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Many aspects of visual perception, including the classification of shapes into known categories and the
induction of new shape categories from examples, are driven by shape similarity. But there is as yet no
generally agreed, principled measure of the degree to which two shapes are “similar.” Here, we derive a
measure of shape similarity based on the Bayesian skeleton estimation framework of Feldman and Singh
(2006). The newmeasure, called generative similarity, is based on the idea that shapes should be considered
similar in proportion to the posterior probability that they were generated from a common skeletal model
rather than from distinct skeletal models. We report a series of experiments in which subjects were shown a
small number (1, 2, or 3) of 2D or 3D “nonsense” shapes (generated randomly in a manner designed to avoid
known shape categories) and asked to select other members of the “same” shape class from a larger set of
(random) alternatives. We then modeled subjects’ choices using a variety of shape similarity measures
drawn from the literature, including our new measure, skeletal cross-likelihood, a skeleton-based measure
recently proposed by Ayzenberg and Lourenco (2019), a nonskeletal part-based similarity model proposed
by Erdogan and Jacobs (2017), and a convolutional neural network model (Vedaldi & Lenc, 2015). We
found that our new similarity measure generally predicted subjects’ selections better than these competing
proposals. These results help explain how the human visual system evaluates shape similarity and open the
door to a broader view of the induction of shape categories.
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Shape similarity is the mental impression that two objects are
alike in virtue of their shape. It is intuitively obvious that a cat is
more similar in shape to another cat, or even to a dog, than it is to a
hammer. Indeed, people rely on shape similarity to recognize objects
(Biederman, 1987; Hoffman & Richards, 1984), and children use it
to induce the meanings of words (Landau et al., 1988). Yet, despite a
vast literature, it is still not clear exactly what makes two shapes
“similar” and to what degree.
Many measures of shape similarity have been proposed, based

on a wide variety of shape features. Some are based on contour
geometry, that is, on features local to the shape boundary such as

curvature extrema (Richards et al., 1988) and other contour features
(Belongie et al., 2002; Blake & Isard, 2012; Greene, 2018). Others
are based on axial or skeletal structure, which describe shape
structure more globally in terms of component parts and the
relations among them. Broadly speaking, skeletal shape represen-
tation methods represent shapes as configurations of elongated
axes, ideally one to each distinct “part.” In their original formula-
tion by Blum (1967, 1973), the axes were computed via a geometric
procedure called themedial axis transform (MAT), which results in
a branching structure in which elongated limbs are represented by
their central axes, which are really loci of local symmetry between
contours on opposite sides. As Blum argued, the MAT provides a
compact and informative representation of shapes, especially bio-
logical shapes, which are often composed of distinct articulated
limbs. Marr and Nishihara (1978) took up the idea that 3D objects
can largely be represented as unions of elongated parts (approxi-
mated as generalized cones), an idea that Biederman’s (1987)
celebrated Recognition-by-Components framework augmented
with a finite list of qualitative part types (geons). More recently,
many more sophisticated procedures for computing axial repre-
sentations have been proposed (e.g., Bai & Latecki, 2008; Demirci
et al., 2006; Feldman & Singh, 2006; Rezanejad & Siddiqi, 2015;
Siddiqi et al., 1998; Torsello & Hancock, 2004), most designed
to solve problems with Blum’s original formulation. Axial repre-
sentations of shape play an important role in human shape repre-
sentation (e.g., Chaisilprungraung et al., 2019), and skeletal
representations provide a solution to the problem of how to repre-
sent the relations among axes in multipart shapes. That is, unlike
contour-based representations such as those based on curvature
extrema (e.g., Richards et al., 1988), skeletal representations can
represent shape “configurally,” that is, in terms of the global organi-
zation of the entire shape (Kimia, 2003). Empirical support for the
importance of skeletal representations has come from psychophysics
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(Ayzenberg et al., 2019; Burbeck & Pizer, 1995; Firestone & Scholl,
2014; Harrison & Feldman, 2009; Kovács et al., 1998; Lowet et al.,
2018; Wang & Burbeck, 1998; Wilder et al., 2016), development
(Ayzenberg & Lourenco, 2022), neuroscience (Ayzenberg et al.,
2022; Hung et al., 2012; Lescroart & Biederman, 2013), and even
visual art (Leymarie & Aparajeya, 2017). Several recent studies have
found evidence that shape similarity judgments are particularly
affected by differences in skeletal structure. Lowet et al. (2018)
found that modifications to skeletal structure, such as the introduction
or deletion of parts, exert strong influence on subjects’ judgments
of similarity. However, exactly how skeletal shape representations
can be used to construct a shape similarity metric is unclear, and a
number of different approaches have been proposed. Ayzenberg and
Lourenco (2019), using a skeletal similarity measure based on
Feldman and Singh’s (2006) Bayesian skeleton estimation frame-
work (described below), also found a strong effect of skeletal
differences on similarity judgments but did not compare this simi-
larity measure to other alternative measures from the literature.
Destler et al. (2019) used a skeletal cross-likelihood measure (also
based on Feldman & Singh, 2006’s framework) to model shape
discrimination but also did not systematically compare it to other
similarity measures. Erdogan and Jacobs (2017) conducted a more
systematic comparison of similarity measures and proposed a new
part-based measure of their own, which they found fit subjects’
judgments better than several competitors, including skeletal cross-
likelihood and a metric derived from a convolutional neural network
(CNN) model.
All of these shape similarity measures (and several others) will be

discussed in more detail below. But to preview, recent literature has
enjoyed a flush of new part-based or skeleton-based similarity
measures, but not all have been compared to each other, and it
remains unclear which measure really most closely corresponds to
human judgments. In this article, we propose a new similarity
measure called generative similarity—also based on the Bayesian
skeleton estimation framework introduced by Feldman and Singh
(2006)—and present a set of experiments comparing a range of recent
shape similarity measures to human judgments in a shape classifica-
tion task.

Models of Shape Similarity

The first three models we will present require some common
theoretical background, which we present first.

