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Abstract

We propose a new explainable multivariate importance sampling method in stochastic simulation. Importance sam-
pling has the potential to significantly reduce the estimation variance when its instrumental density is properly de-
signed. Prior studies have demonstrated the advantages of using a nonparametric method when the relationship be-
tween input variables and the output variable is unknown. However, importance sampling easily faces the curse of
dimensionality, as the input dimension grows. This study devises a new method that identifies crucial input variables
to effectively formulate a nonparametric instrumental density and explains the importance of each variable. The wind
turbine reliability case study demonstrates the method’s efficiency.
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1. Introduction

The recent advances in computing power have greatly increased the prevalence of computer simulation modeling.
These simulations are frequently utilized to assess system performance metrics, including reliability, across a wide
range of application areas. This study is specifically motivated to evaluate wind turbine reliability using stochastic
simulators. Wind power has emerged as one of the promising renewable energy sources. Ensuring the wind tur-
bine’s reliability is a fundamental consideration to prevent potential structural failure [5]. Accordingly, the National
Renewable Energy Laboratory (NREL) under the U.S. Department of Energy (DOE) has developed aeroelastic sim-
ulation models, such as TurbSim [7] and FAST [8]. These tools aid in comprehensive analysis, contributing to the
enhancement of wind turbine reliability.

Studies in stochastic simulations predominantly use two approaches to estimate system performance: the Monte Carlo
sampling technique and the emulator-based approach [10]. The emulator-based technique constructs a surrogate model
designed to approximate the response surface, and system performance estimations are derived from the resulting
surrogate model. Although this approach proves useful in modeling or characterizing the average response on the
response surface, it may not be suitable for calculating the probability of rare events [1]. Hence, in this study, we
employ the Monte Carlo sampling approach to estimate the failure probability.

Among several Monte Carlo sampling techniques, importance sampling (IS) is a powerful tool that is well-known for
its ability to reduce estimation variance. Variance reduction in stochastic simulation is translated to enhanced compu-
tational efficiency, as the variance gets reduced with larger data size. The fundamental idea of IS method is to employ
an instrumental density for simulating data samples smartly, thereby facilitating precise estimations. Nevertheless,
IS is prone to the curse of dimensionality as the input dimension grows. Recently, Li ef al.(2021) [10] introduced a
nonparametric IS that effectively navigates the issues of multivariate input, particularly when multiple input variables
interact with each other. Their approach outlines the significance of each factor, treating them distinctively when for-
mulating an instrumental density. However, the problem is that their approach includes all input variables in building
the instrumental density. It is often observed that the performance of engineering systems is primarily influenced by
a selected number of critical variables. This is underscored by the concept of the parsimony principle. When all
non-critical variables are considered collectively, the efficiency of the IS method could be deteriorated.

In this paper, we introduce a new approach aimed at identifying crucial input variables and designing an instrumental
density that is formulated with these selected variables. The resulting instrumental density provides a comprehensive
overview of the impact of selected variables on the final results, thereby providing an explainability attribute to the
methodology. The variables chosen and their parameters demonstrate their significance in estimating quantities of
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interest, such as a reliability measure. We apply our method to a case study in order to evaluate wind turbine reliability.
Our findings demonstrate the superiority of this method, as it successfully identifies key input variables and provides
improved variance reduction capability, compared to existing strategy that considers all variables [10].

2. Problem Description

We consider a black box computer model that generates the output ¥ € R! at input X € D C R following a distribution
f(X). Computer models can be broadly categorized into deterministic or stochastic models, depending on the nature
of the output Y being fixed or with noise at a given input X. This study is concerned with stochastic computer model,
due to its growing popularity [3]. In particular, we are interested in estimating the failure probability P(Y > I), where
[ denotes a resistance level. This failure probability is also referred to as the probability of exceedance (POE).

Noting that P(Y > 1) = ffo(Y > I|X = x) f(x)dx with ) s denoting the domain of X, the crude Monte Carlo (CMC)
method samples the input X; from f and runs the computer model at X; to get ¥;. Repeating the procedure, CMC
estimates the POE by

P —L%H(Y-w) (1)
CMc—NTi:1 i .

