causal explainer, we introduce a third
metric groundtruth match accuracy, which is the most challenging one.

— Graph explanation accuracy: For a graph G, the graph explanation accu-
racy is defined as the fraction of nodes in the estimated explanatory subgraph
I' that are contained in the groundtruth I'g, ie., [V(I)NV(Ie)|/|V(Ia)l.
We then report the average accuracy across all testing graphs.

— Graph explanation recall: Different GNN explainers output the estimated
explanatory subgraph with different node sizes. When two explainers output
the same number of nodes in I'g, the one with a smaller node size should be
treated as having a better quality. To account for this, we use the explanation
recall metric that is defined as |V(I") NV (I'¢)|/|V ()] for a given graph G.
We then report the average recall across all testing graphs.

— Groundtruth match accuracy: For a testing graph G, we count a 1 if the
estimated I' and groundtruth I's exactly match, i.e., 'z = I', and 0 other-
wise. In other words, the groundtruth match accuracy of all testing graphs
G is defined as ) ¢ 1[I'¢ = I']/|G|, where 1[-] is an indicator function.

5.2 Results on Synthetic Datasets

Comparison results: Table 2 shows the results of all the compared GNN ex-
plainers on the 6 synthetic datasets with 500 testing graphs and 3 metrics. We
have several observations. In terms of explanation accuracy, CXGNN performs
comparable or slightly worse than causality-inspired methods. This is because,
to ensure high accuracy, the estimated explanatory subgraph of these methods
should have a large size. This can be reflected by the explanation recall, where
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Table 2: Comparison results on the synthetic datasets. B.H.: BA+House; B.G.:
BA+Grid; B.C.: BA+Cycle; T.H.: Tree+House; T.G.: Tree+Grid; T.C.: Tree+Cycle.

Graph explanation accuracy (%)

B.H. B.G. B.C. T.H. T.C. T.G.
GNNExp. [46] 75.60 76.16 75.13 77.24 71.60 72.18
PGMExp. [33] 61.60 44.98 63.07 58.28 49.90 37.42
Guidedbp [12] 60.00 0.00 66.67 0.00 0.00 0.00
GEM [19] 98.2 88.19 9791 96.23 95.51 86.96
RCExp. [38] 100.00 88.89 100.00 100.00 100.00 100.00
OrphicX [20] 88.00 89.00 55.65 96.20 100.00 99.93
CXGNN 100.0 100.00 83.33 100.0 82.67 100.00

Graph explanation recall (%)

B.H. B.G. B.C. T.H. T.C. T.G.
GNNExp. [46] 37.62 52.72 45.08 32.18 33.05 40.60
PGMExp. [33] 30.80 31.14 37.84 24.28 23.93 21.05
Guidedbp [12] 12.40 1794 16.18 599 12.98 15.38
GEM [19] 39.18 50.86 45.40 38.75 34.65 41.20
RCExp. [38] 100.00 60.00 89.52 45.45 46.60 39.13
OrphicX [20] 98.08 97.71 60.00 41.38 59.22 40.61
CXGNN 100.0 60.55 90.00 61.67 68.15 49.05

Groundtruth match accuracy (%)

B.H. B.G. B.C. T.H. T.C. T.G.
GNNExp. [46] 020 220 220 0.80 0.40 0.20
PGMExp. [33] 1.00 0.00 0.00 3.80 0.00 0.00
Guidedbp [12] 1.00 0.6 0.6 0.6 0.2 0.6
GEM [19] 0.80 6.00 6.00 2.50 1.20 1.00
RCExp. [38] 100.00 0.00 49.60 0.00 0.00  0.00
OrphicX [20] 39.00 43.00 5.00 1.40 21.00 33.00
CXGNN 100.0 44.00 67.60 99.40 61.20 46.00

explanation recall is significantly reduced. Overall, the causality-inspired meth-
ods obtain higher accuracies than purely association-based methods.

More importantly, CXGNN drastically outperforms all the compared GNN
explainers in terms of groundtruth match. Such a big difference demonstrates all
the association-based and causality-inspired GNN explainers are insufficient to
uncover the exact groundtruth. The is due to existing GNN explainers inherently
learning from correlations among nodes/edges in the graph, and capturing spu-
rious correlations. Instead, our causal explainer CXGNN can do so much more
accurately. This verifies the causal explainer indeed can intrinsically uncover the
causal relation between the explanatory subgraph and the graph label.
Visualization results: Figure 1 visualizes the explanations results of some
testing graphs in the four synthetic datasets. We note that there are different
ways for the groundtruth subgraph to attach to the base synthetic graph. We
can see CXGNN’s output exactly matches the groundtruth in these cases, while
the existing GNN explainers cannot. One reason could be that existing GNN
explainers are sensitive to the spurious relation.

Loss curve: Figure 2 shows the loss curves to train our GNN-NCM on a set
of nodes, where some nodes are in the groundtruth and some are not from
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(a) BA+House (b) BA+Grid (c) BA+Cycle (d) Tree4House (e) Tree+Grid (f) Tree+Cycle

Fig. 1: Visualizing explanation results (subgraph containing the red nodes) by our
CXGNN on synthetic graphs.

Non-Ground Tuth Nades
nd ruth Nodes

Epochs Epochs

Fig. 2: Loss curves of training the GNN-NCMs on the groundtruth nodes (green curves)
and non-groundtruth ones (red curves) on two random chosen graphs from BA-+House.
More examples in other datasets are shown in Appendix D.

