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Abstract
The problem of two-player zero-sum Markov
games has recently attracted increasing interests
in theoretical studies of multi-agent reinforcement
learning (RL). In particular, for finite-horizon
episodic Markov decision processes (MDPs), it
has been shown that model-based algorithms can
find an ϵ-optimal Nash Equilibrium (NE) with the
sample complexity of O(H3SAB/ϵ2), which is
optimal in the dependence of the horizon H and
the number of states S (where A and B denote
the number of actions of the two players, respec-
tively). However, none of the existing model-free
algorithms can achieve such an optimality. In
this work, we propose a model-free stage-based
algorithm and show that it achieves the same
sample complexity as the best model-based al-
gorithm, and hence for the first time demonstrate
that model-free algorithms can enjoy the same
optimality in the H dependence as model-based
algorithms. The main improvement of the depen-
dency on H arises by leveraging the popular vari-
ance reduction technique based on the reference-
advantage decomposition previously used only for
single-agent RL. However, such a technique relies
on a critical monotonicity property of the value
function, which does not hold in Markov games
due to the update of the policy via the coarse cor-
related equilibrium (CCE) oracle. Thus, to extend
such a technique to Markov games, our algorithm
features a key novel design of updating the ref-
erence value functions as the pair of optimistic
and pessimistic value functions whose value dif-
ference is the smallest in the history in order to
achieve the desired improvement in the sample
efficiency.
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1. Introduction
Multi-agent reinforcement learning (MARL) commonly
refers to the sequential decision making framework, in
which more than one agent learn to make decisions in an
unknown shared environment to maximize their cumulative
rewards. MARL has achieved great success in a variety of
practical applications, including the game of GO [Silver
et al., 2016; 2017], real-time strategy games involving team
play [Vinyals et al., 2019], autonomous driving [Shalev-
Shwartz et al., 2016], and behavior learning in complex
social scenarios [Baker et al., 2020]. Despite the great
empirical success, one major bottleneck for many RL algo-
rithms is that they require enormous samples. For example,
in many practical MARL scenarios, a large number of sam-
ples are often required to achieve human-like performance
due to the necessity of exploration. It is thus important to
understand how to design sample-efficient algorithms.

As a prevalent approach to the MARL, model-based meth-
ods use the existing visitation data to estimate the model,
run a planning algorithm on the estimated model to obtain
the policy, and execute the policy in the environment. In
two-player zero-sum Markov games, an extensive series of
studies [Bai & Jin, 2020a; Zhang et al., 2020a; Liu et al.,
2021] have shown that model-based algorithms are prov-
ably efficient in MARL, and can achieve minimax-optimal
sample complexityO(H3SAB/ϵ2) except for the termAB
[Zhang et al., 2020a; Liu et al., 2021], where H denotes
the horizon, S denotes the number of states, and A and
B denote the numbers of actions of the two players, re-
spectively. On the other hand, model-free methods directly
estimate the (action-)value functions at the equilibrium poli-
cies instead of estimating the model. However, none of
the existing model-free algorithms can achieve the afore-
mentioned optimality (attained by model-based algorithms)
[Bai et al., 2020; Mao & Başar, 2021; Song et al., 2022; Jin
et al., 2022a; Mao et al., 2022]. Specifically, the number
of episodes required for model-free algorithms scales sub-
optimally in stepH , which naturally motivates the following
open question:

Can we design model-free algorithms with the optimal
sample dependence on the time horizon for learning

two-player zero-sum Markov games?
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In this paper, we give an affirmative answer to the above
question. We highlight our main contributions as follows.

Algorithm design. We design a new model-free algorithm
of Q-learning with min-gap based reference-advantage
decomposition. In particular, we extend the reference-
advantage decomposition technique [Zhang et al., 2020b]
proposed for single-agent RL to zero-sum Markov games
with the following key novel design. Unlike the single-agent
scenario, the optimistic (or pessimistic) value function in
Markov games does not necessarily preserve the monotone
property due to the nature of the CCE oracle. In order to
obtain the “best" optimistic and pessimistic value function
pair, we update the reference value functions as the pair
of optimistic and pessimistic value functions whose value
difference is the smallest (i.e., with the minimal gap) in
the history. Moreover, our algorithm relies on the stage-
based approach, which simplifies the algorithm design and
subsequent analysis.

Sample complexity bound. We show that our algorithm
provably finds an ϵ-optimal Nash equilibrium for the two-
player zero-sum Markov game in Õ(H3SAB/ϵ2) episodes,
which improves upon the sample complexity of all existing
model-free algorithms for zero-sum Markov game. Further,
comparison to the existing lower bound shows that it is
minimax-optimal on the dependence of H , S and ϵ. This
is the first result that establishes such optimality for model-
free algorithms, although model-based algorithms have been
shown to achieve such optimality in the past [Liu et al.,
2021].

Technical analysis. We establish a few new properties
on the cumulative occurrence of the large V-gap and the
cumulative bonus term to enable the upper-bounding of
several new error terms arising due to the incorporation of
the new min-gap based reference-advantage decomposition
technique. These properties have not been established for
the single-agent RL with such a technique, because our
properties are established for policies generated by the CCE
oracle in zero-sum Markov games. Further, the analysis
of both the optimistic and pessimistic accumulative bonus
terms requires a more refined analysis compared to their
counterparts in single-agent RL [Zhang et al., 2020b].

1.1. Related Work

Markov games. The Markov game, also known as the
stochastic game, was first proposed in [Shapley, 1953] to
model the multi-agent RL. Early attempts to find the Nash
equilibra of Markov games include [Littman, 1994; Hu &
Wellman, 2003; Hansen et al., 2013; Wei et al., 2020]. How-
ever, they often relied on strong assumptions such as known
transition matrix and reward, or focused on the asymp-
totic setting. Thus, these results do not apply to the non-
asymptotic setting where the transition and reward are un-

known and only limited data is available.

There is a line of works focusing on non-asymptotic guar-
antees with certain reachability assumptions. A popular
approach is to assume access to simulators, which enables
the agent to sample transition and reward directly for any
state-action pair [Jia et al., 2019; Sidford et al., 2020; Zhang
et al., 2020a; Li et al., 2022]. Alternatively, [Wei et al.,
2017] studied the Markov game under the assumption that
one player can always reach all states by playing certain
policy no matter what strategy the other player sticks to.

Two-player zero-sum games. [Bai & Jin, 2020a; Xie et al.,
2020] initialized the study of non-asymptotic guarantee for
two-player zero-sum Markov games without reachability as-
sumptions. [Bai & Jin, 2020a] proposed a model-based algo-
rithm for tabular Markov game while [Xie et al., 2020] con-
sidered linear function approximation in game and adopted
a model-free approach. [Liu et al., 2021] proposed a model-
based algorithm which achieves the minimax-optimal sam-
ples complexity O(H3SAB/ϵ) except for the AB term.
For the discounted setting and having access to a generative
model, [Zhang et al., 2020a] developed a model-based algo-
rithm that achieves the minimax-optimal sample complexity
except for the AB term. Then, model-free Nash Q-learning
and Nash V-learning were proposed in [Bai et al., 2020] for
two-player zero-sum game to achieve optimal dependence
on actions (i.e., (A + B) instead of AB). Further, [Chen
et al., 2022; Huang et al., 2022] studied the two-player
zero-sum Markov game under linear and general function
approximation.

Multi-player general-sum games. [Liu et al., 2021] de-
veloped model-free algorithm in episodic setting, which
suffers from the curse of multi-agent. To alleviate this issue,
[Mao & Başar, 2021; Song et al., 2022; Jin et al., 2022a;
Mao et al., 2022] proposed V-learning algorithm, coupled
with the adversarial bandit subroutine, to break the curse of
multi-agent. [Mao & Başar, 2021] considered learning an
ϵ-optimal CCE and used V-learning with stabilized online
mirror descent as the adversarial bandit subroutine. Both
[Song et al., 2022; Jin et al., 2022a] utilized the weighted
follow the regularized leader (FTRL) algorithm as the ad-
versarial subroutine, and considered ϵ-optimal CCE and ϵ-
optimal correalted equilibrium (CE). The work [Mao et al.,
2022] featured the standard uniform weighted FTRL and
staged-based design, both of which simplifies the algorithm
design and the corresponding analysis. While the V-learning
algorithms generate non-Markov, history dependent poli-
cies, [Daskalakis et al., 2022; Wang et al., 2023] learned an
approximate CCEs that is guaranteed to be Markov.

Markov games with function approximation. Recently,
a few works considered learning in Markov games with
linear function approximation [Xie et al., 2020; Chen et al.,
2022] and general function approximation [Jin et al., 2022b;
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Huang et al., 2022; Zhan et al., 2023; Xiong et al., 2022;
Chen et al., 2022; Ni et al., 2023]. While all of the previous
works require centralized function classes and inevitably suf-
fer from the curse of multi-agency, [Cui et al., 2023; Wang
et al., 2023] proposed decentralized MARL algorithms to
resolve the issue under linear and general function approxi-
mation.

Single-agent RL. Broadly speaking, our work is also re-
lated to single-agent RL [Auer et al., 2008; Azar et al., 2017;
Dann et al., 2017; Jin et al., 2018; Zhang et al., 2020b].
As a special case of Markov games, only one agent inter-
acts with the environment in single-agent RL. For tabular
episodic setting, the minimax-optimal sample complexity
is Õ(H3SA/ϵ2), achieved by a model-based algorithm in
[Azar et al., 2017] and a model-free algorithm in [Zhang
et al., 2020b]. Technically, the reference-advantage decom-
position used in our algorithm is similar to that of [Zhang
et al., 2020b], as both employ variance reduction techniques
for faster convergence. However, our approaches differ sig-
nificantly, particularly in the way of handling the interplay
between the CCE oracle and the reference-advantage de-
composition in the context of two-player zero-sum Markov
game.

2. Preliminaries
Zero-sum Markov Game. We consider the tabular episodic
two-player zero-sum Markov game MG(H,S,A,B, P, r),
where H is the number of steps in each episode, S is the
set of states with |S| = S, (A,B) are the sets of actions
of the max-player and the min-player respectively with
|A| = A and |B| = B, P = {Ph}h∈[H] is the collec-
tion of the transition matrices with Ph : S × A × B 7→ S ,
r = {rh}h∈[H] is the collection of deterministic reward
functions with rh : S × A × B 7→ [0, 1]. Here the reward
represents both the gain of the max-player and the loss of
the min-player. We assume each episode starts with a fixed
initial state s1.

Suppose the max-player and the min-player interact with
the environment sequentially captured by the two-player
zero-sum Markov game MG(H,S,A,B, P, r). At each
step h ∈ [H], both players observe the state sh ∈ S, take
their actions ah ∈ A and bh ∈ B simultaneously, receive the
reward rh(sh, ah, bh), and then the Markov game evolves
into the next state with probability sh+1 ∼ Ph(·|sh, ah, bh).
The episode ends when sH+1 is reached.

Markov policy, value function. A Markov policy µ of the
max-player is the collection of the functions {µh : S 7→
∆A}h∈[H], each of which maps from a state to a distribution
over actions. Similarly, a policy ν of the min-player is
the collection of functions {νh : S 7→ ∆B}h∈[H]. We
use µh(a|s) and νh(b|s) to denote the probability of taking

actions a and b given the state s under the Markov policies
µ and ν at step h, respectively.

Given a max-player policy µ, a min-player policy ν, and a
state s at step h, the value function is defined as

V µ,ν
h (s) =

E
(sh′ ,ah′ ,bh′ )∼(µ,ν)

[
H∑

h′=h

rh′(sh′ , ah′ , bh′)

∣∣∣∣∣sh = s

]
.

For a given (s, a, b) ∈ S×A×B under a max-player policy
µ and a min-player policy ν at step h, we define

Q
µ,ν
h (s, a, b) =

E
(s

h′ ,ah′ ,bh′ )∼(µ,ν)

 H∑
h′=h

rh′ (sh′ , ah′ , bh′ )

∣∣∣∣∣∣sh = s, ah = a, bh = b

 .

For ease of exposition, we define (Phf)(s, a, b) =
Es′∼Ph(·|s,a,b)[f(s

′)] for any function f : S 7→ R, and
(Dπg)(s) = E(a,b)∼π(·,·|s)[g(s, a, b)] for any function g :
S × A × B. Then, the following Bellman equations hold
for all (s, a, b, h) ∈ S ×A× B × [H]:

Qµ,ν
h (s, a, b) = (rh + PhV

µ,ν
h+1)(s, a, b),

V µ,ν
h (s) = (Dµh×νh

Qµ,ν
h )(s),

V µ,ν
H+1(s) = 0.

Best response, Nash equilibrium (NE). For any Markov
policy µ of the max-player, there exists a best response
of the min-player, which is a policy ν†(µ) satisfying

V
µ,ν†(µ)
h (s) = infν V

µ,ν
h for any (s, h) × S × [H]. We

denote V µ,†
h = V

µ,ν†(µ)
h . Similarly, the best response of

the max-player with respect to the Markov policy ν of
the min-player is a policy µ†(ν) satisfying V µ†(ν),ν

h (s) =

supµ V
µ,ν
h for any (s, h)×S × [H], and we use V †,ν

h to de-

note V µ†(ν),ν
h . Further, there exists Markov policies µ∗, ν∗,

which are optimal against the best responses of the other
player [Filar & Vrieze, 1997], i.e.,

V µ∗,†
h (s) = sup

µ
V µ,†
h (s),

V †,ν∗

h (s) = inf
ν
V †,ν
h ,

for all (s, h) ∈ S × [H]. We call the strategies (µ∗, ν∗)
the Nash equilibrium of a Markov game, if they satisfy the
following minimax equation

sup
µ

inf
ν
V µ,ν
h (s) = V µ∗,ν∗

h (s) = inf
ν
sup
µ
V µ,ν
h (s).