Here, N7 denotes the total number of samples.
On the other hand, IS samples inputs from an instrumental density ¢ instead of f and estimates the POE by
R 1 & (X))
Pig=— ]I(Y, > ) .
wr 51 D)
With the stochastic computer model, Pys is an unbiased estimator when the support of ¢, denoted as supp{q(x)},

includes supp{P(Y > 1| X =x) f(x)} [12]. In [3], it has been shown that the optimal IS density that minimizes the
variance of the failure probability estimator Py is given by
1
qsis(X) = Cff(") 5(x), 3)
q
where s(x) = P(Y > [|X = x) is the conditional failure probability at x and C; = [, i (x)+/s(x)dx is the normalizing
constant. The subscript SIS stands for the importance sampling for the stochastic computer model, or shortly, stochastic
importance sampling [9]. With g§;, Pyg in (2) is an unbiased estimator [3].

2

While the density illustrated in (3) represents a theoretically optimal instrumental density, it cannot be straightfor-
wardly implemented. This challenge arises because s(x), a crucial component of the model, is unknown. This uncer-
tainty is primarily due to the black-box nature of the computer model. Consequently, our study will primarily focus on
identifying an effective estimation method for s(x). Several approaches have been proposed for approximating s(x) (or
gy more broadly), including parametric, cross-entropy, and nonparametric approaches [2, 4, 10]. Li et al.(2021) [10]
discussed that parametric and cross-entropy approaches encounter difficulties when the input dimension is three or
higher and proposed a new nonparametric technique as a remedy. However, the nonparametric method in [10] still
demonstrates its own limitations in managing multivariate input as the input dimension increases. In the following
section, we introduce a new method to discern key input variables vital to obtaining the instrumental density.

3. Methodology
To estimate s(x) in (3), we utilize kernel regression [10], as follows.
n Kd(xl_xil 7.”’er'*Xid )Zi
SRy = e 4)
im1 Ka(F7 2
with Z; = 1(¥; > I|X = X;) and x = [x1,x2,---,x4]7, where K, represents a d-dimensional kernel function. There

are several potential kernel functions that could be used for K, each with its own advantages and disadvantages.
The additive kernel, which aggregates all univariate kernels, offers a dimension-scalable methodology. However, its
limitation lies in failing to recognize interaction effects among input variables. In contrast, the full multiplicative
kernel, which involves the multiplication of all univariate kernels, accounts for all interaction effects [6, 13]. However,
this approach necessitates a sufficiently large data set for kernel construction and may risk data sparsity issues when
the input dimension is three or higher.

Seeking a balanced evaluation between the two extremes of fully additive and fully multiplicative kernels, Li et al. [10]
put forth a weighted additive multivariate kernel for stochastic importance sampling method, referred to as WAMK-
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SIS. This method employs all of the (‘21) bivariate kernels for estimating s(x) in (3) with the d-dimensional input. The
use of bivariate kernels enables the characterization of interaction effects present between any pair of variables. The
fundamental premise of WAMK-SIS is the assumption of high-order interactions being negligible, with a belief that
a two-way interaction is fully capable of depicting output behavior. Specifically, WAMK-SIS employs the following
estimator for s(x).
§(X)full = Z quB(Xp,Xq), &)
I<p<q<d
with Y1 < cy<aWpq = 1, where the bivariate kernel B(x,,x,) is defined by
= Xpi Xg—Xgi
n KZ(XI hpn ’th q )Z-

i=1 » " 6)
Ko (S, T (
Here X; and X,; denote the ith random samples of the two input variables x,, and x,, respectively, and K, implies a 2-
dimensional multiplicative kernel and h, and &, denote the bandwidths of two variables x,, and x,, respectively. In (5),
wpq denotes the weight of B(x,,x,), quantifying the importance of B(x,,x,), defined by the following cross-entropy

error function

B(xp,xg) =

1/e(p,q)
, = , 7
RS ey @
with .
e(p,q) =— Z{Ziln(B(Xpthi)) +(1=Z)In(1 — B(Xpi,Xqi)) }- (®)
i=1

Note that e(p,q) diminishes as B(x,x,) approaches Z; more closely. In this sense, a smaller e(p,q) indicates good
estimation of the bivariate kernel B(x,,x,), and hence, should be correspondingly assigned a greater weight, as shown
in (7).

