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There are currently no large-scale assessments to measure algebraic conceptual understanding,
particularly among college students with no more than an elementary algebra, or Algebra I,
background. Here we describe the creation and validation of the Algebra Concept Inventory
(ACI), which was developed for use with college students enrolled in elementary algebra or
above. We describe how items on the ACI were administered and tested for validity and
reliability. Analysis suggests that the instrument has reasonable validity and reliability. These
results could inform researchers and practitioners on what conceptual understanding in algebra
might look like and how it might be assessed.
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Algebra can be a barrier to degree completion in college (e.g., Adelman, 2006; Bailey et al.,
2010), and difficulties that K-12 students have experienced with algebra content has been
extensively documented (e.g., Booth, 1988, 2011; Kieran, 1992). Understanding of key algebraic
ideas has also been shown to impact college students in higher-level college courses like
Calculus (e.g., Frank & Thompson, 2021; Stewart & Reeder, 2017). Algebra courses in college
tend to focus on procedures disconnected from sense-making (e.g., Goldrick-Rab, 2007; Hodara,
2011), which may be one reason why college students in higher-level courses still struggle with
algebraic ideas. It is important to connect procedural fluency with conceptual understanding
(Kilpatrick, et al., 2001), and therefore, there is a critical need to better understand and assess
students’ algebra conceptions. However, there are not yet any widely-validated assessments to
measure college students’ algebraic conceptual understanding. Existing large-scale validated
algebra assessments exist for K-12 students but focus primarily on computational skills, or only
on a narrow subdomain of conceptions. Measures of computational skill are not necessarily valid
measures of conceptual understanding, because 1) learners may have robust conceptual
understanding, but make computational mistakes, particularly when they have math or test
anxiety (e.g., Ashcraft, 2002; Ashcraft & Kirk, 2001; Moran, 2016; Namkung et al., 2019); or 2)
learners may have little conceptual understanding, yet produce “correct” answers for the
mathematically invalid reasons (e.g., Aly, 2022; Erlwanger, 1973; Leatham & Winiecke, 2014).

This paper describes how we have developed and tested college students’ conceptual
understanding in algebra using the Algebra Concept Inventory (ACI), in an attempt to address
this gap. This process is ongoing.
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Literature Review

While various algebraic proficiency instruments have been created, currently there are no
widely-validated instruments that focus on a broad range of topics in algebraic conceptual
understanding. TIMMS and NAEP (Mullis, et al., 2020; National Center for Education Statistics,
2023) have been widely validated nationally/internationally but have a broader focus and only
contain a limited number of questions aimed at assessing algebraic conceptual understanding.
There are also state-wide assessments that contain some items intended to measure conceptual
understanding but that primarily focus on computational skills (e.g., Massachusetts Department
of Elementary & Secondary Education, 2023; New York State Education Department, 2023).
There are a few instruments that have been designed to measure a few specific algebra concepts
in elementary or middle school (Ralston, et al., 2018; Russell, 2019; Russell et al., 2009), but
these have not been tested with high school or college students, and the different population of
interest means that the narrow range of conceptions do not include more complex or abstract
conceptions that are critical to secondary and postsecondary mathematics.

Some concept inventories have been developed to assess algebraic conceptions relevant to
calculus and other higher-level courses (Carlson, Ochrtman, & Engelke, 2010; Carlson, Madison,
& West, 2010); however these instruments are not appropriate for students in lower-level courses
such as elementary and intermediate algebra (or Algebra I/II in high school), and their focus is
not on some of the core conceptions from these lower-level courses that may be particularly
critical to algebraic reasoning. Further, while many of these have been tested extensively
qualitatively, they have not to date published results of larger-scale psychometric validation.
Recently, researchers Hyland and O’Shea (2022) in Ireland generated a 31-item algebra concept
inventory for college students, but includes algebraic objects that would not be familiar to
students in a first-year algebra course and has not yet been tested through cognitive interviews or
psychometric analysis. Thus, an algebra concept inventory that has been validated in large-scale
data collection is sorely needed, particularly one that is appropriate for administration to students
at all levels of prior algebra experience, and not just those in higher-level college courses.

