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Abstract

The problem of two-player zero-sum Markov
games has recently attracted increasing interests
in theoretical studies of multi-agent reinforcement
learning (RL). In particular, for finite-horizon
episodic Markov decision processes (MDPs), it
has been shown that model-based algorithms can
find an e-optimal Nash Equilibrium (NE) with the
sample complexity of O(H*SAB/€?), which is
optimal in the dependence of the horizon H and
the number of states S (where A and B denote
the number of actions of the two players, respec-
tively). However, none of the existing model-free
algorithms can achieve such an optimality. In
this work, we propose a model-free stage-based
algorithm and show that it achieves the same
sample complexity as the best model-based al-
gorithm, and hence for the first time demonstrate
that model-free algorithms can enjoy the same
optimality in the H dependence as model-based
algorithms. The main improvement of the depen-
dency on H arises by leveraging the popular vari-
ance reduction technique based on the reference-
advantage decomposition previously used only for
single-agent RL. However, such a technique relies
on a critical monotonicity property of the value
function, which does not hold in Markov games
due to the update of the policy via the coarse cor-
related equilibrium (CCE) oracle. Thus, to extend
such a technique to Markov games, our algorithm
features a key novel design of updating the ref-
erence value functions as the pair of optimistic
and pessimistic value functions whose value dif-
ference is the smallest in the history in order to
achieve the desired improvement in the sample
efficiency.
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1. Introduction

Multi-agent reinforcement learning (MARL) commonly
refers to the sequential decision making framework, in
which more than one agent learn to make decisions in an
unknown shared environment to maximize their cumulative
rewards. MARL has achieved great success in a variety of
practical applications, including the game of GO [Silver
et al., 2016; 2017], real-time strategy games involving team
play [Vinyals et al., 2019], autonomous driving [Shalev-
Shwartz et al., 2016], and behavior learning in complex
social scenarios [Baker et al., 2020]. Despite the great
empirical success, one major bottleneck for many RL algo-
rithms is that they require enormous samples. For example,
in many practical MARL scenarios, a large number of sam-
ples are often required to achieve human-like performance
due to the necessity of exploration. It is thus important to
understand how to design sample-efficient algorithms.

As a prevalent approach to the MARL, model-based meth-
ods use the existing visitation data to estimate the model,
run a planning algorithm on the estimated model to obtain
the policy, and execute the policy in the environment. In
two-player zero-sum Markov games, an extensive series of
studies [Bai & Jin, 2020a; Zhang et al., 2020a; Liu et al.,
2021] have shown that model-based algorithms are prov-
ably efficient in MARL, and can achieve minimax-optimal
sample complexity O(H3SAB/€?) except for the term AB
[Zhang et al., 2020a; Liu et al., 2021], where H denotes
the horizon, S denotes the number of states, and A and
B denote the numbers of actions of the two players, re-
spectively. On the other hand, model-free methods directly
estimate the (action-)value functions at the equilibrium poli-
cies instead of estimating the model. However, none of
the existing model-free algorithms can achieve the afore-
mentioned optimality (attained by model-based algorithms)
[Bai et al., 2020; Mao & Basar, 2021; Song et al., 2022; Jin
et al., 2022a; Mao et al., 2022]. Specifically, the number
of episodes required for model-free algorithms scales sub-
optimally in step H, which naturally motivates the following
open question:

Can we design model-free algorithms with the optimal
sample dependence on the time horizon for learning
two-player zero-sum Markov games?
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In this paper, we give an affirmative answer to the above
question. We highlight our main contributions as follows.

Algorithm design. We design a new model-free algorithm
of Q-learning with min-gap based reference-advantage
decomposition. In particular, we extend the reference-
advantage decomposition technique [Zhang et al., 2020b]
proposed for single-agent RL to zero-sum Markov games
with the following key novel design. Unlike the single-agent
scenario, the optimistic (or pessimistic) value function in
Markov games does not necessarily preserve the monotone
property due to the nature of the CCE oracle. In order to
obtain the “best" optimistic and pessimistic value function
pair, we update the reference value functions as the pair
of optimistic and pessimistic value functions whose value
difference is the smallest (i.e., with the minimal gap) in
the history. Moreover, our algorithm relies on the stage-
based approach, which simplifies the algorithm design and
subsequent analysis.

Sample complexity bound. We show that our algorithm
provably finds an e-optimal Nash equilibrium for the two-
player zero-sum Markov game in O(H?3S AB/¢?) episodes,
which improves upon the sample complexity of all existing
model-free algorithms for zero-sum Markov game. Further,
comparison to the existing lower bound shows that it is
minimax-optimal on the dependence of H, S and e. This
is the first result that establishes such optimality for model-
free algorithms, although model-based algorithms have been
shown to achieve such optimality in the past [Liu et al.,
2021].

Technical analysis. We establish a few new properties
on the cumulative occurrence of the large V-gap and the
cumulative bonus term to enable the upper-bounding of
several new error terms arising due to the incorporation of
the new min-gap based reference-advantage decomposition
technique. These properties have not been established for
the single-agent RL with such a technique, because our
properties are established for policies generated by the CCE
oracle in zero-sum Markov games. Further, the analysis
of both the optimistic and pessimistic accumulative bonus
terms requires a more refined analysis compared to their
counterparts in single-agent RL [Zhang et al., 2020b].

1.1. Related Work

Markov games. The Markov game, also known as the
stochastic game, was first proposed in [Shapley, 1953] to
model the multi-agent RL. Early attempts to find the Nash
equilibra of Markov games include [Littman, 1994; Hu &
Wellman, 2003; Hansen et al., 2013; Wei et al., 2020]. How-
ever, they often relied on strong assumptions such as known
transition matrix and reward, or focused on the asymp-
totic setting. Thus, these results do not apply to the non-
asymptotic setting where the transition and reward are un-

known and only limited data is available.

There is a line of works focusing on non-asymptotic guar-
antees with certain reachability assumptions. A popular
approach is to assume access to simulators, which enables
the agent to sample transition and reward directly for any
state-action pair [Jia et al., 2019; Sidford et al., 2020; Zhang
et al., 2020a; Li et al., 2022]. Alternatively, [Wei et al.,
2017] studied the Markov game under the assumption that
one player can always reach all states by playing certain
policy no matter what strategy the other player sticks to.

Two-player zero-sum games. [Bai & Jin, 2020a; Xie et al.,
2020] initialized the study of non-asymptotic guarantee for
two-player zero-sum Markov games without reachability as-
sumptions. [Bai & Jin, 2020a] proposed a model-based algo-
rithm for tabular Markov game while [Xie et al., 2020] con-
sidered linear function approximation in game and adopted
a model-free approach. [Liu et al., 2021] proposed a model-
based algorithm which achieves the minimax-optimal sam-
ples complexity O(H3SAB/¢) except for the AB term.
For the discounted setting and having access to a generative
model, [Zhang et al., 2020a] developed a model-based algo-
rithm that achieves the minimax-optimal sample complexity
except for the AB term. Then, model-free Nash Q-learning
and Nash V-learning were proposed in [Bai et al., 2020] for
two-player zero-sum game to achieve optimal dependence
on actions (i.e., (A + B) instead of AB). Further, [Chen
et al., 2022; Huang et al., 2022] studied the two-player
zero-sum Markov game under linear and general function
approximation.

Multi-player general-sum games. [Liu et al., 2021] de-
veloped model-free algorithm in episodic setting, which
suffers from the curse of multi-agent. To alleviate this issue,
[Mao & Basar, 2021; Song et al., 2022; Jin et al., 2022a;
Mao et al., 2022] proposed V-learning algorithm, coupled
with the adversarial bandit subroutine, to break the curse of
multi-agent. [Mao & Basar, 2021] considered learning an
e-optimal CCE and used V-learning with stabilized online
mirror descent as the adversarial bandit subroutine. Both
[Song et al., 2022; Jin et al., 2022a] utilized the weighted
follow the regularized leader (FTRL) algorithm as the ad-
versarial subroutine, and considered e-optimal CCE and e-
optimal correalted equilibrium (CE). The work [Mao et al.,
2022] featured the standard uniform weighted FTRL and
staged-based design, both of which simplifies the algorithm
design and the corresponding analysis. While the V-learning
algorithms generate non-Markov, history dependent poli-
cies, [Daskalakis et al., 2022; Wang et al., 2023] learned an
approximate CCE:s that is guaranteed to be Markov.

Markov games with function approximation. Recently,
a few works considered learning in Markov games with
linear function approximation [Xie et al., 2020; Chen et al.,
2022] and general function approximation [Jin et al., 2022b;
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Huang et al., 2022; Zhan et al., 2023; Xiong et al., 2022;
Chen et al., 2022; Ni et al., 2023]. While all of the previous
works require centralized function classes and inevitably suf-
fer from the curse of multi-agency, [Cui et al., 2023; Wang
et al., 2023] proposed decentralized MARL algorithms to
resolve the issue under linear and general function approxi-
mation.

Single-agent RL. Broadly speaking, our work is also re-
lated to single-agent RL [Auer et al., 2008; Azar et al., 2017;
Dann et al., 2017; Jin et al., 2018; Zhang et al., 2020b].
As a special case of Markov games, only one agent inter-
acts with the environment in single-agent RL. For tabular
episodic setting, the minimax-optimal sample complexity
is O(H®S A/€?), achieved by a model-based algorithm in
[Azar et al., 2017] and a model-free algorithm in [Zhang
et al., 2020b]. Technically, the reference-advantage decom-
position used in our algorithm is similar to that of [Zhang
et al., 2020b], as both employ variance reduction techniques
for faster convergence. However, our approaches differ sig-
nificantly, particularly in the way of handling the interplay
between the CCE oracle and the reference-advantage de-
composition in the context of two-player zero-sum Markov
game.

2. Preliminaries

Zero-sum Markov Game. We consider the tabular episodic
two-player zero-sum Markov game MG(H, S, A, B, P, r),
where H is the number of steps in each episode, S is the
set of states with |S| = S, (A, B) are the sets of actions
of the max-player and the min-player respectively with
|A| = A and |B] = B, P = {Pu}neqn is the collec-
tion of the transition matrices with P, : S x A x B — S,
r = {rn}tnerm is the collection of deterministic reward
functions with r, : S x A x B+ [0, 1]. Here the reward
represents both the gain of the max-player and the loss of
the min-player. We assume each episode starts with a fixed
initial state sy.

Suppose the max-player and the min-player interact with
the environment sequentially captured by the two-player
zero-sum Markov game MG(H, S, A, B, P,r). At each
step h € [H], both players observe the state s, € S, take
their actions ay, € A and by, € B simultaneously, receive the
reward r,(sp, an, by), and then the Markov game evolves
into the next state with probability s,1+1 ~ Pr(:|sp, an, bn).
The episode ends when sg 1 is reached.

Markov policy, value function. A Markov policy p of the
max-player is the collection of the functions {up : S —
A 4} helH)» each of which maps from a state to a distribution
over actions. Similarly, a policy v of the min-player is
the collection of functions {v}, : S = Ap}ueu). We
use up,(a|s) and v, (b]s) to denote the probability of taking

actions a and b given the state s under the Markov policies
w and v at step h, respectively.

Given a max-player policy u, a min-player policy v, and a
state s at step h, the value function is defined as

Sh:S‘|.

For a given (s, a,b) € S X A x I under a max-player policy
1 and a min-player policy v at step h, we define

thy(s) =
H

> rwr (s ans, bi)

h'=h

E
(sprsaps by )~(p,v)

Q" (s,a,b) =
H

Z Tt (8prs aprsbyr)

E
(spraapribyr)~(p,v) Wien

Sh,—s,ah—a,bh_b]

For ease of exposition, we define (Pnf)(s,a,b) =
Eg p,(|s,a,0)[f(8")] for any function f : S — R, and
(Dzg)(s) = E(a,p)~n(-,|s)[9(5, a,b)] for any function g :
S x A x B. Then, the following Bellman equations hold
forall (s,a,b,h) € S x Ax B x [H]:

QY (s,a,b) = (rn + PV (s, a,b),

V;{t,u(s) = (D#hxuh,Qﬁyu)(s)v
V511 (s)=0.

