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Even though algebraic conceptual understanding is recognized as a critical skill, existing larger-
scale validated algebra assessments consist mostly of computational tasks, or only assess a very 
narrow range of conceptions in a smaller focused domain. Further, few instruments have been 
validated for use with college students. In this paper, we describe the creation and validation of 
an algebra concept inventory for college students. We describe how items were administered, 
revised, and tested for validity and reliability. Results suggest that algebraic conceptual 
understanding is a measurable construct, and that the instrument has reasonable validity and 
reliability.  Revision and validation is ongoing; however, lessons learned thus far provide 
information about what conceptual understanding in algebra might look like and how it might be 
assessed.  
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In college, needing to take algebra can be a barrier to degree completion (e.g., Adelman, 
2006; Bailey et al., 2010), and extensive mathematics education research has documented K-12 
students' difficulties with school algebra (e.g., Booth, 1988, 2011; Kieran, 1992). Struggles with 
basic algebra concepts learned in school also impact even those in higher-level college courses 
such as Calculus (e.g., Frank & Thompson, 2021; Stewart & Reeder, 2017).  One reason students 
struggle with algebra is that algebra courses in college tend to focus on procedures disconnected 
from meaning-making (e.g., Goldrick-Rab, 2007; Hodara, 2011). While procedural fluency is 
important, it is critical to connect it with conceptual understanding (Kilpatrick, et al., 2001). 
Thus, there is a critical need to better understand and assess students’ conceptions of algebra 
concepts. However, to date there are no widely-validated assessments that measure college 
students’ conceptual understanding of algebra. Existing large-scale validated algebra assessments 
for K-12 tend towards computational skills, or focus on a narrow set of conceptions in a small 
subdomain. Tests of computational skills are often poor measures of understanding. Students 
may have robust conceptual understanding, but make smaller computational mistakes, especially 
if they have math or test anxiety (e.g., Ashcraft, 2002; Ashcraft & Kirk, 2001; Moran, 2016; 
Namkung et al., 2019). On the other hand, students may have little-or-no conceptual 
understanding, yet produce “correct” answers for “wrong” reasons (e.g., Aly, 2022; Erlwanger, 
1973; Leatham & Winiecke, 2014).  

We aim to address this gap by describing a first attempt to conceptualize, develop, and test 
college students’ conceptual understanding in algebra using the Algebra Concept Inventory 
(ACI). This process continues, but we have chosen to write about results at this juncture with the 
hope they may be helpful for others interested in conceptualizing, measuring, and teaching 
conceptual understanding in algebra.  



 

 

 

 

 

Literature Review 
Several instruments have been created to test algebraic proficiency; however, none were 

designed to test a large body of algebraic concepts and conceptions. TIMMS and NAEP (Mullis, 
et al., 2020; National Center for Education Statistics, 2023) are widely validated at the 
international and national level, and contain some questions intended to assess conceptual 
understanding. There are also state-wide assessments that contain some questions intended to test 
conceptual understanding (e.g., Massachusetts Department of Elementary & Secondary 
Education, 2023; New York State Education Department, 2023). However, the main focus of all 
these instruments is computational skills. 

There is one validated assessment that targets algebraic conceptual understanding in grades 1 
to 5 (Ralston, et al., 2018), and one designed to assess a few specific algebraic concepts in 
middle school (Russell, 2019; Russell et al., 2009). Yet these instruments measure just a few 
conceptions, and were not designed for secondary or postsecondary students. As such, these 
often focus primarily on less complex or less abstract algebraic conceptions.  

Some concept inventories have been developed that assess some student conceptions of 
algebraic concepts, but for students in more advanced courses only.  For example, the Pre-
calculus Concept Assessment (PCA) (Carlson, Oehrtman, & Engelke, 2010) and the Calculus 
Concept Readiness Instrument (CCRA) (Carlson, Madison, & West, 2010) explore some algebra 
concepts relevant to students in higher-level courses; while these have been tested through 
extensive cognitive interviews, larger-scale psychometric validation is still needed. Recently, 
researchers Hyland and O’Shea (2022) in Ireland generated a 31-item algebra concept inventory 
for college students, but it includes algebraic objects that would not be familiar to students in a 
first-year algebra course and has not yet been tested through cognitive interviews or 
psychometric analysis.  Thus, an inventory that is valid for students starting in elementary 
algebra is needed, as well as more extensive large-scale psychometric testing of concept 
inventories more generally.   