Graph Matching Method

Perhaps the oldest method for using shape skeletons to compute
shape similarity is to compare the branching structure of their
respective skeletons. This method arose in the context of shock
graphs (Siddiqi et al., 1998, 1999; Siddiqi & Kimia, 1996; ), which
are generalizations of the “grassfire” procedure originally pro-
posed by Blum. Shock graphs yield a hierarchical connectivity
relation among symmetry axes representable by a graph. Similar-
ity between shapes can be evaluated by counting the number of
“edits” or modifications required to make one shock graph equal
to the other, sometimes called the edit distance. However, edit
distance only reflects “qualitative” changes to part structure, such
as the addition or deletion of parts (i.e., branches in the graph),
rather than quantitative changes to the shapes of individual parts

(such as changes to part length or curvature). Moreover, graph
matching methods do not generally include any overt evaluation
of the probability of shape changes, a central concept in recent
human models, as will be explained below. Nevertheless, edit
distance has proven effective for shape matching in computer
vision (Bai & Latecki, 2008; Demirci et al., 2006; Rezanejad &
Siddiqi, 2015; Siddiqi et al., 1998; Torsello & Hancock, 2004),
though interest in it has declined in recent years with the advent
of image-based comparison techniques such as CNNs. To our
knowledge, it has not been compared to human similarity
judgments.

The Bayesian Skeleton Estimation Procedure of
Feldman and Singh (2006)

Several of the shape similarity measures we consider rely on
the Bayesian procedure for estimating the shape skeleton intro-
duced by Feldman and Singh (2006). This approach aimed to
address some of the shortcomings of previous medial axis methods
by recasting the shape representation problem as a probabilistic
inference problem, in which the goal is to estimate the skeletal
structure that is most likely (maximum a posteriori; MAP) to have
generated the observed shape x, called the MAP skeleton and
denoted Sx,

Sx = argmax
S

pðSjxÞ: (1)

In the Bayesian framework, each skeletal representation S serves
as a model of the shape, including both the topological relations
among axes (a hierarchical representation of the connections among
axes) and the specific parameters of each axis (length, curvature,
etc.). The MAP skeleton Sx aims to achieve a balance between
simplicity (too few branches—a high prior but a low likelihood) and
complexity (too many branches—low prior but high likelihood).
The result is a skeleton that is “just right,” containing only those axes
that correspond to intuitively meaningful parts. Figure 1 gives a
visual summary of the framework and several examples of MAP
skeletons.

Given a reliable estimate of the shape skeleton, such as the
MAP skeleton, how should one compute shape similarity? The
first three proposals we discuss answer this question in differ-
ent ways.

Model 1: Skeletal Deviation

Ayzenberg and Lourenco (2019) evaluated shape similarity by
computing MAP skeletons for both shapes and then computing the
average Euclidean distance between corresponding points on the
two skeletons, which we call skeletal deviation:

deviationða; bÞ = 1
n

Xn

x∈Sa ; y∈Sb

kx − yk; (2)

where, Sa and Sb denote the MAP skeletons of shapes a and b,
respectively, kx − yk is the Euclidean distance between points x and
y, and n is the number of points on each skeleton. Like edit distance,
this method simply directly compares estimated skeletons, albeit
pointwise rather than in terms of their connectivity relations. Thus,
skeletal deviation does not take into account topological differences
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between skeletons, nor the degree to which the skeletal models
actually fit their respective shapes, which can vary enormously from
one shape to another. Nevertheless, in Ayzenberg and Lourenco’s
(2019) study fit human judgments well, though it was not compared
to other similarity metrics.

Model 2: Skeletal Cross-Likelihood

Another very simple proposal is the cross-likelihood, which
is the average likelihood of each shape conditioned on the
other’s skeleton (Briscoe, 2008; Feldman et al., 2013). Given
shapes a and b, with MAP skeletons Sa and Sb, the cross-likelihood
is given by

CLða; bÞ = 1
2
½ pðajSbÞ + pðbjSaÞ�: (3)

Intuitively, the cross-likelihood is high when each shape’s skele-
tal model also fits the other shape well. But like the Ayzenberg and
Lourenco (2019) measure, this measure is somewhat ad hoc and
tends to break down when the shapes have grossly different part
structures. In previous work, we have used the cross-likelihood to
model discrimination of shapes along morph spaces (Destler et al.,
2019), where it works well. That is, we found that sensitivity to
small differences in shape improves inversely with the cross-
likelihood between nearby shapes—the more dissimilar shapes
are by this measure, the easier it is for subjects to discriminate

them. But the shapes compared in the morphing study were always
slight variations of each other, where the cross-likelihood is more
suitable, and the measure should not be expected to generalize
well to shapes with grossly different part structures. It was perhaps
for this reason that the cross-likelihood did not perform well in
Erdogan and Jacobs’s (2017) comparison of similarity measures,
which included shapes with grossly different part structures. More
broadly, different probabilistic similaritymeasures (e.g., Erdogan and
Jacobs’s own model [henceforth Erdogan-Jacobs (EJ)] vs. cross-
likelihood) would be expected to perform differently on different
shape distributions, reflecting differences in the assumed likelihood
model (respectively, the simulation-based likelihood function in EJ
vs. the simple generative skeleton formulation underlying MAP
skeletons). We will return to this issue below.