Best response, Nash equilibrium (NE). For any Markov
policy p of the max-player, there exists a best response
of the min-player, which is a policy vf(u) satisfying
VY ) (5) = inf, VY for any (s,h) x S x [H]. We
VT L . .
denote V' = V}i" W), Similarly, the best response of
the max-player with respect to the Markov policy v of
t
the min-player is a policy p'(v) satisfying V" v (g) =
sup,, V}*" forany (s,h) x S x [H], and we use V" to de-
note v} ") Eurther, there exists Markov policies p*, v*,

which are optimal against the best responses of the other
player [Filar & Vrieze, 1997], i.e.,

VT (s) = sup V4T (s),
I
VhT’V* (s) = inf VJ’V7

for all (s,h) € S x [H]. We call the strategies (u*,v*)
the Nash equilibrium of a Markov game, if they satisfy the
following minimax equation

supinf V" (s) = V" (s) = inf sup V/*"(s).
oY Vo

Learning objective. We consider the Nash equilibrium of
Markov games. We measure the sub-optimality of any pair
of general policies (u, v) using the following gap between
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their performance and the performance of the optimal strat-
egy (i.e., Nash equilibrium) when playing against the best
responses respectively:

Vi (s1) = Vi (s1)
= (VlTaV(Sl) — ‘/'1*(51)) + (Vl*(sl) _ V{L’T(Sl)) )

Definition 2.1 (e-optimal Nash equilibrium (NE)). A pair
of general policies (u, V) is an e-optimal Nash equilibrium
if VM (s1) = VT (s1) < e.

Our goal is to design algorithms for two-player zero-sum
Markov games that can find an e-optimal NE using a number
episodes that is small in its dependency on S, A, B, H as
well as 1/e.

3. Algorithm Design

In this section, we propose an algorithm called Q-learning
with min-gap based reference-advantage decomposition (Al-
gorithm 1), for learning e-optimal Nash Equilibrium in two-
player zero-sum Markov games. Our algorithm builds upon
the Nash Q-learning framework [Bai et al., 2020] for two-
player zero-sum Markov game but incorporates a novel
min-gap based reference-advantage decomposition tech-
nique and stage-based update design, which were origi-
nally proposed to achieve optimal performance in model-
free single-agent RL. We start by reviewing the algorithm
with reference-advantage decomposition in single agent RL
[Zhang et al., 2020b].

Reference-advantage decomposition in single-agent RL.
In single-agent RL, we greedily select and action to max-
imize the action value function @, (s,a) to obtain the
optimistic value function Vj,(s) = max, Q,(s,a), and

the action-value function update follows Q;(s,a) <«

L —=( —(2 — —(1) =(2
mln{Qé)(s,a), ,g)(s,a),Qh(s,a)}, where QEL), 2)

represent the standard update rule and the advantage-based
update rule

@21) < rh(s,a) + P,V511(s,a) + bonusy,

—
—ref

—(2
Q;L ) —ru(s,a) + PV, (s, a)

o —

+ Po(Vhyr — V;Leil)(s, a) + bonuss.

In standard update rule, one major drawback is that the early
samples collected for estimating V', at that moment de-
viates from the true value of V1, and we have to only

use the latest samples to estimate P,V j1(s,a) in order
not to ruin the whole estimate, which leads to the subopti-
mal sample complexity of such an algorithm. To achieve
the optimal sample complexity, reference-advantage decom-
position was introduced. At high level, we first learn an

accurate estimation Vze " of the optimal value function V}
satisfying V;*(s) < Vief(s) < Vj*(s) + 3, where the accu-
racy is controlled by parameter /5 independent of the number
of episodes K. For the second term, since Vzcil is almost
fixed, we are able to conduct the estimate using all col-
lected samples. For the third term, we still have to only use
the latest samples to limit the deviation error. Thanks to
the reference-advantage decomposition, and since V7, ; is

—ref —ref .
learned based on V4, and V, , ; is already an accurate

. . T —ref
estimate of V', , it turns out tEat estimating Vp 41 — V;Leﬂ
instead of directly estimating V', offsets the weakness of
using the latest samples.

In single-agent RL, one key design to facilitate the reference-
advantage decomposition is to ensure that the action-value
function @, (s, a) is non-increasing. Observe that the opti-
mistic value function V1, (s) preserves the monotonic struc-
ture as long as the optimistic action-value function @, (s)

. : : .kl —k+1

is non-increasing, since Vh+ (s) = max, Qh+ (s,a) <
—k —k

max, Q(s,a) = V,(s). When enough samples are col-

lected, the reference value Vref is then updated as the lat-
est optimistic value function, which we remark is also the
smallest optimistic value function in the up-to-date learning
history.

Min-gap' based reference-advantage decomposition. In
the two-player zero-sum game, we keep track of both the
optimistic and the pessimistic action-value functions, and
update the value functions using the CCE oracle at the end of
each stage. Unlike the single-agent scenario, the optimistic
(or pessimistic) value function does not necessarily preserve
the monotone property even if the optimistic (or pessimistic)
action-value function is non-increasing (or non-decreasing)
due to the nature of the CCE oracle. In order to obtain the
“best” optimistic and pessimistic value function pair, we
come up with the key novel “min-gap" design where we
update the reference value functions as the pair of optimistic
and pessimistic value functions whose value difference is the
smallest in the history (line 12-15). Formally, we define the
min-gap A(s, h) for a state s at step h to keep track of the
smallest value difference between optimistic and pessimistic
value functions in the history, and the corresponding pair
of value functions are recorded (line 12-13). When enough
samples are collected (line 14-15), the pair of reference
value functions is then set to be the pair of optimistic and
pessimistic value functions whose value difference is the
smallest in the history.

Now we introduce reference-advantage decomposition to
the two-player zero-sum game. For ease of exposition, we
use bonus; to represent different exploration bonus, which
is specified in line 9-11 of Algorithm 3. In standard update

'We remark that min-gap has nothing to do with the notion of
gap in gap-dependent RL.
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Algorithm 1 Q-learning with min-gap based reference-
advantage decomposition (Algorithm 3 sketch)
1: Set accumulators and (action)-value functions properly,
and initialize the gap A(s,h) = H.

2: for episodes k +— 1,2,..., K do
3 forh+ 1,2,...,H do
4 Take action (ap, by,) < mr(sn)
5: Receive 7y, (sp, ap, by ), and observe sj,41.
6 Update accumulators.
7 if n € £ then
8 @h(shnahmbh) — min{ag)(shmahnbh%
9: Q§12>(Sh7ah7bh)aQh(shaa/habh)}-
10: Qh(sh,ah,bh) < maX{QS)(sh,ambh),
11: Qf)(sh,ah,bh),Qh(Sh,ah,bh)}-
12: Th(sn) < CCE(Q(sn, ", ), @, (Shs s ).
13: Vi(sp) ]E(mb),\,ﬂ.h(sh)Qh(Sh,a,b).
14: V. (sp) < E(a_’b),\,ﬁh(sh)gh(sh, a, b).
15: Reset all intra-stage accumulators to 0.
16: if Vi, (sp) — V., (sn) < A(s, h) then
17: é(s, h) = Vh(sh) - Kh(sh).
18: Yh(sh) = Vh(sh).
19: Vi (sn) = V,(sn).
20: end if
21: end if
22: imebNh(sh,a, b) = NO then
23: Vit (sn) < Valsn).
24: Vi (s1,) < Vi, (sn)-
25: end if
26:  end for
27: end for

rule, we have

@;1)(5, a,b) < ru(s,a,b) + P,Vyi1(s,a,b) + bonuss, (1)
QS)(S, a,b) < rp(s,a,b) + P@l(& a,b) + bonuss, (2)

where P, V1, P@l are the empirical estimate of
PthH, PpV,, . Similar to the single-agent RL, the stan-
dard update rule suffers from the large deviation between
Va1 learned by the early samples and the value of Nash
equilibrium. As a result, we have to use only the samples
from the last stage (i.e., the latest O(1/H) fraction of sam-
ples, see stage-based update approach below) to estimate
PrVi41. In order to improve the horizon dependence, we
incorporate the advantage-based update rule

Q7 (s.a.)  ru(s.0.b) + PuVicla(s.a.0)

+ Pu(Vigr — Vig1)(s,a,b) + bonuss, (3)
QS) (57 a, b) ~ Th(s7 a, b) + thzeil (8’ @ b)

+ PV g — V321 (s,a,b) + bonuss,  (4)

where the middle terms in (3) are the empirical estimates of
P thL and P,(Viyi1 — V;il), and the middle terms in

(4) are the empirical estimates of Phiﬁfj_l and Py (V1 —

V;il). We still need to use only the samples from the last

stage to limit the deviation for the third terms in both (3)
and (4). For ease of exposition, assume we have access

to a S-optimal Vref,zref. Thanks to the min-gap based

reference-advantage decomposition, the learned V3,1 (or
ref

V1) is learned based on V:leil (or Kfeil), and V' (or

1
V) is already an accurate estimate of V;* 1> it turns out

. .= —ref .
that estimating V41 — VZEH (or Vi, — V3eL,) instead of
directly estimating V' (or V) offsets the weakness of using

. . =ref .
only O(1/H) fraction of data. Further, since V', V" is
fixed, we are able to use all samples collected to estimate
the second term, without suffering any deviation. Now we

remove the assumption that me, V' is fixed. Note that
B is selected independently of K. Therefore, learning a

. . —ref .
[-optimal reference value function V/ yret only incurs
lower order terms in our final result.

Stage-based update approach. For each tuple
(s,a,b,h) € S x A x B x [H], we divide the visitations
for the tuple into consecutive stages. The length of each
stage increases exponentially with a growth rate (1 4+ 1/H).
Specifically, we define e; = H,and e;1 = [(1+1/H)e;]
for all ¢ > 1, to denote the lengths of stages. Further, we
also define £ = {>°7_, e;[j = 1,2,3,...} to denote the
the set of ending indices of the stages. For each (s, a,b, h)
tuple, we update both the optimistic and pessimistic value
estimates at the end of each stage (i.e., when the total num-
ber of visitations of (s, a, b, h) lies in £), using samples
only from this single stage (line 6-15). This updating rule
ensures that only the last O(1/H) fraction of the collected
samples are used to estimate the value estimates.

Coarse correlated equilibrium (CCE). We use the CCE
oracle to update the policy (line 14). The CCE oracle was
first introduced in [Xie et al., 2020] and an e-optimal CCE
is shown to be a O(e)-optimal Nash equilibrium in two-
player zero-sum Markov games [Xie et al., 2020]. For any
pair of matrices Q, Q € [0, H]**B, CCE(Q, Q) returns a
distribution 7 € A 4 such that B

E(mb)wﬂ'@(av b) > sup E(a,b)rwﬂ'@(a*» b)7
a
E((L,b)wﬂ'g(av b) < igifE(a,b)N-rr@(aa b*)

The players choose their actions in a potentially correlated
way so that no one can benefit from unilateral unconditional
deviation. Since Nash equilibrium is also a CCE and a
Nash equilibrium always exists, a CCE therefore always
exist. Moreover, CCE can be efficiently implemented by
linear programming in polynomial time. We remark that the
policies generated by CCE are in general correlated, and
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executing such policies requires the cooperation of the two
players (line 6).

Algorithm description. For clarity, we provide a schematic
algorithm here (Algorithm 1) and defer the detail to
the appendix (Algorithm 3). Besides the standard opti-
mistic and pessimistic value estimates update @}, (s, a,b),
Vi(s), Q, (s,a,b), V,,(s), and the reference value func-

tions V;Lef(s), Vi (s), the algorithm keeps multiple dif-
ferent accumulators to facilitate the update: 1) Np(s, a,b)
and Ny, (s, a, b) are used to keep the total visit number and
the visits counting for the current stage with respect to
(s,a, b, h), respectively. 2) Intra-stage accumulators are
used in the latest stage and are reset at the beginning of each
stage. 3) The global accumulators are used for the samples
in all stages: All accumulators are initialized to O at the
beginning of the algorithm. The details of the accumulators
are deferred to Appendix A.

The algorithm set ¢« = log(2/d), 5 = O(1/H) and
No = c4SABH?®./3? for some sufficiently large universal
constant c4, denoting the number of visits required to learn
[B-accurate pair of reference value functions.

