
Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 
the forty-sixth annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. Kent State University. 

122 
 

THE ALGEBRA CONCEPT INVENTORY FOR COLLEGE STUDENTS 

Claire Wladis  
City University of New York 

cwladis@bmcc.cuny.edu 

Kathleen Offenholley 
City University of New 

York 
koffenholley@bmcc.cuny.ed

u 

Benjamin Sencindiver 
University of Texas, San 

Antonio 
benjamin.sencindiver@utsa.e

du 

Nils Myszkowski 
Pace University 

nmyszkowski@pace.edu 

Geillan D. Aly 
City University of New York 

galy@bmcc.cuny.edu 

There are currently no large-scale assessments to measure algebraic conceptual understanding, 
particularly among college students with no more than an elementary algebra, or Algebra I, 
background.  Here we describe the creation and validation of the Algebra Concept Inventory 
(ACI), which was developed for use with college students enrolled in elementary algebra or 
above.  We describe how items on the ACI were administered and tested for validity and 
reliability. Analysis suggests that the instrument has reasonable validity and reliability.  These 
results could inform researchers and practitioners on what conceptual understanding in algebra 
might look like and how it might be assessed.  

Keywords: Algebra and Algebraic Thinking; Equity, Inclusion, and Diversity; Undergraduate 
Education; Research Methods 

Algebra can be a barrier to degree completion in college (e.g., Adelman, 2006; Bailey et al., 
2010), and difficulties that K-12 students have experienced with algebra content has been 
extensively documented (e.g., Booth, 1988, 2011; Kieran, 1992). Understanding of key algebraic 
ideas has also been shown to impact college students in higher-level college courses like 
Calculus (e.g., Frank & Thompson, 2021; Stewart & Reeder, 2017).  Algebra courses in college 
tend to focus on procedures disconnected from sense-making (e.g., Goldrick-Rab, 2007; Hodara, 
2011), which may be one reason why college students in higher-level courses still struggle with 
algebraic ideas. It is important to connect procedural fluency with conceptual understanding 
(Kilpatrick, et al., 2001), and therefore, there is a critical need to better understand and assess 
students’ algebra conceptions. However, there are not yet any widely-validated assessments to 
measure college students’ algebraic conceptual understanding. Existing large-scale validated 
algebra assessments exist for K-12 students but focus primarily on computational skills, or only 
on a narrow subdomain of conceptions. Measures of computational skill are not necessarily valid 
measures of conceptual understanding, because 1) learners may have robust conceptual 
understanding, but make computational mistakes, particularly when they have math or test 
anxiety (e.g., Ashcraft, 2002; Ashcraft & Kirk, 2001; Moran, 2016; Namkung et al., 2019); or 2) 
learners may have little conceptual understanding, yet produce “correct” answers for the 
mathematically invalid reasons (e.g., Aly, 2022; Erlwanger, 1973; Leatham & Winiecke, 2014).  

This paper describes how we have developed and tested college students’ conceptual 
understanding in algebra using the Algebra Concept Inventory (ACI), in an attempt to address 
this gap. This process is ongoing.  
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Literature Review 
While various algebraic proficiency instruments have been created, currently there are no 

widely-validated instruments that focus on a broad range of topics in algebraic conceptual 
understanding. TIMMS and NAEP (Mullis, et al., 2020; National Center for Education Statistics, 
2023) have been widely validated nationally/internationally but have a broader focus and only 
contain a limited number of questions aimed at assessing algebraic conceptual understanding. 
There are also state-wide assessments that contain some items intended to measure conceptual 
understanding but that primarily focus on computational skills (e.g., Massachusetts Department 
of Elementary & Secondary Education, 2023; New York State Education Department, 2023). 
There are a few instruments that have been designed to measure a few specific algebra concepts 
in elementary or middle school (Ralston, et al., 2018; Russell, 2019; Russell et al., 2009), but 
these have not been tested with high school or college students, and the different population of 
interest means that the narrow range of conceptions do not include more complex or abstract 
conceptions that are critical to secondary and postsecondary mathematics.   

