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Even though algebraic conceptual understanding is recognized as a critical skill, existing larger-
scale validated algebra assessments consist mostly of computational tasks, or only assess a very
narrow range of conceptions in a smaller focused domain. Further, few instruments have been
validated for use with college students. In this paper, we describe the creation and validation of
an algebra concept inventory for college students. We describe how items were administered,
revised, and tested for validity and reliability. Results suggest that algebraic conceptual
understanding is a measurable construct, and that the instrument has reasonable validity and
reliability. Revision and validation is ongoing; however, lessons learned thus far provide
information about what conceptual understanding in algebra might look like and how it might be
assessed.
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In college, needing to take algebra can be a barrier to degree completion (e.g., Adelman,
2006; Bailey et al., 2010), and extensive mathematics education research has documented K-12
students' difficulties with school algebra (e.g., Booth, 1988, 2011; Kieran, 1992). Struggles with
basic algebra concepts learned in school also impact even those in higher-level college courses
such as Calculus (e.g., Frank & Thompson, 2021; Stewart & Reeder, 2017). One reason students
struggle with algebra is that algebra courses in college tend to focus on procedures disconnected
from meaning-making (e.g., Goldrick-Rab, 2007; Hodara, 2011). While procedural fluency is
important, it is critical to connect it with conceptual understanding (Kilpatrick, et al., 2001).
Thus, there is a critical need to better understand and assess students’ conceptions of algebra
concepts. However, to date there are no widely-validated assessments that measure college
students’ conceptual understanding of algebra. Existing large-scale validated algebra assessments
for K-12 tend towards computational skills, or focus on a narrow set of conceptions in a small
subdomain. Tests of computational skills are often poor measures of understanding. Students
may have robust conceptual understanding, but make smaller computational mistakes, especially
if they have math or test anxiety (e.g., Ashcraft, 2002; Ashcraft & Kirk, 2001; Moran, 2016;
Namkung et al., 2019). On the other hand, students may have little-or-no conceptual
understanding, yet produce “correct” answers for “wrong” reasons (e.g., Aly, 2022; Erlwanger,
1973; Leatham & Winiecke, 2014).

We aim to address this gap by describing a first attempt to conceptualize, develop, and test
college students’ conceptual understanding in algebra using the Algebra Concept Inventory
(ACI). This process continues, but we have chosen to write about results at this juncture with the
hope they may be helpful for others interested in conceptualizing, measuring, and teaching
conceptual understanding in algebra.



Literature Review

Several instruments have been created to test algebraic proficiency; however, none were
designed to test a large body of algebraic concepts and conceptions. TIMMS and NAEP (Mullis,
et al., 2020; National Center for Education Statistics, 2023) are widely validated at the
international and national level, and contain some questions intended to assess conceptual
understanding. There are also state-wide assessments that contain some questions intended to test
conceptual understanding (e.g., Massachusetts Department of Elementary & Secondary
Education, 2023; New York State Education Department, 2023). However, the main focus of all
these instruments is computational skills.

There is one validated assessment that targets algebraic conceptual understanding in grades 1
to 5 (Ralston, et al., 2018), and one designed to assess a few specific algebraic concepts in
middle school (Russell, 2019; Russell et al., 2009). Yet these instruments measure just a few
conceptions, and were not designed for secondary or postsecondary students. As such, these
often focus primarily on less complex or less abstract algebraic conceptions.

Some concept inventories have been developed that assess some student conceptions of
algebraic concepts, but for students in more advanced courses only. For example, the Pre-
calculus Concept Assessment (PCA) (Carlson, Oehrtman, & Engelke, 2010) and the Calculus
Concept Readiness Instrument (CCRA) (Carlson, Madison, & West, 2010) explore some algebra
concepts relevant to students in higher-level courses; while these have been tested through
extensive cognitive interviews, larger-scale psychometric validation is still needed. Recently,
researchers Hyland and O’Shea (2022) in Ireland generated a 31-item algebra concept inventory
for college students, but it includes algebraic objects that would not be familiar to students in a
first-year algebra course and has not yet been tested through cognitive interviews or
psychometric analysis. Thus, an inventory that is valid for students starting in elementary
algebra is needed, as well as more extensive large-scale psychometric testing of concept
inventories more generally.