Learning objective. We consider the Nash equilibrium of
Markov games. We measure the sub-optimality of any pair
of general policies (µ, ν) using the following gap between
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their performance and the performance of the optimal strat-
egy (i.e., Nash equilibrium) when playing against the best
responses respectively:

V †,ν
1 (s1)− V µ,†

1 (s1)

=
(
V †,ν
1 (s1)− V ∗

1 (s1)
)
+
(
V ∗
1 (s1)− V

µ,†
1 (s1)

)
.

Definition 2.1 (ϵ-optimal Nash equilibrium (NE)). A pair
of general policies (µ, ν) is an ϵ-optimal Nash equilibrium
if V †,ν

1 (s1)− V µ,†
1 (s1) ≤ ϵ.

Our goal is to design algorithms for two-player zero-sum
Markov games that can find an ϵ-optimal NE using a number
episodes that is small in its dependency on S,A,B,H as
well as 1/ϵ.

3. Algorithm Design
In this section, we propose an algorithm called Q-learning
with min-gap based reference-advantage decomposition (Al-
gorithm 1), for learning ϵ-optimal Nash Equilibrium in two-
player zero-sum Markov games. Our algorithm builds upon
the Nash Q-learning framework [Bai et al., 2020] for two-
player zero-sum Markov game but incorporates a novel
min-gap based reference-advantage decomposition tech-
nique and stage-based update design, which were origi-
nally proposed to achieve optimal performance in model-
free single-agent RL. We start by reviewing the algorithm
with reference-advantage decomposition in single agent RL
[Zhang et al., 2020b].

Reference-advantage decomposition in single-agent RL.
In single-agent RL, we greedily select and action to max-
imize the action value function Qh(s, a) to obtain the
optimistic value function V h(s) = maxaQh(s, a), and
the action-value function update follows Qh(s, a) ←
min{Q(1)

h (s, a), Q
(2)

h (s, a), Qh(s, a)}, where Q
(1)

h , Q
(2)

h

represent the standard update rule and the advantage-based
update rule

Q
(1)

h ← rh(s, a) +
̂PhV h+1(s, a) + bonus1,

Q
(2)

h ← rh(s, a) +
̂
PhV

ref

h+1(s, a)

+
̂

Ph(V h+1 − V
ref

h+1)(s, a) + bonus2.

In standard update rule, one major drawback is that the early
samples collected for estimating V h+1 at that moment de-
viates from the true value of V h+1, and we have to only

use the latest samples to estimate ̂PhV h+1(s, a) in order
not to ruin the whole estimate, which leads to the subopti-
mal sample complexity of such an algorithm. To achieve
the optimal sample complexity, reference-advantage decom-
position was introduced. At high level, we first learn an

accurate estimation V
ref

h of the optimal value function V ∗
h

satisfying V ∗
h (s) ≤ V ref

h (s) ≤ V ∗
h (s) + β, where the accu-

racy is controlled by parameter β independent of the number
of episodes K. For the second term, since V

ref

h+1 is almost
fixed, we are able to conduct the estimate using all col-
lected samples. For the third term, we still have to only use
the latest samples to limit the deviation error. Thanks to
the reference-advantage decomposition, and since V h+1 is
learned based on V

ref

h+1, and V
ref

h+1 is already an accurate

estimate of V ∗
h+1, it turns out that estimating V h+1 − V

ref

h+1

instead of directly estimating V h+1 offsets the weakness of
using the latest samples.

In single-agent RL, one key design to facilitate the reference-
advantage decomposition is to ensure that the action-value
function Qh(s, a) is non-increasing. Observe that the opti-
mistic value function V h(s) preserves the monotonic struc-
ture as long as the optimistic action-value function Qh(s)

is non-increasing, since V
k+1

h (s) = maxaQ
k+1

h (s, a) ≤
maxaQ

k

h(s, a) = V
k

h(s). When enough samples are col-
lected, the reference value V

ref
is then updated as the lat-

est optimistic value function, which we remark is also the
smallest optimistic value function in the up-to-date learning
history.

Min-gap1 based reference-advantage decomposition. In
the two-player zero-sum game, we keep track of both the
optimistic and the pessimistic action-value functions, and
update the value functions using the CCE oracle at the end of
each stage. Unlike the single-agent scenario, the optimistic
(or pessimistic) value function does not necessarily preserve
the monotone property even if the optimistic (or pessimistic)
action-value function is non-increasing (or non-decreasing)
due to the nature of the CCE oracle. In order to obtain the
“best” optimistic and pessimistic value function pair, we
come up with the key novel “min-gap" design where we
update the reference value functions as the pair of optimistic
and pessimistic value functions whose value difference is the
smallest in the history (line 12-15). Formally, we define the
min-gap ∆(s, h) for a state s at step h to keep track of the
smallest value difference between optimistic and pessimistic
value functions in the history, and the corresponding pair
of value functions are recorded (line 12-13). When enough
samples are collected (line 14-15), the pair of reference
value functions is then set to be the pair of optimistic and
pessimistic value functions whose value difference is the
smallest in the history.

Now we introduce reference-advantage decomposition to
the two-player zero-sum game. For ease of exposition, we
use bonusi to represent different exploration bonus, which
is specified in line 9-11 of Algorithm 3. In standard update

1We remark that min-gap has nothing to do with the notion of
gap in gap-dependent RL.
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Algorithm 1 Q-learning with min-gap based reference-
advantage decomposition (Algorithm 3 sketch)

1: Set accumulators and (action)-value functions properly,
and initialize the gap ∆(s, h) = H .

2: for episodes k ← 1, 2, . . . ,K do
3: for h← 1, 2, . . . ,H do
4: Take action (ah, bh)← πh(sh)
5: Receive rh(sh, ah, bh), and observe sh+1.
6: Update accumulators.
7: if n ∈ L then
8: Qh(sh, ah, bh)← min{Q(1)

h (sh, ah, bh),

9: Q
(2)

h (sh, ah, bh), Qh(sh, ah, bh)}.
10: Q

h
(sh, ah, bh)← max{Q(1)

h
(sh, ah, bh),

11: Q(2)

h
(sh, ah, bh), Qh

(sh, ah, bh)}.
12: πh(sh)← CCE(Q(sh, ·, ·), Qh

(sh, ·, ·)).
13: V h(sh)← E(a,b)∼πh(sh)Qh(sh, a, b).
14: V h(sh)← E(a,b)∼πh(sh)Qh

(sh, a, b).
15: Reset all intra-stage accumulators to 0.
16: if V h(sh)− V h(sh) < ∆(s, h) then
17: ∆(s, h) = V h(sh)− V h(sh).

18: Ṽ h(sh) = V h(sh).
19: Ṽ h(sh) = V h(sh).
20: end if
21: end if
22: if

∑
a,bNh(sh, a, b) = N0 then

23: V
ref

h (sh)← Ṽ h(sh).
24: V ref

h (sh)← Ṽ h(sh).
25: end if
26: end for
27: end for

rule, we have

Q
(1)

h (s, a, b)← rh(s, a, b) +
̂PhV h+1(s, a, b) + bonus3, (1)

Q(1)

h
(s, a, b)← rh(s, a, b) + ̂PhV h+1(s, a, b) + bonus4, (2)

where ̂PhV h+1, ̂PhV h+1 are the empirical estimate of
PhV h+1, PhV h+1. Similar to the single-agent RL, the stan-
dard update rule suffers from the large deviation between
V h+1 learned by the early samples and the value of Nash
equilibrium. As a result, we have to use only the samples
from the last stage (i.e., the latest O(1/H) fraction of sam-
ples, see stage-based update approach below) to estimate
PhV h+1. In order to improve the horizon dependence, we
incorporate the advantage-based update rule

Q
(2)

h (s, a, b)← rh(s, a, b) +
̂

PhV
ref
h+1(s, a, b)

+
̂

Ph(V h+1 − V
ref
h+1)(s, a, b) + bonus5, (3)

Q(2)

h
(s, a, b)← rh(s, a, b) +

̂PhV
ref
h+1(s, a, b)

+ ̂Ph(V h+1 − V ref
h+1)(s, a, b) + bonus6, (4)

where the middle terms in (3) are the empirical estimates of
PhV

ref

h+1 and Ph(V h+1 − V
ref

h+1), and the middle terms in
(4) are the empirical estimates of PhV

ref
h+1 and Ph(V h+1 −

V
ref

h+1). We still need to use only the samples from the last
stage to limit the deviation for the third terms in both (3)
and (4). For ease of exposition, assume we have access
to a β-optimal V

ref
, V ref . Thanks to the min-gap based

reference-advantage decomposition, the learned V h+1 (or
V h+1) is learned based on V

ref

h+1 (or V ref
h+1), and V

ref
(or

V ref ) is already an accurate estimate of V ∗
h+1, it turns out

that estimating V h+1−V
ref

h+1 (or V h+1−V
ref
h+1) instead of

directly estimating V (or V ) offsets the weakness of using
only O(1/H) fraction of data. Further, since V

ref
, V ref is

fixed, we are able to use all samples collected to estimate
the second term, without suffering any deviation. Now we
remove the assumption that V

ref
, V ref is fixed. Note that

β is selected independently of K. Therefore, learning a
β-optimal reference value function V

ref
, V ref only incurs

lower order terms in our final result.

Stage-based update approach. For each tuple
(s, a, b, h) ∈ S × A × B × [H], we divide the visitations
for the tuple into consecutive stages. The length of each
stage increases exponentially with a growth rate (1 + 1/H).
Specifically, we define e1 = H , and ei+1 = ⌊(1+ 1/H)ei⌋
for all i ≥ 1, to denote the lengths of stages. Further, we
also define L = {

∑j
i=1 ei|j = 1, 2, 3, . . .} to denote the

the set of ending indices of the stages. For each (s, a, b, h)
tuple, we update both the optimistic and pessimistic value
estimates at the end of each stage (i.e., when the total num-
ber of visitations of (s, a, b, h) lies in L), using samples
only from this single stage (line 6-15). This updating rule
ensures that only the last O(1/H) fraction of the collected
samples are used to estimate the value estimates.

Coarse correlated equilibrium (CCE). We use the CCE
oracle to update the policy (line 14). The CCE oracle was
first introduced in [Xie et al., 2020] and an ϵ-optimal CCE
is shown to be a O(ϵ)-optimal Nash equilibrium in two-
player zero-sum Markov games [Xie et al., 2020]. For any
pair of matrices Q,Q ∈ [0, H]A×B , CCE(Q,Q) returns a
distribution π ∈ ∆A×B such that

E(a,b)∼πQ(a, b) ≥ sup
a∗

E(a,b)∼πQ(a∗, b),

E(a,b)∼πQ(a, b) ≤ inf
b∗

E(a,b)∼πQ(a, b∗).

The players choose their actions in a potentially correlated
way so that no one can benefit from unilateral unconditional
deviation. Since Nash equilibrium is also a CCE and a
Nash equilibrium always exists, a CCE therefore always
exist. Moreover, CCE can be efficiently implemented by
linear programming in polynomial time. We remark that the
policies generated by CCE are in general correlated, and
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executing such policies requires the cooperation of the two
players (line 6).

Algorithm description. For clarity, we provide a schematic
algorithm here (Algorithm 1) and defer the detail to
the appendix (Algorithm 3). Besides the standard opti-
mistic and pessimistic value estimates update Qh(s, a, b),
V h(s), Qh

(s, a, b), V h(s), and the reference value func-

tions V
ref

h (s), V ref
h (s), the algorithm keeps multiple dif-

ferent accumulators to facilitate the update: 1) Nh(s, a, b)
and Ňh(s, a, b) are used to keep the total visit number and
the visits counting for the current stage with respect to
(s, a, b, h), respectively. 2) Intra-stage accumulators are
used in the latest stage and are reset at the beginning of each
stage. 3) The global accumulators are used for the samples
in all stages: All accumulators are initialized to 0 at the
beginning of the algorithm. The details of the accumulators
are deferred to Appendix A.

The algorithm set ι = log(2/δ), β = O(1/H) and
N0 = c4SABH

5ι/β2 for some sufficiently large universal
constant c4, denoting the number of visits required to learn
β-accurate pair of reference value functions.

Certified policy. Based on the policy trajectories collected
from Algorithm 3, we construct an output policy profile
(µout, νout) that we will show is an approximate NE. For
any step h ∈ [H], an episode k ∈ [K] and any state, we
let µk

h(·|s) ∈ ∆(A) and νkh(·|s) ∈ ∆(B) be the distribu-
tion prescribed by Algorithm 3 at this step. Let Ňk

h (s) be
the value Ňk

h (s) at the beginning of the k-th episode. Our
construction of the output policy µout is presented in Algo-
rithm 2 (whereas the certified policy νout of the min-player
can be obtained similarly), which follows the “certified poli-
cies” introduced in [Bai & Jin, 2020a]. We remark that the
episode index from the previous stage is uniformly sampled
in our algorithm while the certified policies in [Bai & Jin,
2020a] uses a weighted mixture.