5 15 16 2 0 z & 7 1 1 om o2 B 2 9
ggggg

Fig. 3: Node expressivity distributions on two unsuccessful graphs from BA-+Cycle.
Green bars correspond to nodes that are in the groundtruth, while red bars correspond
to nodes that are not. More examples in other datasets are shown in Appendix D.

BA-+House. We can see the loss decreases stably for groundtruth nodes, while
the loss for nodes not from the groundtruth are relatively high. This reflects
our designed GNN-NCM makes it easier to learn groundtruth nodes. That being
said, CXGNN indeed tends to find the causal subgraph.

Node expressivity distribution: We notice CXGNN still misses finding the
groundtruth explanatory subgraph for some graphs. One possible reason could
be that, theoretically, our GNN-SCM can always uncover the causal subgraph,
but practically, it is challenging to train the optimal one. Here, we randomly
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Table 3: Comprehensive comparison results on the real-world datasets.

Exp. Acc. (%) Exp. Recall (%) GT Match Acc. (%)

Method Benzene F.C. Benzene F.C. Benzene F.C.
GNNExp. [46] 66.05 44.44 18.88 14.42 0.00 0.00
PGMExp. [33] 33.33 17.78 7.51 4.98 0.00 0.00
Guidedbp [12] 0.00 0.00 9.06 8.00 0.00 0.00
GEM [19] 71.98 46.22 19.80 14.57 0.00 0.00
RCExp. [38] 0.20 0.05 10.85 2.01 0.00 0.00
OrphicX [20] 47.63 11.14 30.31 10.01 3.40 5.50
CXGNN 73.46 66.67 21.35 16.43 66.67 75.00

W o
.: : L d ..: o4 o0 " ...

J o. - % %

° oe® e® %oo°
. * ) ....0 : H .:o' :". o: o *
°
Fig. 4: Explanation results (subgraph containing the nodes) by our CXGNN on

real-world graphs. The left and right two graphs are in Benzene and F.C., respectively.

yyyyyyyyyyyy

Fig. 5: Loss curves of training the GNN-NCMs on the groundtruth nodes ( )
and non-groundtruth ones (red curves) on two graphs from the two real-world datasets,
respectively. More examples are shown in Appendix D.

select 2 such unsuccessful graphs in BA+Cycle and plot their distributions on
the node expressivity in Figure 3. We observe that, though the groundtruth
nodes are not always having the best expressivity, they are still at the top.

5.3 Results on Real-World Datasets

Comparison results: Table 3 shows the results of all the compared explainers
on the real-world datasets and three metrics. We have similar observations as
those in Table 2. Especially, no existing explainers can even find one exactly
matched groundtruth. Particularly, the explanation subgraphs produced by the
two causality-inspired baselines can cover the majority or almost all groundtruth
in synthetic datasets (hence high accuracy), and the sizes of the explanation sub-
graphs are slightly larger than those of the groundtruth (hence relatively large
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e

Fig. 6: Node expressivity distributions on two unsuccessful graphs from the real-world
datasets, respectively. Green bars correspond to nodes that are in the groundtruth,
while red bars correspond to nodes that are not. More examples are in Appendix D.

recall). However, the causality-inspired baselines are not good at exactly match-
ing the groundtruth, i.e., groundtruth match accuracy is low overall. Note also
that the exact match of CXGNN is also largely reduced (about 30%). One possi-
ble reason is that the groundtruth explanation in real-world graphs is not easy to
define or even inaccurate. For instance, in MUTAG, both NOy and N Hy motifs
are considered as the "mutagenic" groundtruth in the literature. However, [19]
found 32% of non-mutagenic graphs contain NOy or N Hy, implying inaccurate
groundtruth. Here, we propose to also use an approximate groundtruth match
accuracy, where we require the estimated subgraph to be a subset and its size is
no less than 60% of the groundtruth. With this new alternative metric, its value
is much larger (i.e., 67% and 756%) on the two datasets.

Visualization results: Figure 4 visualizes the explanation results of some
graphs in the real-world datasets. We observe the explanatory subgraphs found
by CXGNN approximately /exactly match the groundtruth.

Loss curve: Figure 5 shows the loss curves to train our GNN-NCM on a set of
groundtruth and non-groundtruth ones. Similarly, the loss decreases stably for
groundtruth nodes, while not for non-groundtruth ones. Again, this implies our
GNN-NCM tends to find the causal subgraph.

Node expressivity distribution: We randomly select some unsuccessful graphs
in real-world datasets and plot their distributions on the node expressivity in
Figure 6. Still, though the groundtruth nodes do not always achieve the best
expressivity, they are at the top.

6 Conclusion

GNN explanation, i.e., identifying the informative subgraph that ensures a GNN
makes a particular prediction for a graph, is an important research problem.
Though various GNN explainers have been proposed, they are shown to be prone
to spurious correlations. We propose a causal GNN explainer based on the fact
that a graph often consists of a causal subgraph and fulfills the goal via causal
inference. We then propose to train GNN neural causal models to uncover the
causal explanatory subgraph. In future work, we will study the robustness of our
CXGNN under the adversarial graph perturbation attacks [17,22,34-37,45].
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Appendix
A A GNN-SCM Example

The causal structure of a graph is a subgraph centering on a reference node and
accepts the SCM structure via Definition 2. The goal of causality in a graph
is to identify the subgraph with the maximum explainable node expressivity as
Theorem 4 that causally explains GNN predictions. Below, we use a toy example
graph to show how our explainer captures the causality in this graph.