Method 
A total of 402 unique items were developed and tested for the ACI. Items were administered 

to 18,234 students enrolled in all mathematics classes (except arithmetic) at a large urban 
community college campus. Data reported here were collected from spring 2019 to fall 2022, in 
eight separate waves. Data collection followed a common-item random groups equating design, 
which was selected because it allowed to investigate a large item pool while allowing a 
simultaneous calibration across multiple forms (de Ayala, 2009; Kolen & Brennan, 2004). For 
the first wave of testing, the last ten items on each form were anchor items, all taken from the 
National Assessment of Educational Progress (NAEP) grade 8 item bank. For subsequent waves, 
six anchor items were included: three of these were NAEP items and three were items that had 
performed well during the first wave of ACI testing. Each form had roughly 25 total items. 
Forms were randomly administered within in each class so there was no association between test 
form and class or instructor. 

Just before answering inventory items, students were invited to participate in cognitive 
interviews, and paid for their time. In total, 135 interviews were conducted with students. Each 
was roughly 1-1.5 hours long and was structured as a “retrospective think-aloud” (Sudman et al., 
1996). Research suggests that retrospective think-aloud protocols reveal comparable information 



 

 

 

 

 

to concurrent think-aloud protocols, and are less likely to have negative effects on task 
performance, particularly high-cognitive-load tasks (see e.g., van den Haak et al., 2003). 
Interviews were analyzed qualitatively to assess construct validity of the items, but there is 
insufficient space to report on that analysis here.  Here we report only quantitative results.   

We investigated each wave of the ACI through item-response theory analysis. First, items 
were dichotomized into pass-fail items using the response key. Then, two-parameter logistic 
models (Birnbaum, 1968) were estimated using marginal maximum likelihood (MML) on each 
wave, using the R package “mirt” (Chalmers, 2012). Because of planned missingness data 
collection design, the default number of model iterations was extended to allow for all models to 
converge successfully. Based on these models, we examined item parameters (difficulty and 
discrimination) and item information functions for item analysis, and computed person estimates 
using expected a posteriori (EAP) factor scores for convergent validity analysis. Reliability 
estimates were computed directly from IRT models. To investigate model fit, we computed item 
fit statistics, using the PV-Q1 statistic (and significance test) (Chalmers & Ng, 2017) for each 
item.  

To investigate measurement invariance, we used multi-group IRT models and a model 
comparison approach. Because of the planned missingness design (and sometimes small 
observed subsample sizes), we used a piecewise DIF detection strategy (Thissen et al., 1993) that 
starts from a fully constrained model and drops constraints for each item separately. More 
specifically, with respect to each examinee characteristic considered, we first estimated a fully 
constrained model (where, across groups, item discriminations, difficulties, latent mean and 
variance are constrained to equality). Then, for each item, the same model was estimated, but 
with unconstrained item parameters (difficulty and discrimination), thus “temporarily” allowing 
differential item functioning (DIF) for the item. A likelihood ratio test was then performed to test 
if the model allowing DIF for the item had a better fit than the constrained model. This resulted 
in a series of tests of the significance of differential item functioning for all items. Because it is a 
multiple testing strategy, p-values were subsequently Bonferroni-corrected.  

Validating the ACI 

IRT Models: Item Discrimination and Difficulty 
Results reported here were based on an item pool in which some items were dropped because 

they were deemed problematic (e.g., typographical errors; multiple correct answers); however, 
no items were dropped from analysis simply because of unsatisfactory IRT parameters. 2PL IRT 
models were run on all waves of data collection (Table 1). IRT models were run on all waves of 
data collection. While Rasch (or 1PL) models and 3PL models were also considered, 2PL models 
were chosen because unlike 1PL models, they allow discrimination to vary by item, and because 
they were considered more parsimonious,  more useable for item selection (because item 
coefficients are more interpretable), and less prone to calibration errors than 3PL models due to 
their lower number of item parameters (San Martin et al., 2015). 

 
Table 1. 2PL Model Coefficients Across all Eight Waves 
Discrimination parameter Proportion of Unique Items 
>=0.65 “moderate”a 63.4% 



 

 

 

 

 

>=1.35 “high” 31.3% 
>=1.7 “very high” 18.5% 
Difficulty parameter Theta 
mean 0.00 
1st quartile -0.85 
median -0.14 
3rd quartile 0.63 
Total number of unique items in 2PL models 399 
a Characterizations of categories of discrimination parameters are taken from Baker (2001).  

 
Discrimination is classified as “moderate” if it is ≥ 0.65, “high” if it is ≥ 1.35 and “very 

high” if it is  ≥ 1.7 (Baker, 2001). Based on this, 63.4% of all items (253) have at least moderate, 
and roughly one-third have high or very high discrimination.  

We also assessed item fit in the 2PL model for each wave using Chalmers’ 𝑃𝑃𝑃𝑃 − 𝑄𝑄1 test, 
because it performs better than other fit statistics at controlling Type I error (Chalmers & Ng, 
2017) (Table 2).  