Algorithm 2 Certified policy µout (max-player version)
1: Sample k ← Unif([K]).
2: for step h← 1, . . . ,H do
3: Receive sh, and take action ah ∼ µk

h(·|sh).
4: Observe bh.
5: Sample j ← Unif([Nk

h (sh, ah, bh)]).
6: Set k ← ℓ̌kh,j .
7: end for

4. Theoretical Analysis
4.1. Main Result

In this subsection, we present the main theoretical result
for Algorithm 3. The following theorem presents the sam-
ple complexity guarantee for Algorithm 3 to learn a near-

optimal Nash equilibrium policy in two-player zero-sum
Markov games, which improves the best-known model-free
algorithms in the same setting.

Theorem 4.1. For any δ ∈ (0, 1), let the agents run Algo-
rithm 3 for K episodes with K ≥ Õ(H3SAB/ϵ2). Then,
with probability at least 1− δ, the output policy (µout, νout)
of Algorithm 2 is an ϵ-approximate Nash equilibrium.

Compared to the lower bound Ω(H3S(A+B)/ϵ2) on the
sample complexity to find a near-optimal Nash equilibrium
[Bai & Jin, 2020b], the sample complexity in Theorem 4.1
is minimax-optimal on the dependence of H , S and ϵ. This
is the first result that establishes such optimality for model-
free algorithms, although model-based algorithms have been
shown to achieve such optimality in the past [Liu et al.,
2021].

We also note that the result in Theorem 4.1 is not tight on the
dependence on the cardinality of actions A,B. Such a gap
has been closed by popular V-learning algorithms [Liu et al.,
2021; Mao et al., 2022], which achieve the sample com-
plexity of O(H5S(A+B)/ϵ2) [Mao et al., 2022]. Clearly,
V-learning achieves a tight dependence on A,B, but suffers
from worse horizon dependence on H . More specifically,
one H factor is due to the nature of implementing the ad-
versarial bandit subroutine in exchange for a better action
dependence A+B. The other H factor could potentially be
improved via the reference-advantage decomposition tech-
nique that we adopt here for our Q-learning algorithm. We
leave this promising yet challenging direction as a future
study.

4.2. Proof Outline

In this section, we present the proof sketch of Theorem 4.1,
and defer all the details to the appendix.

Our main technical development lies in establishing a few
new properties on the cumulative occurrence of the large
V-gap and the cumulative bonus term, which enable the
upper-bounding of several new error terms arising due to the
incorporation of the new min-gap based reference-advantage
decomposition technique. These properties have not been
established for the single-agent RL with such a technique,
because our properties are established for policies generated
by the CCE oracle in zero-sum Markov games. Further, we
perform a more refined analysis for both the optimistic and
pessimistic accumulative bonus terms in order to obtain the
desired result.

For certain functions, we use the superscript k to denote the
value of the function at the beginning of the k-th episode,
and use the superscript K + 1 to denote the value of the
function after all K episodes are played. For instance, we
denote Nk

h (s, a, b) as the value of Nh(s, a, b) at the begin-
ning of the k-th episode, and NK+1

h (s, a, b) to denote the
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total number of visits of (s, a, b) at step h after K episodes.
When h and k are clear from the context, we omit the sub-
script h and superscript k for notational convenience. For
example, we use ℓi and ℓ̌i to denote ℓkh,i and ℓ̌kh,i when h
and k are obvious.

In the next four steps, we strive to bound the differ-
ence between optimistic and pessimistic value functions
1
K

∑K
k=1(V

k

1 − V
k
1)(s1), which is shown to upper bound

our final goal V †,νout

1 (s1) − V µout,†
1 (s1) in the final step

(Lemma 4.6).

Step I: We show that the Nash equilibrium (action-)value
functions are always bounded between the optimistic and
pessimistic (action-)value functions.
Lemma 4.2. With high probability, it holds that for any
s, a, b, k, h,

Qk

h
(s, a, b) ≤ Q∗

h(s, a, b) ≤ Q
k

h(s, a, b),

V k
h(s) ≤ V ∗

h (s) ≤ V
k

h(s).

Our new technical development lies in proving the inequality
with respect to the action-value function, whose update rule
features the min-gap reference-advantage decomposition in
two-player zero-sum Markov game.

The proof is by induction. We will focus on the opti-
mistic (action-)value function and the other direction for
pessimistic (action-)value function can be proved similarly.
Suppose the two inequalities hold in episode k. We first
establish the inequality for action-value function, and then
prove the inequality for value functions. Based on the up-
date rule of the optimistic action-value functions (line 8-9
in Algorithm 1, and line 12 in Algorithm 3), the action-
value function is determined by the first two non-trial terms
and last trivial term. While the first term is shown to up-
per bound the action-value function at Nash equilibrium
Q∗

h(s, a, b), we make the effort to showcase that the sec-
ond term involving the min-gap based reference-advantage
decomposition also upper bounds Q∗

h(s, a, b). Since the
optimistic action-value function takes the minimum of the
three terms, we conclude that the optimistic action-value
function in episode k + 1 also satisfy the inequality. The
proof of the inequality for value function (second inequal-
ity in Lemma 4.2) is based on the property of the policy
distribution output by the CCE oracle.

Note that the optimistic (or pessimistic) action-value func-
tion is non-increasing (or non-decreasing) with respect to
the iteration number k. However, the optimistic and the
pessimistic value functions do not necessarily preserve such
monotonic property due to the nature of the CCE oracle.
This motivates our design of the min-gap based reference-
advantage decomposition.

Step II: We show that the reference value function can be

learned with bounded sample complexity in the following
lemma.

Lemma 4.3. With high probability, it holds that

K∑
k=1

1{V k

h(s
k
h)− V

k
h(s

k
h) ≥ ϵ} ≤ O(SABH5ι/ϵ2)

We show that in the two-player zero-sum Markov game,
the occurrence of the large V-gap, induced by the policy
generated by the CCE oracle, is bounded independent of
the number of episodes K. Our new development in prov-
ing this lemma lies in handling an additional martingale
difference arising due to the CCE oracle.

In order to extract the best pair of optimistic and pessimistic
value functions, a key novel min-gap based reference-
advantage decomposition is proposed (see Section 3), based
on which we pick up the pair of optimistic and pessimistic
value functions whose gap is the smallest in the history (line
16-20 in Algorithm 1 and line 17-20 in Algorithm 3). The
motivation is based on the observation mentioned in step I,
and the latest pair of optimistic and pessimistic value func-
tions does not necessarily have the minimum gap in this
history. By the selection of the reference value functions,
Lemma 4.3 with ϵ set to β, and the definition of N0 (see
Section 3 Algorithm description), we have the following
corollary.

Corollary 4.4. Conditioned on the successful events of
Proposition 4.2 and Lemma 4.3, for every state s, we have

nkh(s) ≥ N0 =⇒ V
ref,k

h (s)− V ref,k
h (s) ≤ β.

Step III: We bound
∑K

k=1(V
k

1 − V
k
1)(s1). Compared to

single-agent RL, the CCE oracle leads to a possibly mixed
policy and we need to bound the additional term due to the
CCE oracle.

For ease of exposition, define ∆k
h = (V

k

h − V
k
h)(s

k
h), and

martingale difference ζkh = ∆k
h − (Q

k

h − Q
k

h
)(skh, a

k
h, b

k
h).

Note that nkh = Nk
h (s

k
h, a

k
h, b

k
h) and ňkh = Ňk

h (s
k
h, a

k
h, b

k
h)

when Nk
h (s

k
h, a

k
h, b

k
h) ∈ L. Following the update rule, we

have (omitting the detail)

∆k
h = ζkh + (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h)

≤ ζkh +H1{nkh = 0}+ 1

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 + Λk

h+1,

where the definition of Λk
h+1 is provided in the appendix.

Summing over k ∈ [K], we have

K∑
k=1

∆k
h
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≤
K∑

k=1

ζkh +

K∑
k=1

H1{nk
h = 0}+

K∑
k=1

1

ňk
h

ňk
h∑

i=1

∆
ℓ̌kh,i

h+1 +

K∑
k=1

Λk
h+1

≤
K∑

k=1

ζkh + SABH2 + (1 +
1

H
)

K∑
k=1

∆k
h+1 +

K∑
k=1

Λk
h+1,

where in the last inequality, we use the pigeon-hole argu-
ment for the second term, and the third term is due to the
(1 + 1/H) growth rate of the length of the stages.

Before we proceed, we briefly discuss several differences
between our analysis for zero-sum game and single-agent
RL. First, we care about the value difference between opti-
mistic and pessimistic value functions in two-player zero-
sum game instead of the value different between optimistic
value function and the value function when executing policy
πk in single-agent RL. Second, additional martingale differ-
ence {ζkh}(h,k)∈[K]×[H] shows up in two-player zero-sum
game due to the fact that the CCE oracle in general output a
mixed policy.

Iterating over h = H,H − 1, . . . , 1 gives

K∑
k=1

∆k
1 ≤O

(
SABH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ζkh

+

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1

)
.

As pointed out earlier, the additional term
∑H

h=1

∑K
k=1(1+

1
H )h−1ζkh is new in the two-player zero-sum Markov game,
which can be bounded by Azuma-Hoeffding’s inequality.
I.e., it holds that with probability at least 1− Tδ,

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ζkh ≤ O(

√
H2Tι),

which turns out to be a lower-order term compared to∑H
h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1.

Step IV: We bound
∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1 in the
following lemma.

Lemma 4.5. With high probability, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1 =

O
(√

SABH2ι+H
√
Tι log T + S2(AB)

3
2H8ιT

1
4

)
.

We capture the accumulative error of the bonus terms∑H
h=1

∑K
k=1(1 +

1
H )h−1(β

k

h+1 + βk

h+1
) in the expression∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1. Since we first implement
the reference-advantage decomposition technique in the
two-player zero-sum game, our accumulative bonus term

is much more challenging to analyze than the existing Q-
learning algorithms for games. Compared to the analysis for
the model-free algorithm with reference-advantage decom-
position in single-RL [Zhang et al., 2020b], our analysis
features the following new developments. First, we need
to bound both the optimistic and pessimistic accumulative
bonus terms, and the analysis is not identical. Second, the
analysis of the optimistic accumulative bonus term differs
due to the CCE oracle and the new min-gap base reference-
advantage decomposition for two-player zero-sum Markov
game.

Final step. We build connection between the certified policy
generated by Algorithm 2, and the difference between the
optimistic and pessimistic value functions 1

K

∑K
k=1(V

k

1 −
V k

1)(s1).

Lemma 4.6. Let (µout, νout) be the output policy induced
by the certified policy algorithm (Algorithm 2), then, we
have

V †,νout

1 (s1)− V µout,†
1 (s1) ≤

1

K

K∑
k=1

(V
k

1 − V
k
1)(s1).

Finally, combining all steps, we conclude that with high
probability,

V †,νout

1 (s1)− V µout,†
1 (s1)

≤ 1

K

K∑
k=1

∆k
h = O

(
H3SAB

ϵ2

)
.

5. Conclusion
In this paper, we proposed a new model-free algorithm
Q-learning with min-gap based reference-advantage decom-
position for two-player zero-sum Markov games, which
improved the existing results and achieved a near-optimal
sample complexityO(H3SAB/ϵ2) except for theAB term.
Due to the nature of the CCE oracle employed in the al-
gorithm, we designed a novel min-gap based reference-
advantage decomposition to learn the pair of optimistic and
pessimistic reference value functions whose value difference
has the minimum gap in the history. An interesting future
direction would be to study whether the horizon dependence
could be further tightened in model-free V-learning.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.
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Supplementary Materials

A. Details of Algorithm 1

Algorithm 3 Q-learning with min-gap based reference-advantage decomposition

1: Initialize: Set all accumulators to 0. For all (s, a, b, h) ∈ S ×A× B × [H], set V h(s), Qh(s, a, b) to H − h+ 1, set
V

ref

h (s) to H , set V h(s), Qh
(s, a, b), V ref

h (s, a, b) to 0; and

2: let πh(s) ∼ Unif(A)×Unif(B), ∆(s, h) = H , Ṽ h(sh) = H , Ṽ h(sh) = 0.
3: for episodes k ← 1, 2, . . . ,K do
4: Observe s1.
5: for h← 1, 2, . . . ,H do
6: Take action (ah, bh)← πh(sh), receive rh(sh, ah, bh), and observe sh+1.
7: Update accumulators n := Nh(sh, ah, bh)

+← 1, ň := Ňh(sh, ah, bh)
+← 1 and (5)-(9).

8: if n ∈ L then
9: γ ← 2

√
H2

ň ι.

10: β ← c1

√
σref/n−(µref/n)2

n
ι+ c2

√
σ̌/ň−(µ̌/ň)2

ň
ι+ c3(

Hι
n

+ Hι
ň

+ Hι3/4

n3/4 + Hι3/4

ň3/4 ).

11: β ← c1

√
σref/n−(µref/n)2

n
ι+ c2

√
σ̌/ň−(µ̌/ň)2

ň
ι+ c3(

Hι
n

+ Hι
ň

+ Hι3/4

n3/4 + Hι3/4

ň3/4 ).