Certified policy. Based on the policy trajectories collected
from Algorithm 3, we construct an output policy profile
(p°U v°u) that we will show is an approximate NE. For
any step h € [H], an episode k € [K] and any state, we
let ¥ (-|s) € A(A) and vf(:|s) € A(B) be the distribu-
tion prescribed by Algorithm 3 at this step. Let NJ(s) be
the value NJ(s) at the beginning of the k-th episode. Our
construction of the output policy °"* is presented in Algo-
rithm 2 (whereas the certified policy »°"* of the min-player
can be obtained similarly), which follows the “certified poli-
cies” introduced in [Bai & Jin, 2020a]. We remark that the
episode index from the previous stage is uniformly sampled
in our algorithm while the certified policies in [Bai & Jin,
2020a] uses a weighted mixture.

Algorithm 2 Certified policy ;°"* (max-player version)
1: Sample k <+ Unif([K]).
2: forsteph < 1,...,H do
3:  Receive sy, and take action aj, ~ uf (+|sp).
4 Observe by,.
5. Sample j + Unif([NF(sp,an,by)]).
6: Setk « é}fh i
7: end for

4. Theoretical Analysis
4.1. Main Result

In this subsection, we present the main theoretical result
for Algorithm 3. The following theorem presents the sam-
ple complexity guarantee for Algorithm 3 to learn a near-

optimal Nash equilibrium policy in two-player zero-sum
Markov games, which improves the best-known model-free
algorithms in the same setting.

Theorem 4.1. For any 6 € (0, 1), let the agents run Algo-
rithm 3 for K episodes with K > 6(H35AB/€2). Then,
with probability at least 1 — 8, the output policy (1°*%, v°u)
of Algorithm 2 is an e-approximate Nash equilibrium.

Compared to the lower bound Q(H3S(A + B)/€?) on the
sample complexity to find a near-optimal Nash equilibrium
[Bai & Jin, 2020b], the sample complexity in Theorem 4.1
is minimax-optimal on the dependence of H, S and €. This
is the first result that establishes such optimality for model-
free algorithms, although model-based algorithms have been
shown to achieve such optimality in the past [Liu et al.,
2021].

We also note that the result in Theorem 4.1 is not tight on the
dependence on the cardinality of actions A, B. Such a gap
has been closed by popular V-learning algorithms [Liu et al.,
2021; Mao et al., 2022], which achieve the sample com-
plexity of O(H®S(A + B)/e?) [Mao et al., 2022]. Clearly,
V-learning achieves a tight dependence on A, B, but suffers
from worse horizon dependence on H. More specifically,
one H factor is due to the nature of implementing the ad-
versarial bandit subroutine in exchange for a better action
dependence A + B. The other H factor could potentially be
improved via the reference-advantage decomposition tech-
nique that we adopt here for our Q-learning algorithm. We
leave this promising yet challenging direction as a future
study.

4.2. Proof Outline

In this section, we present the proof sketch of Theorem 4.1,
and defer all the details to the appendix.

Our main technical development lies in establishing a few
new properties on the cumulative occurrence of the large
V-gap and the cumulative bonus term, which enable the
upper-bounding of several new error terms arising due to the
incorporation of the new min-gap based reference-advantage
decomposition technique. These properties have not been
established for the single-agent RL with such a technique,
because our properties are established for policies generated
by the CCE oracle in zero-sum Markov games. Further, we
perform a more refined analysis for both the optimistic and
pessimistic accumulative bonus terms in order to obtain the
desired result.

For certain functions, we use the superscript k£ to denote the
value of the function at the beginning of the k-th episode,
and use the superscript K + 1 to denote the value of the
function after all K episodes are played. For instance, we
denote N} (s, a,b) as the value of Nj(s,a,b) at the begin-
ning of the k-th episode, and N,* ' (s, a, b) to denote the
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total number of visits of (s, a, b) at step h after K episodes.
When h and k are clear from the context, we omit the sub-
script h and superscript k for notational convenience. For
example, we use /; and /; to denote . ; and 7§ ; when h
and k are obvious.

In the next four steps, we strive to bound the differ-
ence between optimistic and pessimistic value functions
1K (A
K Zk:l (V4

out out
our final goal V,;""" (s1) — V#*
(Lemma 4.6).

— V"¥)(s1), which is shown to upper bound
T(s1) in the final step

Step I: We show that the Nash equilibrium (action-)value
functions are always bounded between the optimistic and
pessimistic (action-)value functions.

Lemma 4.2. With high probability, it holds that for any
s,a,b, k,h,

Q"(s.a,b) < Qj\(s.a,b) < (s a,D),
VE(s) < Vi (s) < V(o)

Our new technical development lies in proving the inequality
with respect to the action-value function, whose update rule
features the min-gap reference-advantage decomposition in
two-player zero-sum Markov game.

The proof is by induction. We will focus on the opti-
mistic (action-)value function and the other direction for
pessimistic (action-)value function can be proved similarly.
Suppose the two inequalities hold in episode k. We first
establish the inequality for action-value function, and then
prove the inequality for value functions. Based on the up-
date rule of the optimistic action-value functions (line 8-9
in Algorithm 1, and line 12 in Algorithm 3), the action-
value function is determined by the first two non-trial terms
and last trivial term. While the first term is shown to up-
per bound the action-value function at Nash equilibrium
Q7 (s,a,b), we make the effort to showcase that the sec-
ond term involving the min-gap based reference-advantage
decomposition also upper bounds Q7 (s, a,b). Since the
optimistic action-value function takes the minimum of the
three terms, we conclude that the optimistic action-value
function in episode k + 1 also satisfy the inequality. The
proof of the inequality for value function (second inequal-
ity in Lemma 4.2) is based on the property of the policy
distribution output by the CCE oracle.

Note that the optimistic (or pessimistic) action-value func-
tion is non-increasing (or non-decreasing) with respect to
the iteration number k. However, the optimistic and the
pessimistic value functions do not necessarily preserve such
monotonic property due to the nature of the CCE oracle.
This motivates our design of the min-gap based reference-
advantage decomposition.

Step II: We show that the reference value function can be

learned with bounded sample complexity in the following
lemma.

Lemma 4.3. With high probability, it holds that

K
S 1{Th(sh) — Vi(sh) > € < O(SABH® /%)
k=1

We show that in the two-player zero-sum Markov game,
the occurrence of the large V-gap, induced by the policy
generated by the CCE oracle, is bounded independent of
the number of episodes K. Our new development in prov-
ing this lemma lies in handling an additional martingale
difference arising due to the CCE oracle.

In order to extract the best pair of optimistic and pessimistic
value functions, a key novel min-gap based reference-
advantage decomposition is proposed (see Section 3), based
on which we pick up the pair of optimistic and pessimistic
value functions whose gap is the smallest in the history (line
16-20 in Algorithm 1 and line 17-20 in Algorithm 3). The
motivation is based on the observation mentioned in step I,
and the latest pair of optimistic and pessimistic value func-
tions does not necessarily have the minimum gap in this
history. By the selection of the reference value functions,
Lemma 4.3 with € set to 3, and the definition of Ny (see
Section 3 Algorithm description), we have the following
corollary.

Corollary 4.4. Conditioned on the successful events of

Proposition 4.2 and Lemma 4.3, for every state s, we have

—ref,k

nf(s) > No =V, "(s) = Vi (s) < B.

Step III: We bound ZkK:l(V]f — V¥)(s1). Compared to
single-agent RL, the CCE oracle leads to a possibly mixed
policy and we need to bound the additional term due to the
CCE oracle.

— V3)(sk), and
martingale difference (' = AF — (@’; Qk)(sh, af, o).
Note that nh = Nk(sh,ah,bk) and nf = N,’f(sh,ah,bk)
when NF(sk, af bf) € L. Following the update rule, we
have (omitting the detail)

+ (@ — Q) (sh. al,bf)

k

<P+ H1{nf =0} + kaA AN,
hz 1

.. . —k
For ease of exposition, define AF = vV

Al =k

where the definition of Aﬁ 1 is provided in the appendix.

Summing over k € [K], we have

K

k
E A}L
k=1
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”h

K e K
}If Z l{nh—0}+zkaAi’f~_"l+ZAZ+1
k=1 =
ZAthl + ZAh+17

where in the last inequality, we use the pigeon-hole argu-
ment for the second term, and the third term is due to the
(14 1/H) growth rate of the length of the stages.

Mw

£
Il
-

<STCE 4 SABH? 4+ (14 =

Mx

=~
Il
i

Before we proceed, we briefly discuss several differences
between our analysis for zero-sum game and single-agent
RL. First, we care about the value difference between opti-
mistic and pessimistic value functions in two-player zero-
sum game instead of the value different between optimistic
value function and the value function when executing policy
7 in single-agent RL. Second, additional martingale differ-
ence {Cf'} (ke[ m] shows up in two-player zero-sum
game due to the fact that the CCE oracle in general output a
mixed policy.

Iterating over h = H, H — 1,...,1 gives

H K .
Z (1+ E)h_ldf
h=1k=

H

K
d Ab <o (SABH3 +
k=1 = 1
- 1

+> > (a4 H)h—1A§+1> .
h=1k=1

As pointed out earlier, the additional term Zthl Z,i(:l (1+
%)h*IC ’}f is new in the two-player zero-sum Markov game,
which can be bounded by Azuma-Hoeffding’s inequality.
Le., it holds that with probability at least 1 — 79,

Z yimick < O(VH?TW),

which turns out to be a lower-order term compared to

H K
Zh:l Zk:l(]‘ + )h 1A]’§+1
Step IV: We bound 77 % (1 + L
following lemma.
Lemma 4.5. With high probability, it holds that
H K
2.2 (+g7
h=1k=1

0 (\/SABHQL + HVTlogT + SQ(AB)%HBLT%) :

)P=LAR | in the

h 1 Ah+1

We capture the accumulative error of the bonus terms
H K 1\h—1/7F k . .
Dot 21 L+ 7)) (Brya +éh+1) in the expression
Zh 1 Zk (L4 )" A, . Since we first implement

the reference- advantage decomposition technique in the
two-player zero-sum game, our accumulative bonus term

is much more challenging to analyze than the existing Q-
learning algorithms for games. Compared to the analysis for
the model-free algorithm with reference-advantage decom-
position in single-RL [Zhang et al., 2020b], our analysis
features the following new developments. First, we need
to bound both the optimistic and pessimistic accumulative
bonus terms, and the analysis is not identical. Second, the
analysis of the optimistic accumulative bonus term differs
due to the CCE oracle and the new min-gap base reference-
advantage decomposition for two-player zero-sum Markov
game.

Final step. We build connection between the certified policy
generated by Algorithm 2, and the difference between the

L L . —k
optimistic and pessimistic value functions 7 Zszl (V-
k
Vi)(s1)-

Lemma 4.6. Let (p°, v°%) be the output policy induced
by the certified policy algorithm (Algorithm 2), then, we
have

K
pout out 1 7k
VI (s) =V (s) € 2 (V) = V) (1)

Finally, combining all steps, we conclude that with high
probability,

5. Conclusion

In this paper, we proposed a new model-free algorithm
Q-learning with min-gap based reference-advantage decom-
position for two-player zero-sum Markov games, which
improved the existing results and achieved a near-optimal
sample complexity O(H3SAB/e?) except for the AB term.
Due to the nature of the CCE oracle employed in the al-
gorithm, we designed a novel min-gap based reference-
advantage decomposition to learn the pair of optimistic and
pessimistic reference value functions whose value difference
has the minimum gap in the history. An interesting future
direction would be to study whether the horizon dependence
could be further tightened in model-free V-learning.

Impact Statement

This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Supplementary Materials

A. Details of Algorithm 1

Algorithm 3 Q-learning with min-gap based reference-advantage decomposition
1: Initialize: Set all accumulators to 0. For all (s,a,b,h) € S x A x B x [H], set V;,(s), Q,(s,a,b) to H — h + 1, set

—ref

Vi (s)to H,setV,(s),Q, (s, a, b), Vit (s, a,b) to 0; and

2: let m,(s) ~ Unif (A) x Unif(B), A(s,h) = H, Vi(sp) = H, V,,(sn) = 0.

3: for episodes k < 1,2,..., K do

4:  Observe s;.