While the WAMK-SIS demonstrates superiority over CMC and other parametric methodologies [10], it still has lim-
itations. Firstly, as the dimension d grows, the number of bivariate kernels increases significantly, specifically in the
order of ([21) This increase results in unwarranted complexity in the form of both the estimated conditional failure
probability and the instrumental distribution g. Secondly, the parsimony principle often holds in engineering systems,
suggesting that a system’s functioning is typically governed by a few crucial factors. According to this principle, a
simpler model could be sought. Thirdly, the comprehensive implementation of bivariate kernels could lead to redun-
dant kernels. For instance, consider two bivariate kernels, B(x,x;) and B(xj,x3). Suppose x; and x3 are of minimal
significance and their interactions with x; are negligible; under these circumstances, the two kernels might closely
resemble each other, that is, B(x1,x2) ~ B(x1,x3). This indicates that §(x) s, in (5) could contain redundant terms.
To improve the WAMK-SIS, our approach is to identify important bivariate kernels. The idea is similar to feature
selection (or subset selection) in machine learning. Note that, with (‘21) bivariate kernels, there are 2(‘21) — 1 possible
estimators for approximating s(x) in (3). To choose the best one among them, our primary analytical tool is a modified
version of cross-validation (CV) technique which is customized for the IS context. Suppose we have a pilot dataset
or dataset obtained in previous iterations in the iterative procedure. We partition this dataset into two exclusive sets,
training and validation sets. We systematically navigate through every subset of (g) bivariate kernels. For each subset,
we construct a POE estimator anchored on the training set, and then gauge its performance using the validation set.
This CV process is performed multiple times, each utilizing randomly partitioned training and validation sets. Finally,
we identify the estimator with the minimum variance of the POE estimations.

d
Note that applying the CV procedure for a total of 2 —1 possible candidates could be computationally burdensome.
Thus, before applying the CV procedure, we first pre-screen the candidates so we can apply the CV to those selected
candidates only. Specifically, let ; denote the kth nonempty subset that contains the indices of bivariate kernels for

k=1, ,2(‘5) — 1. For instance, for the k”* conditional POE estimator §;(x) with B(x;,x2) and B(x1,x3), we have
Q. ={(1,2),(1,3)}. We define the estimator §i(x) by
Skx) = Y wpgB(ap.xg), ©)
(P.9)E

where B(x,,x,) can be obtained using (6), with w,,, defined in (7)-(8). To obtain §i(x), we use the total data available
to us, either from pilot sampling or previous iterations.

After obtaining all possible estimators, we choose the top candidates using the cross-entropy error function. The cross-
entropy error function in (8) is used to quantify the importance of each bivariate kernel. Now, we replace the bivariate
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kernel function value with each candidate estimator §;(xX) to get its cross-entropy function as follows.
n
CE = — Y log(8i(Xi)Zi+ (1 — log(5k(X:))) (1 — Z), (10)
i=1

where 7 is the number of data used to build §(x). Note that an estimator with small CE implies that §; (X;) is close to
1 when there is a failure (or exceedance event) at X = X; (i.e., Z; = I(¥; > I) = 1), whereas it is close to 0 when there
is no failure. Thus, we choose estimators with small CEy, values. In our case study, we choose ten such estimators.

Let S (x), k=1,---,10, denote the kth pre-screened candidate. Then we employ the CV procedure to choose the best
one among them. As a remark, one may suggest using (10), instead of employing the CV procedure, to choose the
best estimator. However, doing so could lead to an overfitting issue. Moreover, while the cross-entropy error function
quantifies the prediction accuracy of each estimator for the conditional POE s(x), our ultimate goal is to minimize the
variance of the POE estimator. For the CV implementation, we divide the entire data set into the training and validation
sets. Next, we construct ;) (x) using the training set for each pre-screened candidate and evaluate its performance
using the validation set. Let g() denote the instrumental density with the trained §) (x), i.e.,

1 "
4w (%) = =—1x)y 5 (x): an
4(k)
With qk)» the POE estimated in the validation set becomes
s 1 (i)
P = I(Yy; > 1 , (12)
O ,g{ i )Cl(k) (Xi)

where n,;4 is the number of data sampled from g to test its performance in the validation set. Note that, while we
use the notation gy (X;) for the trained instrumental density, it is formulated with the selected bivaraiate kernels only.

Let Q) denote the kth set of bivariate kernels associated with ;) (x). Ideally, we should choose the best subset Q)
that leads to the smallest variance of ﬁ(k> in (12). The challenge is that ﬁ(k> is not readily available. Note that, in order
to evaluate the performance of g(;), X; should be sampled from g(;) and ¥; should be obtained by running the computer
model at the sampled X;. However, running the computer model 7,4 times for all candidates () is computationally
demanding. On the other hand, without running the computer model, ¥; in (12) is not obtained.