12: Qh(sh, ah, bh)← min{rh(sh, ah, bh) +
v̌
ň
+ γ, rh(sh, ah, bh) +

µref

n
+ µ̌

ň
+ β,Qh(sh, ah, bh)}.

13: Q
h
(sh, ah, bh)← max{rh(sh, ah, bh) +

v̌
ň
− γ, rh(sh, ah, bh)) +

µref

n
+

µ̌

ň
− β,Q

h
(sh, ah, bh)}.

14: πh(sh)← CCE(Q(sh, ·, ·), Qh
(sh, ·, ·)).

15: V h(sh)← E(a,b)∼πh(sh)Qh(sh, a, b), and V h(sh)← E(a,b)∼πh(sh)Qh
(sh, a, b).

16: Reset all intra-stage accumulators to 0.
17: if V h(sh)− V h(sh) < ∆(s, h) then
18: ∆(s, h) = V h(sh)− V h(sh).

19: Ṽ h(sh) = V h(sh), Ṽ h(sh) = V h(sh).
20: end if
21: end if
22: if

∑
a,bNh(sh, a, b) = N0 then

23: V
ref

h (sh)← Ṽ h(sh), V ref
h (sh)← Ṽ h(sh).

24: end if
25: end for
26: end for

Algorithm description. Let c1, c2, c3 be some sufficiently large universal constants so that the concentration inequalities can
be applied in the analysis. Besides the standard optimistic and pessimistic value estimates Qh(s, a, b), V h(s), Qh

(s, a, b),

V h(s), and the reference value functions V
ref

h (s), V ref
h (s), the algorithm keeps multiple different accumulators to facilitate

the update: 1) Nh(s, a, b) and Ňh(s, a, b) are used to keep the total visit number and the visits counting for the current stage
with respect to (s, a, b, h), respectively. 2) Intra-stage accumulators are used in the latest stage and are reset at the beginning
of each stage. The update rule of the intra-stage accumulators are as follows:

v̌h(sh, ah, bh)
+← V h+1(sh+1), v̌h(sh, ah, bh)

+← V h+1(sh+1), (5)

µ̌h(sh, ah, bh)
+← V h+1(sh+1)− V

ref
h+1(sh+1), µ̌

h
(sh, ah, bh)

+← V h+1(sh+1)− V ref
h+1(sh+1), (6)

σ̌h(sh, ah, bh)
+← (V h+1(sh+1)− V

ref
h+1(sh+1))

2, σ̌h(sh, ah, bh)
+← (V h+1(sh+1)− V ref

h+1(sh+1))
2. (7)

3) The following global accumulators are used for the samples in all stages:

µref
h (sh, ah, bh)

+← V
ref

h+1(sh+1), µref
h

(sh, ah, bh)
+← V ref

h+1(sh+1), (8)

σref
h (sh, ah, bh)

+← (V
ref

h+1(sh+1))
2, σref

h (sh, ah, bh)
+← (V ref

h+1(sh+1))
2. (9)

11
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All accumulators are initialized to 0 at the beginning of the algorithm. The algorithm set ι = log(2/δ), β = O(1/H) and
N0 = c4SABH

5/β2 for some sufficiently large universal constant c4.

B. Comparison to Existing Algorithms
Compare to Optimistic Nash Q-learning [Bai et al., 2020]. The Optimistic Nash Q-learning is a model-free Q-learning
algorithm for two-player zero-sum Markov games. The algorithm design differences between our algorithm and the
optimistic Nash Q-learning is two-fold. First, we adopt the stage-based design instead of traditional Q-learning update
Qnew ← (1− α)Qold + α(r + V ). The optimistic Nash Q-learning updates the value function with a learning rate, while
our algorithm adopts greedy update. We remark that both frameworks are viable, and in our opinion, the stage-based design
is easier to follow and analyse. Second, we propose a novel min-gap based reference-advantage decomposition, a variance
reduction technique, to further improve the sample complexity. Specifically, we use both the standard update rule and the
advantage-based update rule in our action-value function (Q function) while the optimistic Nash Q-learning only uses the
standard update rule.

Aside from the obvious distinction of the proofs caused by stage-based design, the main difference is the analysis for the
advantage-based update rule, which does not show up in the optimistic Nash Q-learning. Due to the incorporation of the
new min-gap based reference-advantage decomposition technique, several new error terms arise in our analysis. Our main
development lies in establishing a few new properties on the cumulative occurrence of the large V-gap and the cumulative
bonus term, which enable the upper-bounding of those new error terms. More specifically, as we explain in our proof
outline in Section 4.2, our analysis include the following novel developments. (i) Step I shows that the Nash equilibrium
(action-)value functions are always bounded between the optimistic and pessimistic (action-)value functions (see Lemma
4.3). Our new technical development here lies in proving the inequality with respect to the action-value function, whose
update rule features the min-gap reference-advantage decomposition. (ii) Step II shows that the reference value can be
learned with bounded sample complexity (see Lemma 4.4). Our new development here lies in handling an additional
martingale difference arising due to the CCE oracle. (iii) In step IV, there are a few new developments. First, we need to
bound both the optimistic and pessimistic accumulative bonus terms, and the analysis is more refined compared to that for
single-agent RL. Second, the analysis of the optimistic accumulative bonus term need to handle the CCE oracle together
with the new min-gap base reference-advantage decomposition for two-player zero-sum Markov game.

Compare to UCB-advantage [Zhang et al., 2020b]. The UCB-advantage is a model-free algorithm with reference-
advantage decomposition for single-agent RL. Our main novel design idea lies in the min-gap based advantage reference
value decomposition. Unlike the single-agent scenario, the optimistic (or pessimistic) value function in Markov games does
not necessarily preserve the monotone property due to the nature of the CCE oracle. In order to obtain the “best" optimistic
and pessimistic value function pair, we propose the key min-gap design to update the reference value functions as the pair of
optimistic and pessimistic value functions whose value difference is the smallest (i.e., with the minimal gap) in the history.
It turns out that such a design is critical to guarantee the provable sample efficiency.

For the proof techniques, there are the fundamental differences between single-agent RL and two-player zero-sum games.
Thanks to the key min-gap based reference-advantage decomposition, we provide a new guarantee for the learned pair
of reference value (Corollary 4.5) in the context of two-player zero-sum Markov games, which is crucial in obtaining an
optimal horizon dependence.

C. Notations
For any function f : S 7→ R, we use Ps,a,bf and (Phf)(s, a, b) interchangeably. Define V(x, y) = x⊤(y2)− (x⊤y)2 for
two vectors of the same dimension, where y2 is obtained by squaring each entry of y.

For ease of exposition, we define νref,kh =
σref,k
h

nk
h

− (
µref,k
h

nk
h

)2, νref,kh =
σref,k
h

nk
h

− (
µref,k

h

nk
h

)2 and ν̌kh =
σ̌
k
h

ňk
h

− (
µ̌
k
h

ňk
h

)2, ν̌kh =

σ̌k
h

ňk
h

− (
µ̌k

h

ňk
h

)2. Moreover, we define ∆k
h = V

k

h(s
k
h)− V

k
h(s

k
h) and ζkh = ∆k

h − (Q
k

h −Q
k

h
)(skh, a

k
h, b

k
h). For convenience, we

also define λkh(s) = 1
{
nkh(s) < N0

}
.

For certain functions, we use the superscript k to denote the value of the function at the beginning of the k-th episode, and
use the superscript K + 1 to denote the value of the function after all K episodes are played. For instance, we denote
Nk

h (s, a, b) as the value of Nh(s, a, b) at the beginning of the k-th episode, and NK+1
h (s, a, b) to denote the total number of

12
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visits of (s, a, b) at step h after K episodes. When it is clear from the context, we omit the subscript h and the superscript k
for notational convenience. For example, we use ℓi and ℓ̌i to denote ℓkh,i and ℓ̌kh,i when it is obvious what values that the
indices h and k take.

D. Proof of Theorem 4.1
In this section, we provide the proof of Theorem 4.1, which consists of four main steps and one final step. In order to provide
a clear proof flow here, we defer the proofs of the main lemmas in these steps to later sections (i.e., Appendix E-Appendix H).

We start by replacing δ by δ/poly(H,T ), and it suffices to show the desired bound for V †,νout

1 (s1) − V µout,†
1 (s1) with

probability 1− poly(H,T )δ.

Step I: We show that the Nash equilibrium (action-)value functions are always bounded between the optimistic and
pessimistic (action-)value functions.
Lemma D.1 (Restatement of Lemma 4.2). Let δ ∈ (0, 1). With probability at least 1− 2T (2H2T 3 + 7)δ, it holds that for
any s, a, b, k, h,

Qk

h
(s, a, b) ≤ Q∗

h(s, a, b) ≤ Q
k

h(s, a, b),

V k
h(s) ≤ V ∗

h (s) ≤ V
k

h(s).

The proof of Lemma D.1 is provided in Appendix E. The new technical development lies in proving the inequality with
respect to the action-value function, whose update rule features the min-gap reference-advantage decomposition.

Step II: We show that the occurrence of the large V-gap has bounded sample complexity independent of the number of
episodes K.
Lemma D.2 (Restatement of Lemma 4.3). With probability 1−O(Tδ), it holds that

K∑
k=1

1{V k

h(s
k
h)− V

k
h(s

k
h) ≥ ϵ} ≤ O(SABH5ι/ϵ2).

The proof is provided in Appendix F.

By the selection of the reference value functions, Lemma D.2 with ϵ setting to β, and the definition of N0, we have the
following corollary.
Corollary D.3 (Restatement of Corollary 4.4). Conditioned on the successful events of Lemma D.1 and Lemma D.2, for
every state s, we have

nkh(s) ≥ N0 =⇒ V
ref,k

h (s)− V ref,k
h (s) ≤ β.

Step III: We bound
∑K

k=1(V
k

1 − V
k
1)(s1). Compared to single-agent RL, the CCE oracle leads to a possibly mixed policy

and we need to bound the additional term due to the CCE oracle.

Recall the definition of ∆k
h = V

k

h(s
k
h)− V

k
h(s

k
h) and ζkh = ∆k

h − (Q
k

h −Q
k

h
)(skh, a

k
h, b

k
h). Following the update rule, we

have

∆k
h = ζkh + (Q

k

h −Q
k

h
)(skh, a

k
h, b

k
h)

≤ ζkh +H1{nkh = 0}+ 1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 (sℓih+1)−

1

nkh

nk
h∑

i=1

V ref,ℓi
h+1 (sℓih+1)

+
1

ňkh

ňk
h∑

i=1

(V
ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 )(sℓ̌ih+1)−

1

ňkh

ňk
h∑

i=1

(V ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 )(sℓ̌ih+1) + β

k

h + βk

h

≤ ζkh +H1{nkh = 0}+ 1

nkh

nk
h∑

i=1

Pskh,a
k
h,b

k
h,h
V

ref,ℓi
h+1 −

1

nkh

nk
h∑

i=1

Pskh,a
k
h,b

k
h,h
V ref,ℓi

h+1

13
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+
1

ňkh

ňk
h∑

i=1

Pskh,a
k
h,b

k
h,h

(V
ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 )− 1

ňkh

ňk
h∑

i=1

Pskh,a
k
h,b

k
h,h

(V ℓ̌i
h+1 − V

ref,ℓ̌i
h+1 ) + 2β

k

h + 2βk

h
(10)

= ζkh +H1{nkh = 0}+ Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 −

1

ňkh

ňk
h∑

i=1

V
ref,ℓ̌i
h+1


− Pskh,a

k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V ref,ℓi
h+1 −

1

ňkh

ňk
h∑

i=1

V ref,ℓ̌i
h+1

+ Pskh,a
k
h,b

k
h,h

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
+ 2β

k

h + 2βk

h

≤ ζkh +H1{nkh = 0}+ Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V
ref,ℓi
h+1 − V

REF

h+1


− Pskh,a

k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

V ref,ℓi
h+1 − V

REF
h+1

+ Pskh,a
k
h,b

k
h,h

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
+ 2β

k

h + 2βk

h
(11)

= ζkh +H1{nkh = 0}+ 1

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 + Λk

h+1, (12)

where we define

Λk
h+1 = ψk

h+1 + ξkh+1 + 2β
k

h + 2βk

h
,

ψk
h+1 = Pskh,a

k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

(
V

ref,ℓi
h+1 − V

ref,ℓi
h+1

)
−
(
V

REF

h+1 − V
REF
h+1

) ,

ξkh+1 =
1

ňkh

ňk
h∑

i=1

(
Pskh,a

k
h,b

k
h,h
− 1

s
ℓ̌i
h+1

)(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
.

Here, (10) follows from the successful event of martingale concentration (29) and (43) in Lemma D.1, (11) follows from the
fact that V

ref,u

h+1 (s) (or V ref,u
h+1 (s)) is non-increasing (or non-decreasing) in u, because V

ref

h (s) (or V ref
h (s)) for a pair (s, h)

can only be updated once and the updated value is obviously greater (or less) than the initial value, and (12) follows from
the definition of Λk

h+1 defined above.