5 forh<+ 1,2,...,Hdo

6: Take action (ap, b,) < mr(sp), receive rp,(sp, an, by,), and observe sp1.

7: Update accumulators n := Np,(sp, ap, by,) & 1,n:= Nh(sh, ap,bp) & 1and (5)-(9).
8: if n € L then

9: Y 4= 24/ }g L.

10 B o EEI g [T ot e 222l

TR PR il =l I A L £}

12: @h(shy A, b}L) — min{'l'h(Sh, [ bh) + % +7, T}L(S}M A,y bh) + %ﬂf + % + 37@}1(5}” Qp, bh)}

- ref ~

13: Qh(5h7ah7bh) emax{rh(sh,ah,bh)—l—% —’y,rh(sh,ah,bh)) &T—i_% —Q,Qh(sh,ah,bh)}.
14: 7Th(8h) FCCE(Q(S}“~,~),Qh(8h,~,~)).

15: Vi (Sh) — ]E(a.,b)w‘n'h(sh)Qh(sha a, b), and Kh(sh) — E(a,b)N‘”h(sh)Qh(sm a, b)
16: Reset all intra-stage accumulators to 0.

17: if Vi (sn) — Vy(sn) < A(s, h) then

18: é(s, h) = Vi(sn) =V, (sp).

19: Vin(sn) = Vu(sn), Vi, (sn) = Vi (sn).
20: end if
21: end if
22: ifzabNh(sh,a,b) = Ny then

—ref e re ~

23: Vi (sn) < Vi(sn), Vit (sn) < Vy(sn).

24: end if

25:  end for

26: end for

Algorithm description. Let ¢y, c2, c3 be some sufficiently large universal constants so that the concentration inequalities can
be applied in the analysis. Besides the standard optimistic and pessimistic value estimates @, (s, a,b), Vn(s), @, (s, a,b),

. —ref . . . .
V,,(s), and the reference value functions V', (s), V¢! (s), the algorithm keeps multiple different accumulators to facilitate
the update: 1) Ny (s, a,b) and Ny, (s, a, b) are used to keep the total visit number and the visits counting for the current stage
with respect to (s, a, b, h), respectively. 2) Intra-stage accumulators are used in the latest stage and are reset at the beginning
of each stage. The update rule of the intra-stage accumulators are as follows:

Uk (Sh, an,bn) & Vii1(sn41)s  0p(Sn,an,bn) & Vii1(sht1), Q)
Tin ($hy an, br) & Visr (sni1) = Vipa (sn41), B, (snan,bn) & Vi (sna1) = Vichy (sn), (6)
~ —_— —ref . re

G (shy an,bn) & (Vig1(sn1) — Vieer (5541))°, G5 (shy any br) & (Vi (snt1) — Vichy (sna1)) . @)

3) The following global accumulators are used for the samples in all stages:

—ref re
ﬁgzef(sha Qhs bh) <i Vhe+1(sh+1)7 H;LEf(Shv Qp, bh) <i Kh-lf-l(sh+1)v (8)
—r —ref T T
1 (snan, bn) = (Vigyr (sng1))? 0t (s an, bn) € (Vichy (sng1))>. ©)
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All accumulators are initialized to 0 at the beginning of the algorithm. The algorithm set ¢ = log(2/4), 8 = O(1/H) and
No = c4SABH?® /3% for some sufficiently large universal constant c;.

B. Comparison to Existing Algorithms

Compare to Optimistic Nash Q-learning [Bai et al., 2020]. The Optimistic Nash Q-learning is a model-free Q-learning
algorithm for two-player zero-sum Markov games. The algorithm design differences between our algorithm and the
optimistic Nash Q-learning is two-fold. First, we adopt the stage-based design instead of traditional Q-learning update
Qnew < (1 — @)Quiq + a(r + V). The optimistic Nash Q-learning updates the value function with a learning rate, while
our algorithm adopts greedy update. We remark that both frameworks are viable, and in our opinion, the stage-based design
is easier to follow and analyse. Second, we propose a novel min-gap based reference-advantage decomposition, a variance
reduction technique, to further improve the sample complexity. Specifically, we use both the standard update rule and the
advantage-based update rule in our action-value function (Q function) while the optimistic Nash Q-learning only uses the
standard update rule.

Aside from the obvious distinction of the proofs caused by stage-based design, the main difference is the analysis for the
advantage-based update rule, which does not show up in the optimistic Nash Q-learning. Due to the incorporation of the
new min-gap based reference-advantage decomposition technique, several new error terms arise in our analysis. Our main
development lies in establishing a few new properties on the cumulative occurrence of the large V-gap and the cumulative
bonus term, which enable the upper-bounding of those new error terms. More specifically, as we explain in our proof
outline in Section 4.2, our analysis include the following novel developments. (i) Step I shows that the Nash equilibrium
(action-)value functions are always bounded between the optimistic and pessimistic (action-)value functions (see Lemma
4.3). Our new technical development here lies in proving the inequality with respect to the action-value function, whose
update rule features the min-gap reference-advantage decomposition. (ii) Step II shows that the reference value can be
learned with bounded sample complexity (see Lemma 4.4). Our new development here lies in handling an additional
martingale difference arising due to the CCE oracle. (iii) In step IV, there are a few new developments. First, we need to
bound both the optimistic and pessimistic accumulative bonus terms, and the analysis is more refined compared to that for
single-agent RL. Second, the analysis of the optimistic accumulative bonus term need to handle the CCE oracle together
with the new min-gap base reference-advantage decomposition for two-player zero-sum Markov game.

Compare to UCB-advantage [Zhang et al., 2020b]. The UCB-advantage is a model-free algorithm with reference-
advantage decomposition for single-agent RL. Our main novel design idea lies in the min-gap based advantage reference
value decomposition. Unlike the single-agent scenario, the optimistic (or pessimistic) value function in Markov games does
not necessarily preserve the monotone property due to the nature of the CCE oracle. In order to obtain the “best" optimistic
and pessimistic value function pair, we propose the key min-gap design to update the reference value functions as the pair of
optimistic and pessimistic value functions whose value difference is the smallest (i.e., with the minimal gap) in the history.
It turns out that such a design is critical to guarantee the provable sample efficiency.

For the proof techniques, there are the fundamental differences between single-agent RL and two-player zero-sum games.
Thanks to the key min-gap based reference-advantage decomposition, we provide a new guarantee for the learned pair
of reference value (Corollary 4.5) in the context of two-player zero-sum Markov games, which is crucial in obtaining an
optimal horizon dependence.

C. Notations

For any function f : S +— R, we use Ps o, f and (Py, f)(s, a, b) interchangeably. Define V(z,y) = 2T (y?) — (z "y)? for
two vectors of the same dimension, where 32 is obtained by squaring each entry of y.

=k =k

s _refk _ Tp" £k ~k
For ease of exposition, we define 7, = 24— — ( h’f )2, Ut = :if — (*Z;C )? and V), = ZZ; — (Zg) U8 =

—ref,k ref,k
g

Lk ik —k —k .
ig - (%% ). Moreover, we define Af =V, (sf) — Vi (sf) and ¢F = Af — (@), — Q) (sf, a, bf). For convenience, we

also define X} (s) = 1 {nk(s) < Ny .

For certain functions, we use the superscript & to denote the value of the function at the beginning of the k-th episode, and
use the superscript K + 1 to denote the value of the function after all K episodes are played. For instance, we denote
N (s,a,b) as the value of Ny, (s,a,b) at the beginning of the k-th episode, and N;* (s, a, b) to denote the total number of

12
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visits of (s, a, b) at step h after K episodes. When it is clear from the context, we omit the subscript h and the superscript k
for notational convenience. For example, we use ¢; and ¢; to denote 67,3 ; and €Z , When it is obvious what values that the
indices h and k take.

D. Proof of Theorem 4.1

In this section, we provide the proof of Theorem 4.1, which consists of four main steps and one final step. In order to provide
a clear proof flow here, we defer the proofs of the main lemmas in these steps to later sections (i.e., Appendix E-Appendix H).

We start by replacing 6 by §/poly(H, T, and it suffices to show the desired bound for VlT”’Uut (s1) — Vl“om’T(sl) with

probability 1 — poly(H,T)d.
Step I: We show that the Nash equilibrium (action-)value functions are always bounded between the optimistic and
pessimistic (action-)value functions.

Lemma D.1 (Restatement of Lemma 4.2). Let 6 € (0, 1). With probability at least 1 — 2T (2H?T? + 7)6, it holds that for
any s,a,b, k, h,

Q" (s.a,b) < Qj(5,a,b) < Qy(s.a,b),
VE(s) < Vii(s) < Vi(s).

The proof of Lemma D.1 is provided in Appendix E. The new technical development lies in proving the inequality with
respect to the action-value function, whose update rule features the min-gap reference-advantage decomposition.

Step II: We show that the occurrence of the large V-gap has bounded sample complexity independent of the number of
episodes K.

Lemma D.2 (Restatement of Lemma 4.3). With probability 1 — O(T'6), it holds that

K
N U{Vi(sh) ~ VE(sk) = ¢} < O(SABH1/é%).

k=1

The proof is provided in Appendix F.

By the selection of the reference value functions, Lemma D.2 with € setting to /3, and the definition of Ny, we have the
following corollary.

Corollary D.3 (Restatement of Corollary 4.4). Conditioned on the successful events of Lemma D.1 and Lemma D.2, for
every state s, we have

—ref,k

ni(s) = No = V) " (s) = Vi (s) < 8.

Step III: We bound Zszl (V’f — V¥)(s1). Compared to single-agent RL, the CCE oracle leads to a possibly mixed policy
and we need to bound the additional term due to the CCE oracle.

Recall the definition of Af = VZ(SZ) — VF(sF)and ¢f = AF — @) — QF)(sy, ak,bf). Following the update rule, we

have
k k | Ak kyiok ok 1k
A :Ch+(Qh_Qh)(shaahab )
k k‘ rci Z . fl Ei
<(, + Hl{n, =0} + — Z Vi ( Sh+1 ok Z Vi (sp4)
h =1 h =1
R s
i —ref,l; 7; Z; ref,é; Z; =k k
+ oF (Vi1 = Vi )sp) — ok Vi = V) (spiy) + By + 8,
h =1 h =1
1 Tlﬁ ref ¢ 1 nﬁ £.0;
X7 i re
<G+ Hl{nj =0} + — Z sk ak bk V1 — F P at v V1"
h i=1 h =1

13
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wk o,
5 2 Pkt Vi = Vi) = 00 Pk ~ Vi + 28, 0
=+ Hi{nf =0} + P S ak bk nl’szvﬁf _ Z V;if
nk Ak
Psﬁ ak bk h Z ;V;leif ﬁ < V?fif + P Roan bk ; (Vh+1 Vi+1>
+ 28, + 28"
< o HL{nk =0k + Py | 1 Zvﬁf Vi
nk . i, ,
= P ak pi nE ;Vﬁf ~ Vi |+ Paab ,hﬁl’;i ; <Vf;+1 _V£i+1> + 2B, + 28), an
) =
—Ch—i—Hl{nh:O}—FVEZA LA, (12)
=1

where we define

—k
Afy = Uy + &y + 28, + 2@:,

k
n
1 O [=sref t; REF
k o ref,¢; REF
Uhar = Poparpin | % > :(Vh-&-l -V ) (Vh+1 Kh+1) ;
h =1

(Ps;c LN lstH) (Vh+1 - Vh+1> :
1

Here, (10) follows from the successful event of martingale concentration (29) and (43) in Lemma D.1, (11) follows from the

>

7

1

k
§h+1 =

¢

k
h 4

fact that Vl;i’l (s) (or erj_lu (s)) is non-increasing (or non-decreasing) in u, because V;ef(s) (or V3¢t (s)) for a pair (s, h)
can only be updated once and the updated value is obviously greater (or less) than the initial value, and (12) follows from
the definition of A}, defined above.

Taking the summation over k € [K| gives

K "h .