We use a toy example to demonstrate SCMs and
the intervention process in GNNs. Figure 7 shows a
graph G that contains four nodes A, B, C', and D, and e e Q
three edges A-B, A-C', and B-D. In GNNs, these edges
contain messages passing between two nodes. For ex-
ample, the message between two nodes A and B in @
the I-th layer of the GNN is mY , = MSG(R'; !, b5,
ea.p). If there exists an edge, it means that thereisan  Fig.7: A toy example
interaction between nodes that has a specific value in
each layer [. If there is no edge, two nodes don’t share
a message. If we consider node A as the reference node v, the nodes B, and C are
in the 1-hop neighbors N<i(v), and node D is in the 2-hop neighbors N<s(v).
This GNN-SCM induces its causal structure G from Graph G, as discussed in
Definition 2.

A.1 GNN-SCM construction

Following [23], we build a GNN-SCM M(G) that learns from the causal structure
G. The endogenous variables are node labels {y,;v € A, B, C, D}. The exogenous
variables in G are reference node A’s states: u4,,u4, (in this example we con-
sider binary states A; and As), edges effects on reference node A: ua p,ua.c,
and neighbor nodes’ effects on reference node A: ug,uc,up. All of these la-
tent variables are assumed to accept the same probability P(U) as a probability
function defined over the domain of U since we don’t want to input new specific
information. F is a set of functions based on the observable and latent variables
discussed above. One should consider that u,, and u,; are not independent.

As discussed in Theorem 1, we construct the GNN-SCM M (G) based on
graph G as M(G) =: (U,V, F, P(U)), where:
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UAy, YA,

U:=<Suap,uac ,Du={0,1}

up,uc,up
V :={A,B,C,D}
fA(B C,D,ua,,ua,) =

fa(B,uay,uay) A fa(Cruay,uay) A fa(D)
fa(B,uay,uay) = ((B@Ua,) VUa) Dua,)
(

fa(C, UAUUAz) =(((=C®Ua,)VUa,c) ®ua,)

Fi={ fap) =
fB (UB,uA B) = -up A TUA,B
fe(uc,ua,c) = ~uc A —ua,c
fpo(up) = —up
{ (ua,) = P(uay) = P(ua,p) = P(uac) _ 1/8
P(ua,p) = P(up) = P(uc) = P(up)
(®)
A B, C,P(U

N\
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/NN

Uc=0Uc=0Uc=1

/NN N

Uap=Wap=Wap=W0asp=1

AYAVAYA
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SNSN/SNSN/ N

Ua, =004, =0U4, =004, =Q0U4, =0U4, =1
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Ay =0Ua, =004, =0Ua, =0U4, =0U4, =004, =1

Fig. 8: Logic tree for example’s SCM

In the GNN-SCM M(G), the set of functions F should be the exact form of
the interactions between variables. The argument of each function is the input

that this function will do one of the logical operations OR, AND, NOT, or XOR
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on them. For example, fA(B, C,D, UA; , qu) = fA(B, UA, ’U,AQ)/\fA(C, UA; UA,_,)/\
fa(D) calculates the value of effects on reference observable variable A when we
assume that all observable variables B, C, D, and each state A;, or A, are cause
of reference observable variable A to accept a specific value A;, or As. In this
setting, all of these variables should be feasible and have value. For simplicity,
we consider all observable variables as binary, and the probability of these states
as uniform distribution.

In the graph provided, intervention do(C' = 1) means forcing the value of
node C’s label to be 1, and the probability P(A = 1|do(C = 1)) determines
the respective causal effect for a treatment A = 1. In the GNN-SCM M(G),
this effect is denoted as ue. Since C' has an edge to the reference node A,
there is also a latent variable ua ¢, and its causal effect can be calculated by
P(do(C' = 1)|ea,c = 1). In this example, there is one node D that does not have
an edge to A. So, here we just calculate its causal effect on node A by latent
variable up.

For the causal effect calculation, we need a truth table showing induced values
of M(G). The logic tree we used for this table is shown in Figure 8, which has
seven layers since there are seven distinct latent variables(ug, uc, ua B, uva,c,
u4,, ua,) each accepting the value of 0 (it’s not the cause) or 1 (it is the cause).

A.2 SCM tables

By interpreting the variables and their values from the logic tree, the truth
table will be in four different states. If none of the 1-hop neighborhood nodes’
observable variable affects reference node A, if one of them (node B or C) has an
effect, or otherwise both of them affect the reference node. Probabilities in P(U)
are labeled from py to pg3 for convenience, which are 7 binary variables(layers
in the logic tree).

In all provided table rows, up = 0 and D = 1, meaning D is not the cause
and the latent variable of it is 1. However, there is no edge between nodes A and
D, we need to mention this in our calculations. For simplicity, we just showed
the cases that up = 0, but there are the same truth tables with up = 1 and
D = 0 by probabilities pgs to p127. Given the probabilities from the truth tables,
we can define them as follows:

P(U) :=Unif(0,1) = po=p1=p2=...=pe3 =... = prar = 1/128

A.3 GNN-SCM results

The capability of the tables shows that our specified GNN-SCM M(G) can
calculate all queries from each PCH layer [25]. In continue, we will calculate
an example for each layer:

An association layer query such as P(A = 1|C' = 1) which is the probability
of observable variable A to be 1 given observable variable C to be 1, can be
computed as:
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uB|uc|up|ua,Blua,clua, |ua, ||B|/C|D A P(U)
0jofoj| o 0 010 ||[1[1]1[~(BAC)|| po
0jo0ofo0}| O 0 1|0 (1|1|1]|(BACQC) p1
0(0(0] O 0 01 (||1|1]1[(BAC) p2
0jofoj| o 0 1|1 (1|11 |~(BAC)|| ps
000 1 0 0|0 (01|11 1 P4
0j0fj0] 1 0 1101011 1 Ps
0jojo| 1 0 0] 1 (0|11 0 Pe
000 1 0 111 10]11 0 p7
0j(o0of0] O 1 0|0 (1]j0]|1 1 P8
0(0(0] O 1 1101|011 1 P9
0jofoj| o 1 0] 1 (1|01 0 P1o
0j(o0(0] O 1 1] 11|01 0 P11
0j0fj0] 1 1 0] 0 (0|01 1 P12
0jo0ojo]| 1 1 1 1010|011 1 P13
000 1 1 0] 1 (0|01 0 P14
0j0fj0] 1 1 1| 11/0]0]1 0 Pis

Table 4: Example’s SCM truth table where up = 0, and uc = 0 (node B and C are
the cause of node A to get a specific value). Probabilities in P(U) are labeled from po
to p1s for convenience.

up|uc|up|ua,plua,clua, |ua,||B|C|D A P(U)
1[0[0[ 0] 0 ]0][0]0[LIT~BAO pio
tlolol o] o|1|ololi|t|@rC)]| pr
1lojol o o|ol|1]|oltlt]|BAC)] pis
1lojol o] o|1|1]0|t|1|~BAC) pi
1]ojol T ]o0 ] o]olo[1]1 1 P20
1100 1 0 1101011 1 D21
17100 1 0 0 1 ]]0]1(1 0 D22
tlolol 1] o ]1|1l]olt]1] o P23
17100 0 1 0| 0 (0]j0|1 1 P24
110{0| O 1 110 1{[0]0]1 1 P25
110{0| O 1 0] 1 (0|01 0 P26
17100 0 1 1 1 (/0|01 0 D27
110(0| 1 1 0] 0 (0|01 1 Pag
171010 1 1 1 0 (|0]j0]1 1 D29
110{0| 1 1 0] 1 (0|01 0 P30
11010 1 1 1 1 ]]0]|0f1 0 P31

Table 5: Example’s SCM truth table where up = 1, and uc = 0 (only node C' is not
the cause of node A to get a specific value). Probabilities in P(U) are labeled from pi¢
to ps1 for convenience.

P(A=1,C=1)
P(C=1)

_ pl + p2 + p4d 4 p5 + pl7 4 pl18 4 p20 + p21 05
p0 + pl + p2 + p3 + p4d + p5 + p6 + p7 + pl6 + pl7 + p18 + pl9 + p20 + p21 + p22 + p23 ©

P(A=1C=1)=
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upB|uc|up|ua,Blua,clua, |ua, || B|/C|D A P(U)
Oj(1(0] O 0 00 |[1]0|1|=(BAC)|| p32
Oj(1(0] O 0 1|0 ||1|0|1|(BAC) || pss3
Oj(1(0}] O 0 01 ||[1]0]1|(BAC) || ps3a
Oj(1(0] O 0 1|1 1|0|1|~(BAQC)|| pss
Oj1(0] 1 0 0] 0 (0|01 1 P36
Oj1(0] 1 0 1101/0j0]1 1 Pz
Oj1(0] 1 0 0] 1 (0|01 0 P38
Oj1(0] 1 0 1| 11/0]j0|1 0 P39
Oj(1(0}] O 1 0] 0 (1|01 1 P40
O(1(0}] O 1 1101|011 1 P41
Oj(1(0] O 1 0] 1 (1|01 0 P42
Oj(1(0}] O 1 1] 11|01 0 P43
Oj1(0] 1 1 0] 0 (0|01 1 Paa
Oj1(0] 1 1 1101001 1 P45
oOj110| 1 1 0] 1 (0|01 0 P46
Oj1(0] 1 1 1| 11/0]0]1 0 Par

Table 6: Example’s SCM truth table where up = 0, and uc = 1 (only node B is not
the cause of node A to get a specific value). Probabilities in P(U) are labeled from ps2
to pa7 for convenience.

up|uc|up|ua Blua,clua, |ua,||B|/C|D A P(U)
171(0] 00 [0]0|0[0[L~BAO pas
1l1]o] oo |1]ololojt|BAC)| pi
1l1lo]l o] ool 1llololt]BArC)| ps
11110 O 0 1|1 10|0|1|=(BAC)|| ps1
11110 1 0 0| 0 (0]j0|1 1 P52
1710 1 0 1 0 [[0|0|1 1 D53
1 1 0 1 0 0 1 0|01 0 P54
1l1lo] 1o |1]1]olo[1] o Dss
T[1]0] 0| 1 ]o]o0]0oo[i] 1 P
1710 0 1 1 0 [[0|0]|1 1 D57
11170 O 1 0| 11(0j0|1 0 P58
1 1 0 0 1 1 1 0[0]1 0 P59
17110 1 1 0 0 [[0|0|1 1 D60
t{1jo| 1|1 |1]ololoj1] 1 Pe1
t{1lo] 1] 1|ol|1]olo[t] o De2
1710 1 1 1 1 ]/0]{0]1 0 D63

Table 7: Example’s SCM truth table where up = 1, and uc = 1 (node B and C are
not the cause of node A to get a specific value). Probabilities in P(U) are labeled from
p4s to pes for convenience.