Taking the summation over k ∈ [K] gives

K∑
k=1

∆k
h ≤

K∑
k=1

ζkh +
K∑

k=1

H1{nkh = 0}+
K∑

k=1

1

ňkh

ňk
h∑

i=1

∆
ℓ̌kh,i

h+1 +
K∑

k=1

Λk
h+1. (13)

Note that nkh ≥ H if Nk
h (s

k
h, a

k
h, b

k
h) ≥ H . Therefore

∑K
k=1 1{nkh = 0} ≤ SABH , and

K∑
k=1

H1{nkh = 0} ≤ SABH2. (14)

Now we focus on the term
∑K

k=1
1
ňk
h

∑ňk
h

i=1 ∆
ℓ̌kh,i

h+1. The following lemma is useful.

Lemma D.4. For any j ∈ [K], we have
∑K

k=1
1
ňk
h

∑ňk
h

i=1 1{j = ℓ̌kh,i} ≤ 1 + 1
H .

Proof. Fix an episode j. Note that
∑ňk

h
i=1 1{j = ℓ̌kh,i} = 1 if and only if (sjh, a

j
h, b

j
h) = (skh, a

k
h, b

k
h) and (j, h) falls in the

previous stage that (k, h) falls in with respect to (skh, a
k
h, b

k
h, h). Define K = {k ∈ [K] :

∑ňk
h

i=1 1{j = ℓ̌kh,i} = 1}. Then

14
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every element k ∈ K has the same value of ňkh, i.e., there exists an integer Nj > 0 such that ňkh = Nj for all k ∈ K. By the

definition of stages, |K| ≤ (1 + 1
H )Nj . Therefore, for any j, we have

∑K
k=1

1
ňk
h

∑ňk
h

i=1 1{j = ℓ̌kh,i} ≤ (1 + 1
H ).

By Lemma D.4, we have

K∑
k=1

1

ňkh

ňk
h∑

i=1

∆
ℓ̌kh,i

h+1 =
K∑

k=1

1

ňkh

K∑
j=1

∆j
h+1

ňk
h∑

i=1

1{j = ℓ̌kh,i}

=
K∑
j=1

∆j
h+1

K∑
k=1

1

ňkh

ňk
h∑

i=1

1{j = ℓ̌kh,i}

≤ (1 +
1

H
)

K∑
k=1

∆k
h+1. (15)

Combining (13), (14) and (15), we have

K∑
k=1

∆k
h ≤ SABH2 + (1 +

1

H
)

K∑
k=1

∆k
h+1 +

K∑
k=1

Λk
h+1.

Iterating over h = H,H − 1, . . . , 1 gives

K∑
k=1

∆k
1 ≤ O

(
SABH3 +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ζkh +

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1

)
.

By Azuma’s inequality, it holds that with probability at least 1− Tδ,

K∑
k=1

∆k
1 ≤ O

(
SABH3 +

√
H2Tι+

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1

)
. (16)

Step IV: We bound
∑H

h=1

∑K
k=1(1 +

1
H )h−1Λk

h+1 in the following lemma.

Lemma D.5 (Restatement of Lemma 4.5). With probability at least 1−O(H2T 4)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1 = O
(√

SABH2Tι+H
√
Tι log T + S2(AB)

3
2H8ι

3
2T

1
4

)
.

The proof of Lemma D.5 is provided in Appendix G.

Final step: We show the value difference induced by the certified policies is bounded, as summarized in the next lemma.

Lemma D.6 (Restatement of Lemma 4.6). Conditioned on the successful event of Lemma D.1, let (µout, νout) be the output
policy induced by the certified policy algorithm (Algorithm 2). Then we have

V †,νout

1 (s1)− V µout,†
1 (s1) ≤

1

K

K∑
k=1

(V
k

1 − V
k
1)(s1).

The proof of Lemma D.6 is provided in Appendix H.

Combining (16), Lemma D.5 and Lemma D.6, and taking the union bound over all probability events, we conclude that with
probability at least 1−O(H2T 4)δ, it holds that

V †,νout

1 (s1)− V µout,†
1 (s1) ≤

1

K
O
(√

SABH2Tι+H
√
Tι log T + S2(AB)

3
2H8ι

3
2T

1
4

)
, (17)

which gives the desired result.
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E. Proof of Lemma D.1 (Step I)
The proof is by induction on k. We establish the inequalities for the optimistic action-value and value functions in step i,
and the inequalities for the pessimistic counterparts in step ii.

Step i: We establish the inequality for the optimistic action-value and value functions in the following.

It is clear that the conclusion holds for the based case with k = 1. For k ≥ 2, assume Q∗
h(s, a, b) ≤ Q

u

h(s, a, b) and
V ∗
h (s) ≤ V

u

h(s) for any (s, a, h) ∈ S × A × [H] and u ∈ [1, k]. Fix tuple (s, a, b, h). We next show that the conclusion
holds for k + 1.

First, we show the inequality with respect to the action-value function. If Qh(s, a, b), V h(s) are not updated in the k-th
episode, then

Q∗
h(s, a, b) ≤ Q

k

h(s, a, b) = Q
k+1

h (s, a, b),

V ∗
h (s) ≤ V

k

h(s) = V
k+1

h (s).

Otherwise, we have

Q
k+1

h (s, a, b)← min

{
rh(s, a, b) +

v̌

ň
+ γ, rh(s, a, b) +

µref

n
+
µ̌

ň
+ β,Q

k

h(s, a, b)

}
.

Besides the last term, there are two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1− δ it holds that

Q
k+1

h (s, a, b) = rh(s, a, b) +
v̌

ň
+ γ

= rh(s, a, b) +
1

ň

ň∑
i=1

V
ℓ̌i
h+1(s

ℓ̌i
h+1) + 2

√
H2

ň
ι

≥ rh(s, a, b) +
1

ň

ň∑
i=1

V ∗
h+1(s

ℓ̌i
h+1) + 2

√
H2

ň
ι (18)

≥ rh(s, a, b) + (PhV
∗
h+1)(s, a, b) (19)

= Q∗
h(s, a, b),

where (18) follows from the induction hypothesis V
u

h+1(s) ≥ V ∗(s) for all u ∈ [k], and (19) follows from Azuma-
Hoeffding’s inequality.

For the second case, we have

Q
k+1

h (s, a, b) = rh(s, a, b) +
µref

n
+
µ̌

ň
+ β

= rh(s, a, b) +
1

n

n∑
i=1

V
ref,ℓi
h+1 (sℓih+1) +

1

ň

ň∑
i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)
(sℓ̌ih+1) + β

= rh(s, a, b) +

(
Ph

(
1

n

n∑
i=1

V
ref,ℓi
h+1

))
(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)))
(s, a, b)

+ χ1 + χ2 + β

≥ rh(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

V
ℓ̌i
h+1

))
(s, a, b) + χ1 + χ2 + β (20)

≥ rh(s, a, b) +
(
PhV

∗
h+1

)
(s, a, b) + χ1 + χ2 + β (21)

= Q
∗
h(s, a, b) + χ1 + χ2 + β,
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where

χ1(k, h) =
1

n

n∑
i=1

(
V

ref,ℓi
h (sℓih+1)−

(
PhV

ref,ℓi
h+1

)
(s, a, b)

)
,

W
ℓ

h+1 = V
ℓ

h+1 − V
ref,ℓ

h+1

χ2(k, h) =
1

ň

ň∑
i=1

(
W

ℓ̌i
h+1(s

ℓ̌i
h+1)−

(
PhW

ℓ̌i
h+1

)
(s, a, b)

)
.

Here, (20) follows from the fact that V
ref,u

h+1 (s) is non-increasing in u (since V
ref

h (s) for a pair (s, h) can only be updated
once and the updated value is obviously smaller than the initial value H), and (21) follows from the the induction hypothesis
V

k

h+1(s) ≥ V ∗
h+1(s).

By Lemma I.2 with ϵ = 1
T 2 , with probability at least 1− 2(H2T 3 + 1)δ it holds

|χ1(k, h)| ≤ 2

√∑n
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

n2
+

2
√
ι

Tn
+

2Hι

n
, (22)

|χ2(k, h)| ≤ 2

√∑ň
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

ň2
+

2
√
ι

T ň
+

2Hι

ň
. (23)

Lemma E.1. With probability at least 1− 2δ, it holds that

n∑
i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) ≤ nνref + 3H2

√
nι. (24)

Proof: Note that

n∑
i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) =

n∑
i=1

(
Ps,a,b,h(V

ref,ℓi
h+1 )2 − (Ps,a,b,hV

ref,ℓi
h+1 )2

)

=
n∑

i=1

(V
ref,ℓi
h+1 (sℓih+1))

2 − 1

n

(
n∑

i=1

V
ref,ℓi
h+1 (sℓih+1)

)2

+ χ3 + χ4 + χ5

= nνref + χ3 + χ4 + χ5, (25)

where

χ3 =

n∑
i=1

(
(Ps,a,b,h(V

ref,ℓi
h+1 )2 − (V

ref,ℓi
h+1 (sℓih+1))

2
)
,

χ4 =
1

n

(
n∑

i=1

V
ref,ℓi
h+1 (sℓih+1)

)2

− 1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

,

χ5 =
1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

−
n∑

i=1

(Ps,a,b,hV
ref,ℓi
h+1 )2.

By Azuma’s inequality, with probability at least 1− δ it holds that |χ3| ≤ H2
√
2nι.

By Azuma’s inequality, with probability at least 1− δ, it holds that

|χ4| =
1

n

∣∣∣∣∣∣
(

n∑
i=1

V
ref,ℓi
h+1 (sℓih+1)

)2

−

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2
∣∣∣∣∣∣

17
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≤ 2H

∣∣∣∣∣
n∑

i=1

V
ref,ℓi
h+1 (sℓih+1)−

n∑
i=1

Ps,a,b,hV
ref,ℓi
h+1

∣∣∣∣∣
≤ 2H2

√
2nι.

Moreover, χ5 ≤ 0 by Cauchy-Schwartz inequality. Plugging the above inequalities gives the desired result. ■

Combining (22) with (24) gives

|χ1| ≤ 2

√
νref ι

n
+

5Hι
3
4

n
3
4

+
2
√
ι

Tn
+

2Hι

n
. (26)

Similar to Lemma E.1, we have the following lemma.
Lemma E.2. With probability at least 1− 2δ, it holds that

ň∑
i=1

V(Ps,a,b,h,W
ref,ℓi
h+1 ) ≤ ňν̌ + 3H2

√
ňι. (27)

Combining (23) with (27) gives

|χ2| ≤ 2

√
ν̌ι

ň
+

5Hι
3
4

ň
3
4

+
2
√
ι

T ň
+

2Hι

ň
. (28)

Finally, combining (26) and (28), noting the definition of β with (c1, c2, c3) = (2, 2, 5), and taking a union bound over all
probability events, we have that with probability at least 1− 2(H2T 3 + 3)δ, it holds that

β ≥ |χ1|+ |χ2|. (29)

which means Q
k+1

h (s, a, b) ≥ Q∗
h(s, a, b).

Combining the two cases and taking the union bound over all steps, we have with probability at least 1− T (2H2T 3 + 7)δ,
it holds that Q

k+1

h (s, a, b) ≥ Q∗
h(s, a, b).

Next, we show that V ∗
h (s) ≤ V

k+1

h (s). Note that

V
k+1

h (s) = (Dπk+1
h

Q
k+1

h )(s)

≥ sup
µ∈∆A

(Dµ×νk+1
h

Q
k+1

h )(s) (30)

≥ sup
µ∈∆A

(Dµ×νk+1
h

Q∗
h)(s) (31)

≥ sup
µ∈∆A

inf
ν∈∆B

(Dµ×νQ
∗
h)(s)

= V ∗
h (s),

where (30) follows from the property of the CCE oracle, (31) follows because Q
k+1

h (s, a, b) ≥ Q∗
h(s, a, b), which has just

been proved.

Step ii: We show the inequalities for the pessimistic action-value function and value function below.

The two inequalities with respect to pessimistic (action-)value functions clearly hold for k = 1. For k ≥ 2, suppose
Q∗

h(s, a, b) ≥ Q
u

h
(s, a, b) and V ∗

h (s) ≥ V
u
h(s) for any (s, a, h) ∈ S ×A× [H] and u ∈ [1, k]. Now we fix tuple (s, a, b, h)

and we only need to consider the case when Q
h
(s, a, b) and V h(s) are updated.

We show Q∗
h(s, a, b) ≥ Q

k+1

h
(s, a, b). Note that

Qk+1

h
(s, a, b)← min

{
rh(s, a, b) +

v̌

ň
+ γ, rh(s, a, b) +

µref

n
+
µ̌

ň
+ β,Qk

h
(s, a, b)

}
,

18
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and we have two non-trivial cases.

For the first case, by Hoeffding’s inequality, with probability at least 1− δ, it holds that

Qk+1

h
(s, a, b) = rh(s, a, b) +

v̌

ň
− γ

= rh(s, a, b) +
1

ň

ň∑
i=1

V ℓ̌i
h+1(s

ℓ̌i
h+1)− 2

√
H2

ň
ι

≤ rh(s, a, b) +
1

ň

ň∑
i=1

V ∗
h+1(s

ℓ̌i
h+1)− 2

√
H2

ň
ι (32)

≤ rh(s, a, b) + (PhV
∗
h+1)(s, a, b) (33)

= Q∗
h(s, a, b),

where (32) follows from the induction hypothesis V u
h+1(s) ≥ V ∗(s) for all u ∈ [k], and (33) follows from Azuma-

Hoeffding’s inequality.