To summarize so far: both skeletal deviation and skeletal cross-
likelihood are simple and readily computable, but both suffer from
the same intuitive shortcoming: they make sense when comparing
very similar skeletons, because they capture how much correspond-
ing parts have been modified from one shape to another, but do not
have a principled way to handle configural changes to the topology
of the skeleton. In a sense, this is the opposite problem from that of
edit distance, which only reflects configural changes but misses
metric differences. With all this in mind, the main goal of our new
approach is to incorporate both topological and metric shape
changes—both of which are ubiquitous in real shapes—in a unified
probabilistic framework.
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Figure 1
The Bayesian Skeleton Estimation Procedure of Feldman and Singh (2006)

Note. (a) Prior; (b) Likelihood; (c) the trade-off between prior and likelihood, which is optimized in the maximum a posteriori (MAP)
skeleton; and (d) some examples of MAP skeletons. See the online article for the color version of this figure.
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Model 3: Generative Similarity

We begin with an idea first suggested by Kemp et al. (2005): that
items should be regarded as similar to the degree that they appear to
have a common generative source. Here, we take advantage of the
fact that the entire Bayesian skeleton framework is based on the idea
of generative shape models, meaning models of the skeletal process
that produced the shape. The key idea is that shapes should be
regarded as “similar” in proportion to the posterior belief that they
derive from a common skeletal source—meaning a single latent
skeleton that gave rise to both of them—as opposed to two distinct
skeletal sources. Most of the mathematical development below aims
to define exactly what is meant by a “common” skeleton versus
“distinctive” skeletons and to attach probabilities to these as models
of the observed shapes.
The posterior belief in a skeletal model A given shape a is given

by Bayes’ rule, as follows:

pðAjaÞ = pðajAÞpðAÞ
pðaÞ : (4)

Here, lowercase symbols (e.g., a) refer to shapes, and uppercase
symbols (A) refer to skeletal models. Specifically, the posterior
belief in a common skeletal model C for two shapes a and b is as
follows:

pðCja; bÞ = pða; bjCÞpðCÞ
pða; bÞ : (5)

We will generally assume that shapes are independently condi-
tioned on their model, so pða; bjCÞ = pðajCÞpðbjCÞ. With this in
mind, given two shapes a and b, the support for a common model C
relative to two distinct models A and B is given by the Bayes factor
(BF)

BF =
pðajCÞpðbjCÞ
pðajAÞpðbjBÞ : (6)

This BF expresses the strength of evidence in favor of a common
model relative to distinct models, and we postulate that subjective
shape similarity is proportional to it. The key problem for this
approach is to define an appropriate common model C and the
distinct models A and B and attach probabilities to them. We solve
this problem using a formalism called the shape lattice.

The Shape Lattice

Recall that each skeletal model is defined by both a skeletal
topology—the connection structure among its component axes—
and a set of parameters that determine the specific shapes and
relations among the axes. These include, for each axis, its length,
curvature, and location of origin on its parent axis. Every skeletal
model assumes a prior distribution over these parameters and a
posterior distribution conditioned on a particular shape or set of
shapes. Each potential skeletal topology is thus in effect a family
of models with its own distinct set of parameters; the number of
parameters depends on the topology of the skeleton.
The shape lattice is a hierarchical graph of possible skeleton

topologies, ordered by subset and superset relations (Figure 2). At
the top is the simplest model, a single axis. Next, down is a two-axis

model with a parent and child, that is, a shape with a main part and a
subsidiary part. From there on the lattice branches, a third axis can
be added in either of two ways: to the parent, yielding a shape with a
main part and two subsidiary parts; or to the child, yielding a shape
with a main part, a subsidiary part, and a third part protruding from
the subsidiary part. Below that the lattice branches further as the
possible topologies multiply. In principle, the lattice extends down
infinitely as more branches are added, eventually comprising all
possible skeletal topologies.

Given any two nodes (topologies) on the lattice A and B, the join
A ∨ B is their least common ancestor, that is, the lowest node on the
lattice that connects to both of them from above. This is the skeletal
topology that includes all and only the axes they have in common.
Similarly, the meet A ∧ B is their greatest common descendent, the
topology that includes all the branches that either of them has. For
two nodes that are in an ancestor–descendant relationship (notated
A ≤ B), the join is the ancestor (A ∨ B = B) and the meet is the
descendant (A ∧ B = A). Otherwise, the join is a node above both of
them and the meet is a node below both of them. The meet and join
exist for all pairs of nodes, and indeed for any set of nodes, in a
lattice (Davey & Priestley, 1990). In our context, it is the join that is
critical, because it is literally the common skeletal topology—the
skeletal model that contains all axial components common to both
skeletons.

To evaluate probabilities for the common and distinct model
probabilities, we need to introduce some notation to indicate how
skeletal parameters are fitted. From here on, we use uppercase
symbols (A) to refer to skeletal topologies without fitted parameters
and hatted uppercase symbols with a subscript (Âa) to indicate a
skeletal model with a parameter distribution fitted to a particular
shape or shapes indicated by the subscript. The parameters fitted
include the scalar prior on a new axis, the position of each axial
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Figure 2
The First Four Levels of the Shape Lattice

Note. Each node represents a class of parent–child skeleton topologies. At
each level of the graph, every shape has the same number of axes. The full
lattice comprises all possible skeletal topologies, continuing downward
infinitely as more axes are added. See the online article for the color version
of this figure.
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branch along its parent axis (assumed to have a beta distribution,
appropriate for proportions), the length of each axial branch
(assumed to have a beta prime distribution, appropriate for nonneg-
ative coefficients), and the angular discrepancy between correspond-
ing turning angles along the axis (assumed to have von Mises
distribution, appropriate for angles, cf. Feldman & Singh, 2005).
More details on parameters are given in the Results section.
With this in mind, we can factor the likelihood of shape a given

skeleton A as pðajAÞ = pðajÂaÞpðÂajAÞ, that is as the product of the
probability of a given a fitted skeletal model, times the probability of
the fitted parameters under the parametric family A. More specifically,
the probability of a under the skeletal distribution Âa is the product
pðajSaÞpðSajÂaÞ. (Recall that Sa is a specific skeleton, the MAP
skeleton for shape a, whereas Âa is a distribution of skeletons fitted to
shape a.) We use this factorization throughout the derivation below.
Given the above, the probabilities of a and b under their common