Some concept inventories have been developed to assess algebraic conceptions relevant to 
calculus and other higher-level courses (Carlson, Oehrtman, & Engelke, 2010; Carlson, Madison, 
& West, 2010); however these instruments are not appropriate for students in lower-level courses 
such as elementary and intermediate algebra (or Algebra I/II in high school), and their focus is 
not on some of the core conceptions from these lower-level courses that may be particularly 
critical to algebraic reasoning.  Further, while many of these have been tested extensively 
qualitatively, they have not to date published results of larger-scale psychometric validation.  
Recently, researchers Hyland and O’Shea (2022) in Ireland generated a 31-item algebra concept 
inventory for college students, but includes algebraic objects that would not be familiar to 
students in a first-year algebra course and has not yet been tested through cognitive interviews or 
psychometric analysis.  Thus, an algebra concept inventory that has been validated in large-scale 
data collection is sorely needed, particularly one that is appropriate for administration to students 
at all levels of prior algebra experience, and not just those in higher-level college courses.   

Measuring Conceptual Understanding: Sample Item 
There is insufficient space to describe the design of the ACI here, but it focuses on assessing 

specific conceptions of algebraic concepts (e.g., equivalence, syntactic meaning, algebraic 
properties, variable, function, covariation), rather than other skills like computation.  For 
example, this item was designed to assess whether students can identify the existing syntactic 
structure of an algebraic expression vs. a procedure one might use to simplify the expression: 

Sample item:  Which of the following best describes the meaning of the expression  
      (2𝑥 + 3)(5𝑥 + 1) as it is currently written? 

a. 2𝑥 is being multiplied separately by 5𝑥 and by 1, 3 is being multiplied separately by 5𝑥 
and by 1, and these four results are being added together. 

b. The result of adding 2𝑥 and 3 is being multiplied by the result of adding 5𝑥 and 1. 

Method 
A total of 402 unique items were developed and tested for the ACI. Items were administered 

to 7,658 students enrolled in all mathematics classes at the algebra level or above at a large urban 
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community college campus. Data were collected from spring 2019 to fall 2022, in eight waves. 
Data collection followed a common-item random groups equating design, selected because it 
allows investigation of a large item pool while allowing simultaneous calibration across multiple 
forms (de Ayala, 2009; Kolen & Brennan, 2004). For the first wave of testing, the last ten items 
on each form were anchor items, all taken from the National Assessment of Educational Progress 
(NAEP) grade 8 item bank. For subsequent waves, six anchor items were included: three were 
NAEP items and three were ACI items that had performed well during the first wave. Each form 
had roughly 25 items. Forms were randomly administered within each class to ensure no 
association between test form and class or instructor. 

Just before answering inventory items, students were invited to participate in cognitive 
interviews, and paid for their time. In total, 135 interviews were conducted. Each was roughly 1-
1.5 hours long and structured as a “retrospective think-aloud” protocol (Sudman et al., 1996), 
which has been shown to reveal comparable information to concurrent think-aloud protocols, and 
is also less likely to have negative effects on task performance (e.g., van den Haak et al., 2003). 
Interviews were analyzed qualitatively to assess construct validity of the items, but there is 
insufficient space to report that analysis here, where we focus on quantitative results.   

To prepare data for item-response theory analysis, ACI items were dichotomized into 
correct/incorrect using the response key. Then, two-parameter logistic models (Birnbaum, 1968) 
were estimated using marginal maximum likelihood (MML) on each wave, using the R package 
“mirt” (Chalmers, 2012). Because of the planned missingness data collection design, the default 
number of model iterations was extended to allow for all models to converge successfully. Based 
on these models, we examined item parameters (difficulty and discrimination) and item 
information functions for item analysis, and computed person estimates using expected a 
posteriori (EAP) factor scores for convergent validity analysis. Reliability estimates were 
computed directly from IRT models. To investigate model fit, we computed item fit statistics, 
using the PV-Q1 statistic (and significance test) (Chalmers & Ng, 2017) for each item.  