For the second case, we have

Qk+1

h
(s, a, b) = rh(s, a, b) +

µref

n
+
µ̌

ň
− β

= rh(s, a, b) +
1

n

n∑
i=1

V ref,ℓi
h+1 (sℓih+1) +

1

ň

ň∑
i=1

(
V ℓ̌i

h+1 − V
ref,ℓ̌i
h+1

)
(sℓ̌ih+1)− β

= rh(s, a, b) +

(
Ph

(
1

n

n∑
i=1

V ref,ℓi
h+1

))
(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

(
V ℓ̌i

h+1 − V
ref,ℓ̌i
h+1

)))
(s, a, b)

+ χ
1
+ χ

2
− β

≤ rh(s, a, b) +

(
Ph

(
1

ň

ň∑
i=1

V ℓ̌i
h+1

))
(s, a, b) + χ

1
+ χ

2
− β (34)

≤ rh(s, a, b) +
(
PhV

∗
h+1

)
(s, a, b) + χ

1
+ χ

2
− β (35)

= Q∗
h
(s, a, b) + χ

1
+ χ

2
− β,

where

χ
1
(k, h) =

1

n

n∑
i=1

(
V ref,ℓi

h (sℓih+1)−
(
PhV

ref,ℓi
h+1

)
(s, a, b)

)
,

W ℓ
h+1 = V ℓ

h+1 − V
ref,ℓ
h+1

χ
2
(k, h) =

1

ň

ň∑
i=1

(
W ℓ̌i

h+1(s
ℓ̌i
h+1)−

(
PhW

ℓ̌i
h+1

)
(s, a, b)

)
.

Here, (34) follows from the fact that V ref,u
h+1 (s) is non-decreasing in u (since V ref

h (s) for a pair (s, h) can only be updated
once and the updated value is obviously greater than the initial value 0), and (35) follows from the induction hypothesis
V k

h+1(s) ≤ V ∗
h+1(s).

By Lemma I.2 with ϵ = 1
T 2 , with probability at least 1− 2(H2T 3 + 1)δ it holds

|χ
1
(k, h)| ≤ 2

√∑n
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

n2
+

2
√
ι

Tn
+

2Hι

n
, (36)

|χ
2
(k, h)| ≤ 2

√∑ň
i=1 V(Ps,a,b,h, V

ref,ℓi
h+1 )ι

ň2
+

2
√
ι

T ň
+

2Hι

ň
. (37)
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Lemma E.3. With probability at least 1− 2δ, it holds that

n∑
i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) ≤ nνref + 3H2

√
nι (38)

Proof: Note that
n∑

i=1

V(Ps,a,b,h, V
ref,ℓi
h+1 ) =

n∑
i=1

(
Ps,a,b,h(V

ref,ℓi
h+1 )2 − (Ps,a,b,hV

ref,ℓi
h+1 )2

)

=
n∑

i=1

(V ref,ℓi
h+1 (sℓih+1))

2 − 1

n

(
n∑

i=1

V ref,ℓi
h+1 (sℓih+1)

)2

+ χ
3
+ χ

4
+ χ

5

= nνref + χ
3
+ χ

4
+ χ

5
, (39)

where

χ
3
=

n∑
i=1

(
(Ps,a,b,h(V

ref,ℓi
h+1 )2 − (V ref,ℓi

h+1 (sℓih+1))
2
)
,

χ
4
=

1

n

(
n∑

i=1

V ref,ℓi
h+1 (sℓih+1)

)2

− 1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

,

χ
5
=

1

n

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2

−
n∑

i=1

(Ps,a,b,hV
ref,ℓi
h+1 )2.

By Azuma’s inequality, with probability at least 1− δ it holds that |χ
3
| ≤ H2

√
2nι.

By Azuma’s inequality, with probability at least 1− δ, it holds that

|χ
4
| = 1

n

∣∣∣∣∣∣
(

n∑
i=1

V ref,ℓi
h+1 (sℓih+1)

)2

−

(
n∑

i=1

Ps,a,b,hV
ref,ℓi
h+1

)2
∣∣∣∣∣∣

≤ 2H

∣∣∣∣∣
n∑

i=1

V ref,ℓi
h+1 (sℓih+1)−

n∑
i=1

Ps,a,b,hV
ref,ℓi
h+1

∣∣∣∣∣
≤ 2H2

√
2nι.

Moreover, χ5 ≤ 0 by Cauchy-Schwartz inequality. Substituting the above inequalities gives the desired result. ■

Combining (36) with (38) gives

|χ
1
| ≤ 2

√
νref ι

n
+

5Hι
3
4

n
3
4

+
2
√
ι

Tn
+

2Hι

n
. (40)

Similar to Lemma E.3, we have the following lemma.

Lemma E.4. With probability at least 1− 2δ, it holds that

ň∑
i=1

V(Ps,a,b,h,W
ref,ℓi
h+1 ) ≤ ňν̌ + 3H2

√
ňι. (41)

Combining (37) with (41) gives

|χ
2
| ≤ 2

√
ν̌ι

ň
+

5Hι
3
4

ň
3
4

+
2
√
ι

T ň
+

2Hι

ň
. (42)
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Finally, combining (40) and (42), noting the definition of β with (c1, c2, c3) = (2, 2, 5), and taking a union bound over all
probability events, we have that with probability at least 1− 2(H2T 3 + 3)δ, it holds that

β ≥ |χ
1
|+ |χ

2
|. (43)

which gives Qk+1

h
(s, a, b) ≤ Q∗

h(s, a, b).

Combining the two cases and taking union bound over all steps, we have with probability at least 1− T (2H2T 3 + 7)δ, it
holds that Qk+1

h
(s, a, b) ≤ Q∗

h(s, a, b).

We show that V ∗
h (s) ≤ V

k
h(s). Note that

V k+1
h (s) = (Dπk+1

h
Qk+1

h
)(s)

≤ inf
ν∈∆B

(Dµk+1
h ×νQ

k+1

h
)(s) (44)

≤ inf
ν∈∆B

(Dµk+1
h ×νQ

∗
h)(s) (45)

≤ inf
ν∈∆B

sup
µ∈∆A

(Dµ×νQ
∗
h)(s)

= V ∗
h (s),

where (44) follows from the property of the CCE oracle, (45) follows because Qk+1

h
(s, a, b) ≤ Q∗

h
(s, a, b), which has just

been proved.

The entire proof is completed by combining step i and step ii, and taking a union bound over all probability events.

F. Proof of Lemma D.2 (Step II)
First, by Hoeffing’s inequality, for any (k, h) ∈ [K]× [H], with probability at least 1− 2Tδ it holds that∣∣∣∣∣∣ 1ňkh

ňk
h∑

i=1

V
ℓ̌i
h+1(s

ℓ̌i
h+1)−Q

k

h(s
k
h, a

k
h, b

k
h)

∣∣∣∣∣∣ ≤ γkh,
∣∣∣∣∣∣ 1ňkh

ňk
h∑

i=1

V ℓ̌i
h+1(s

ℓ̌i
h+1)−Q

k

h
(skh, a

k
h, b

k
h)

∣∣∣∣∣∣ ≤ γkh.
The entire proof will be conditioned on the above event.

For any weight sequence {wk}Kk=1 where wk ≥ 0, let ∥w∥∞ = max1≤k≤K wk and ∥w∥1 =
∑K

k=1 wk.

By the update rule of the action-value function, we have

∆k
h = (V

k

h − V
k
h)(s

k
h)

= ζkh + (Q
k

h −Q
k

h
)(skh, a

k
h, b

k
h)

≤ ζkh + 2γkh +
1

ňkh

ňk
h∑

i=1

(V
ℓ̌i
h+1 − V

ℓ̌i
h+1)(s

ℓ̌i
h+1) +H1{nkh = 0}

= ζkh + 2γkh +
1

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 +H1{nkh = 0}. (46)

Note that

K∑
k=1

wk

ňkh

ňk
h∑

i=1

∆ℓ̌i
h+1 =

K∑
j=1

wj

ňjh

ňj
h∑

i=1

∆
ℓ̌jh,i

h+1

=
K∑
j=1

wj

ňjh

K∑
k=1

∆k
h+1

ňj
h∑

i=1

1{k = ℓ̌jh,i}
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=
K∑

k=1

∆k
h+1

K∑
j=1

wj

ňjh

ňj
h∑

i=1

1{k = ℓ̌jh,i}

=
K∑

k=1

w̃k∆
k
h+1, (47)

where we define w̃k =
∑K

j=1
wj

ňj
h

∑ňj
h

i=1 1{k = ℓ̌jh,i}. Similar to the proof of Lemma D.4, we have

∥w̃∥∞ = max
k

w̃k ≤ (1 +
1

H
) ∥w∥∞ . (48)

Moreover,

∥w̃∥1 =
K∑

k=1

K∑
j=1

wj

ňjh

ňj
h∑

i=1

1{k = ℓ̌jh,i} =
K∑
j=1

wj

ňjh

K∑
k=1

ňj
h∑

i=1

1{k = ℓ̌jh,i} =
K∑
j=1

wj = ∥w∥1 . (49)

Combining (46), (47), (48) and (49), we have

K∑
k=1

wk∆
k
h ≤

K∑
k=1

wkζ
k
h + 2

K∑
k=1

wkγ
k
h +

K∑
k=1

w̃k∆
k
h+1 +H

K∑
k=1

wk1{nkh = 0}

≤
K∑

k=1

wkζ
k
h + 2

K∑
k=1

wkγ
k
h +

K∑
k=1

w̃k∆
k
h+1 + SABH2 ∥w∥∞ . (50)

By Azuma-Hoeffding’s inequality, with probability at least 1−Hδ, it holds that for any h ∈ [H]

K∑
k=1

wkζ
k
h ≤
√
2Hι

√√√√ K∑
k=1

wk ≤
√
2Hι ∥w∥∞ . (51)

We now bound the second term of (50). Define Ξ(s, a, b, j) =
∑K

k=1 wk1{ňkh = ej , (s
k
h, a

k
h, b

k
h) = (s, a, b)}

and Ξ(s, a, b) =
∑

j≥1 Ξ(s, a, b, j). Similar to (48) and (49), we then have Ξ(s, a, b, j) ≤ ∥w∥∞ (1 + 1
H )ej and∑

s,a Ξ(s, a, b) =
∑

k wk. Then

∑
k

wkγ
k
h =

∑
k

2
√
H2ιwk

√
1

ňkh

= 2
√
H2ι

∑
s,a,b,j

√
1

ej

K∑
j=1

wk1{ňkh = ej , (s
k
h, a

k
h, b

k
h) = (s, a, b)}

= 2
√
H2ι

∑
s,a,b

∑
j≥1

Ξ(s, a, b, j)

√
1

ej
.

Fix (s, a, b) and consider
∑

j≥1 Ξ(s, a, b, j)
√

1
ej

. Note that
√

1
ej

is decreasing in j. Given
∑

j≥1 Ξ(s, a, b, j) = Ξ(s, a, b)

is fixed, rearranging the inequality gives

∑
j≥1

Ξ(s, a, b, j)

√
1

ej
≤
∑
j≥1

√
1

ej
∥w∥∞ (1 +

1

H
)ej1

{
j−1∑
i=1

∥w∥∞ (1 +
1

H
)ei ≤ Ξ(s, a, b)

}

= ∥w∥∞ (1 +
1

H
)
∑
j

√
ej1

{
j−1∑
i=1

∥w∥∞ ei ≤ Ξ(s, a, b)

}
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≤ 10(1 +
1

H
)
√
∥w∥∞HΞ(s, a, b).

Therefore, by Cauchy-Schwartz inequality, we have

K∑
k=1

wkγ
k
h ≤ 2

√
H2ι

∑
s,a,b

10(1 +
1

H
)
√
∥w∥∞H

√
Ξ(s, a, b)

≤ 20
√
H2ι(1 +

1

H
)
√
∥w∥∞ SABH ∥w∥1. (52)

Combining (50), (51) and (52), we have

K∑
k=1

wk∆
k
h ≤

K∑
k=1

w̃k∆
k
h+1 + (

√
2Hι+ SABH2) ∥w∥∞ + 80H

√
∥w∥∞ SABH ∥w∥1 ι. (53)

We expand the expression by iterating over step h+ 1, · · · , H ,

K∑
k=1

wk∆
k
h ≤ (1 +

1

H
)H ·H ·

(
(
√
2Hι+ SABH2) ∥w∥∞ + 80H

√
∥w∥∞ SABH ∥w∥1 ι

)
≤ 6(H2ι+ SABH3) ∥w∥∞ + 240H

5
2

√
∥w∥∞ SAB ∥w∥1 ι.

Now we set wk = 1{∆k
h ≥ ϵ}, and obtain

K∑
k=1

1{∆k
h ≥ ϵ}∆k

h ≤ 6(H2ι+ SABH3) ∥w∥∞ + 240H
5
2

√√√√∥w∥∞ SABι
K∑

k=1

1{∆k
h ≥ ϵ}.

Note that ∥w∥∞ is either 0 or 1. If ∥w∥∞ = 0, the claim obviously holds. In the case when ∥w∥∞ = 1, solving the

following quadratic equation (ignoring coefficients) with respect to
(∑K

k=1 1{∆k
h ≥ ϵ}

)1/2
gives the desired result

ϵ

(
K∑

k=1

1{∆k
h ≥ ϵ}

)
−H5/2(SABι)1/2

(
K∑

k=1

1{∆k
h ≥ ϵ}

)1/2

− (SABH3 +H2ι) ≤ 0.