model C = A ∨ B can be written respectively as pðajCÞ =
pðajSaÞpðSajÂaÞpðAjCÞ and pðbjCÞ = pðbjSbÞpðSbjB̂bÞpðBjCÞ. The
last terms pðAjCÞ and pðBjCÞ represent the probabilities of the
topologies A and B of the respective MAP skeletons Sa and Sb given
the topology C of the common skeletal model. We define the
probability of one skeletal topology conditioned on another, for
example, pðAjCÞ, as the probability of A arising by addition and
deletion of axes from C. The addition of axes entails a probabilistic
penalty in exactly the same manner as in the prior original Bayesian
procedure, in which each axis is “born”with a fixed scalar probability
and is modified via parametric changes with associated probability
distributions. For simplicity, we further assume that the deletion of an
axis entails the same probabilistic cost as the addition of one. That is,
movement up the lattice “costs the same” as movement down the
lattice. It follows that in general pðAjCÞ = pðCjAÞ, because all the
operations required to transform A into C happen “in reverse” when
C is transformed into A.
With all this in mind, the likelihood of shapes a and b under

their respective distinctive models is given by the products

pðajÂaÞ = pðajSaÞpðSajÂaÞ;
pðbjB̂aÞ = pðajSbÞpðSbjB̂bÞ; (7)

and their likelihood under their common model by

pða; bjĈa; bÞ = pðajSaÞpðSajÂa; bÞpðAjCÞpðbjSbÞpðSbjB̂a; bÞpðBjCÞ:
(8)

The ratio of the marginal likelihoods of common versus distinct
models is the Bayes factor,

BF =
pðajĈa; bÞpðbjĈa; bÞ
pðajÂaÞpðbjB̂bÞ

=
pðajSaÞpðSajÂa; bÞpðAjCÞpðbjSbÞpðSbjB̂a; bÞpðBjCÞ

pðajSaÞpðSajÂaÞpðbjSbÞpðSbjB̂bÞ

=
pðSajÂabÞpðAjCÞpðSbjB̂abÞpðBjCÞ

pðSajÂaÞpðSbjB̂bÞ
; (9)

which expresses the strength of the evidence in favor of shapes
a and b having a common skeletal model. Finally, we take the

negative log (i.e., description length [DL]) of this BF to provide the
final shape dissimilarity measure,

dissimða; bÞ ∝ − log
pðajĈa; bÞpðbjĈa; bÞ
pðajÂaÞpðbjB̂bÞ

; (10)

which expresses the weight of evidence in favor of shapes a and b
having distinctive models. (The direction of the comparison is
inverted because the negative log of a ratio is the same as the
log of the inverse ratio.)

Figure 3 provides an intuition about what the resulting −log BFs
(DLs) mean, using the cat/dog/hammer example from the beginning
of the article. As can be seen in the figure, the cat–dog comparison
has a large DL, meaning that these two shapes probably stem from
distinct skeletal models (which of course they do). But the cat–
hammer and dog–hammer comparisons have even larger DLs,
because they are even more likely to have distinct skeletal models,
since their skeletal topologies are grossly different. The DLs quantify
that cats and dogs are closer to being in the same shape class than cats
and hammers or dogs and hammers. Note that DLs are in log space
and must be exponentiated to recover BFs, so the difference in DLs
shown in the figure translates to a very large difference in generative
similarity between cat/dog and cat/hammer.

Edit Distance Interpretation

We note that the numerator of the Bayes factor (Equation 6, and
in parameterized form in Equation 9), which expresses the evidence
in favor of a common model for shapes a and b, has a natural
relationship to the edit distance, the “cost” of transforming one
shape representation into another (Figure 4). (The denominator,
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Figure 3
DLs (−log BFs) According to the Generative Similarity Model
Between Cat, Dog, and Hammer, Showing That Cats and Dogs
Are More Similar to Each Other (Lower DL) Than Either Is to a
Hammer

Note. DL= description length; BF=Bayes factor. DLs are in log space and
must be exponentiated to yield BFs. For example, the numbers in the figure
mean that the cat is about e(1300 − 1180) ≈ 1.3 × 1052 times more similar to the
dog than it is to the hammer.
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which expresses the evidence in favor of explaining each shape
separately, does not depend on the similarity between the shapes,
and in effect serves as a normalization; the numerator is the critical
term that varies with shape similarity.) Specifically, the product
pðAjCÞpðBjCÞ, which appears in the numerator of Equation 6,
can be interpreted as the probability of the edit path between
skeletons A and B. Recall that by assumption pðAjCÞ = pðCjAÞ,
so pðAjCÞpðBjCÞ (the numerator) is the same as pðCjAÞpðBjCÞ (the
probability of the transformation A → C → B).
More broadly, the full numerator of Equation 6, which expresses

the likelihood of the two shapes a and b under a common model,
pðajCÞpðbjCÞ, is closely related to the probability of transforming
shape a into shape b via their shared skeletal structure. (Recall
that uppercase A, B, … denote skeleton topologies, and lowercase
a, b, … denote shapes.) Formally, the edit path probability is
pðCjaÞðbjCÞ, whereas the numerator of the BF is pðajCÞpðbjCÞ.
That is, the edit path is a → C → b, and the BF numerator is
ðC → aÞ + ðC → bÞ—they differ only in the direction of the leg
between C and a, which is forward in the former and inverse in the
latter. But by Bayes’ rule, pðCjaÞ = pðajCÞpðCÞ=pðaÞ, so it follows
that

pðajCÞpðbjCÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{BFnumerator

= pðCjaÞpðbjCÞ
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{Editpathprobability

× pðaÞ=pðCÞ: (11)

This is somewhat more intuitive if we take negative logs, so the
probabilities turn into description lengths (DLs), and the products
turn into sums,

DLðajCÞ + DLðbjCÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{log BF numerator

= DLðCjaÞ + DLðbjCÞ
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Probabilistic edit distance

+ DLðaÞ − DLðCÞ: (12)

That is, the numerator in our BF is simply the probabilistic edit
distance (the DL of the edit path probability) plus an additive factor
of DLðaÞ − DLðCÞ. For example, the probabilistic cost of trans-
forming one skeletal axis into another incorporates the total log von
Mises penalty on the discrepancies between corresponding angles

(see discussion of distributions above). In this sense, BFskel includes
a probabilistic version of edit-distance-based similarity metrics as a
side effect of the Bayesian formulation. This mathematical relation-
ship helps provide an intuition about what the Bayes factor means:
It incorporates the relative plausibility of one shape transforming
into the other rather than each arising independently. This helps
connect it to the body of previous work on shape similarity using
edit distance (Bai & Latecki, 2008; Demirci et al., 2006; Rezanejad
& Siddiqi, 2015; Siddiqi et al., 1998; Torsello & Hancock, 2004).
More broadly, it suggests that our similarity metric is resonant with
Hahn et al.’s (2003) proposal that similarity (in general) can be
understood as proportional to the complexity (in our formulation,
the DL) of the transformation from one stimulus to another.