We address the challenge by approximating I(Y; > /) in (12) with the estimated conditional POE. Here, if we use () (x)
in (9), which is learned with the training set, to approximate I(Y; > [), it will incur the overfitting issue. Moreover,
it violates the underlying principal of CV: train a model in the training set and test the resulting model in a separate
validation set. Our remedy is to re-learn the conditional POE using the validation set data. Then the new conditional
POE will play a role of proxy that replaces I(Y; > [) in (12).

Let SAEIZ(‘)’ (x) denote the estimated conditional POE with the bivariate kernels, each with the input pair in Q ), using the
validation set. We then approximate f’<k) in (12) as follows.

5 1 i f(X0)
Note that g (X;) is the instrumental density constructed with the training set. We evaluate it using the validation set
via fb’{‘f (x). It has been known that the normalizing constant C, ® in (11) could be unstable for multivariate instrumental
density when the input dimension is three or higher [10]. Thus, we instead use the self-normalizing constant that

replaces nyg with ¥ f(X;) /g (X;) in our implementation.

We repeat this CV procedure multiple times with randomly partitioned training and validation sets and compute the
sample variance of the POE estimator P(k) in (13). Finally, we select the best subset €2y that produces the smallest
sample variance. Our approach identifies key input variables and produces more explainable instrumental density.
Accordingly, we refer our method as explainable IS, shortly X-SIS.

4. Wind Turbine Case Study

We use the NREL’s aeroelastic wind turbine simulators, including TurbSim (version 1.50) [7] and FAST (version
7.01.00a-bjj) [8], to estimate the load exceedance probability P(Y > [). Specifically, we consider the 10-minute
maximum tip deflection as the response variable Y, which is one of the essential load responses related to the wind
turbine stability [11]. We set the resistance level at / = 2.06. We consider the following five input variables as in [10],
including the wind speed V, turbulence intensity 7/, wind shear S, wind vertical angle VA, and surface roughness
length, SR. Therefore, we have X = (V,T1,S,VA,SR). For their original input distribution f, we use the same setting
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as outlined in [10]. We conduct 25 experiments. Each experiment draws 600 pilot samples from uniform distribution
and includes 10 iterations, that each iteration generates 200 samples from the NREL simulators.

Algorithm 1 Subset selection procedure in X-SIS

1: Input: Pilot samples or data from previous iterations
Obtain §(x) foreach k, k=1,--- 72(‘2’) —1.
Calculate the cross-entropy error function value in (10) for each §j(x)
Choose the top ten estimators §) (x) for k = 1,---, 10 that have the ten smallest cross-entropy errors.
for iter =1,2,---,20 do
Randomly divide the entire dataset into training and validation sets
fork=1,---,10do
Using the training set, obtain §) (x) using (9) to construct the instrumental density g in (11).
Sample X; fori =1,2,--- ,n,4 from qk)-

10: With data in the validation set, obtain %151 (x) using (9) and calculate Is(k) using (13).

R e A A R o

11: end for

12: end for

13: Find the standard error of Py fork =1,2,---,10 and choose the best qz*k) with the smallest standard error of P.
14: Choose the best qZ‘k) that leads to the smallest standard error of Py).

15: Output: Q) associated with qz‘k>.

We compare our approach X-SIS with the WAMK-SIS. In addition to assessing the standard error (SE) of POE esti-
mates from 25 experiments, we further evaluate the estimator performance using relative ratio (RR), which is defined
as RR = Ny /Ncyc. Here, Neye denotes the number of CMC replications necessary to attain a similar SE, given by
Ncye = Pr(1— Pr)/SE? with Pp = P(Y > 1) [3]. Here Pr is the true failure probability, which is unknown. Thus, we
use the estimated POE in computing RR.