Method

A total of 402 unique items were developed and tested for the ACI. Items were administered
to 18,234 students enrolled in all mathematics classes (except arithmetic) at a large urban
community college campus. Data reported here were collected from spring 2019 to fall 2022, in
eight separate waves. Data collection followed a common-item random groups equating design,
which was selected because it allowed to investigate a large item pool while allowing a
simultaneous calibration across multiple forms (de Ayala, 2009; Kolen & Brennan, 2004). For
the first wave of testing, the last ten items on each form were anchor items, all taken from the
National Assessment of Educational Progress (NAEP) grade 8 item bank. For subsequent waves,
six anchor items were included: three of these were NAEP items and three were items that had
performed well during the first wave of ACI testing. Each form had roughly 25 total items.
Forms were randomly administered within in each class so there was no association between test
form and class or instructor.

Just before answering inventory items, students were invited to participate in cognitive
interviews, and paid for their time. In total, 135 interviews were conducted with students. Each
was roughly 1-1.5 hours long and was structured as a “retrospective think-aloud” (Sudman et al.,
1996). Research suggests that retrospective think-aloud protocols reveal comparable information



to concurrent think-aloud protocols, and are less likely to have negative effects on task
performance, particularly high-cognitive-load tasks (see e.g., van den Haak et al., 2003).
Interviews were analyzed qualitatively to assess construct validity of the items, but there is
insufficient space to report on that analysis here. Here we report only quantitative results.

We investigated each wave of the ACI through item-response theory analysis. First, items
were dichotomized into pass-fail items using the response key. Then, two-parameter logistic
models (Birnbaum, 1968) were estimated using marginal maximum likelihood (MML) on each
wave, using the R package “mirt” (Chalmers, 2012). Because of planned missingness data
collection design, the default number of model iterations was extended to allow for all models to
converge successfully. Based on these models, we examined item parameters (difficulty and
discrimination) and item information functions for item analysis, and computed person estimates
using expected a posteriori (EAP) factor scores for convergent validity analysis. Reliability
estimates were computed directly from IRT models. To investigate model fit, we computed item
fit statistics, using the PV-Q1 statistic (and significance test) (Chalmers & Ng, 2017) for each
item.

To investigate measurement invariance, we used multi-group IRT models and a model
comparison approach. Because of the planned missingness design (and sometimes small
observed subsample sizes), we used a piecewise DIF detection strategy (Thissen et al., 1993) that
starts from a fully constrained model and drops constraints for each item separately. More
specifically, with respect to each examinee characteristic considered, we first estimated a fully
constrained model (where, across groups, item discriminations, difficulties, latent mean and
variance are constrained to equality). Then, for each item, the same model was estimated, but
with unconstrained item parameters (difficulty and discrimination), thus “temporarily” allowing
differential item functioning (DIF) for the item. A likelihood ratio test was then performed to test
if the model allowing DIF for the item had a better fit than the constrained model. This resulted
in a series of tests of the significance of differential item functioning for all items. Because it is a
multiple testing strategy, p-values were subsequently Bonferroni-corrected.

Validating the ACI

IRT Models: Item Discrimination and Difficulty

Results reported here were based on an item pool in which some items were dropped because
they were deemed problematic (e.g., typographical errors; multiple correct answers); however,
no items were dropped from analysis simply because of unsatisfactory IRT parameters. 2PL IRT
models were run on all waves of data collection (Table 1). IRT models were run on all waves of
data collection. While Rasch (or 1PL) models and 3PL models were also considered, 2PL models
were chosen because unlike 1PL models, they allow discrimination to vary by item, and because
they were considered more parsimonious, more useable for item selection (because item
coefficients are more interpretable), and less prone to calibration errors than 3PL models due to
their lower number of item parameters (San Martin et al., 2015).

Table 1. 2PL Model Coefficients Across all Eight Waves

Discrimination parameter Proportion of Unique Items
>=0.65 “moderate”® 63.4%




>=1.35 “high” 31.3%

>=1.7 “very high” 18.5%
Difficulty parameter Theta
mean 0.00
Ist quartile -0.85
median -0.14
3rd quartile 0.63
Total number of unique items in 2PL models 399

@ Characterizations of categories of discrimination parameters are taken from Baker (2001).

Discrimination is classified as “moderate” if it is > 0.65, “high” if it is = 1.35 and “very
high” if itis > 1.7 (Baker, 2001). Based on this, 63.4% of all items (253) have at least moderate,
and roughly one-third have high or very high discrimination.