Model 4: The Erdogan–Jacobs Model

The model proposed by Erdogan and Jacobs, henceforth the EJ
model, is similar in some respects to ours and shares its Bayesian
formulation. The EJ model begins by inferring the 3D structure of a
shape from a single rendered image, using a prior over shape
models, and a likelihood function that quantifies the probability
of a given image being generated from a given shape model. Shapes
are represented as sets of segments, somewhat analogous to shape
skeleton axes, and segment endpoints, though without the overtly
axial statistical process in our model. The prior over shape models
assume a uniform distribution over the number of segments and
endpoint positions, and the likelihood model assumes Gaussian
error conditioned on the 3D shape. Once 3D shapes have been
estimated, the EJ model computes shape similarity using a likeli-
hood comparison similar to the cross-likelihood (including the
probability of each shape conditioned on the other’s model, as
well as the average of these two probabilities, which is what is used
in the cross-likelihood model).

Erdogan and Jacobs found their model to fit human judgments
better than the skeletal cross-likelihood, a CNN, and a number of
other models not included here, though it was not compared to
skeletal deviation (introduced later, in Ayzenberg & Lourenco,
2019) or to our generative similarity model (introduced above).
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Figure 4
The Edit Path Between Two Distinct Skeletal Topologies A and B on the Shape Lattice

Note. Each addition or deletion of an axis is one step along the path, reducing the probability of the
transformation. See the online article for the color version of this figure.
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Model 5: Active Contour Model

To ensure a comprehensive comparison, we included one simi-
larity model that is entirely contour-based, the active contour model.
The active contour model (based on the contour-identification
model of that name proposed by Blake & Isard, 2012) identifies
the minimum-distance order-preserving correspondence between
contour vertices in the two shapes—that is, the shape alignment
with the smallest total discrepancy between corresponding contour
points. Similarity in the model is proportional to the total probability
of this correspondence, integrating over all points on the two
contours, assuming a Gaussian distribution centered at zero over
distance discrepancies. This model is thus similar to the contour
component of our generative similarity model, except with discre-
pancies computed over intervertex distances rather than difference
in turning angle. The very simple model serves as a representative
contour-based similarity metric.

Model 6: CNN Model

In recent years, convolutional neural network (CNN)models have
achieved impressive performance on image classification bench-
marks (see Farabet et al., 2010; Jacobs & Bates, 2019), although
some studies (e.g., Baker et al., 2017; Heinke et al., 2021) have
found that their performance is based largely on local features (e.g.,
texture) and is substantially insensitive to global shape. Neverthe-
less, given their success, it is reasonable to ask how our subjects’
performance compares to that of a suitably trained network. As
explained below, in our experiments, subjects were given only a
small number (1, 2, or 3) of training shapes, far fewer than the
thousands, millions, or even billions on which CNNs are commonly
trained. A CNN evaluated on our subjects’ actual stimulus set would
be a straw man, since CNNs by design are not capable of learning
from such small samples (a point for which they are often criticized,
e.g., Bates & Jacobs, 2019; Lake et al., 2015). But given subjects’
prior experience with other shapes, it seems reasonable to include a
CNN that was fully trained on a similar class of shapes and ask
whether the resulting shape representations can explain our subjects’
classifications of new shapes.
We used the CNN MNIST (Vedaldi & Lenc, 2015) based on

handwritten digits, a close analog to our random axial shapes. The
model was pretrained on the Modified National Institute of Stan-
dards and Technology (MNIST) handwritten digit database, which
consists of 60,000 training images and 10,000 test images. Each
image is of a single handwritten digit, 0–9. A handwritten digit
database was chosen because it was judged that handwritten char-
acters were similar in structure to the axial 2D shape stimuli used
here. Like our stimulus shapes, the character images are of single,
isolated objects with some degree of variation, and the 10-digit
categories are defined largely by the arrangement of parts relative
to one another. To compare similarity models, we used the second-
to-last layer of the CNN (which serves as the input to the final
classifying layer, whose nodes represent specific character catego-
ries). As a dissimilarity measure, we use the cosine distance between
the node vectors for the two shapes.
We note that there are many other CNNs that might be applied to

our data, and probably other ways to apply their output to explaining
human similarity judgments. However, it was not our goal to
undertake a comprehensive study of CNN performance in our

task. By their nature, CNNs can be expected to fit human judgments
when trained on a representative sample of those judgments.
However, as discussed above, in the case of shape representation
they appear to do so using principles quite different from those used
by the human visual system. We include MNIST as a representative
example of this class of models simply in order to get a general sense
of their fit to human judgments, in order to better understand the
relative fit of other more psychologically motivated models.

Experiments

With these five shape similarity models in hand, we conducted a
series of shape classification experiments and asked how well each
model predicts human responses. In each trial of the experiments,
the subject is shown a small number of novel shapes (1, 2, or 3
depending on the condition) with a category label (e.g., “This is a
blicket/These are blickets”) and is asked for judgments about which
other shapes are also members of the same category (cf. Landau
et al., 1988). We used “nonsense” shapes, meaning shapes that are
randomly constructed and thus not necessarily associated with
nameable categories, so that subjects’ classification judgments
would be driven primarily by pure judgments of shape similarity
rather than by ex post facto judgments of category membership. We
then compared the various similarity models in terms of their ability
to predict which shapes the subjects chose.