Table 1 summarizes the results. The means of 25 POE estimates

in both methods are similar. However, the results suggest that 1able 1: Comparison results from 25 experi-
the X-SIS estimator achieves smaller SE than the WAMK-SIS. It ments

uses only 36% computational resources required by CMC, imply- .
ing that the CMC needs about three times larger repetitions to the Estimator Mean SE RR
same SE level of 0.0029 from the X-SIS. While WAMK-SIS re- X-SIS  10.04951 0.0029 | 35.75%
duces the variance over CMC, it underperforms the X-SIS. WAMK-SIS | 0.0495 | 0.0035 | 52.07%

Table 2 reports the total number and percentage of bivariate ker-
nels chosen in X-SIS over 10 iterations in 25 experiments. In all Table 2: Number of bivariate kernels employed
cases, the X-SIS chooses two or three bivariate kernels, which is in X-SIS estimator

very few compared to the WAMK-SIS estimator that uses 10 bi-

variate kernels. Table 3 further summarizes the selected bivariate Number of bivariate kernels 2 3
kernels. In most cases, the bivariate kernel B(V, T1) is employed in Frequency 73 177
constructing the instrumental density. This implies that these two Percent 29.2% | 70.8%

variables are the most important among five input variables and their interaction is significant. Out of the candidates,
the three kernels B(V,TI), B(V,S), and B(T1,VA) are employed to form the instrumental density most frequently.

Notably, the estimators that employ the three bivariate kernels primarily encompass B(V,TI) and B(V,S) in most
cases, suggesting that the three variables, V, T, and S, are considered vital input variables impacting wind turbine
reliability. These estimators, however, often include an additional bivariate kernel, as shown in Table 3. We believe that
this inclusion is an attempt to prevent overfitting through the

CV. For instance, consider the estimators in the first two rows Table 3: Frequency of selected bivariate kernels

in Table 3. While B(V,TI) and B(V,S) can characterize the ex-

dance pattern well, their sole inclusion might result in th Estimator Frequency | Percent
iCrT:trla;nf:n?; (fens;):e o,ver;3 ci)(;l:entialsfno on ags ecei;lj: re ione B(v.TI),B(V,S),B(T1,VA) o8 23.2%
; Y OVEry Laung on a sp 8O0 p(v T1),B(V,S),B(TI,S) 37 14.8%
which could potentially induce estimation bias and escalated
variance. The CV process aids in circumventing such unfavor- B(V,TI),B(S,VA) 33 13.2%
: P J B(V,TI),B(V,S),B(TI,SR) 29 11.6%
B(V,TI),B(VA,SR) 19 7.6%
B(V,TI),B(V,S),B(S,VA) 19 7.6%
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able scenarios. A similar phenomenon can be observed with

estimators that incorporate B(V,TI), the most significant bi-

variate kernel (refer to the third and fifth row estimators). In

addition to B(V, TT), these estimators add an extra kernel such as B(S,VA) and B(VA, SR). It is noteworthy that these
supplementary kernels can be considered as less critical, even less so than the third kernel in the estimators consisting
of three bivariate kernels, e.g., B(TI,VA) in the first row estimator. By coupling these kernels with the most important
kernel B(V, T1), the resulting instrumental density can effectively circumvent overfitting issues.

Additionally, the proposed method effectively steers clear of repetitive terms in estimating s(x). It is worth noting that
the selected estimator does not incorporate multiple kernels that comprise the same significant variable intertwined
with other less important variables. For instance, consider the first and fourth row estimators that include B(T1,VA)
and B(TI,SR), respectively. B(TI,VA) and B(TI,SR) mirror a univariate kernel with only 71, because VA and SR
are insignificant and thus, their bandwidths are much wider than that of 7'/. Accordingly, no estimators include both
B(TI,VA) and B(TI,SR) simultaneously. We observe a similar trend across other estimators as well.

In summary, the X-SIS estimator ensures the chosen kernels encompass key input variables. This estimator frequently
employs B(V,TI) and B(V,S), underscoring the significance of the three variables along with their interactions. In
addition to choosing vital kernels, it effectively circumvents overfitting issues, thus averting the potential problem of
the instrumental density focusing excessively on overly narrow regions.

5. Summary

This study devises a new nonparametric importance sampling method designed for assessing reliability with multi-
variate inputs. Our primary focus is on explaining the significance of each input, facilitating the construction of an
instrumental density with enhanced effectiveness. To address the challenge of overfitting, we propose a modified CV
procedure within the framework of IS. Notably, our new CV procedure avoids additional computational burden for
generating new data samples while effectively mitigating the risk of overfitting. It achieves this by guiding the selec-
tion of suitable bivariate kernels, ultimately reducing the variance in the resulting estimation. In the future, we plan to
extend the approach to estimate extreme loads in wind turbine application [4].
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