K K
Sab <Y Hipeh - o)+ Z ZAi’i& +3_ A 3)
k=1 1= k=1

k=1 k=1

Note that nf > H if Nfi(sk, a¥,b¥) > H. Therefore Zszl 1{n¥ =0} < SABH, and

K
ZH1{n’,§ =0} < SABH®. (14)
k=1

Now we focus on the term 3 1, nk Znh A hh+’1 The following lemma is useful.
Lk .
Lemma D.4. Forany j € [K]|, we have Zk:l i =0 <14 4.
3 :
Lk . . . .
Proof. Fix an episode j. Note that Y, 1{j = £}’ ;} = 1if and only if (s},, a3, b7,) = (s}, aj, by) and (4, h) falls in the
<k o

previous stage that (k, h) falls in with respect to (sf’, af;, by, h). Define K = {k € [K] : Y3;", 1{j = £} ;} = 1}. Then

14
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every element k € K has the same value of 7%, i.e., there exists an integer N; > 0 such that 7y = N, for all k € K. By the
definition of stages, [K| < (1 + - )N;. Therefore, for any j, we have Zk 1 RE Z 1 H{i= Eh J< 1+ ). O

By Lemma D.4, we have

k

K 1 ny [ K 1 K ”h
Zv h:l*z:kaA +1ZI{J_€
k:ln'zzl k= 1nhg 1
K "h
=2 %12%21{]4
j=1 k= lnhz 1
ZAh+1 (15)

Combining (13), (14) and (15), we have

K K K
1
> AﬁgSABH2+(1+E)§ Af i+ AL
k=1 =

k=1
Iterating over h = H, H —1,...,1 gives

K

H K H K
dar<o (SABH3+ZZ(1+;I)”1CE+ZZ )= 1Ah+1>.

k=1 h=1k=1 h=1k=1

By Azuma’s inequality, it holds that with probability at least 1 — 76,

ZM <0 (SABH3 + VH2T + ZZ 1+ )= 1Ah+1> : (16)

h=1k=1

Step IV: We bound Zh 1 Ek 1(L+ F)PLAE | in the following lemma.
Lemma D.5 (Restatement of Lemma 4.5). With probability at least 1 — O(H*T*)3, it holds that

ZZ 1+ AR, = (\/SABH2TL+H\/:E1ogT+SQ(AB)%HSL%T%).

The proof of Lemma D.5 is provided in Appendix G.

Final step: We show the value difference induced by the certified policies is bounded, as summarized in the next lemma.

Lemma D.6 (Restatement of Lemma 4.6). Conditioned on the successful event of Lemma D.1, let (1°"*, 1°"") be the output
policy induced by the certified policy algorithm (Algorithm 2). Then we have

K
Lout out 1 —k
VI (s1) = VT (s1) < e (V1= V)(s1).

k=1
The proof of Lemma D.6 is provided in Appendix H.

Combining (16), Lemma D.5 and Lemma D.6, and taking the union bound over all probability events, we conclude that with
probability at least 1 — O(H?T*)4, it holds that

out

out 1
Vi (s1) = VI (s1) < 70 (\/SABHQTL + HVTulog T + SQ(AB)%H%%T%) , (17)

which gives the desired result.
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E. Proof of Lemma D.1 (Step I)

The proof is by induction on k. We establish the inequalities for the optimistic action-value and value functions in step i,
and the inequalities for the pessimistic counterparts in step ii.

Step i: We establish the inequality for the optimistic action-value and value functions in the following.

It is clear that the conclusion holds for the based case with k = 1. For k > 2, assume Q7 (s,a,b) < @Z(s, a,b) and
Vi (s) < V,(s) forany (s,a,h) € S x A x [H] and u € [1, k]. Fix tuple (s,a,b, h). We next show that the conclusion
holds for k& + 1.

First, we show the inequality with respect to the action-value function. If @, (s, a,b), V1,(s) are not updated in the k-th
episode, then

—k+1

Qi (s,a,b) < @’;<s a,b) = @y (s, a,b),

Otherwise, we have

GIZH(s,a, b) + min {rh(s, a,b) +

+ v, Th(87 a, b) +

=
SHRSE

+5,Qﬁ<s,a,b>}.

3| <A

Besides the last term, there are two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1 — § it holds that

S| <2

@:+1(S,a,b) :rh(s7aab)+ +'7
1 <nis |, g H?
= b) + — 14 ¢ 2
Th(s,a,b) + 7 2 h+1(5h+1)+ 7 L
> rp(s,a,b) + th+1 sh+1 )+2 —t (18)
> Th(s,a, b) (thh+1)(saavb) (19)

= Q5(s,a,b),

where (18) follows from the induction hypothesis V), 41(8) = V*(s) for all u € [k], and (19) follows from Azuma-
Hoeffding’s inequality.

For the second case, we have

—ref

—k+1 I

Q;, (s,a,b) =rp(s,a,b) +

+o+

3=

i M: |

ref,l; 1 —ref,l; 7.
(s,a,0) + ZVthl Siin) g (Vh+1 Vit ) (sp41) +8

+
rcf i 1 n — —ref,l;
=rn(s,a,b) + ( ( Vit )) (s,a,b) + <Ph (n; (Vh+1 Vit >>> (s,a,b)

+x1+x2+58
>’I“h(s a, b <Ph< th+1>> S a,b)+x1—|—x2 +B (20)
> T’},(S,Q, b) (thh+1) (S7a7 b) + X1+ X2 +B (21)

:@Z(&awb) +X1 +X2 +B7
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where

1(k, h)

:\'—‘

zj: (—refe sh) - (phvﬁf ) (s,a, b)) ,

—ref 0
Wh+1 = Vh+1 Vh+1

n

) = 3 (Wiatelio) = (R ) Gan))

i=1

Here, (20) follows from the fact that Vl;i’f (s) is non-increasing in u (since V;ef (s) for a pair (s, h) can only be updated
once and the updated value is obviously smaller than the initial value /'), and (21) follows from the the induction hypothesis

—k .
Vh+1(3) > Vh+1(5)-
By Lemma 1.2 with e = %, with probability at least 1 — 2(H>T® 4 1)§ it holds

—ref,l;
V(Psabn,V 2
|mkh¢<2¢z’1 o Vi Ju | 2Ve | 2 22)
n? Tn n
—ref,l;
V(P ,V 2 2H
|mkh¢<2¢z’l e 23)
n2 Tn n
Lemma E.1. With probability at least 1 — 26, it holds that
" ref,¢
D V(Papn: Vi) < nvr + 30 /ne. (24)

Proof: Note that

n

ref,4; ref,4; ref,4;
ZV sabhvvh+1):Z(Psabh(Vh+1) _(Psabhvh—i-l))
i=1
- £,0; £,0; ’
- Z(Vh-H (s h/‘+1 - (Z Vi ( 3h+1 > + X3+ X4+ X5
i=1
7"+ X3 + Xa + X, (25)
where
i —ref,l; —ref,l; )
X3 = Z ((Ps abh (Vi )? = (Vg (s ff’+1))2> ;

i=1
2 n 2
X4 = % (ZVﬁf (Sh1) ) - % (Zpsathﬁf> ;
, : =1
(Z Psathﬁf> - Z(Psabhvﬁf ).
%

i=1

X5 =

3=

By Azuma’s inequality, with probability at least 1 — 4 it holds that | 3| < H?v/2n..
By Azuma’s inequality, with probability at least 1 — J, it holds that

2 2
ref,l; P ref,l;
<Z Vhe+1 h+1 > - <Z P ap the+1 )

17

|X4| =

SRS



Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

ref,/; ) ref,¢;
<2H th_,’_l thl ZPéab}LVh+l
<2H 2\/ 2ne.
Moreover, x5 < 0 by Cauchy-Schwartz inequality. Plugging the above inequalities gives the desired result. W
Combining (22) with (24) gives
vefy  BHLT 2 2H.
Xl <2y =——+—F+ 7~ \[ : (26)
n ni Tn n

Similar to Lemma E.1, we have the following lemma.
Lemma E.2. With probability at least 1 — 26, it holds that

n

—ref,l; L~
Z V(Pa a,b,hs W}L+1 ) nv + 3H2\/ . (27)
i=1
Combining (23) with (27) gives
U 5HL1 2 2H.
ol < 2 2y BT 2V 2 (28)
n na Tn n

Finally, combining (26) and (28), noting the definition of 3 with (¢, c2, c3) = (2,2,5), and taking a union bound over all
probability events, we have that with probability at least 1 — 2( H2T" + 3)4, it holds that

B = Ix1l + xal- (29)

which means @:H(s, a,b) > Q; (s, a,b).

Combining the two cases and taking the union bound over all steps, we have with probability at least 1 — T'(2H?*T® + 7)4,
it holds that Q, (s, a,b) > Q% (s, a, b).

Next, we show that V;*(s) < Vﬁ“ (s). Note that

—k+1 —k+1

Vi (5) = (D) (9)
> sup (Duxyk+1@ﬁ+l)(s) 30)
HEA A
> sup (Duxyk+1Q;)(S) (31)
LEA A h
s Y
= Vh (S)a

where (30) follows from the property of the CCE oracle, (31) follows because Q:H (s,a,b) > @, (s,a,b), which has just
been proved.

Step ii: We show the inequalities for the pessimistic action-value function and value function below.

The two inequalities with respect to pessimistic (action-)value functions clearly hold for k¥ = 1. For k£ > 2, suppose
Qj,(s,a,0) > Q) (s, a,b) and V;*(s) > Vi (s) forany (s,a,h) € S x A x [H] and u € [1, k]. Now we fix tuple (s, a, b, h)
and we only need to consider the case when @, (s, a,b) and V,(s) are updated.

We show Q7 (s,a,b) > Q:H(s, a, b). Note that

- ref

QZ+1(S,CI,,Z)) < min {rh(saaab) + % + ’Y,?"h(S,a,b) + T +

SHS

+6;Qﬁ(57aab)}7
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and we have two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1 — 4, it holds that

D
Q' (s.a.0) =rals,a,b) + = =5
1 7 H?
=rp(s,a,b) + th—s-l Sp1) — 2 —
1 . J. H?
< rp(s,a,b) + %ZVM-I(S%H) -2 — (32)
i=1
<ru(s,a,b) + (PnVyy1)(s,a,b) (33)

= Qh(s,a,0),

where (32) follows from the induction hypothesis Vi ;(s) > V*(s) for all u € [k], and (33) follows from Azuma-
Hoeffding’s inequality.

For the second case, we have

'urcf /1
Qf-’_l(svaab) = ’I’h(S,CL,b) +=—+ - - ﬁ
Xp n n =
rcf[ l; 1 - 7 ref,é; Z;
= ’r’h s,a, b th-i-l h+1 + % <Kh+1 Vh+1 ) (5h+1) 7@
1=1
ref,¢; 1 - L; refZ
=rp(s,a,b) + ( < th—s-l )) (s,a,b) + ( <ﬁZ(Vh+1 Vo )))(s,a,b)
X TX, -8

<rp(s,a,b)+ ( < th+1>> sa,b)+x1+52*§ (34)
<rup(s,a,b) + (Pth+1) (s,a,b) + X, X, — B (35)

:Q;‘L(Svavb)+X1+X27éa

where

1) = 3 (Vi) - (BVEE) (.0.b).
i=1

4 _ L ref ¢
Wy =V, — Vi

7

Xg(kah) = %Z (mf;i-i-l(sii-&-l) - (Phw%+l> (s,a,b)) .

i=1

Here, (34) follows from the fact that V;ffrf‘ (s) is non-decreasing in . (since V() for a pair (s, h) can only be updated
once and the updated value is obviously greater than the initial value 0), and (35) follows from the induction hypothesis

Vi1 (5) < Vi (s).
By Lemma .2 with e = %, with probability at least 1 — 2(H>T*? 4 1)§ it holds

Z?: V(Ps,a,b,h»zref’zi)b 2\/> QHL

I, (k, 1)| < 2\/ e e T T (36)
Zl 1V sabh»V;Ie_if_f )L 2\[ 2H.

by (ks )] < 2\/ n? Tn no (37)
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Lemma E.3. With probability at least 1 — 20, it holds that

n

ZV( sabhs Vi) < nv™f 4+ 3H? /e (38)

i=1

Proof: Note that

n

n
f[ £,0,\2 £,;
ZV(Ps,a,b,ha ;::_1 Z ( s,a,b, h 26_;'_1 ) - (Ps a,b hV;Le_i_l ) )

i=1 i=1
" 2
£,0; 0 £ 6 (i
= Z(V§f+1 (5h+1 - <Z Viir (8h41) > XX, T X
=1
=" X, X, X (39)
where
n
£,0; £,0; 0 0;
X = 2 ((PrannViH)? = (Vih (s50)?)