Measuring Conceptual Understanding: Sample Item
There is insufficient space to describe the design of the ACI here, but it focuses on assessing
specific conceptions of algebraic concepts (e.g., equivalence, syntactic meaning, algebraic
properties, variable, function, covariation), rather than other skills like computation. For
example, this item was designed to assess whether students can identify the existing syntactic
structure of an algebraic expression vs. a procedure one might use to simplify the expression:

Sample item: Which of the following best describes the meaning of the expression
(2x + 3)(5x + 1) as it is currently written?
a. 2x is being multiplied separately by 5x and by 1, 3 is being multiplied separately by 5x
and by 1, and these four results are being added together.
b. The result of adding 2x and 3 is being multiplied by the result of adding 5x and 1.

Method
A total of 402 unique items were developed and tested for the ACI. Items were administered
to 7,658 students enrolled in all mathematics classes at the algebra level or above at a large urban
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community college campus. Data were collected from spring 2019 to fall 2022, in eight waves.
Data collection followed a common-item random groups equating design, selected because it
allows investigation of a large item pool while allowing simultaneous calibration across multiple
forms (de Ayala, 2009; Kolen & Brennan, 2004). For the first wave of testing, the last ten items
on each form were anchor items, all taken from the National Assessment of Educational Progress
(NAEP) grade 8 item bank. For subsequent waves, six anchor items were included: three were
NAEP items and three were ACI items that had performed well during the first wave. Each form
had roughly 25 items. Forms were randomly administered within each class to ensure no
association between test form and class or instructor.

Just before answering inventory items, students were invited to participate in cognitive
interviews, and paid for their time. In total, 135 interviews were conducted. Each was roughly 1-
1.5 hours long and structured as a “retrospective think-aloud” protocol (Sudman et al., 1996),
which has been shown to reveal comparable information to concurrent think-aloud protocols, and
is also less likely to have negative effects on task performance (e.g., van den Haak et al., 2003).
Interviews were analyzed qualitatively to assess construct validity of the items, but there is
insufficient space to report that analysis here, where we focus on quantitative results.

To prepare data for item-response theory analysis, ACI items were dichotomized into
correct/incorrect using the response key. Then, two-parameter logistic models (Birnbaum, 1968)
were estimated using marginal maximum likelihood (MML) on each wave, using the R package
“mirt” (Chalmers, 2012). Because of the planned missingness data collection design, the default
number of model iterations was extended to allow for all models to converge successfully. Based
on these models, we examined item parameters (difficulty and discrimination) and item
information functions for item analysis, and computed person estimates using expected a
posteriori (EAP) factor scores for convergent validity analysis. Reliability estimates were
computed directly from IRT models. To investigate model fit, we computed item fit statistics,
using the PV-Q1 statistic (and significance test) (Chalmers & Ng, 2017) for each item.

To investigate measurement invariance, we used multi-group IRT models and a model
comparison approach. Because of the planned missingness design (and sometimes small
observed subsample sizes), we used a piecewise DIF detection strategy (Thissen et al., 1993) that
starts from a fully constrained model and drops constraints for each item separately. More
specifically, with respect to each examinee characteristic considered, we first estimated a fully
constrained model (where, across groups, item discriminations, difficulties, latent mean and
variance are constrained to equality). Then, for each item, the same model was estimated, but
with unconstrained item parameters (difficulty and discrimination), thus “temporarily”” allowing
differential item functioning (DIF) for the item. A likelihood ratio test was then performed to test
if the model allowing DIF for the item had a better fit than the constrained model. This resulted
in a series of tests of the significance of differential item functioning for all items. Because it is a
multiple testing strategy, p-values were subsequently Bonferroni-corrected.

Validating the ACI
IRT Models: Item Discrimination and Difficulty
Some items were dropped when issues were found during analysis (e.g., typographical errors;
multiple correct answers); however, none were dropped due to unsatisfactory IRT parameters.
2PL IRT models were run on all waves (Table 1). We considered 1PL and 3PL models but chose
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2PL models because they allow discrimination to vary by item and are more useable for item
selection than 3PL models because item coefficients are more interpretable, and less prone to
calibration errors due to their lower number of item parameters (San Martin et al., 2015).

Table 1. 2PL. Model Coefficients Across all Eight Waves

Discrimination parameter Proportion of Unique Items

>=0.65 “moderate” 63.4%
>=1.35 “high” 31.3%
>=1.7 “very high” 18.5%

Difficulty parameter Theta

mean 0.00

Ist quartile -0.85

median -0.14

3rd quartile 0.63

Total number of unique items in 2PL models 399

“ Characterizations of categories of discrimination parameters are taken from Baker (2001).