Our choice of a classification task reflects the importance of
classification in the use of similarity judgments. There are of course
other kinds of data that are useful for evaluating similarity metrics,
including overt similarity ratings (e.g., Cortese & Dyre, 1996; Hahn
et al., 2009; Morgenstern et al., 2021) and confusion matrices
(Ashby & Lee, 1991). Nevertheless, we would argue that shape
classification is the primary function of shape similarity, in that one
of the core premises of the categorization literature is that objects
within a category are generally more similar to each other than
objects in different categories (Mervis & Rosch, 1981; see Panis et
al., 2008). Hence, we would argue that a classification task is an
especially acute test of a similarity metric.

That said, similarity and classification are of course deeply
intertwined, and the influence between them flows in both directions
(Edelman, 1998; Nosofsky, 1986; Shepard, 1987). Similar objects
tend to be categorized together, but impressions of category mem-
bership can also make objects seem more similar (Schmidt et al.,
2020; see also Lupyan, 2008). Our use of nonsense shapes is
intended to isolate, to the extent possible, “pure” shape similarity
judgments, that is, similarity judgments uncontaminated by seman-
tic classifications. But some degree of resemblance to previously
learned categories is unavoidable. For example, some of our non-
sense shapes might remind subjects of this or that natural category
(an animal, a leaf, etc.), and their similarity judgments might reflect
these associations to some degree. Though we have attempted to
minimize such influences by using a randomized shape-generating
processes and by randomly rotating the resulting shapes, some
residual categorical effects probably remain.

General Method

In each of the experiments, subjects were asked to classify shapes
as belonging to, or not belonging to, a particular novel category
based on a set of example shapes. On each screen, subjects saw one
or more example shapes labeled as belonging to a novel named
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category (positive examples, labeled, e.g., “This is a blicket”/“These
are blickets”) or not belonging to it (negative examples, labeled, e.g.,
“This is not a blicket”). There were 1–3 positive examples depend-
ing on the experiment, and 0 or 1 negative (details below). The
subject’s task was to choose other “blickets” from a grid of other
shapes (“Which of these are blickets?”). The candidate shapes were
displayed in white in a 6 × 6 grid at the center of a computer screen,
whereas the positive examples were shown on the left in blue, and
the negative examples (if any) were shown on the right in white
(Figure 5). The alternatives typically included exact matches to the
examples (as catch trials, since plausible response patterns should
include these choices), but the subjects were encouraged to choose a
larger number of examples (the instructions indicated “Most sub-
jects choose about 7”) to encourage generalization.
Subjects selected shapes by clicking on them. Once a shape was

selected, its color changed from white to blue, the same color as the
positive example(s), indicating its judged membership in the novel
category. Additional clicks on the same shape would toggle the
shape’s membership status and color. Once the subject was satisfied
with the selected shapes, the subject would confirm their choices and
move on to a new screen with new category (new example shapes
and new candidate responses). To minimize confusion between
categories, each new shape category was associated with a different
nonsense word, each starting with a different letter of the alphabet
(aben, blicket, coricle, dax … zem) in random order. Each subject
saw one full round of 26 novel shape categories (one for each letter
of the alphabet). Subjects took about 1 min to complete each screen,
for a total of about 20–30 min per subject for a full set of 26.

Note that this is a purely subjective task in that there is no correct
answer; it simply serves to probe subjects’ intuitions about which
shapes are similar enough to the example(s) to include in the novel
category. The main dependent measure is which shapes the subjects
chose to include in the induced category as a function of similarity
to the examples(s) as measured by various competing similarity
metrics.

Conditions

Therewere 10 experiments, which varied in the number of positive
and negative examples and whether the shapes were 2D (Experi-
ments 1–5) or 3D (Experiments 6–10). We varied the number of
examples for several reasons. Although people can induce categories
from single positive examples (Feldman, 1997), most contemporary
models of categorization involve a comparison between an item’s fit
to one category and its fit to alternative categories (e.g., via the Luce
choice rule; see Jäkel et al., 2008; Luce, 1959; Nosofsky, 1986).
Intuitively, without a negative example, subjects might not know
how far to extend the class induced from the positives. Hence, we
wondered what effect the presence or absence of a negative example
might have.

In addition, we wanted to explore the influence of the number of
positive examples. Most theories of similarity compute it pairwise,
comparing two items at a time. But with multiple positive examples,
one has to consider how to integrate the similarity of a candidate to
all of the examples. Indeed, this is one of the core ways in which
categorizationmodels differ, that is, bymaking different assumptions
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Figure 5
An Example Screen Showing One Trial of Our Experiments (1:1 Case)

Note. In this trial, there is one positive example (left margin, blue), and one negative (right margin, white). The subject’s task is to click on
whichever among the candidate shapes in the center grid they judge to belong to the same category as the positive example(s). See the online
article for the color version of this figure.
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about how similarities to multiple examples are integrated. As
discussed below, our model has a built-in mechanism for handling
multiple examples. In order to evaluate this aspect of the model, we
wanted to explore cases with multiple positive examples.
With these considerations in mind, we ran the following condi-

tions. Experiments 1–5 used 2D shapes and differed only in the
number of positive and negative examples. Experiment 1 used one
positive and zero negative (henceforth denoted 1:0), Experiment 2 is
2:0, Experiment 3 is 3:0, Experiment 4 is 1:1, and Experiment 5 is
2:1. Experiments 6–10 used 3D shapes but were otherwise similar
and used the same sequence of numbers of examples, respectively,
1:0, 2:0, 3:0, 1:1, and 2:1.