An intervention layer query such as P(A = 1|do(C = 1)) which is the proba-
bility of A being 1 after this intervention on C. It seeks to understand the causal
effect of setting C to 1 on outcome A . do(C = 1) represents an intervention
where the variable C is actively set to 1 to control the variable directly, essen-
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tially breaking its usual causal edges with other variables. This query can be
computed as:

P(A =1|do(C =1))=P(A=(BAC)|[C=1)VPA=1|C =0)
_ pl + p2+ pl7+ pl8
" p0+ pl + p2 + p3 + pd + p5 + p6 + p7 + P16 + pl7 + pl8 + pl9 + p20 + p21 + p22 + p23
p24 + p25 + p28 + p29 + p36 + p37 + p40 + pdl + pdd + pd5 + p52 + p53 + p56 + p57 + p60 + p61
p8 + p9 + ... + pld + pl5 + p24 + p25 + p26 + p27 + p28 + p29 + p30 + p31 + p32 4 ... + p63
= 0.25+ 0.33 = 0.58 (10)

For the implementation, we need the observed data generated from the graph.
One generated data can be: {A : True, B : False,C : False,D : True,uga, :
l,ua, : O,uap : Luac : l,ug : O,uc : Lup : 0,A|C : 1}. The Fraction of
samples that satisfy each function of the GNN-SCM M(G): {f4 : 0.156458, f5 :
0.249319, f¢ : 0.25009, fp : 0.50059}. These values show the range and cen-
tral tendency of the probabilities across the 500 trials, indicating a degree of
variability in the outcomes based on the random generation of the probabilities.

A.4 Example’s GNN-NCM

With respect to literature, an NCM is as expressive as an SCM, and all NCMs are
SCMs. The causal diagram constraints are the bias between SCMs and NCMs.
In our specified GNN-SCM M(G), and GNN-NCM M (G, #)), all causal informa-
tion(observable, and latent variables) comes from the causal structure defined in
Definition. 2. The respective GNN-NCM /\7(9, 0) is constructed as a proxy of
the exact GNN-SCM M(G). Based on Equation. 3, reference node A is chosen
as the target node for causal structure G. This GNN-NCM ./\//Y (G, 0) is an induc-
tive bias type of the GNN-SCM as /T/l\(g, 6)=:(U,V, F, P(U)). The construction
of the corresponding GNN-NCM that induces the same distributions for our
example dataset is as follows:

U := {U}, Dg = [0,1]
V :={A,B,C,D}
_ Ja(0) =2
M(G,0)) = 7. ) [B(A0)=? (11)
fo(A,U) =2
R fD(Avﬁ) =7
P(U) :=7

We know the observable variables V' values, but there is no clue about the
exact values of latent variables U, so we have to estimate them by functions F
based on the information in the given causal structure G. First, we have to build
the causal structure G given example graph G.

g(G) = {Vv = {A>B>CvD}}7
U, = {U’Ui : {’U/B7UC7UD,UA1,UA2} U {Uv,vz‘ : {UA,B,UA,C}} (12)
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Fig. 9: Result of GNN-NCM ﬂ(g, 0)) for toy example

Second, given the probabilities from the truth tables, we have:

~

P(U) :=Unif(0,1) = po=p1=p2=...=pe3 = 1/256

At last, based on Algorithm 1, we train the GNN-NCM to find the functions.
The GNN-NCM extends the GNN-SCM to utilize the power of neural networks
in capturing complex patterns in the dataset. The process begins with sampling
from a prior distribution to simulate the unobserved confounders in the causal
process. Since the reference node in the GNN-SCM was node A, we assign value
1 to it and want to see how GNN-NCM finds the causal effects on this node in
graph G. The result of the Algorithm 2, are:
When the target node is A, the expected probability is 0.24082797765731812
When the target node is B, the expected probability is 0.2353899081548055
When the target node is C, the expected probability is 0.18209974467754364
When the target node is D, the expected probability is 0.12958189845085144
Hence, the final causal explanatory subgraph I" based on the results is the
GNN-NCM M(G, 0)) with target node A is:

Uv:{Uvi:{UBZO,UCZO,UD:17UA1:O,UA2:1}
U{Usu, : {uas =1uac =1}} (13)

The GNN-NCM M(g, 6)) structure is:

(@)

= {le : {UB = O,UC = 07'U/D = 1,UA1 = 07uA2 = 1}
U{Uys,, : {ua,p = l,uac = 1}}
V:={A=(BAC),B=1,C=1,D =0}
_ Fa(U) = fa(@ia, = 0,04, = 1,845 =1, a0 = 1)
M@0 =9~ | Fs(A0) = fs(@is = 0,845 =1) (14)
fo(4,0) = Je(lic = 0,8ac = 1)
fp(A,U) = fp(up =1)
P(0) = { Ptar) = Pluag) = P(uap) = Pluac)
(ua,p) = P(us) = P(uc) = P(up)

fr»
|

!

—1/8

T
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B More Background on Causality

According to the literature, causality interprets the information by the Pearl
Causal Hierarchy (PCH) layers [25].

Definition 4 (PCH layers). The PCH layers L; for i € 1,2,3 are: Ly asso-
ciation layer, Lo intervention layer, and Lz counterfactual layer.