 
Table 2. Measures of Item Misfit in 2PL IRT Models 

  
Number of Items With 

Significanta Misfitb Total Number of Items 
Percentage of Items With 

Significant Misfit 
Wave 1 1 33 3.0% 
Wave 2 5 125 4.0% 
Wave 3 4 66 6.1% 
Wave 4 3 72 4.2% 
Wave 5 8 100 8.0% 
Wave 6 5 99 5.1% 
Wave 7 2 39 5.1% 
Wave 8 0 31 0.0% 
Total 28 565 5.0% 
a Significant at the 𝛼𝛼 = 0.05 level 
b Misfit as measured by Chalmers’ Chi-Square Statistic (𝑃𝑃𝑃𝑃 − 𝑄𝑄1) 

 
Only 5% of items were significantly misfitted by the 2PL models (for 𝛼𝛼 = 0.05), suggesting 

this is likely due to random variation.  

Reliability 
In IRT, the reliability of an item varies based on Theta, which represents the number of 

standard deviations above or below the mean an individual is on the measure of the latent trait. 
Table 3 shows various measure of reliability.  

In Table 3 peak instrument values have excellent reliability (𝑅𝑅 ≥ 0.9). There are also waves 
where excellent reliability (𝑅𝑅 ≥ 0.9) can be obtained for values ranging from 𝜃𝜃 = [−2,7,2.2] 
(assuming a standard normal distribution of knowledge, this corresponds to satisfactory 
reliability for ~98% of examinees). Further, shorter tests can be constructed with only those 



 

 

 

 

 

items with the highest discrimination: for example, the 10 items with the best discrimination 
from Wave 1 yields a test with excellent reliability (𝑅𝑅 ≥ 0.9) for 𝜃𝜃 = [−2,1].   

 
Table 3. Reliability (R) for each wave of item administration of the ACI 

 

Theta at 
max infoa Info maxb R for info 

maxc theta w 𝑅𝑅 ≥
0.8 

theta w 𝑅𝑅 ≥
0.9 

Number of 
Items 
Tested 

Wave 1 -1.4 26.4 0.96 [-2.8, 0.4] [-2.4, -0.2] 33 
Wave 2 -1.5 37.8 0.97 [-3.0, 2.1] [-2.7, 0.9] 104 
Wave 3 -0.6 24.3 0.96 [-2.3, 1.5] [-1.8, 0.7] 57 
Wave 4 -0.6 30.1 0.97 [-2.4, 2.1] [-1.9, 1.2] 69 
Wave 5 0.7 177.1 0.99 [-2.3, 2.9] [-1.4, 1.8] 100 
Wave 6 -0.6 105.3 0.99 [-1.7, 3.0] [-1.0, 2.2] 99 
Wave 7 -0.1 21.7 0.95 [-1.5, 1.8] [-1.0, 1.1] 39 
Wave 8 0.1 11.3 0.91 [-0.9, 1.2] [-1.2, 0.3] 31 
a info = 2PL IRT model information function 
bd max = information function maximum for 2PL model 
e 𝑅𝑅 = 1 − 1

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼
 

c expected reliability in Normal(0,1) ability distribution for 2PL models 

Relationship Between ACI Score and Prior Algebra Course Completion: Convergent 
Validity 

To explore convergent validity of the ACI, we explored the relationship between scores on 
the ACI (using theta scores from the 2PL model) to various measures of mathematics course 
level. For example, correlation of students’ ACI scores with the level of algebra courses they 
have already successfully completed would be evidence of convergent validity. First, we 
consider linear regression models with level of student’s course (where “level” is defined based 
on the algebra course pre-requisite requirements of the course) as the independent variable, and 
ACI score as the dependent variable (Table 4).  

 
Table 4. Regression of course level (by algebra pre-requisite) in predicting theta scores from the 
2PL model on the ACI, reference group: low 

Course Level Coefficient SE p-value (vs. low) p-value (vs. high) 
mid 0.347 0.014 0.000 0.000 
high 0.700 0.017 0.000  

low = no algebra course prerequisite 
mid = elementary algebra course prerequisite 
high = intermediate algebra course prerequisite 

 
In Table 4, differences in Theta score are significant (𝑝𝑝 < 0.001) for all pairwise 

comparisons.  Students in “mid”-level courses scored on average 0.35 SD higher than those in 
“low”-level courses; and students in “high”-level courses scored on average 0.35 SD higher than 
those in “mid”-level courses (or 0.70 SD higher than in “low”-level courses). This provides 



 

 

 

 

 

strong evidence of convergent validity.  
We also considered a more nuanced course sequence based on prerequisites (see Table 5).  
 