1

<.
Il

=
S
I
SRS

2 1 2
ref,¢; i ref,?;
(th+l h+1> _n<zpsabhvh+1> )
[
2 n
ref,li ref,0;\2
Z Ps ,a,b, h h+1 - Z(Rﬁ,a,b,llzh_;'_l ) .

i=1

S|

X5 =

By Azuma’s inequality, with probability at least 1 — ¢ it holds that |x,| < H 2V/2nu.
By Azuma’s inequality, with probability at least 1 — 9, it holds that

2 2
1 6 (gl - £,0;
|X4| =0 <Z V;zeJrl (1) | — ZPs,a,b,hE{ll
i=1
<2H ZVﬁf Shie1) ZPsathﬁf
< 2H2\/ 2ne.

Moreover, x5 < 0 by Cauchy-Schwartz inequality. Substituting the above inequalities gives the desired result. W

Combining (36) with (38) gives
yrefy 5H.i 2 ZHL
I, <2y —+— \[ . (40)
=1 n ni Tn n

Similar to Lemma E.3, we have the following lemma.

Lemma E.4. With probability at least 1 — 26, it holds that

n

> V(Paapn Wistt') < aw + 3H?v/nu. (41)
i=1
Combining (37) with (41) gives
I/L 5H.1 2 2H.
X, <24/ = —3 \/ —. (42)
n N1 Tn n
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Finally, combining (40) and (42), noting the definition of 3 with (c1, ¢z, ¢3) = (2,2,5), and taking a union bound over all
probability events, we have that with probability at least 1 — 2(H2T' + 3)4, it holds that

B2 x|+ x| (43)
which gives Q:H(s, a,b) < Q5 (s,a,b).

Combining the two cases and taking union bound over all steps, we have with probability at least 1 — T'(2H2T? + 7)4, it
holds that @ (s, a,b) < Qj (s, a,b).

We show that V;*(s) < V¥ (s). Note that

Viti(s)

(Dﬂ:+1QZ+1)(S)

(D, Q1 )6) -
P, Q) “
inf sup (Dux.Q3)(s)

VEAB peA 4
Vi (s),

A

IA

IN

where (44) follows from the property of the CCE oracle, (45) follows because Q’;H (s,a,b) < QZ(& a,b), which has just
been proved.

The entire proof is completed by combining step i and step ii, and taking a union bound over all probability events.

F. Proof of Lemma D.2 (Step II)
First, by Hoeffing’s inequality, for any (k, h) € [K] x [H]|, with probability at least 1 — 2770 it holds that

L ol d =k k& k ok k L Sd 0 ki k k ik k
o Z Vh+1(8;[+1) = Qp(sh,apn,bp)| <, ok ZK;[H(S;{H) - Qh(sha an, bR)| < V-
h =1 h =1

The entire proof will be conditioned on the above event.
For any weight sequence {wy, }1_; where wy, > 0, let ||| = maxi<y<x wg and |jw]|, = Zszl W

By the update rule of the action-value function, we have
—k
Al = (Vi = Vi) (sh)

—k
= (i + (Qn — @)(sh, ak, b)
-k
1 —; 2 12
< Cl]: + 27;: + fTﬁ Z(V}wrl - Ki;+1)(3};+1) + Hl{nﬁ =0}
i=1
’FL;“
1 .7
:cﬁ+2y’g+ﬁ—,}§ZAhb+l + H1{n} = 0}. (46)
i=1
Note that
K w W 5w hi I
Do TE 2 AN =2 T D A
k=1 "h i=1 j=1""h =1

=3
K ny

£ A]chJrlZl{k :ggz,i}

k=1 i=1

|
\MN
g
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K

-y hHZ“’J 21{1@—%
k=1 h i=1
K

=D WA, @7
k=1

where we define wy, = Z]K:l = Z:i?l 1{k = #J .}. Similar to the proof of Lemma D.4, we have
’I’L,L [hd

~ ~ 1
= < — .
[, = max @i < (1+ )l (@8)

Moreover,

K Knh

Ilell—Zijzl{k—fiz} > Zzl{k—%z}—zwg—\lwlll- (49)

k=1j=1 "h i=1 jlnhk‘lll

Combining (46), (47), (48) and (49), we have
Zkah < Zwkgh +2 Zwk'yh + Zkathl + HZwkl{nh =0}
k=1 k=1 =

K
<> wilh 42 Zwm + Zka K1+ SABH? |lw]| . (50)
k=1 k=1

By Azuma-Hoeffding’s inequality, with probability at least 1 — H 9, it holds that for any h € [H]

K K
> wilh < V2Hu | Y wy < V2Hu wl| - (51)
k=1 k=1

We now bound the second term of (50). Define Z(s,a,b,7) = Sor, wpl{nf = e;,(sk,ak,bf) = (s,a,b)}
and E(s,a,b) = > ;5 E(s,a,b,j). Similar to (48) and (49), we then have =(s,a,b,7) < [lw]| (1 + +)e; and
> s =(8,a,b) =37 wy. Then

zk:wkv,’i = ZQ\/ H%wk\/;:

h

= 2VH?, Z Zwkl{nh—ej, (s, ak bF) = (s,a,b)}

s,a,b,j ]

SN S Sabj\f

s,a,bj>1

Fix (s, a,b) and consider ) -, E(s,a,b, j), /i Note that , /e%- is decreasing in j. Given ) -, E(s,a,b,j) = E(s, a,b)
is fixed, rearranging the inequality gives

S S(s.ab.d) \[ <2\ ol (14 et {Z ol (14 5)e: < Zs,a, b)}

= Jull. Zfl{Dwn e <= sab>}
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<101 \/||w|| HE(s,a,b).

Therefore, by Cauchy-Schwartz inequality, we have

Zwkfyh <2VH Z 10(1 + 5 )/ lwll o HVE(s, a,b)

s,a,b
< 20VHZ(1 + = \/||w|| SABH |[w],. (52)
Combining (50), (51) and (52), we have
K K
S wdf <Y @Al + (V2HL+ SABH) [ull, + 8OH/|lwll, SABH [[w], v (53)
k=1 k=1
We expand the expression by iterating over step h + 1,--- , H,

K
1
> wAf < (14 E)H H - ((\/§HL + SABH?) ||wl| + 80H\/Hw||oc SABH ||Jw|, L)

< 6(H?* + SABH?) |wl|, + 24015{%\/||w||0o SAB ||, ¢

Now we set wy, = 1{AF > ¢}, and obtain

K K
S TU{AL > }AF < 6(H + SABH?) |w| o +240H3 | [w]| o, SAB Y 1{Af > ¢}
k=1 k=1

Note that ||w||  is either 0 or 1. If ||w|| ., = 0, the claim obviously holds. In the case when ||w|| . = 1, solving the

1/2
following quadratic equation (ignoring coefficients) with respect to (25:1 1{AF > e}) gives the desired result

K

K 1/2
€ (Z 1{A} > e}> — H%?(SABu)Y/? (Z 1{A} > e}> — (SABH?® + H*) <0

k=1 k=1

G. Proof of Lemma D.5 (Step 1V)

The entire proof is conditioned on the successful events of Lemma D.1 and Lemma D.2, which occur with probability at
least 1 — O(H?T*)6.

By the definition of A¥ 41, We have

H K H K 1 H K 1
ZZ )AL = ZZ(lJrﬁ)h71¢5+1+22(1+ﬁ)h7152+1

h=1k=1 h=1k=1 h=1k=1
T T
+2ii(1+i)h*1§k +22H: 3 1+l)h*15’“. (54)
h=1k=1 H " h=1k=1 H -
Ts Ty

‘We next bound each of the above four terms in one subsection, and summarize the final result in Appendix G.5.

23



Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

G.1. Bound T}

Recall the definition A (s) = 1 {nf(s) < No}. Since ¢ is always non-negative, we have

H K 1
h=1,,k
Z Z(l + ﬁ) Yhi1
h=1k=1
H K
<3) ) Yha
h=1k=1
Ho K 1 . £,0; REF
e ref 0 REF
=3 Zpsh,ah,b VO vy > (Vh+1 -V ) (Vh+1 Khﬂ)
h=1k=1 h =1
H K nh
SIS P | S 3
h=1k=1 h =1
H K K
SBHY D> Pk nhanr Zl{J =4,
h=1j=1k=1 [y
H K
O SN SE S SR =
h=1j=1 h i=1
K
6(log T+ 1 HZ D P ok vk Mo (56)
h=1k=1
H H K
10gT+ 1 H (Z /\h-l-l Sh+1 + ZZ ( sfi,af,b - 1‘52+1) /\l;;"'l)
h=1k=1 h=1k=1
H K
< 6(logT + 1)H (HSNOJrZZ( b ak ok n = Lk ))\h+1>
1k=1

fa
nk (57)
where (55) follows from the fact that n% Zn" 1{j = £ ;} # Oonlyif (s}, ay, b)) = (s],a),b]), (56) follows because
G| e
ZEZI{j—E i < Z ﬁ§2(logT+1)7
k=1""h i=1 2 <l e <T =L T

and (57) holds with probability at least 1 — § by Azuma’s inequality.
To conclude, with probability at least 1 — §, it holds that

H K
1
(1 + ﬁ)h_l/wf];rl < O(lOgT) . (HQSNO n H\/ﬁ) -
h=1k=1
G.2. Term 15
We first derive
H K 1
S+ ) e
h=1k=1
H K 1 Ak » Z
) hz::l; ), i=1 (PSIE’ah’b w1 e+1> (Vh+1 - Vh"Jrl)

24



Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

7.] . - 3
(Ps;g,ag,b;, -1, ) (Vh+1 —Em) {0y ; = j}.

Sh41

Note that Ek = jif and only if (s}, af,bF) = (sh, ah, b]) Therefore,

H K )
Z Z(l + H)h_lfﬁﬂ

h=1k=1
K . ' Ko, ik
h—1 , i
<> >+ il (Psh al bl h T 1S;L+1) (Vh+1 h+1) ) 7k Zl 10

H
h=1j=1 k=1
H K .

- .
DIPIL/ (PSJ alvin ~ Le ) (Vh+1 _Kiz-&-l) ’

~k “
where in the last equation we define 6] , | = (1 + 4 )"} S, AF S > 1y =g}

For (j,h) € [K] x [H], let z], be the number of elements in current state with respect to (s, aj, b}, h) and 6], =
(1+ )t M < 3. Define K = {(k,h) : 0) , = ok 111 Note that if & is before the second last stage of the tuple
(8§, af bk h), then we have that 0}, = or %.1and (k,h) € K. Given (k, h) € K, s}, follows the transition Pk ak p -
Let Ki-(s,a,b) = {k : (sh, ah, b¥) = (s,a,b), where k is in the second last stage of (s, a,b, h)}. Note that for different
ji k. if (sf,ak,b8) = (s}, a},b}) and j, k are in the same stage of (s¥,al, bk h), then 0F | = 6} and 0%, , = 6] .
Denote 6,1 and 0h+1 as 0p41(s,a,b) and §h+1 (s,a,b) respectively for some k € K- (s, a, b).