Definition 5 (G-Consistency). Let G be the causal structure induced by SCM
M*. For any SCM M, we say M is G-consistent w.r.t M* if M imposes the
same constraints over the interventional distributions as the true M*.

Definition 6 (G-Constrained NCM). Let G be the causal structure induced

by SCM M*. We can construct NCM M as follows: 1) Choose U s.t. Uc € ﬁ,
where any pair (V;,V;) € C is connected with a bidirected arrow in G and is
mazimal; 2) For each V; € V, choose Pa(V;) C V s.t. for every V; € V,
V; € Pa(V;) iff there is a directed arrow from V; to V; in G. Any NCM in this
family is said to be G-constrained.

Theorem 5. Any G-constrained NCM M\(B) 18 G-consistent.

C Proofs

In this section, we provide proofs of the theorems in the main body of the paper.

C.1 Proof of Theorem 1

Theorem 1 (GNN-SCM). For a GNN operating on a graph G, there exists
an SCM M(G) w.r.t. the causal structure G of the graph G.

Proof. A GNN is a neural network operating on a graph G = (V,€) including
set of nodes V and set of edges £. Recall the GNN background in Section 3, the
GNN learning mechanism for a node v in the I-th layer can be summarized as:

node embeddings h!~! from previous layer [ — 1, for u € {v} UN(v)
GNN(v) = { message m!, , = MSG(h!; !, hl™!, e,) for current layer I
aggregated message hl, = AGG(m!, ,|u € N(v)) for current layer I
(15)
where the above process is iteratively performed k times for a k-layer GNN.
In doing so, each node v will leverage the information from all its within &
neighborhoods. We denote the k-layer GNN learning for v as:

GNN(G) = {node embed: {h,}U{h, : u € N<j(v)}, message: {my, ., u € N<i(v)}},

where h,, is v’ node feature and we omit the dependence on node v for notation
simplicity.
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By definition from literature, an SCM M is a four-tuple M = (U, V, F, P(U)).
In this specification of ours, an SCM M(G) is a G-consistent four-tuple model
based on a set of observable variables V, a set of latent variables U, a set of
functions F, and the probability of latent variables P(U). Recall in Definition
2, where the causal structure G(G) of a given graph G (centered on a reference
node v) was defined. Now, the correspondence of the GNN learning on G and
the causal structure G centered on a node v can be written as:

obs. vars: {y,} U {yu; : vi € N<x(v)} = node embed. {h,} U {hy :u € Nep(v)}
G(G) = GNN(G) = ({lat. vars: {U,, : v; € Nep(v)} U{ Uy, : €p,0;, € E} = msg: {may,0,u € Nep(v)}
probability of latent variables P(U) = Dom({h})
(16)
Hence, there exists a GNN-SCM M (G) that induces the causal structure G
of G, as below:

node set V(G) U:{U,, v €N ()} U{Uy,p;  €v,0; €E}
_ Jedge set £(G) _ )V i Ayt U w50 € New(v)}
9(G) = 9 hode effect = {U,,} = MO = E (f o fal €T F(U) 5V
edge effect = {U, 4, } P(U) : P(Uy,), P(Uy,v;)
(17)
O

C.2 Proof of Theorem 2

Theorem 2 (GNN-NCM). Given causal structure G of a graph G and the
underlying GNN-SCM M(G), there exists a G-constrained GNN-NCM M(G, 6)
that enables any inferences consistent with M(G).

Proof. From the literature, we know there exists a SCM M that includes exact
values of observable and latent variables through studying the causes and effects
within the SCM structure. First, we show a lemma that demonstrates the in-
heritance of neural causal models (NCMs) (see its definition in Section B) from
SCMs, which are built upon Definition 5, Definition 6 and Theorem 5.

Lemma 1 ( [43]). All NCMs M\(Q) (parameterized by 0) are SCMs (i.e.,

M(0) < M ). Further, any G-constrained M(0) (see Definition 6) has the same
empirical observations as the SCM M, which means G-constrained NCMs can
be used for generating any distribution associated with the SCMs.

By Lemma 1, we know a G-constrained NCM M (0) inherits all properties of
the respective SCM M and ensures causal inferences via G-constrained NCM.
In our context, we need to build the corresponding G-constrained GNN-NCM
M(G,0) for the GNN-SCM defined in Equation 17. With it, we ensure all G-
constrained GNN-NCMs M\(Q,G) are GNN-SCMs (ﬂ(g, 0) < M(G)), meaning
these GNN-NCMs can be used for performing causal inferences on the causal
structure G(G). First, based to the four-tuple SCM M = (U, V, F, P(U)), a G-
constrained NCM M\(Q) = (U, V,F(0), P(U)) can be defined. In our scenario,
we can define the set of functions F(f) of the G-constrained GNN-NCM as:
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FO) = {Fo, @, Toy 0,5 00,) 2 0 €V(G)} = {1, for s fu} € F; F(U,) — v,

From Theorem 1, there exists a GNN-SCM M(G) for a GNN operating on
a graph G. Also the causal structure G(G) in Definition 2 naturally satisfies
Definition 6. Then, with respect to Equation 3, our G-constrained GNN-NCM

/\7(9, ) based on underlying GNN-SCM M(G) is defined as:

U= {I/jvZ tv; € Neg(v)} U {ﬁﬂyvi v €EY

V= {0} U fyossn € Nep(0)}

(0) = {Fo, (8o, Uy ) (B0,) s vi € V)

(U) :={U,, ~ Unif(0,1) : v; € V} U {Tk,v; ~N(0,1)}

M(G) = M(G,0) =

R

O

C.3 Proof of Theorem 3

Theorem 3 (Node explainability). Let a prediction for a graph G be ex-
plained. A node v € G is causally explainable, ipr(g(G)’g)(yv) can be computed.