Table 5. Sequence level of various courses in the sample, based on their prerequisites 
Various elementary algebra courses 1 
Various 100-level courses with an elementary algebra pre-requisite 2 
Intermediate algebra courses 2 
College algebra 2 
Discrete math with intermediate algebra prerequisite 3 
Precalculus 3 
Math for elementary teachers with intermediate algebra prerequisite 3 
Math for elementary teachers, second term 4 
Advanced statistics with precalculus prerequisite 4 
Introduction to geometry with precalculus prerequisite 4 
Calculus I 4 
Calculus II 5 
Calculus III 6 
Differential equations with Calculus II prerequisite 6 
Linear algebra with Calculus II prerequisite 6 
Abstract algebra 7 

 
Rerunning linear regression models using this more refined set of levels again reveals a 

strong correlation between level and ACI score (Table 6).  
 

Table 6. Regression of course position in longer mathematics curricular sequences (by 
classification given in Table 5) in predicting theta scores from the 2PL model on the ACI, 
reference group: sequence level 1 
Course Position 

in Sequence coeff SE p-value 
(vs. 1) 

p-value 
(vs. 2) 

p-value 
(vs. 3) 

p-value 
(vs. 4) 

p-value 
(vs. 5) 

p-value 
(vs. 6) 

2 0.504 0.017 0.000      
3 0.623 0.031 0.000 0.000     
4 0.888 0.023 0.000 0.000 0.000    
5 1.059 0.033 0.000 0.000 0.000 0.000   
6 1.232 0.041 0.000 0.000 0.000 0.000 0.000  
7 1.661 0.226 0.000 0.000 0.000 0.001 0.008 0.060  

 
One of the largest gains (one half SD) was between sequence level 1 and 2 (see Table 6), 

which distinguishes between students who have or have not satisfied an elementary algebra 
prerequisite, providing further evidence of convergent validity, as the ACI is designed to focus 
on concepts relevant to elementary algebra specifically.  

Differential Item Functioning: Measurement Invariance and Discriminant Validity  
We also assessed potential differential item functioning (DIF) related to irrelevant examinee 

characteristics: race/ethnicity, gender, and English-language-learner status. This is an aspect of 



 

 

 

 

 

discriminant validity, as the ACI should measure algebraic conceptual understanding and not 
something else, like English literacy. Each wave was tested for DIF in three separate 2PL 
models: one for each characteristic. There was no consistent evidence of DIF on any of these 
factors. Only a negligible number of items had significant DIF for 𝛼𝛼 = 0.05 (using a Bonferroni 
correction for the number of tests within each model). Many items were tested in multiple waves, 
and none of these had significant DIF in more than one wave, suggesting that significant DIF in 
one wave for these items was likely due to random variation.  

Limitations 
The City University of New York, where this instrument was tested, is very diverse but not 

nationally-representative; however, this makes it useful for validation with marginalized students 
who have often been neglected in large-scale assessment validation. A current study is underway 
to validate the ACI on a larger national sample. The ACI has also only been validated with 
college students—further studies are necessary with younger students. The ACI has also been 
developed to make diagnostic judgements about groups of students—not high-stakes decisions 
for individuals—and thus we caution against that particular use of the ACI.  

Discussion and Conclusion 
Results from analysis suggest that algebraic conceptual understanding, as conceptualized by 

the items included on the ACI, is a measurable domain. IRT analysis indicated that a large 
proportion of items had good discrimination parameter estimates, suggesting that the final 
version of the ACI is likely to have an excellent ability to differentiate between students of 
various levels. Additionally, reliability was excellent for all waves, and results indicated that a 
shorter test could be constructed that would have excellent reliability for a large range of 
knowledge levels. The ACI also showed evidence of convergent validity, as students with higher 
algebra course prerequisites showed higher item success rates. Finally, only a negligible 
proportion of items showed differential item functioning with respect to race/ethnicity, gender, or 
English-language-learner status, indicating that the ACI had satisfactory measurement invariance 
with respect to these characteristics.  

However, the ACI is only a first attempt at measuring algebraic conceptual understanding, 
and much more work needs to be done to map out in detail the various conceptions that students 
in different contexts hold of core algebra concepts, and determine how these can best be 
measured. The ACI provides only a single scale number; however, further work with cognitive 
diagnostic models on ACI items might provide more nuanced diagnostic information that could 
be particularly critical for instruction, by better modeling the complex layers of conceptions that 
students might have about various concepts in algebra.  In reality, the kinds of knowledge that 
the ACI is trying to measure are quite complex, and capturing only a single score is, on its own, 
woefully inadequate if we hope to understand how students think algebraically and how various 
instruction and curriculum relate to this complex conceptual development. We see the ACI as just 
a first step in building out much more complex models of students’ algebraic conceptions.   
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