We have

H K .
Z Z(l + ﬁ)h_lflﬁﬂ

h=1k=1
= o -1 Vj B v
h+1 sh,ah,b] h sfl_H h+1 — X h41
(k,h)
+ Z (024-1 - é;cb-i-l) (Psil,amb h 1si+ ) (Vib+1 - Zib-ﬁ-l)
(k,h)
=0 (Py a1 V., - Vi
h+1 si,ai,bﬂ,h sler h+1 —h+1
(k,h)
~ 7_7 .
+ Z (92+1 - 92+1) (Rg-;,a-}’;',bi”h - 1s{L+1> (Vh+1 - Kil—&-l) : (59)
(k,h)eK

Since é,’j 41 18 independent of sfl 41> by Azuma’s inequality, with probability at least 1 — 4, it holds that

> O (P orn =1, ) (Viar = Vi) < 6VTH, (60)

(k,h)

Moreover, we have

5 —k
Z (QZH - 9}’2+1) (Psf ak bk h 15f+1) (Vh+1 Vh+1>
(k,h)eX

= > > Ushoah0h) = (5.0, 00}Ok s — 00 (Paaparn — g, ) (Viea = Vi)

Sabh(khel{
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IN

> Onials.a,0) = Ouia(s,0) D0 Oher = Ohad) (P g — Lap,) (Vs = Vi)

s,a,b,h

(k,h) €Ki (s,a)

> OH)/IKik (s,a,b)]e (61)

s,a,b,h

< > O(H)\/ NS (s,a,b)

s,a,b,h

30(H>\/

SABH. Y Nf*(s,a,b) (62)
s,a,b,h

< O(H)\/SABH.(T/H), (63)

where (61) holds with probability at least 1 — 7'§ by Azuma’s inequality and a union bound over all steps in /C, (62) follows
from Cauchy-Schwartz inequality, and (63) follows from the fact that the length of the last two stages for each (s, a, b, h)
tuple is only O(1/H) fraction of the total number of visits.

Combining (59), (60) and (63), we obtain that with probability at least 1 — (7" + 1)d, it holds that

G.3. Term T3

Note that

H K
1
(1+ E)h—lgﬁﬂ < O(VH2SABT.). (64)
h=1k=1
1., =k
ﬁ)h B,
. Pff’k ey 5: e HL+HL+ H.i N H.i
L —L —+t =+ —=+ ——=
Vonk TR T el Ak T bt (k)i
H K pref.k ik
3 byt | S| | + O(SABH? log T + (SABu)THETY), (65)
np, ny,

where (65) follows from Lemma 1.3 with o = % and o = 1.

_ref,k
Step i: We bound Zthl Zszl \/ 22— 1. We begin with the following technical lemmas.
o,
Lemma G.1. With probability at least 1 — 270, it holds that for all s, a,b, h, k,

Thn0.b) < QF (b + (1 =) (5 2220 ).
Qﬂ&mMfowﬂmwwH—m(ﬁ+H%%),
Vi) < Vi )+ =) (54 20 )
Vi) 2 Vi () = 1 =1y (54 20 )

The proof is provided in Appendix G.3.1.

Lemma G.2. Conditioned on the successful event of Lemma G.1, with probability at least 1 — 49, it holds that

ShoOp>

ro 12H23 + 18H3S N,
TR = V(P ot v o Vidy) < AHB + B+k 0 4200 [
/ \ nk

N
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The proof is provided in Appendix G.3.2.
Lemma G.3 (Lemma C.5 in [Jin et al., 2018]). With probability at least 1 — ¢, it holds that

V(Ps’,f,ah bk hth_A,_l) < (9(f’[T+I{‘3 )

Combining Lemma G.2, Lemma G.3 and Lemma 1.3 (see Appendix I), we have

H K —ref k
Vh
& L
h=1k=1 ",
H K V(Pska bk h Vhﬂk)
,ak bk hy Vatl
S 3p LT TR
h=1k=1 h
H K 1
4H 12H23 + 18 H3S N, L2
T B B R s =
h=1k=1 np, (nh) (nh) 2

<0 ( Z \/Nif(+1(57aab)V(Re,a,b,hvVhﬂ_:l)L
s,a,b,h
0

Z VNS (s,a,b)HBu + (SYABHING + SABH?8).4 log T + (SAB) HIT

O(\/SABHZTL+ VSABH2BT: + (SYABH3N + SABH?3%)} log T + (SABL)  H %T%). (66)

Step ii: We bound 37 S ”’LL

By Lemma D.1, Lemma D.2 and Corollary D.3, we have

n ﬁ

; 2
~k 1 5t —ref,f; 7
Uh < = E :<Vh+1 Vi1 ) (5h+1)
Th =
L og=1
1 i 7 J 2 1 . f,0; £,4; 2
174 Z; l; re re 4;
< oF <Vh+1 _Vh+l> (8p1) + ok E <Vh+1 -V, ) (8p41)
h =1 h =1
2 2
< SNy + 25°.
)

Combining the above inequality with Lemma 1.3, we obtain

Z "hL (\/ SABH3ET. + SABH?\/SNy: log T) (67)

h=1k=1 nh

Combining (65), (66) and (67), we obtain that with probability at least 1 — O(T), it holds that

H K
SN+ ) 1B By < O(VSABH?T'+ /SABH?BT. + \/SABH33?T:
h=1k=1

+ SEABHSNO%L log T+ SABH?B%.% log T + (SABu) HET%). (68)

G.3.1. PROOF OF LEMMA G.1

Fix an episode k. The proof is based on induction over h = H, H — 1,...,1. Note first that the claim clearly holds for
h = H. Assume the inequalities hold at step h + 1.
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By the update rule of the action-value function, we have

—k
Qn(s,a,b) <ru(s,a,b) + th+1 5h+1

—k ;.
=rn(s,a,b) + th+1 5h+1) +y+ = Z <Vh+1 5h+1) Vh+1(5%+1)>

—k 1 —0; 2 —k J,
<70+ PoapnVipr + 3 Z (Vh+1(5ﬁ+1) - Vh+1(8i+1)) (69)
=1
= HSN
< Th(sa a, b) + Ps,a,b,hvhwil + (H —h+ 1) <ﬂ —+ O>
1 n . p bk ;
T > (Vhl+1(sff+1) - Vh+1(sff+1)> (70)
=1
ok HSN 1 n — ;. .
<Qp +(H-h+1) (5 + 0) +~ > (vhﬂ(sf;ﬂ) Vﬁ+1(sh+1)> (71)
i=1

‘ HSN 1 &
< QF (s,a,b) + (H — h+1) <5+ 0)+ﬁZHAi+1+6

=1

< Q' (s,a,b)+ (H )(/3+HSN°>, )

where (69) holds with probability at least 1 — § by Azuma’s inequality, (70) follows from the induction hypothesis, and (71)
follows from Lemma D.1.

Moreover, by the update rule of the value function, we have

—k —k
V3 (8) = E(a,p)m, @p (8, a, )

k S
< By, QT (,a,5) + (H — ) (B B NO)
HSNO)

<V (s) + (1 )<B+

The other direction for the pessimistic (action-)value function can be proved similarly. Finally, taking the union bound over
all steps gives the desired result.

G.3.2. PROOF OF LEMMA G.2

We first provide bound on 7" = V(Par ok bt ns V;Le+,11) Recall (25) that
1 o 1
—ref —ref,l;
e = nk ZV(PS,L,% bk g Vg1 ) = _E(XG + X7+ X8)s
h i=1 h
where
n,
—ref,l; wrref.li o g,
¥o =D ((Pug o n (Vi) = (V3 (5111)%)
i1
2 . 2
n
1 —ref b, g, 1 L —ref ¢;
- 7 Z Vh+1 h-‘rl Tk Ps’,j al bk th+1 s
™ 1 np, i—1
1= 1
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2 k
Tp
—ref,l; —ref,l;
Z sh,ah,bh,thJrl Z(Psﬁ,ah b th+1 ) .
=1 =1
By Azuma’s inequality, with probability at least 1 — 24, it holds that
Ixe| < H*\/2n%e, |xz| < 2H?y/2nk.
Moreover, we have
2
nﬁ £,0; 2 1 £,0;
—ref,?; —Tre
—X8 = Z (ng,a;j,b’,j,hvhﬂ ) Tk Z s¥ak b, th+1
i=1 h
2
nﬁ £,0; 2 1 —REF
el
<3 (PpaparaVidl’) - Z S e 73
i=1 h
ny,
—ref,l; —REF
= Z ((Ps;‘“ah bk th+1 ) (Ps,ﬁ,ah bk, th+1) )
i=1
”h
2
<2H ZPS;2 ok bk A1
_ 2 0;
=2H Z)‘thl Sht1) Z sk ak bk h — 1 st )/\h+1
< 2H?SNy + 2H?y/2nk ., (74)

where (73) follows from the fact that V;Lefr’lk > stf for any k, h, and (74) holds with probability at least 1 — § by Azuma’s
inequality.

We have

7re ref,l; H2SN
o TZ Pt al vl h»VheH)SiOJFSHQ\/ R (75)
ny P SE ?”L ny

h

Therefore,

—ref k
vy V(Ps’;L af bk ho Vh+1)

—ref,l; _ref,k 1 o —ref,l;
== Z (VP ot o V) = VPag at ot o Vi) ) + | 755 = =2 S V(Pup g g Vit
Ny i=1 Ty i=1
T 2H2S N,
—ref {; 0 L
S ﬁ (V(Psﬁ,ah,bk hs Vh+1 ) - V(Psﬁ,ah,bk hs Vh-‘,—l)) + T + 8H2 n7 (76)
h j=1 h h
k
AH & bl ok 2H2SN, 7
<2 | Paatopn Vit Vh-&-l)‘ + = — +8H |
L ) N T
k
AH & —refli ok i} . HSNO HSNO
=% Z Py ab ot n Vit = Vi + Vi = Vi) — (5 + B+
Ny 4 ny; y;
2H?SN,
+ 20 sy [
ny, np,
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4H nh —ref,l; 4H nh ok HSN()
S Ps',j kb n (Vi = Vi) + ZRe’;,a;g,b’;;,h <Vh+1 Vipr + H <5 + Ak >)
4H2 HSN 2H2SN,
<ﬁ+ — °> + O y8H?, | (77)
np, nh ny,
k
AH O8N ety ) 4H O i HSN,
S U P e ((vhH vh+1><sh+1>+H(5+ ))
L L nh
4H2 HSN, 2H2SN,
<ﬁ+ = °)+ >0 L 20H?, | (78)
nh ny, ny, nh
4H2SN, SH? HSN,
< <4H6+ - °>+ - (ﬂ+ k°>
np, ny, ny,
4H2 HSN, 2H2S N,
(“ )* o+ 20H7 [ (19)
np, np L
12H2 6H2SN, 12H3SN,
—4HB + ﬁ+2OH2\/T+ - T
”h ”h, ny, npny,
12H2 18H2SN,
< app BIEOE BN ooz [
nh nh

where (76) follows from (75), (77) follows from Lemma D.1 and Lemma G.1, (78) holds with probability at least 1 — 24 by
Azuma’s inequality, and (79) follows from Lemma D.1 and Lemma G.1.
G.4. Term T}

The proof is similar to that for the term ZhH:1 Zszl 1+ %)hilﬁﬁ. In the following, we will present the key steps, and
provide the proof whenever necessary.

By Lemma 1.3, we have

H K —ref.k ~k 3 3

v, "’ U HL H. Hix H.a

§3ZZ “ry/ Lt VZH'C?) rt ot et
h=1k=1 nh nh nh nh (nh)4 (nh)4

H K —ref k ~k
VvV, 14 3 5,1
<0 (§ Sy Z,ﬁ L+ ﬁ—’,;b +O(SABH? log T + (SAB.)1H=T1). (80)

ref k
|14

Step i: Bound term Zle Zszl L.
h

Lemma G.4. Conditioned on the successful event of Lemma G. 1, with probability at least 1 — 40, it holds that

ro - 12H?B + 18H3SN, v
th’k - V(Psﬁ,ah,bk ho Vh—f-l) <4Hp + d nk ® 4200 nk’
h h

The proof is provided in Appendix G.4.1.