Proof. In a graph classification task, GNN predicts a graph label 74 for a graph
G with label yo. The GNN explanation measures how accurately did the GNN
classify the graph by finding the groundtruth explanation I'¢ in the graph G. In
other words, the graph explanation demands the nodes in I should be as accu-
rate as possible. That is, if y, = ¥,; Vv € I'g, then GNN explanation explained
G’s prediction accurately. .

Based on Theorem 2, G-constrained GNN-NCM M(G, ) induces causal struc-
ture G based on the reference node v € V(G). So, the trained G-constrained
GNN-NCM estimates node effect U,,, and edge effect U, ,, defined in Equa-
tion 2. Note that all the effects are respective to the reference node v, and if v
changes, the causal structure G will be also changed, and as a result G-constrained
GNN-NCM will be completely different. -

According to Equation. 5, a G-constrained GNN-NCM M(G,0) calculates

pﬂ(gﬂ) (y») as the expected value of all the causal effects from the neighbor
nodes v;, i.e. do(v;), on the reference node v:

Yo € V(G), (v € Nex(v) = (pMOO 9 (y,) > 0) (18)

As the expected value was calculated for v, we can explain v’s node label based
on the outcome of pM(F(G)-0)(y, ). O

C.4 Proof of Theorem 4

Theorem 4 (Explainable node expressivity). An explainable node v has
expresswity defined as exp,(M(G,0)) = Zyv Yop™MG0) (y,).
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Proof. We knoxiv\ there is a value for the expected effect on an explainable node
v € V(G) as pMEI(©@9) (y,). This probability was calculated by the trained G-
constrained GNN-NCM /\7(g, 0).

For our purpose, we only consider the association and intervention layers. The
association layer is about the observable information provided by the data, while
the intervention layer in this paper is an explanation via doing interventions.

Association Layer Ly : G =V, &), yg €Y, I

. (19)

Intervention Layer Ly :  do(vi) = (Yu|yw; = ), Uy, Uy,
The explanation methods using information in the association layer is called

association-based explanation. Instead, the G-constrained GNN-NCM M(G(G), 9)
is trained on interventions—a node v; in the neighborhood of the reference node
v provides the causal explanation information based on the intervention do(v;)—
and leveraging this interventional layer information can causality interpret the
GNN predictions. To align this intrinsic explanation information from causal ef-
fects, we introduce the term expressivity. Remember in probability theory, where
the expected value of a random variable provides a measure of the central ten-
dency of a probability distribution. For a discrete random variable Y with a
probability distribution p(y), the expected value of Y , denoted E(Y'), is defined
as: E(Y,) = Zy y-p(y), where y ranges over all possible values of Y, and p(y) is

the probability that Y takes the value y. According to Equation 5, pﬁ(g(G)’g) (yw)
includes all the causal effect from the neighhor nodes on ¥,. Hence, the expected
value of of the random variable node label Y, will be defined as:

ELZ (YU) = Z Yo - pﬂ(g(G),H)(yv)’

Yo

where the subscript Lo means the expectation leverages the interventional layer
information. Note that this expected value is only feasible for the reference node
(i.e., v) upon which the G-constrained GNN-NCM M (G, #) was built. This ex-
pected value is treated as the expressivity of the explainable node v that is
denoted as exp, (M(G,0)). O

D Experiments

D.1 More experimental setup

CXGNN: The hyperparameter settings were determined through a systematic
search and validation process to optimize the model’s performance. The following
hyperparameters were selected based on cross-validation:

— Learning rate: We test learning rates—0.001, 0.01, 0.1—to find the optimal
value, and the learning rate of 0.01 yielded the best results.



Graph Neural Network Causal Explanation 29

~ Explainable node expressivity exp, (7(G.9)) ™.

1 The estimated effect on reference node v*
for (V1,V2,V3, 4, uyv.)

NOE)

Kng, B
st Tuey, \
Ur

1
ScM M (G)

The effect on reference node

for (E‘Zﬁ »V2,V3, Vs, uy,,*)

v
V1 = fo, (o, W,)

Fig. 10: Overview. is the reference node v, Blue nodes and Red nodes are
node v’s 1-hop and 2-hop neighbors.

— Number of hidden layers: We considered architectures with 1, 2, and 3 hidden
layers. A network with 2 hidden layers outperformed the others in terms of
both accuracy and convergence speed.

— Hidden layer size: We tested various hidden layer sizes, including 32, 64, and
128 neurons per layer. A hidden layer size of 64 neurons struck a balance
between model complexity and performance.

— Batch size: We tested different batch sizes, ranging from 32 to 128. A batch
size of 64 was found to be suitable.

— In addition, as the baseline GNN is GCN [16] that is a 2-layer neural network.
We hence use k = 2 in CXGNN.

GNNExplainer: Its hyperparameters are detailed as follows:

— A dictionary to store coefficients for the entropy term and the size term for
learning edge mask and node feature mask. The chosen settings are:
e edge: entropy: 1.0, and size: 0.005
e feature: entropy: 0.1, and size: 1.0
— The number of epochs for training the explanation model: 200.
— Learning Rate: Used in the Adam optimizer for training, set to 0.01.
— The number of hops to consider when explaining a node prediction. It is
equal to the number of layers in the GNN.