We also assessed item fit in the 2PL model for each wave using Chalmers’ PV — Q; test,
because it performs better than other fit statistics at controlling Type I error (Chalmers & Ng,
2017) (Table 2).

Table 2. Measures of Item Misfit in 2PL IRT Models

Number of Items With Percentage of Items With
) Significant’ Misfit? Total Number of Items Significant Misfit
Wave 1 1 33 3.0%
Wave 2 5 125 4.0%
Wave 3 4 66 6.1%
Wave 4 3 72 4.2%
Wave 5 8 100 8.0%
Wave 6 5 99 5.1%
Wave 7 2 39 5.1%
Wave 8 0 31 0.0%
Total 28 565 5.0%

¢ Significant at the a = 0.05 level
b Misfit as measured by Chalmers’ Chi-Square Statistic (PV — Q)

Only 5% of items were significantly misfitted by the 2PL models (for &« = 0.05), suggesting
this is likely due to random variation.

Reliability

In IRT, the reliability of an item varies based on Theta, which represents the number of
standard deviations above or below the mean an individual is on the measure of the latent trait.
Table 3 shows various measure of reliability.

In Table 3 peak instrument values have excellent reliability (R = 0.9). There are also waves
where excellent reliability (R = 0.9) can be obtained for values ranging from 6 = [—2,7,2.2]
(assuming a standard normal distribution of knowledge, this corresponds to satisfactory
reliability for ~98% of examinees). Further, shorter tests can be constructed with only those



items with the highest discrimination: for example, the 10 items with the best discrimination
from Wave 1 yields a test with excellent reliability (R > 0.9) for 8 = [—2,1].

Table 3. Reliability (R) for each wave of item administration of the ACI

. Number of

n%a Info max” % thetaw R > thetaw R > Items

- — 0.8 0.9 Tested
Wave 1 -1.4 26.4 0.96 [-2.8,0.4] [-2.4,-0.2] 33
Wave 2 15 378 0.97 [3.0,2.1]  [-2.7,009] 104
Wave 3 20.6 243 0.96 [-23,15] [1.8,0.7] 57
Wave 4 0.6 30.1 0.97 [-24,2.1]  [-1.9,1.2] 69
Wave 5 0.7 177.1 0.99 [23,29]  [-1.4,1.8] 100
Wave 6 0.6 105.3 0.99 [-17,3.0] [-1.0,2.2] 99
Wave 7 0.1 21.7 0.95 15 18]  [-1.0, 1.1] 39
Wave 8 0.1 113 0.91 [09,12]  [-1.2,023] 31

“ info = 2PL IRT model information function

bd max = information function maximum for 2PL model
cR=1-—
Info
¢ expected reliability in Normal(0,1) ability distribution for 2PL models

Relationship Between ACI Score and Prior Algebra Course Completion: Convergent
Validity

To explore convergent validity of the ACI, we explored the relationship between scores on
the ACI (using theta scores from the 2PL model) to various measures of mathematics course
level. For example, correlation of students’ ACI scores with the level of algebra courses they
have already successfully completed would be evidence of convergent validity. First, we
consider linear regression models with level of student’s course (where “level” is defined based
on the algebra course pre-requisite requirements of the course) as the independent variable, and
ACI score as the dependent variable (Table 4).

Table 4. Regression of course level (by algebra pre-requisite) in predicting theta scores from the
2PL model on the ACI, reference group. low

Course Level Coefficient SE p-value (vs. low)  p-value (vs. high)
mid 0.347 0.014 0.000 0.000
high 0.700 0.017 0.000

low = no algebra course prerequisite
mid = elementary algebra course prerequisite
high = intermediate algebra course prerequisite

In Table 4, differences in Theta score are significant (p < 0.001) for all pairwise
comparisons. Students in “mid”-level courses scored on average 0.35 SD higher than those in
“low”-level courses; and students in “high”-level courses scored on average 0.35 SD higher than
those in “mid”-level courses (or 0.70 SD higher than in “low”-level courses). This provides



strong evidence of convergent validity.
We also considered a more nuanced course sequence based on prerequisites (see Table 5).