G. Proof of Lemma D.5 (Step IV)
The entire proof is conditioned on the successful events of Lemma D.1 and Lemma D.2, which occur with probability at
least 1−O(H2T 4)δ.

By the definition of Λk
h+1, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1Λk

h+1 =
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1ψk

h+1︸ ︷︷ ︸
T1

+
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1︸ ︷︷ ︸

T2

+ 2
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h︸ ︷︷ ︸
T3

+2
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1βk

h︸ ︷︷ ︸
T4

. (54)

We next bound each of the above four terms in one subsection, and summarize the final result in Appendix G.5.
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G.1. Bound T1

Recall the definition λkh(s) = 1
{
nkh(s) < N0

}
. Since ψ is always non-negative, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ψk

h+1

≤ 3
H∑

h=1

K∑
k=1

ψk
h+1

= 3
H∑

h=1

K∑
k=1

Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

(
V

ref,ℓi
h+1 − V

ref,ℓi
h+1

)
−
(
V

REF

h+1 − V
REF
h+1

)
≤ 3H

H∑
h=1

K∑
k=1

Pskh,a
k
h,b

k
h,h

 1

nkh

nk
h∑

i=1

λℓih+1


≤ 3H

H∑
h=1

K∑
j=1

K∑
k=1

Pskh,a
k
h,b

k
h,h
λjh+1

1

nkh

nk
h∑

i=1

1{j = ℓkh,i}

≤ 3H
H∑

h=1

K∑
j=1

Psjh,a
j
h,b

j
h,h
λjh+1

K∑
k=1

1

nkh

nk
h∑

i=1

1{j = ℓkh,i} (55)

≤ 6(log T + 1)H
H∑

h=1

K∑
k=1

Pskh,a
k
h,b

k
h,h
λkh+1 (56)

≤ 6(log T + 1)H

(
H∑

h=1

K∑
k=1

λkh+1(s
k
h+1) +

H∑
h=1

K∑
k=1

(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)
λkh+1

)

≤ 6(log T + 1)H

(
HSN0 +

H∑
h=1

K∑
k=1

(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)
λkh+1

)
≤ 6(log T + 1)H

(
HSN0 + 2

√
Tι
)
, (57)

where (55) follows from the fact that 1
nk
h

∑nk
h

i=1 1{j = ℓkh,i} ̸= 0 only if (skh, a
k
h, b

k
h) = (sjh, a

j
h, b

j
h), (56) follows because

K∑
k=1

1

nkh

nk
h∑

i=1

1{j = ℓkh,i} ≤
∑

z:j≤
∑z−1

i=1 ei≤T

ez∑z−1
i=1 ei

≤ 2(log T + 1),

and (57) holds with probability at least 1− δ by Azuma’s inequality.

To conclude, with probability at least 1− δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ψk

h+1 ≤ O(log T ) · (H2SN0 +H
√
Tι). (58)

G.2. Term T2

We first derive
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

=
H∑

h=1

K∑
k=1

1

ňkh

ňk
h∑

i=1

(
Pskh,a

k
h,b

k
h,h
− 1

s
ℓ̌i
h+1

)(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)
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=
H∑

h=1

K∑
k=1

K∑
j=1

(1 +
1

H
)h−1 1

ňkh

ňk
h∑

i=1

(
Pskh,a

k
h,b

k
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
1{ℓ̌kh,i = j}.

Note that ℓ̌kh,i = j if and only if (skh, a
k
h, b

k
h) = (sjh, a

j
h, b

j
h). Therefore,

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

≤
H∑

h=1

K∑
j=1

(1 +
1

H
)h−1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

) K∑
k=1

1

ňkh

ňk
h∑

i=1

1{ℓ̌kh,i = j}

=
H∑

h=1

K∑
k=1

θjh+1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
,

where in the last equation we define θjh+1 = (1 + 1
H )h−1

∑K
k=1

1
ňk
h

∑ňk
h

i=1 1{ℓ̌kh,i = j}.

For (j, h) ∈ [K] × [H], let xjh be the number of elements in current state with respect to (sjh, a
j
h, b

j
h, h) and θ̃jh+1 :=

(1 + 1
H )h−1 ⌊(1+ 1

H )xj
h⌋

xj
h

≤ 3. Define K = {(k, h) : θkh+1 = θ̃kh+1}. Note that if k is before the second last stage of the tuple

(skh, a
k
h, b

k
h, h), then we have that θkh+1 = θ̃kh+1 and (k, h) ∈ K. Given (k, h) ∈ K, skh+1 follows the transition Pskh,a

k
h,b

k
h,h

.

Let K⊥
h (s, a, b) = {k : (skh, a

k
h, b

k
h) = (s, a, b),where k is in the second last stage of (s, a, b, h)}. Note that for different

j, k, if (skh, a
k
h, b

k
h) = (sjh, a

j
h, b

j
h) and j, k are in the same stage of (skh, a

k
h, b

k
h, h), then θkh+1 = θjh+1 and θ̃kh+1 = θ̃jh+1.

Denote θh+1 and θ̃h+1 as θh+1(s, a, b) and θ̃h+1(s, a, b) respectively for some k ∈ K⊥
h (s, a, b).

We have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1

=
∑
(k,h)

θ̃kh+1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
+
∑
(k,h)

(θkh+1 − θ̃kh+1)
(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
=
∑
(k,h)

θ̃kh+1

(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
+

∑
(k,h)∈K

(θkh+1 − θ̃kh+1)
(
Psjh,a

j
h,b

j
h,h
− 1sjh+1

)(
V

j

h+1 − V
j
h+1

)
. (59)

Since θ̃kh+1 is independent of skh+1, by Azuma’s inequality, with probability at least 1− δ, it holds that∑
(k,h)

θ̃kh+1

(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
≤ 6
√
TH2ι. (60)

Moreover, we have∑
(k,h)∈K

(θkh+1 − θ̃kh+1)
(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
=
∑

s,a,b,h

∑
(k,h)∈K

1{(skh, akh, bkh) = (s, a, b)}(θkh+1 − θ̃kh+1)
(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)

25



Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

=
∑

s,a,b,h

(θh+1(s, a, b)− θ̃h+1(s, a))
∑

(k,h)∈K⊥
h (s,a)

(θkh+1 − θ̃kh+1)
(
Pskh,a

k
h,b

k
h,h
− 1skh+1

)(
V

k

h+1 − V
k
h+1

)
≤
∑

s,a,b,h

O(H)
√
|K⊥

h (s, a, b)|ι (61)

≤
∑

s,a,b,h

O(H)

√
ŇK+1

h (s, a, b)ι

≤ O(H)

√
SABHι

∑
s,a,b,h

ŇK+1
h (s, a, b) (62)

≤ O(H)
√
SABHι(T/H), (63)

where (61) holds with probability at least 1− Tδ by Azuma’s inequality and a union bound over all steps in K, (62) follows
from Cauchy-Schwartz inequality, and (63) follows from the fact that the length of the last two stages for each (s, a, b, h)
tuple is only O(1/H) fraction of the total number of visits.

Combining (59), (60) and (63), we obtain that with probability at least 1− (T + 1)δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1ξkh+1 ≤ O(

√
H2SABTι). (64)

G.3. Term T3

Note that
H∑

h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h

≤ 3

H∑
h=1

K∑
k=1

c1
√
νref,kh

nkh
ι+ c2

√
ν̌
k
h

ňkh
ι+ c3

(
Hι

nkh
+
Hι

ňkh
+

Hι
3
4

(nkh)
3
4

+
Hι

3
4

(ňkh)
3
4

)
≤ O

 H∑
h=1

K∑
k=1

√νref,kh

nkh
ι+

√
ν̌
k
h

ňkh
ι

+O(SABH3ι log T + (SABι)
3
4H

5
2T

1
4 ), (65)

where (65) follows from Lemma I.3 with α = 3
4 and α = 1.

Step i: We bound
∑H

h=1

∑K
k=1

√
νref,k
h

nk
h

ι. We begin with the following technical lemmas.

Lemma G.1. With probability at least 1− 2Tδ, it holds that for all s, a, b, h, k,

Q
k

h(s, a, b) ≤ Qπk

h (s, a, b) + (H − h)
(
β +

HSN0

ňkh

)
,

Qk

h
(s, a, b) ≥ Qπk

h (s, a, b)− (H − h)
(
β +

HSN0

ňkh

)
,

V
k

h(s) ≤ V πk

h (s) + (H − h)
(
β +

HSN0

ňkh

)
,

V k
h(s) ≥ V πk

h (s)− (H − h)
(
β +

HSN0

ňkh

)
.

The proof is provided in Appendix G.3.1.
Lemma G.2. Conditioned on the successful event of Lemma G.1, with probability at least 1− 4δ, it holds that

νref,kh − V(Pskh,a
k
h,b

k
h,h
, V πk

h+1) ≤ 4Hβ +
12H2β + 18H3SN0

nkh
+ 20H2

√
ι

nkh
.
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The proof is provided in Appendix G.3.2.
Lemma G.3 (Lemma C.5 in [Jin et al., 2018]). With probability at least 1− δ, it holds that

V(Pskh,a
k
h,b

k
h,h
, V πk

h+1) ≤ O(HT +H3ι).

Combining Lemma G.2, Lemma G.3 and Lemma I.3 (see Appendix I), we have

H∑
h=1

K∑
k=1

√
νref,kh

nkh
ι

≤
H∑

h=1

K∑
k=1

√
V(Pskh,a

k
h,b

k
h,h
, V πk

h+1)

nkh
ι

+
H∑

h=1

K∑
k=1

√√√√(4Hβ

nkh
+

12H2β + 18H3SN0

(nkh)
2

+ 20H2
ι
1
2

(nkh)
3
2

)
ι

≤ O

 ∑
s,a,b,h

√
NK+1

h (s, a, b)V(Ps,a,b,h, V πk

h+1)ι


+O

 ∑
s,a,b,h

√
NK+1

h (s, a, b)Hβι+ (S
3
2ABH

5
2N

1
2
0 + SABH2β

1
2 )ι

1
2 log T + (SABι)

3
4H

7
4T

1
4


≤ O

(√
SABH2Tι+

√
SABH2βTι+ (S

3
2ABH

5
2N

1
2
0 + SABH2β

1
2 )ι

1
2 log T + (SABι)

3
4H

7
4T

1
4

)
. (66)

Step ii: We bound
∑H

h=1

∑K
k=1

√
ν̌
k
h

ňk
h

ι.

By Lemma D.1, Lemma D.2 and Corollary D.3, we have

ν̌
k
h ≤

1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)2

(sℓ̌ih+1)

≤ 1

ňkh

ňk
h∑

i=1

(
V

ℓ̌i
h+1 − V

ℓ̌i
h+1

)2

(sℓ̌ih+1) +
1

ňkh

ňk
h∑

i=1

(
V

ref,ℓ̌i
h+1 − V

ref,ℓ̌i
h+1

)2

(sℓ̌ih+1)

≤ 2

ňkh
H2SN0 + 2β2.

Combining the above inequality with Lemma I.3, we obtain

H∑
h=1

K∑
k=1

√
ν̌
k
hι

ňkh
≤ O

(√
SABH3β2Tι+ SABH3

√
SN0ι log T

)
. (67)

Combining (65), (66) and (67), we obtain that with probability at least 1−O(T )δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h ≤ O
(√
SABH2Tι+

√
SABH2βTι+

√
SABH3β2Tι

+ S
3
2ABH3N

1
2
0 ι log T + SABH2β

1
2 ι

1
2 log T + (SABι)

3
4H

5
2T

1
4

)
. (68)

G.3.1. PROOF OF LEMMA G.1

Fix an episode k. The proof is based on induction over h = H,H − 1, . . . , 1. Note first that the claim clearly holds for
h = H . Assume the inequalities hold at step h+ 1.
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By the update rule of the action-value function, we have

Q
k

h(s, a, b) ≤ rh(s, a, b) +
1

ň

ň∑
i=1

V
ℓ̌i
h+1(s

ℓ̌i
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ň∑
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V
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ℓ̌i
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k
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ℓ̌i
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)
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k
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ň

ň∑
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ℓ̌i
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ℓ̌i
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(69)
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πk
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ň

)
+

1

ň

ň∑
i=1

(
V

ℓ̌i
h+1(s
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k

h+1(s
ℓ̌i
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(70)

≤ Qπk

h + (H − h+ 1)

(
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ň
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+

1

ň
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ℓ̌i
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ℓ̌i
h+1)

)
(71)

≤ Qπk

h (s, a, b) + (H − h+ 1)

(
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HSN0

ň

)
+

1

ň

ň∑
i=1

(Hλℓ̌ih+1 + β)

≤ Qπk
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(
β +

HSN0

ň

)
, (72)

where (69) holds with probability at least 1− δ by Azuma’s inequality, (70) follows from the induction hypothesis, and (71)
follows from Lemma D.1.

Moreover, by the update rule of the value function, we have

V
k

h(s) = E(a,b)∼πk
Q

k

h(s, a, b)

≤ E(a,b)∼πk
Qπk

h (s, a, b) + (H − h)
(
β +

HSN0

ň

)
≤ V πk

h (s) + (H − h)
(
β +

HSN0

ň

)
.

The other direction for the pessimistic (action-)value function can be proved similarly. Finally, taking the union bound over
all steps gives the desired result.