Combining Lemma G.3, Lemma G.4 and Lemma 1.3, we have

ref k

Sy

h=1k=1
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O (VSABH?T+ \/SABH?BT: + (S} ABHENG + SABH?3%)% log T+ (SAB) HITH) . 81)

Step ii: Bound Zthl Zszl \/ %L By Lemma D.1, Lemma D.2 and Corollary D.3, we have
Ty

~k
1 & N2 g
~k f I f,&- Zl
Uy < ok Z (Vh+1 Vi ) (sp'41)
h i=1
13 2 13 (et i\
EVadl l; ?; rel,t; ref,l; £
= ok <Vh+1 Vh+1> (Spy1) + oF <Vh+1 -V, ) (8p41)
h j=1 h =1
2 2
SNy + 247
Combining the above inequality with Lemma 1.3, we obtain
LS vk
3 %’% <0 (\/SABH%QTL + SABH®\/SNytlog T) . (82)
h=1k=1

Therefore, combining (80), (81) and (82) gives that with probability at least 1 — O(T')J, it holds that

H K

1 _
1+ ﬁ)h—lﬁﬁj < O(VSABHT: + /SABH?BT. + \/SABH3BT1
h=1k=1
+ SYABHPNZ Llog T + SABH?% /% log T + (SAB) H3TY). (83)
G.4.1. PROOF OF LEMMA G.4
Recall (39) that
nk
ref 1 . V(P Vref[ 1
v _TZ ( sFLak bk by Xp4a )__716(&6—’_&7 +X8)7
np, i=1 np,

where

ny
£,0; of 0; 1 0
Xe = Z ((Péﬁ»%vb AV )2~ (Viia (Sh+1))2) )

i=1
2 2

1 nh ref Z 1 nﬁ ref, 0;
-~ Z Vi ( 5h+1 T oF Z P‘?f ak by AN I

h h i—=1

2

1 nh ref,4; nﬁ ref,¢;

72 Z eh ah7 hvh+1 - Z(Ps’h“ ah hvh+1 ) .
1=1

By Azuma’s inequality, with probability at least 1 — 24, it holds that

|X6|§H2 2nku, |X7|§2H2\/2nzb.

The term Xq is bounded slightly differently from xg as follows:

nh nh

ref,l; 2 ref,l;
E (Psﬁ ak bﬁ,hzh+’1l) - E Ps" ak bk hvh+1
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2
nj,
REF ref,l;
<> :(Psz,ah, ,hKhH) - § :Ps;w,,, WVt (84)
=1
2 2
1 nh f@
REF re
E sh,ah b thJrl - Tk E Psh,ah Vh+1
np,
=1
nh

< 2H* Z P ok pe A1

k

ny
2 l;
=2H Z)\thl Sh+1 Zl(Pwaahvbk 19i 1))‘h+1
i=
< 2H?SNy + 2H?y/2nk., (85)

where (84) follows from the fact that Vzefrlk < VE_ElF for any k, h, and (85) holds with probability at least 1 — § due to
Azuma’s inequality. Therefore,

o 2H2SN, 7
rcf k ref,l; 0 2
v fE V(Pag ot o h,vhﬂ)ginf +8H /—nf. (86)
1 =1 ) )

By a similar argument as in Appendix G.3.2, we can obtain the desired result

ref,k k
Yy, —V(Pk ’“b’;;,hvvhw-&-l)

ref,t; refk 1O ref,£;
= % Z ( s, ,af ,bf,h7 Vhe+1 ) - V(Ps; ,a, ,b} Jho Vh+1)) + Zhe - Tk V(Ps’};,a} ,bk h> Vhe+1 )
nh P h h h h h h nh P b
1 nﬁ £.0; 2H25N0 2 L
< —= (V(Ps,;’%bk o Vo) = V(Pgk ar o h,Vh+1)) +——— +8H |+ (87)
M =1 ny, ny
k
AH & bty 2H2SN, 0
< Y Z P‘Sz’ah’bk }L(Vhe+’1 _Vh+1)‘+T+8H2 —
h =1 h h
k
4H . ref 4; ok « « HSNQ HSNO
=% Z P kv n (V" = Vil + Vil = Vil — B+ +H |8+ —
LA h np
2H?SN,
+ 0 em? [
ny ny
k
4H au * refé % HSNO
S ’I'Lk Psh,ah bk (Vthl Vh+1 Z sh,ah Vh+1 Vh+1 + H 5 +
h =1 h
4H2 HSN 2H?SN, )
<ﬁ+ V,n)+ -
Ny, np, np,
k
AH & ref lir s £, AH O . HSNO
< F Z(Vh+1 Vier ) (spiy) + F ((Vthl Vh+1)(8h+1) +H (5 +
h =1 h =1 h
4H? HSN 2H2SN
h h " "
4H?SN, S8H? HSN,
<<4Hﬁ+ - °>+ - <6+ Vk°>
np, N, ny,

32



Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

4H2 HSN, 2H2SN,
<6+ - 0) + 20 o2 | (90)
Ny, np, np,
12H? 6H2SN 12H3S N,
—amp s 20 o Lk+ _— —
nh h nh nhnh
12H23 + 18H3SN,
< 4HB + 6+k, O 4+ o0m? |2,
np, Ny

where (87) follows from (86), (88) follows from Lemma D.1 and Lemma G.1, (89) holds with probability at least 1 — 24 by
Azuma’s inequality, and (90) follows from Lemma D.1 and Lemma G.1.

G.5. Summarizing Terms 77 -7, Together

Recall that § = \/ﬁ and Ny = 645;‘373” O(SABH®.). By combining (54), (58), (64), (68) and (83), we conclude that
with probability at least 1 — O(H?T*)4, the following bound holds:

K
Z h 1Ah+1
1 k=
O(log T)- (H25N0 + HVT.) + O(HVSABT.)
+O(VSABH2T '+ \/SABH?BT ' + \/SABH332T:
+ SYABHPNZ Llog T + SABH?% .} log T + (SAB)  H3TY)
~0 (\/SABHQTL + HVTilog T + (SABL)%H%T%)

+0 (\/SABH%’TL + /SABH3T: + SABH?3%.% log T)

+0 ((H2SNo + SEABH?NZ 1) log T)

-0 (\/SABH2TL + HVTilog T + 52(AB)%H8L%T%) . 1)

H. Proof of Lemma D.6 (Final Step)

Our construction of the correlated policy is inspired by the “certified policies” in [Bai et al., 2020].

Based on the trajectory of the distributions {WZ}he[ m),ke[K] Specified by Algorithm 3, we construct a correlated policy
T = [y x Dy for each (h, k) € [H] x [K]. The max-player’s policies /i, and i} ,,[s, a, b] are defined in Algorithm 4,
and the min-player’s policies can be defined similarly. Further, we define the final output policy 7°"* in Algorithm 2,
which first uniformly samples an index k from [K], and then proceeds with 7F. We remark that based on Algorithm 4
and Algorithm 5, the policies 7if;, Uy, [if , 1 [s, a, b], U, ; [s, a, b] do not depend on the history before step h. Therefore, the
action-value functions are well-defined for the corresponding steps.

Algorithm 4 Certified policy 7if’ (max-player version)

1: Initialize &' < k.

2: for step h' < h,h+1,...,H do

3 Receive s, and take action ap/ ~ p£'(~|sh/).

4:  Observe by, and sample j < Unif ([N} (snr, ans, byr)])
5 Set &’ e[ﬁ,,j.

6: end for

In order to show Lemma D.6, it suffices to show the following inequalities

— ok [s.a — ok

Qnls,a,b) > QL s a.b), Vi(s) > Vi (s),
~k ca —~

Q¥ (s,a,0) = QM (5 a,0), VE(s) = VI (s).
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Algorithm 5 Policy 7if ., [s, a, b] (max-player version)
1: Sample j < Unif([NF(s,a,b)])
2 K 0y
forsteph’ethl ,H do
4:  Receive sp,/, and take action an ~ il (-|snr).
5: Observe by, and sample j < Unif ([N} (sn:, ans, b))
6
7

> W

/ ok’
Set k' « () ;.
: end for

due to the definition of output policy in Algorithm 2.

Consider a fixed tuple (s, a, b, h, k). Note that the result clearly holds for any s, a, b that is in its first stage, due to our
initialization of Q, (s, a, b), Q (s,a,b) and V:( ), V¥ (s). In the following, we focus on the case where those values have
been updated at least once before the k-th episode.

Our proof is based on induction on k. Note first that the claim clearly holds for £ = 1. For k£ > 2, assume the claim holds
forall u € [1: k — 1]. If those values are not updated in the k-th episode, then the claim clearly holds.In the following, we
consider the case where those values has just been updated.

—k T’D})f-}—l['s’a’b]
(I) We show Qh(S, a, b) > Qh (Sa a, b)
Recall the update rule of the optimistic action-value function

= —ref

Q;(s,a,b) < min {rh(s,a, b) + 3 +v,7n(s,a,b) +
n

3=

+ +ﬁ,QZ(s,a,b)}.

Besides the last term, there are two non-trivial cases and we will show both of the first two terms are lower-bounded by

;va’V\f]i+1 [s,a,b] (S, a, b)

For the first case, we have

k

. p
Q(s,a,b) =rp(s,a,b) —l——ZVhH 8h+1)+'yh
Ty i=1
”n
]‘1/
> rp(s,a,b) + — th;;l sh+1 ) +AF (92)
h =1
1 - 7T7”/\ii+l
> =) Q" (s,a,b) 93)
nh i=1
ak ;
1 Cn
>sup— > Q) " (s, a,b) (94)
L
> Qi Pl g o), (95)

where (92) follows from the induction hypothesis, (93) follows from the Azuma’s inequality, (94) follows from the fact
that taking the maximum out of the summation does not increase the sum, and (95) follows from the construction of policy
Uy 1 [s,a,b] (obtained via the min-player’s counterpart of Algorithm 5).

For the second case,

k

—k ref,¢; )
Q. (s,a,b) =rp(s,a,b) +fZV,H_1 Sh+1)+
hz 1

¢
Bkl

—0; —ref,l; 7 —=k
(Vh+1 Vh+1 > (5h+1) + B

=1
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=k
N —k
> 1n(5,0,0) + Pu | =5 > Vi | (5,0,0) +x10 +x2 + By
h =1
7'7,2
1 :
> rup(s,a,b) + P, oF Z VIH_’iH (s,a,b) (96)
h =1
iy,
T h“ (s,a,b)
> sup — . ZQM’ h“ (s,a,b) 97)
wo My i=1
> QT l/h+1 s,a, b](S, a7 b), (98)

where

= A (T (AT ().

—ref,l
Wh+1 Vh+1 Vi

U (e —;
) = 3 (Wiatelin) = (P ) Gian))
=1

Here, (96) follows from the concentration result 3 > 1 + 2 (see (29)), (97) follows from the fact that taking the maximum
out of summation does not increase the sum, and (98) follows from the construction of policy ﬁ}f 41 [s,a, b] (obtained via the
min-player’s counterpart of Algorithm 5).

() We show V' (s) > V,["7% (s),

Note that

Vi(s) = (D @p)(s) > sup(mw,@i‘;)(@

> supE Qwh“sab](s, b) = Vi (s),
m

arpL, le/h

where the first inequality follows from the property of the CCE oracle and the second inequality follows from the induction
hypothesis.

s iF
The other side of bounds can be proved similarly for Q (s,a,b), “"“[ bl T( s,a,b), V(s), and th”“ ’T(s).

I. Supporting Lemmas

Lemma I.1 (Azuma-Hoefdding’s inequality). Suppose {X}i>o0 is a martingale and | Xy, — Xy_1| < c¢j almost surely.
Then, for all positive integers N and all positive ¢, it holds that

N
23 51 Ci

Lemma I.2 (Lemma 10 in [Zhang et al., 2020b]). Ler {M,,} >0 be martingale such that My = 0 and |M,, — M,,_1| < ¢
for some ¢ > 0 and any n > 1. Let Var, = Y| E[(My, — My_1)*|Fy_1] for n > 0, where Fj, = o(My, M, ..., My).
Then for any positive integer n, and any €,p > 0, we have

1 1 1 2nc?
P DMn >2\/Varnlog+2\/elog+2clog} < ( nc +2>p
P p P €
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Lemma 1.3 (Variant of Lemma 11 in [Zhang et al., 2020b]). For any « € (0, 1) and non-negative weights
{wn (s, a)}ses,aeA,beB,he[H], it holds that

H k feY

ZZ 5h7ah7b ) 2 Z ’ZU}L(S a b)(NK+1(S a b))l*&
= 1—0[ Ead) h » )
k=1h=1 s,a,b,h
K H
bk 22(1Hoz

> LAt Z S 0 OV )

k=1h=1 X abh

In the case o = 1, it holds that

K H
Sy el bh)

g Z (s,a,b log(Nf{ﬂ_l(S,avb))v
k=1h=1 a,b,h
K H
b
Zzwh Sh7dh7 h) <4H Z wh(s,mb)log(N}f(-i-l(s,mb)).
k=1h=1 s,a,b,h
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