To investigate measurement invariance, we used multi-group IRT models and a model 
comparison approach. Because of the planned missingness design (and sometimes small 
observed subsample sizes), we used a piecewise DIF detection strategy (Thissen et al., 1993) that 
starts from a fully constrained model and drops constraints for each item separately. More 
specifically, with respect to each examinee characteristic considered, we first estimated a fully 
constrained model (where, across groups, item discriminations, difficulties, latent mean and 
variance are constrained to equality). Then, for each item, the same model was estimated, but 
with unconstrained item parameters (difficulty and discrimination), thus “temporarily” allowing 
differential item functioning (DIF) for the item. A likelihood ratio test was then performed to test 
if the model allowing DIF for the item had a better fit than the constrained model. This resulted 
in a series of tests of the significance of differential item functioning for all items. Because it is a 
multiple testing strategy, p-values were subsequently Bonferroni-corrected.  

Validating the ACI 
IRT Models: Item Discrimination and Difficulty 

Some items were dropped when issues were found during analysis (e.g., typographical errors; 
multiple correct answers); however, none were dropped due to unsatisfactory IRT parameters. 
2PL IRT models were run on all waves (Table 1). We considered 1PL and 3PL models but chose 
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2PL models because they allow discrimination to vary by item and are more useable for item 
selection than 3PL models because item coefficients are more interpretable, and less prone to 
calibration errors due to their lower number of item parameters (San Martin et al., 2015). 
 

Table 1. 2PL Model Coefficients Across all Eight Waves 
Discrimination parameter Proportion of Unique Items 

>=0.65 “moderate”a 63.4% 
>=1.35 “high” 31.3% 

>=1.7 “very high” 18.5% 
Difficulty parameter Theta 

mean 0.00 
1st quartile -0.85 

median -0.14 
3rd quartile 0.63 

Total number of unique items in 2PL models 399 
a Characterizations of categories of discrimination parameters are taken from Baker (2001).  
 

Discrimination is called as “moderate” if ≥ 0.65, “high” if ≥ 1.35 and “very high” if  ≥ 1.7 
(Baker, 2001). Based on these classifications, 63.4% of all items (253) have moderate or better, 
and roughly one-third have high or very high discrimination. Table 2 reports item fit for each 
wave using Chalmers’ 𝑃𝑉 − 𝑄1 test, chosen because it performs better than other fit statistics at 
controlling Type I error (Chalmers & Ng, 2017). Only 5% of items were significantly misfitted 
by the 2PL models where 𝛼 = 0.05, which suggests that this is likely due to random variation.  
 

Table 2. Measures of Item Misfit in 2PL IRT Models 

 
Number of Items With 

Significanta Misfitb Total Number of Items 
Percentage of Items With 

Significant Misfit 
Wave 1 1 33 3.0% 
Wave 2 5 125 4.0% 
Wave 3 4 66 6.1% 
Wave 4 3 72 4.2% 
Wave 5 8 100 8.0% 
Wave 6 5 99 5.1% 
Wave 7 2 39 5.1% 
Wave 8 0 31 0.0% 
Total 28 565 5.0% 

a Significant at the 𝛼 = 0.05 level 
b Misfit as measured by Chalmers’ Chi-Square Statistic (𝑃𝑉 − 𝑄1) 

 

Reliability 
In IRT, Theta represents the number of standard deviations above or below the mean an 
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individual is on the measure of the latent trait, and the reliability of an item varies based on 
values of Theta. Peak information values for all waves (Table 3) have excellent reliability (𝑅 ≥
0.9). For various waves excellent reliability (𝑅 ≥ 0.9) was obtained for values ranging from 𝜃 =
[−2.7,2.2] (assuming a standard normal distribution of knowledge, this corresponds to 
satisfactory reliability for ~98% of examinees). In addition, shorter tests can be constructed from 
a subset of items with the highest discrimination: for example, the 10 items with the best 
discrimination from Wave 1 yields a test with excellent reliability (𝑅 ≥ 0.9) for 𝜃 = [−2,1].   