PGMexplainer: It is for explaining predictions made by GNNs using Proba-
bilistic Graphical Models (PGMs), provides these hyperparameters:

— Number of perturbed graphs to generate: 10 for graph-level explanations

— How node features are perturbed: mean, for graph-level explanations.

— The probability that a node’s features are perturbed: 0.5

— The threshold for the chi-square independence test: 0.05

— Threshold for the difference in predicted class probability: 0.1

— Number of nodes to include in PGM: all nodes given by the chi-square test
are kept.
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Guidedbp: It is a form of Guided Backpropagation for explaining graph pre-
dictions, contains several hyperparameters and method-specific parameters:

— The loss function used to train the model: cross entropy.
— The number of hops for the k-hop subgraph, is implicitly set to the number
of layers in the GNN (i.e., k = 2 in our results).

GEM: The GEM method has the below hyperparameters:

— Optimization Parameters:
e Learning Rate: 0.1, Gradient Clipping: 2, Batch size: 20, Number of
Epochs: 100, Optimizer: "Adam"
— Model Parameters:

e Hidden Dimension: 20, Output Dimension: 20, Number of Graph Con-
volution Layers: 2
— Explainer Parameters:
e Iterations to find alignment matrix: 1000, Number of mini-batches: 10

RCExp: The reinforced causal explainer for graph neural networks has the
below hyperparameters:

— Optimization Parameters:
e Learning Rate: 0.01, Weight Decay: 0.005, Number of Epochs: 100, Op-
timizer: "Adam"
— Model Parameters:
e Hidden Dimension: 64, 32, Output Dimension: 2, Number of Graph Con-
volution Layers: 2
— Explainer Parameters:

e QOutput size of edge action rep generator: 64, Edge attribute dimension:
32

Orphicx: The causality-inspired latent variable Model for interpreting graph
neural networks has the below hyperparameters:

— Optimization Parameters:
e Learning Rate: 0.0005, Weight Decay: 0.01, Number of Epochs: 100,
Optimizer: "Adam", Early Stopping Patience: 20
— Model Parameters:
e Hidden Dimension: 32, Decoder Hidden Dimension: 16, Dropout rate:
0.5, Output Dimension: 108, Number of Graph Convolution Layers: 2
— Explainer Parameters: Number of causal factors: 5

D.2 More experimental results

More results on the synthetic graphs and real-world graphs in terms of loss curves
and node expressivity distributions are shown in the Figure 11-Figure 18.
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Fig.11: More results on BA+House. Top 3 figures: Loss curves of training the GNN-
NCMs on the groundtruth nodes (green curves) and non-groundtruth ones (red curves);
Bottom 3 figures: Node expressivity distributions on three unsuccessful graphs. Green
bars (red bars) correspond to nodes that are (NOT) in the groundtruth. Same meaning
for all the below figures.

Table 8: Dominant time complexity of the compared explainers. N, E,d, h, T, L, K are
#nodes, #edges, #node features, #neurons, #training epochs, #layers, and #samples.
h =64 < d =~ 1000.

GNNExp. O(T * L * N x d?)
PGMExp. O(T * L+ N xd*> + K * (N + E))
Guidedbp O(T*L=xN)

GEM O(T * L * N xd?)
RCExp. O(TxLx*(N+ E))
OrphicX O(T * L x N x d?)
CXGNN O(T x L * N % h?)

E Complexity Analysis

Within a GNN-NCM, we train a feed-forward network. With an L-layer network
and each layer has h neurons, by training K epochs, the time complexity for a
graph with n nodes is O(T * L * N x h?). Note that training GNN-NCMs for
all nodes independently can be easily paralleled via multi-threads/processors.
We also show the dominant complexity of compared GNN explainers in Table 8.
Though computing GNN-NCM per node, we can see CXGNN is still more effi-
cient than most of the SOTA explainers (GNNExp., PGMExp., OrphicX, GEM).

F Discussion

Potential risk of overfitting. In our experiments, we tuned the number of
hidden layers and hidden neurons and observed that deeper/wider networks
indeed could cause overfitting. Through hyperparameters tuning, we found 2
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Fig. 12: More results on BA+Grid.

Fig. 13: More results on BA+Cycle.

Fig. 14: More results on Tree+House.
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Fig. 15: More results on Tree+Grid.

.

Fig. 16: More results on Tree+Cycle.

Fig. 17: More results on Benzene.
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Fig. 18: More results on Fluoride Carbonyl.

hidden layers with each layer having 64 neurons that can well balance between
model complexity and performance.

Practical issue of applying CXGNN to large graphs. We admit directly
running CXGNN in large graphs could have a scalability issue. One solution
to speed up the computation is using multi-threads/processors as all nodes can
be run independently in CXGNN. Note that all existing GNN explainers also
face the same scalability issue, even worse than ours as shown in Table 8. We
acknowledge it is valuable future work to design scalable GNN causal explainers.
True causal subgraph is not present. Our explainer and causality-inspired
ones are all based on the common assumption that a graph consists of the causal
subgraph that interprets the prediction. If real-world applications do not satisfy
this assumption, all these explainers may not work well.

Complexity comparison between NCM and not using NCM (i.e., SCM).
Computing the cause-effect in a graph via SCM is computationally intractable.
The complexity is exponential to the number of node/edge latent variables. In-
stead, training an NCM to learn the cause-effect is in the polynomial time.
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