Discrimination is called as “moderate” if > 0.65, “high” if > 1.35 and *“very high” if > 1.7
(Baker, 2001). Based on these classifications, 63.4% of all items (253) have moderate or better,
and roughly one-third have high or very high discrimination. Table 2 reports item fit for each
wave using Chalmers’ PV — Q; test, chosen because it performs better than other fit statistics at
controlling Type I error (Chalmers & Ng, 2017). Only 5% of items were significantly misfitted
by the 2PL models where @ = 0.05, which suggests that this is likely due to random variation.

Table 2. Measures of Item Misfit in 2PL IRT Models

Number of Items With Percentage of Items With
Significant Misfit® Total Number of Items Significant Misfit

Wave 1 1 33 3.0%
Wave 2 5 125 4.0%
Wave 3 4 66 6.1%
Wave 4 3 72 4.2%
Wave 5 8 100 8.0%
Wave 6 5 99 5.1%
Wave 7 2 39 5.1%
Wave 8 0 31 0.0%

Total 28 565 5.0%

¢ Significant at the @ = 0.05 level
b Misfit as measured by Chalmers’ Chi-Square Statistic (PV — Q;)

Reliability
In IRT, Theta represents the number of standard deviations above or below the mean an

125



individual is on the measure of the latent trait, and the reliability of an item varies based on
values of Theta. Peak information values for all waves (Table 3) have excellent reliability (R >
0.9). For various waves excellent reliability (R > 0.9) was obtained for values ranging from 68 =
[—2.7,2.2] (assuming a standard normal distribution of knowledge, this corresponds to
satisfactory reliability for ~98% of examinees). In addition, shorter tests can be constructed from
a subset of items with the highest discrimination: for example, the 10 items with the best
discrimination from Wave 1 yields a test with excellent reliability (R = 0.9) for 8 = [—2,1].

Table 3. Reliability (R) for each wave of item administration of the ACI

: Number of
rg;;gi;;a Info max” R fﬁ;;rclfo theta w/ theta w/ Items
R>0.8 R =09 Tested
Wave 1 -1.4 26.4 0.96 [-2.8, 0.4] [-2.4,-0.2] 33
Wave 2 -1.5 37.8 0.97 [-3.0, 2.1] [-2.7,0.9] 104
Wave 3 -0.6 243 0.96 [-2.3, 1.5] [-1.8,0.7] 57
Wave 4 -0.6 30.1 0.97 [-2.4,2.1] [-1.9, 1.2] 69
Wave 5 0.7 177.1 0.99 [-2.3,2.9] [-1.4, 1.8] 100
Wave 6 -0.6 105.3 0.99 [-1.7, 3.0] [-1.0,2.2] 99
Wave 7 -0.1 21.7 0.95 [-1.5, 1.8] [-1.0, 1.1] 39
Wave 8 0.1 11.3 0.91 [-0.9, 1.2] [-1.2,0.3] 31

4 info = 2PL IRT model information function
bd max = information function maximum for 2PL model

1
e o —_——
R=1 Info

¢ expected reliability in Normal(0,1) ability distribution for 2PL models

ACI Score and Prior Algebra Course Completion: Convergent Validity

To explore convergent validity of the ACI, we explored the relationship between scores on
the ACI (using theta scores from the 2PL model) to various measures of mathematics course
level. For example, correlation of students’ ACI scores with the level of algebra courses they
have already successfully completed would be evidence of convergent validity. First, we
consider linear regression models with level of student’s course (where “level” is defined based
on the algebra course pre-requisite requirements of the course) as the independent variable, and
ACI score as the dependent variable (Table 4).

Table 4. Regression of course level as predictor of ACI scores (2PL model)

Course Level? Coefficient SE p-value (vs. low) p-value (vs. high)
mid 0.347 0.014 0.000 0.000
high 0.700 0.017 0.000

“reference group: low; low = no algebra course prerequisite; mid = elementary algebra course
prerequisite; high = intermediate algebra course prerequisite; score is Theta score
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Differences in scores in Table 4 are significant for all pairwise comparisons (p < 0.001).
Scores for students in each level course were on average 0.35 SD higher than in the next lower
course (“mid” vs. “low”; “high” vs. “mid”), providing strong evidence of convergent validity.
We also considered a more nuanced course sequence based on prerequisites (see Table 5).