G.3.2. PROOF OF LEMMA G.2

We first provide bound on νref,kh − V(Pskh,a
k
h,b

k
h,h
, V

ref,ℓi
h+1 ). Recall (25) that

νref − 1

nkh
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,
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χ8 =
1

nkh
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By Azuma’s inequality, with probability at least 1− 2δ, it holds that
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√
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Moreover, we have
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where (73) follows from the fact that V
ref,k

h+1 ≥ V
REF

h+1 for any k, h, and (74) holds with probability at least 1− δ by Azuma’s
inequality.

We have
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Therefore,
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ňkh

)
+H

(
β +

HSN0
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≤ 4H

nkh

nk
h∑

i=1

Pskh,a
k
h,b

k
h,h

(V
ref,ℓi
h+1 − V ∗

h+1) +
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k
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k
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(
V πk
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(77)
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(V
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h+1)(s
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(V πk
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+
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)
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(78)

≤
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)
+
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)
+
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(79)

= 4Hβ +
12H2β

nkh
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√
ι

nkh
+

6H2SN0

nkh
+

12H3SN0

nkhň
k
h

≤ 4Hβ +
12H2β + 18H3SN0

nkh
+ 20H2

√
ι

nkh
,

where (76) follows from (75), (77) follows from Lemma D.1 and Lemma G.1, (78) holds with probability at least 1− 2δ by
Azuma’s inequality, and (79) follows from Lemma D.1 and Lemma G.1.

G.4. Term T4

The proof is similar to that for the term
∑H

h=1

∑K
k=1(1 +

1
H )h−1β

k

h. In the following, we will present the key steps, and
provide the proof whenever necessary.

By Lemma I.3, we have

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h

≤ 3

H∑
h=1

K∑
k=1

c1
√
νref,kh

nkh
ι+ c2

√
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k
h

ňkh
ι+ c3

(
Hι

nkh
+
Hι

ňkh
+

Hι
3
4

(nkh)
3
4

+
Hι

3
4

(ňkh)
3
4

)
≤ O

 H∑
h=1

K∑
k=1

√νref,kh

nkh
ι+

√
ν̌
k
h

ňkh
ι

+O(SABH3ι log T + (SABι)
3
4H

5
2T

1
4 ). (80)

Step i: Bound term
∑H

h=1

∑K
k=1

√
νref,k
h

nk
h

ι.

Lemma G.4. Conditioned on the successful event of Lemma G.1, with probability at least 1− 4δ, it holds that

νref,kh − V(Pskh,a
k
h,b

k
h,h
, V πk

h+1) ≤ 4Hβ +
12H2β + 18H3SN0

nkh
+ 20H2

√
ι

nkh
.

The proof is provided in Appendix G.4.1.

Combining Lemma G.3, Lemma G.4 and Lemma I.3, we have

H∑
h=1

K∑
k=1

√
νref,kh

nkh
ι
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≤ O
(√

SABH2Tι+
√
SABH2βTι+ (S

3
2ABH

5
2N

1
2
0 + SABH2β

1
2 )ι

1
2 log T + (SABι)

3
4H

7
4T

1
4

)
. (81)

Step ii: Bound
∑H

h=1

∑K
k=1

√
ν̌k
h

ňk
h

ι. By Lemma D.1, Lemma D.2 and Corollary D.3, we have

ν̌kh ≤
1

ňkh

ňk
h∑

i=1

(
V ℓ̌i

h+1 − V
ref,ℓ̌i
h+1

)2
(sℓ̌ih+1)
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ňkh

ňk
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(
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ňkh

ňk
h∑

i=1

(
V
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h+1 − V

ref,ℓ̌i
h+1

)2

(sℓ̌ih+1)

≤ 2

ňkh
H2SN0 + 2β2.

Combining the above inequality with Lemma I.3, we obtain

H∑
h=1

K∑
k=1

√
ν̌khι

ňkh
≤ O

(√
SABH3β2Tι+ SABH3

√
SN0ι log T

)
. (82)

Therefore, combining (80), (81) and (82) gives that with probability at least 1−O(T )δ, it holds that

H∑
h=1

K∑
k=1

(1 +
1

H
)h−1β

k

h ≤ O
(√
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2
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1
2 ι
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5
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)
. (83)

G.4.1. PROOF OF LEMMA G.4

Recall (39) that

νref − 1

nkh

nk
h∑

i=1

V(Pskh,a
k
h,b

k
h,h
, V ref,ℓi

h+1 ) = − 1

nkh
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+ χ

7
+ χ

8
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where
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=
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k
h,h
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By Azuma’s inequality, with probability at least 1− 2δ, it holds that

|χ
6
| ≤ H2

√
2nkhι, |χ

7
| ≤ 2H2

√
2nkhι.

The term χ
8

is bounded slightly differently from χ8 as follows:

−χ
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=
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≤
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where (84) follows from the fact that V ref,k
h+1 ≤ V REF

h+1 for any k, h, and (85) holds with probability at least 1 − δ due to
Azuma’s inequality. Therefore,

νref,kh − 1

nkh
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nkh
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By a similar argument as in Appendix G.3.2, we can obtain the desired result
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ňkh

)
32



Improving Sample Efficiency of Model-Free Algorithms for Zero-Sum Markov Games

+
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nkh
,

where (87) follows from (86), (88) follows from Lemma D.1 and Lemma G.1, (89) holds with probability at least 1− 2δ by
Azuma’s inequality, and (90) follows from Lemma D.1 and Lemma G.1.

G.5. Summarizing Terms T1-T4 Together

Recall that β = 1√
H

, and N0 = c4SABH5ι
β2 = O(SABH6ι). By combining (54), (58), (64), (68) and (83), we conclude that

with probability at least 1−O(H2T 4)δ, the following bound holds:
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1
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3
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)
. (91)

H. Proof of Lemma D.6 (Final Step)
Our construction of the correlated policy is inspired by the “certified policies” in [Bai et al., 2020].

Based on the trajectory of the distributions {πk
h}h∈[H],k∈[K] specified by Algorithm 3, we construct a correlated policy

π̂k
h = µ̂k

h × ν̂kh for each (h, k) ∈ [H] × [K]. The max-player’s policies µ̂k
h and µ̂k

h+1[s, a, b] are defined in Algorithm 4,
and the min-player’s policies can be defined similarly. Further, we define the final output policy πout in Algorithm 2,
which first uniformly samples an index k from [K], and then proceeds with π̂k

1 . We remark that based on Algorithm 4
and Algorithm 5, the policies µ̂k

h, ν̂
k
h , µ̂

k
h+1[s, a, b], ν̂

k
h+1[s, a, b] do not depend on the history before step h. Therefore, the

action-value functions are well-defined for the corresponding steps.

Algorithm 4 Certified policy µ̂k
h (max-player version)

1: Initialize k′ ← k.
2: for step h′ ← h, h+ 1, . . . ,H do
3: Receive sh′ , and take action ah′ ∼ µk′

h (·|sh′).
4: Observe bh′ , and sample j ← Unif([Nk′

h′ (sh′ , ah′ , bh′)])

5: Set k′ ← ℓ̌k
′

h′,j .
6: end for

In order to show Lemma D.6, it suffices to show the following inequalities

Q
k

h(s, a, b) ≥ Q
†,ν̂k

h+1[s,a,b]

h (s, a, b), V
k

h(s) ≥ V
†,ν̂k

h

h (s),

Qk

h
(s, a, b) ≥ Qµ̂k

h+1[s,a,b],†
h (s, a, b), V k

h(s) ≥ V
µ̂k
h,†

h (s).
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Algorithm 5 Policy µ̂k
h+1[s, a, b] (max-player version)

1: Sample j ← Unif([Nk
h (s, a, b)])

2: k′ ← ℓ̌kh,j .
3: for step h′ ← h+ 1, . . . ,H do
4: Receive sh′ , and take action ah′ ∼ µk′

h (·|sh′).
5: Observe bh′ , and sample j ← Unif([Nk′

h′ (sh′ , ah′ , bh′)])

6: Set k′ ← ℓ̌k
′

h′,j .
7: end for

due to the definition of output policy in Algorithm 2.

Consider a fixed tuple (s, a, b, h, k). Note that the result clearly holds for any s, a, b that is in its first stage, due to our
initialization of Q

k

h(s, a, b), Q
k

h
(s, a, b) and V

k

h(s), V
k
h(s). In the following, we focus on the case where those values have

been updated at least once before the k-th episode.

Our proof is based on induction on k. Note first that the claim clearly holds for k = 1. For k ≥ 2, assume the claim holds
for all u ∈ [1 : k − 1]. If those values are not updated in the k-th episode, then the claim clearly holds.In the following, we
consider the case where those values has just been updated.

(I) We show Q
k

h(s, a, b) ≥ Q
†,ν̂k

h+1[s,a,b]

h (s, a, b).

Recall the update rule of the optimistic action-value function

Qh(s, a, b)← min

{
rh(s, a, b) +

v̌

ň
+ γ, rh(s, a, b) +

µref

n
+
µ̌

ň
+ β,Q

k

h(s, a, b)

}
.

Besides the last term, there are two non-trivial cases and we will show both of the first two terms are lower-bounded by

Q
†,ν̂k

h+1[s,a,b]

h (s, a, b).

For the first case, we have

Q
k

h(s, a, b) = rh(s, a, b) +
1

ňkh

ňk
h∑

i=1

V
ℓ̌i
h+1(s
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V
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h+1

h+1 (sℓ̌ih+1) + γkh (92)

≥ 1
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ňk
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Q
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h (s, a, b) (93)

≥ sup
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ňk
h∑
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Q
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ℓ̌i
h+1

h (s, a, b) (94)

≥ Q†,ν̂k
h+1[s,a,b]

h (s, a, b), (95)

where (92) follows from the induction hypothesis, (93) follows from the Azuma’s inequality, (94) follows from the fact
that taking the maximum out of the summation does not increase the sum, and (95) follows from the construction of policy
ν̂kh+1[s, a, b] (obtained via the min-player’s counterpart of Algorithm 5).

For the second case,

Q
k

h(s, a, b) = rh(s, a, b) +
1
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V
ref,ℓi
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≥ rh(s, a, b) + Ph
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Q
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≥ Q†,ν̂k
h+1[s,a,b]

h (s, a, b), (98)

where

χ1(k, h) =
1

n
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(
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PhV
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PhW
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Here, (96) follows from the concentration result β ≥ χ1 +χ2 (see (29)), (97) follows from the fact that taking the maximum
out of summation does not increase the sum, and (98) follows from the construction of policy ν̂kh+1[s, a, b] (obtained via the
min-player’s counterpart of Algorithm 5).

(II) We show V
k+1

h (s) ≥ V †,ν̂k
h

h (s).

Note that

V
k

h(s) = (Dπk
h
Q

k

h)(s) ≥ sup
µ
(Dµ×νk

h
Q

k

h)(s)

≥ sup
µ

Ea∼µ,b∼νk
h
Q

†,ν̂k
h+1[s,a,b]

h (s, a, b) = V
†,ν̌k

h

h (s),

where the first inequality follows from the property of the CCE oracle and the second inequality follows from the induction
hypothesis.

The other side of bounds can be proved similarly for Qk

h
(s, a, b), Q

µ̌k
h+1[s,a,b],†

h (s, a, b), V k
h(s), and Q

µ̌k
h+1,†

h (s).

I. Supporting Lemmas
Lemma I.1 (Azuma-Hoefdding’s inequality). Suppose {Xk}k≥0 is a martingale and |Xk −Xk−1| ≤ ck almost surely.
Then, for all positive integers N and all positive ϵ, it holds that

P[|XN −X0| ≥ ϵ] ≤ 2 exp

(
− ϵ2

2
∑N

k=1 c
2
k

)
.

Lemma I.2 (Lemma 10 in [Zhang et al., 2020b]). Let {Mn}n≥0 be martingale such that M0 = 0 and |Mn −Mn−1| ≤ c
for some c > 0 and any n ≥ 1. Let Varn =

∑n
k=1 E[(Mk −Mk−1)

2|Fk−1] for n ≥ 0, where Fk = σ(M1,M2, . . . ,Mk).
Then for any positive integer n, and any ϵ, p > 0, we have

P
[
|Mn| ≥ 2

√
Varn log

1

p
+ 2

√
ϵ log

1

p
+ 2c log

1

p

]
≤
(
2nc2

ϵ
+ 2

)
p.
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Lemma I.3 (Variant of Lemma 11 in [Zhang et al., 2020b]). For any α ∈ (0, 1) and non-negative weights
{wh(s, a)}s∈S,a∈A,b∈B,h∈[H], it holds that

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

(nkh)
α

≤ 2α

1− α
∑

s,a,b,h

wh(s, a, b)(N
K+1
h (s, a, b))1−α,

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

(ňkh)
α

≤ 22αHα

1− α
∑

s,a,b,h

wh(s, a, b)(N
K+1
h (s, a, b))1−α.

In the case α = 1, it holds that

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

nkh
≤ 2

∑
s,a,b,h

wh(s, a, b) log(N
K+1
h (s, a, b)),

K∑
k=1

H∑
h=1

wh(s
k
h, a

k
h, b

k
h)

ňkh
≤ 4H

∑
s,a,b,h

wh(s, a, b) log(N
K+1
h (s, a, b)).
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