 
Table 3. Reliability (R) for each wave of item administration of the ACI 

 

Theta at 
max infoa Info maxb R for info 

maxc theta w/  
𝑅 ≥ 0.8 

theta w/  
𝑅 ≥ 0.9 

Number of 
Items 
Tested 

Wave 1 -1.4 26.4 0.96 [-2.8, 0.4] [-2.4, -0.2] 33 
Wave 2 -1.5 37.8 0.97 [-3.0, 2.1] [-2.7, 0.9] 104 
Wave 3 -0.6 24.3 0.96 [-2.3, 1.5] [-1.8, 0.7] 57 
Wave 4 -0.6 30.1 0.97 [-2.4, 2.1] [-1.9, 1.2] 69 
Wave 5 0.7 177.1 0.99 [-2.3, 2.9] [-1.4, 1.8] 100 
Wave 6 -0.6 105.3 0.99 [-1.7, 3.0] [-1.0, 2.2] 99 
Wave 7 -0.1 21.7 0.95 [-1.5, 1.8] [-1.0, 1.1] 39 
Wave 8 0.1 11.3 0.91 [-0.9, 1.2] [-1.2, 0.3] 31 
a info = 2PL IRT model information function 
bd max = information function maximum for 2PL model 
e 𝑅 = 1 −

1

𝐼𝑛𝑓𝑜
 

c expected reliability in Normal(0,1) ability distribution for 2PL models 
 
ACI Score and Prior Algebra Course Completion: Convergent Validity 

To explore convergent validity of the ACI, we explored the relationship between scores on 
the ACI (using theta scores from the 2PL model) to various measures of mathematics course 
level. For example, correlation of students’ ACI scores with the level of algebra courses they 
have already successfully completed would be evidence of convergent validity. First, we 
consider linear regression models with level of student’s course (where “level” is defined based 
on the algebra course pre-requisite requirements of the course) as the independent variable, and 
ACI score as the dependent variable (Table 4).  
 

Table 4. Regression of course level as predictor of ACI scores (2PL model)  
Course Levela Coefficient SE p-value (vs. low) p-value (vs. high) 
mid 0.347 0.014 0.000 0.000 
high 0.700 0.017 0.000  
areference group: low; low = no algebra course prerequisite; mid = elementary algebra course 
prerequisite; high = intermediate algebra course prerequisite; score is Theta score 
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Differences in scores in Table 4 are significant for all pairwise comparisons (𝑝 < 0.001).  
Scores for students in each level course were on average 0.35 SD higher than in the next lower 
course (“mid” vs. “low”; “high” vs. “mid”),  providing strong evidence of convergent validity.  
We also considered a more nuanced course sequence based on prerequisites (see Table 5).  

 
Table 5. Sequence level of various courses in the sample, based on their prerequisites 

Various elementary algebra courses 1 
Various 100-level courses with an elementary algebra pre-requisite 2 
Intermediate algebra courses 2 
College algebra 2 
Discrete math with intermediate algebra prerequisite 3 
Precalculus 3 
Math for elementary teachers with intermediate algebra prerequisite 3 
Math for elementary teachers, second term 4 
Advanced statistics with precalculus prerequisite 4 
Introduction to geometry with precalculus prerequisite 4 
Calculus I 4 
Calculus II 5 
Calculus III 6 
Differential equations with Calculus II prerequisite 6 
Linear algebra with Calculus II prerequisite 6 
Abstract algebra 7 

 
Table 6 shows that linear regression models using this more refined set of levels again 

reveals a strong correlation between level and ACI score.  
 