Table 5. Sequence level of various courses in the sample, based on their prerequisites

Various elementary algebra courses 1
Various 100-level courses with an elementary algebra pre-requisite 2
Intermediate algebra courses 2
College algebra 2
Discrete math with intermediate algebra prerequisite 3
Precalculus 3
Math for elementary teachers with intermediate algebra prerequisite 3
Math for elementary teachers, second term 4
Advanced statistics with precalculus prerequisite 4
Introduction to geometry with precalculus prerequisite 4
Calculus I 4
Calculus I1 5
Calculus III 6
Differential equations with Calculus II prerequisite 6
Linear algebra with Calculus II prerequisite 6
Abstract algebra 7
Rerunning linear regression models using this more refined set of levels again reveals a

strong correlation between level and ACI score (Table 6).

Table 6. Regression of course position in longer mathematics curricular sequences (by

classification given in Table 5) in predicting theta scores from the 2PL model on the ACI,

reference group: sequence level 1

Course Position p-value p-value p-value p-value p-value  p-value

in Sequence coeff SE (vs. 1) (vs.2) (vs.3) (vs.4) (vs.5) (vs. 6)

0.504  0.017  0.000

0.623  0.031  0.000  0.000

0.888  0.023  0.000  0.000  0.000

1.059  0.033  0.000 0.000 0.000 0.000

1.232  0.041  0.000 0.000 0.000 0.000 0.000

1.661 0226  0.000 0.000 0.000 0.001 0.008 0.060

NN DN W

One of the largest gains (one half SD) was between sequence level 1 and 2 (see Table 6),
which distinguishes between students who have or have not satisfied an elementary algebra
prerequisite, providing further evidence of convergent validity, as the ACI is designed to focus
on concepts relevant to elementary algebra specifically.

Differential Item Functioning: Measurement Invariance and Discriminant Validity
We also assessed potential differential item functioning (DIF) related to irrelevant examinee
characteristics: race/ethnicity, gender, and English-language-learner status. This is an aspect of



discriminant validity, as the ACI should measure algebraic conceptual understanding and not
something else, like English literacy. Each wave was tested for DIF in three separate 2PL
models: one for each characteristic. There was no consistent evidence of DIF on any of these
factors. Only a negligible number of items had significant DIF for « = 0.05 (using a Bonferroni
correction for the number of tests within each model). Many items were tested in multiple waves,
and none of these had significant DIF in more than one wave, suggesting that significant DIF in
one wave for these items was likely due to random variation.

Limitations

The City University of New York, where this instrument was tested, is very diverse but not
nationally-representative; however, this makes it useful for validation with marginalized students
who have often been neglected in large-scale assessment validation. A current study is underway
to validate the ACI on a larger national sample. The ACI has also only been validated with
college students—further studies are necessary with younger students. The ACI has also been
developed to make diagnostic judgements about groups of students—not high-stakes decisions
for individuals—and thus we caution against that particular use of the ACI.

Discussion and Conclusion

Results from analysis suggest that algebraic conceptual understanding, as conceptualized by
the items included on the ACI, is a measurable domain. IRT analysis indicated that a large
proportion of items had good discrimination parameter estimates, suggesting that the final
version of the ACI is likely to have an excellent ability to differentiate between students of
various levels. Additionally, reliability was excellent for all waves, and results indicated that a
shorter test could be constructed that would have excellent reliability for a large range of
knowledge levels. The ACI also showed evidence of convergent validity, as students with higher
algebra course prerequisites showed higher item success rates. Finally, only a negligible
proportion of items showed differential item functioning with respect to race/ethnicity, gender, or
English-language-learner status, indicating that the ACI had satisfactory measurement invariance
with respect to these characteristics.

However, the ACI is only a first attempt at measuring algebraic conceptual understanding,
and much more work needs to be done to map out in detail the various conceptions that students
in different contexts hold of core algebra concepts, and determine how these can best be
measured. The ACI provides only a single scale number; however, further work with cognitive
diagnostic models on ACI items might provide more nuanced diagnostic information that could
be particularly critical for instruction, by better modeling the complex layers of conceptions that
students might have about various concepts in algebra. In reality, the kinds of knowledge that
the ACI is trying to measure are quite complex, and capturing only a single score is, on its own,
woefully inadequate if we hope to understand how students think algebraically and how various
instruction and curriculum relate to this complex conceptual development. We see the ACI as just
a first step in building out much more complex models of students’ algebraic conceptions.
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