Table S. Sequence level of various courses in the sample, based on their prerequisites

Various elementary algebra courses

Various 100-level courses with an elementary algebra pre-requisite
Intermediate algebra courses

College algebra

Discrete math with intermediate algebra prerequisite

Precalculus

Math for elementary teachers with intermediate algebra prerequisite

Math for elementary teachers, second term

Advanced statistics with precalculus prerequisite

Introduction to geometry with precalculus prerequisite

Calculus 1
Calculus 11
Calculus III

Differential equations with Calculus II prerequisite
Linear algebra with Calculus II prerequisite

Abstract algebra

1

N OO AN, BB BRWWLWLDNDDND

Table 6 shows that linear regression models using this more refined set of levels again

reveals a strong correlation between level and ACI score.

Table 6. Regression of more nuanced course level in predicting ACI score,

Course Position

p-value p-value p-value p-value p-value p-value

in Sequence ocf. SE (vs.1) (vs.2) (vs.3) (vs.4) (vs.5) (vs.6)
2 0.504  0.017  0.000
3 0.623  0.031  0.000  0.000
4 0.888  0.023  0.000 0.000  0.000
5 1.059 0.033 0.000 0.000 0.000 0.000
6 1.232  0.041 0.000 0.000 0.000 0.000 0.000
7 1.661 0.226 0.000 0.000 0.000 0.001 0.008 0.060

The largest gain (one half SD) in Table 6 is between sequence level 1 and 2, or between
students who have/have not satisfied an elementary algebra (Algebra I) prerequisite. This
provides further evidence of convergent validity, because the ACI has been designed to focus on
concepts relevant to elementary algebra specifically.

Differential Item Functioning: Measurement Invariance and Discriminant Validity

Difterential item functioning (DIF) related to irrelevant examinee characteristics was also
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analyzed, one subtype of discriminant validity (or whether the ACI measures algebraic
conceptual understanding and not something else, like English literacy). Each wave was tested
for DIF in three separate 2PL models: one each for race/ethnicity, gender, and English-language-
learner status. There was no consistent evidence of DIF. Only a negligible number of items had
significant DIF for @ = 0.05 (using a Bonferroni correction for the number of tests within each
model and not across models, which is overly conservative). Many items were tested in multiple
waves, and none of these had significant DIF in more than one wave, suggesting that significant
DIF in one wave but not others for these items was likely due to random variation.

Limitations

The City University of New York (CUNY') where this instrument was tested is not nationally
representative, and thus further research is needed to validate the ACI with less-diverse
populations in other geographic areas; this research is currently underway with a larger national
sample in the US. However, CUNY’s diversity does make it a excellent candidate for initial
validation with marginalized students who have often been neglected in large-scale assessment
validation. Further studies are also necessary to determine whether the ACI may be valid for use
with high school or middle school students. Finally, the ACI has been developed to make
diagnostic judgements about groups of students—not high-stakes decisions for individuals—and
thus the ACI should not be used alone to make high-stakes individual decisions such as course
placement or successful course completion.

Discussion and Conclusion

This study suggests that algebraic conceptual understanding, as conceptualized by the items
included on the ACI, is a measurable domain with reasonable validity and reliability. Item
response theory (IRT) analysis resulting in large proportion of items with good discrimination
parameter estimates, suggesting the ACI can differentiate well between students of various
levels. Reliability was also excellent for all waves of data collection, and based on reliability
estimates, even shorter tests can be constructed with excellent reliability for a range of levels of
algebraic conceptual understanding. Students with higher algebra course prerequisites had higher
ACI scores, providing evidence of convergent validity. Finally, differential item functioning
analysis demonstrated that the ACI had satisfactory measurement invariance with respect to
race/ethnicity, gender, or English-language-learner status.

However, the ACI in its current form is a summative measurement that provides only one
measure of students’ algebraic conceptual understanding. Future research could expand this to a
more nuanced diagnostic tool that provides more detailed information about the specific
conceptions that students have and what kinds of instructional approaches may be best adapted to
students with different conceptions about various algebraic concepts. This work is ongoing, and
includes in-depth qualitative analysis of student thinking to more comprehensively map out in
more detail the various conceptions that students may hold of algebra concepts; work with
cognitive diagnostic models on ACI items might provide more nuanced diagnostic information;
exploration of different curricular materials and teaching techniques and the subsequent impact
on the development of algebraic conceptual understanding. Our hope is that the ACI will also
enable other practitioners and researchers to explore these questions as well.
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