Shape Generation

Shapes for the experiments were randomly generated using a
three-step process (Figure 6). First, we randomly selected a series of
six 2D points from a uniform distribution over a rectangular region,
discarding any shapes found to have self-intersections. Next, we
interpolate points to create a polygon of 30 points and smooth the
points to yield a smooth random blob. We then compute the MAP
skeleton of the blob using the tools introduced by Feldman and
Singh (2006). Next, we “inflated” this skeleton into a new random
shape by choosing maximum-likelihood random deviates from the
implied generative model (called “ribs” in the framework) and
joining their endpoints, effectively running the Bayesian generative
model forward. (Note that this procedure results in shapes with a
variety of skeletal structures.) The 3D inflation model is a simple
generalization of the 2D inflation model in which ribs extend

outwards in all directions lying in the plane orthogonal to the
axis, like spokes on a wheel (Figure 6b; see Feldman et al.,
2013), resulting in a random 3D volumetric object with a known
generating skeleton. Final rendered objects were displayed at 15°
slant from the frontal plane.

Subjects

Ten subjects participated in each of the 10 experiments (100
subjects total), a number that piloting suggested was sufficient to
reveal consistent trends in subjects’ judgments. We used Amazon
Mechanical Turk to collect subject responses (Crump et al., 2013).
All participants had at least 95% positive ratings on the Mechanical
Turk system, were recruited from within the United States, and were
compensated $4 each for their participation.

Ethical treatment of human subjects in this study was approved by
the Rutgers University Institutional Review Board under a protocol
entitled “Human categorization of visual forms.”Our data andMatlab
code for the generative similarity model are available from https://
www.dropbox.com/s/9lmzayal9bkqipc/GenerativeSimilarity.zip?dl=0.

Results

Subjects chose an average of 6.3 (sd 2.1) shapes per concept
overall. The number of shapes chosen rose with the number of
positive examples (Figure 7a, BF10 = 3.695e8) but was not affected
by the number of negative examples (BF10 = .147), nor by the
dimensionality (2D vs. 3D) of the experiment (BF10 = .06). The
effect of the number of positive examples has several possible
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Figure 6
Shape Generation Process, Showing (a) 2D Case and (b) 3D Case

(a)

(b)

Note. In the 2D case, a random shape is first generated (left), its maximum a posteriori (MAP) skeleton
is computed (middle), and then a shape is generated from the skeleton using the forward generative
model from Feldman and Singh (2006). In the 3D case, a random (2D) shape is first generated (left), and
its (2D) MAP skeleton is estimated. Then the skeleton (reinterpreted as a planar 3D skeleton, i.e., with
z= 0) is “inflated” using the 3D generalization of the likelihoodmodel described in Feldman et al. (2013)
to produce a random 3D shape (see text). See the online article for the color version of this figure.
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explanations. It might suggest that subjects took the number of
examples as a cue for the expansiveness of the category (cf. Heit,
2000). But because our example shapes were chosen at random, the
number of examples was necessarily confounded with the diversity
of the examples (the internal dissimilarity within the training set),
which is also known to influence generalization (Heit, 2000;
Tenenbaum & Griffiths, 2001), including in the case of shape
(Morgenstern et al., 2019), so we hesitate to draw a strong conclu-
sion. There was also a complex 3-way interaction among these
factors (BF10 = 3.682e + 16, plotted in Figure 7b), in which the rise
in the number of shapes chosen was somewhat different in the 3D
case compared to the 2D case.

Model Comparisons

The main analysis is the relative fit to the human data of the five
models presented above—skeletal deviation, cross-likelihood, gen-
erative similarity, Erdogan–Jacobs, active contours, and MNIST.
We used the following procedure to compute a (log) likelihood for
each model as an explanation of the shape choices made by the
subjects (i.e., on each trial, which shapes they selected as other
“blickets” based on the given example[s]). Each model provides a
shape dissimilarity measure, the details of which depend on the
individual model. For each model, we computed D from each of the
positive or negative training examples for each of the candidate
shapes. We assume that selection probability decays exponentially
with distance, for example, the probability that shape xi will be
chosen as an instance of the category exemplified by a positive
example pj decays with the distance Dij between xi and pj,

pðxijpjÞ ∝ e−cDij ; (13)

(Luce, 1959; Shepard, 1987). Here, the parameter c modulates the
similarity decay rate, and it was fitted to subjects’ choices along with
other parameters of each model.
For each of the models other than our own, for experiments with

multiple positive examples (2:0, 2:1 and 3:0), we used a standard
exemplar-based combination rule in which the probability of choos-
ing shape xi depends on the average1 similarity to the positive
examples P = {pi},

pðxjjPÞ ∝
X
i

e−cDðpi ; xjÞ=jPj; (14)

whereD(pi, xj) is the distance from the ith positive example to the jth
candidate shape, andjPj is the number of positive examples (=1, 2,
or 3). Similarly, the probability that candidate shape will be classi-
fied with the single negative example n (and thus not selected)
decays exponentially with the distance D(n, xj) between n and xj,

pðxjjnÞ ∝ e−cDðn; xjÞ: (15)

Putting these together, the probability of the subject’s picking
candidate shape xj depends on its relative similarity to the positive
and negative examples,

pðxjjP; nÞ ∝
pðxjjPÞ
pðxjjnÞ

; (16)

where the denominator pðxjjnÞ is treated as unity in conditions
containing no negative examples (1:0, 2:0, and 3:0). Finally, we

normalize over all the candidate shapes to yield the actual probability
of a given shape being chosen,

pðchoose xjÞ =
pðxjjP; nÞP
j pðxjjP; nÞ

: (17)

Unlike the other models, generative similarity includes a built-in
combination rule, based on the lattice join of the example shapes
(which applies to jPj > 2 shapes just as it does to two shapes, see
Davey & Priestley, 1990). So for generative similarity, we used this
combination rule in place of average exemplar similarity to yield a
measure of similarity between a given candidate shape xj and the
set of positive examples, and between xj and the single negative
example.