Table 6. Regression of more nuanced course level in predicting ACI score,  
Course Position 

in Sequence Coef. SE p-value 
(vs. 1) 

p-value 
(vs. 2) 

p-value 
(vs. 3) 

p-value 
(vs. 4) 

p-value 
(vs. 5) 

p-value 
(vs. 6) 

2 0.504 0.017 0.000      
3 0.623 0.031 0.000 0.000     
4 0.888 0.023 0.000 0.000 0.000    
5 1.059 0.033 0.000 0.000 0.000 0.000   
6 1.232 0.041 0.000 0.000 0.000 0.000 0.000  
7 1.661 0.226 0.000 0.000 0.000 0.001 0.008 0.060 

 
The largest gain (one half SD) in Table 6 is between sequence level 1 and 2, or between 

students who have/have not satisfied an elementary algebra (Algebra I) prerequisite.  This 
provides further evidence of convergent validity, because the ACI has been designed to focus on 
concepts relevant to elementary algebra specifically.  
Differential Item Functioning: Measurement Invariance and Discriminant Validity  

Differential item functioning (DIF) related to irrelevant examinee characteristics was also 



Kosko, K. W., Caniglia, J., Courtney, S., Zolfaghari, M., & Morris, G. A., (2024). Proceedings of 
the forty-sixth annual meeting of the North American Chapter of the International Group for the 
Psychology of Mathematics Education. Kent State University. 

128 
 

analyzed, one subtype of discriminant validity (or whether the ACI measures algebraic 
conceptual understanding and not something else, like English literacy). Each wave was tested 
for DIF in three separate 2PL models: one each for race/ethnicity, gender, and English-language-
learner status. There was no consistent evidence of DIF. Only a negligible number of items had 
significant DIF for 𝛼 = 0.05 (using a Bonferroni correction for the number of tests within each 
model and not across models, which is overly conservative). Many items were tested in multiple 
waves, and none of these had significant DIF in more than one wave, suggesting that significant 
DIF in one wave but not others for these items was likely due to random variation.  

Limitations 
The City University of New York (CUNY) where this instrument was tested is not nationally 

representative, and thus further research is needed to validate the ACI with less-diverse 
populations in other geographic areas; this research is currently underway with a larger national 
sample in the US.  However, CUNY’s diversity does make it a excellent candidate for initial 
validation with marginalized students who have often been neglected in large-scale assessment 
validation. Further studies are also necessary to determine whether the ACI may be valid for use 
with high school or middle school students. Finally, the ACI has been developed to make 
diagnostic judgements about groups of students—not high-stakes decisions for individuals—and 
thus the ACI should not be used alone to make high-stakes individual decisions such as course 
placement or successful course completion.  

Discussion and Conclusion 
This study suggests that algebraic conceptual understanding, as conceptualized by the items 

included on the ACI, is a measurable domain with reasonable validity and reliability. Item 
response theory (IRT) analysis resulting in large proportion of items with good discrimination 
parameter estimates, suggesting the ACI can differentiate well between students of various 
levels. Reliability was also excellent for all waves of data collection, and based on reliability 
estimates, even shorter tests can be constructed with excellent reliability for a range of levels of 
algebraic conceptual understanding. Students with higher algebra course prerequisites had higher 
ACI scores, providing evidence of convergent validity. Finally, differential item functioning 
analysis demonstrated that the ACI had satisfactory measurement invariance with respect to 
race/ethnicity, gender, or English-language-learner status.  

However, the ACI in its current form is a summative measurement that provides only one 
measure of students’ algebraic conceptual understanding.  Future research could expand this to a 
more nuanced diagnostic tool that provides more detailed information about the specific 
conceptions that students have and what kinds of instructional approaches may be best adapted to 
students with different conceptions about various algebraic concepts.  This work is ongoing, and 
includes in-depth qualitative analysis of student thinking to more comprehensively map out in 
more detail the various conceptions that students may hold of algebra concepts; work with 
cognitive diagnostic models on ACI items might provide more nuanced diagnostic information; 
exploration of different curricular materials and teaching techniques and the subsequent impact 
on the development of algebraic conceptual understanding.  Our hope is that the ACI will also 
enable other practitioners and researchers to explore these questions as well.   
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