In summary, for all models, this procedure assigns a probability to
each potential candidate shape in proportion to its similarity to the
positive examples (modulo a particular similarity metric), relative to
its similarity to the negative example, if there is one. The parameter
fitting procedure (details below) sets the parameters of each model
to maximize the probability (minimize the negative log likelihood)
of the selections the subject actually made. As trials are assumed
independently conditioned on the model, negative log likelihoods
can be summed over trials to arrive at a cumulative negative log
likelihood for each model as an account of subjects’ responses.

Parameter Fitting

For each model, we fitted parameters by maximizing likelihood
relative to the ensemble of subjects’ responses, fitting each experi-
ment separately. Parameters shared among all models include the
sensitivity parameter c, and (in conditions with a negative example) a
parameter modulating the weight of similarity to the negative exam-
ple relative to the positive(s). The generative similarity model has
seven or eight fitted parameters, depending on the experimental
condition. Six of the parameters correspond to different components
of the similarity calculation, such as branching location, axis curva-
ture, and the penalty for a missing axis on one of the two otherwise
corresponding skeletons. Each of these parameters is used toweigh its
corresponding component when combining these elements into the
final dissimilarity measure. To fit the parameters, we aggregated data
across all subjects in each condition and fit the parameters using the
Matlab genetic algorithm (Chipperfield & Fleming, 1995).

Fitted values of all the model parameters are given in Table 1.
Several conclusions can be drawn from the fitted values. First, the
weight on negative examples is generally very low (approximately 0
in Experiments 4, 9, and 10, small in Experiment 5), suggesting that
subjects were influenced almost exclusively by the positive example
(cf. the “parity effect,” which similarly implies that positive exam-
ples are more influential in inductions than negative examples; see
Feldman, 2000). Second, the parameter called shape2skel, which
is the weight of the (log) probability of a shape given a model, is
substantially more than zero in about half the experiments. As
mentioned above, previous similarity models based on graph match-
ing methods included terms corresponding to skeleton modification,
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1 We also tried a version of the exemplar model usingmaximum instead of
mean similarity, which has sometimes been found to perform better
(Tenenbaum, 2000); but with our data, the mean-similarity version generally
fit the data better.
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but in the absence of a full probabilistic model did not include terms
for the probability with which shapes actually correspond to the
skeletal models in question. The fitted values of shape2skel suggest
that this component of shape comparisons is important at least some
of the time.
Once the parameters were fitted, we computed Akaike informa-

tion criterion scores (AICs), which compensate for the different
number of fitted parameters in each model, thus finally arriving at a
suitable comparison of model fits among models.2 Lower values of
Akaike information criterion (AIC; lower minus log likelihood after
complexity correction) indicate better fit to the data. As is conven-
tional (see Burnham&Anderson, 2002) when displaying the model,
we subtract out the AIC of the “winning” (minimum-AIC) model,
leaving only the AIC relative to the best fit available, referred to as
ΔAIC. (Note that because AIC is a logarithmic measure, only AIC
differences, not ratios, are meaningful.) In such a comparison, the
winning model “disappears” (ΔAIC = 0). Note ΔAICs can be
exponentiated (eΔAIC/2) to indicate the relative weight of evidence
of one model compared to another (again see Burnham&Anderson,
2002). Figure 8 shows the fits of each model to the data from
Experiments 1–5 (2D shapes), and Figure 9 from Experiments 6–10
(3D shapes). Note that the scales on the ordinates of these plots are
large, so even a visually small difference can indicate a large
evidence ratio between models.
Finally, we took advantage of the additivity of AIC to create

aggregate plots of AICs summing across experiments, giving
cumulative AICs to indicate the aggregate degree of fit to the entire
ensemble of data. Figure 10a shows an aggregate plot of the AIC
comparisons summing Experiments 1–5 (2D), and likewise Figure 10b
for Experiments 6–10 (3D). Finally, Figure 10c gives a single
aggregate comparison for all 10 experiments.

Discussion of Model Fits

Overall, the generative similarity measure performed very well,
achieving the minimum AIC across all models (ΔAIC = 0) in all 10
experiments. Figure 8 shows model fits for Experiments 1–5 (2D
shapes), and Figure 9 for Experiments 6–10 (3D shapes), giving
ΔAIC for the generative similarity, skeletal cross-likelihood, active
contours, Erdogan–Jacobs, CNN MNIST, and skeletal deviation
models. Figure 10 shows fits aggregated across experiments, includ-
ing the 2D cases (Figure 10a), 3D cases (Figure 10b), and overall
aggregate (Figure 10c). The ΔAIC margin between generative
similarity and the second-best model (usually the active contour
model) was very large (mean ΔAIC over experiments = 2064,
minimum= 735), corresponding to a likelihood ratio of at least e735/2,
or about 4 × 10159, in favor of generative similarity.

The fit of the models to subjects’ data followed a consistent order
across experiments. In the 2D experiments, it was always generative
similarity > active contours > CNN MNIST > cross-likelihood >
skeletal deviation > EJ. In the 3D experiments, it was always
generative similarity > active contours > CNN MNIST > EJ >
skeletal deviation.

A sense of the “absolute” performance of the generative similarity
model is provided by Figure 11, which compares generative simi-
larity to subjects’ chosen shapes in Experiment 1 (2D 1:1). In the
figure, each candidate shape is colored to indicate the frequency with
which subjects chose it (darker red means more often chosen),
and the seven shapes with the greatest generative similarity to the
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Figure 7
The Effect of the Number of Positive Examples

Note. (a) The number of shapes chosen rises with the number of positive examples (aggregated over all experiments). (b) The same
data are broken down by 2D versus 3D, showing the interaction among all three factors. See the online article for the color version of this
figure.

2 We also analyzed all of our data using BIC, which imposes a somewhat
heavier complexity penalty than AIC. This did not change any of the results
reported below, for example, the ordering among models, so for clarity of
presentation we only present AIC results.
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positive example (left) marked by green boxes (7 because subjects
were instructed that “most people choose about 7”). As can be seen
in the figure, shapes that have high generative similarity to the
positive example (green boxes) tended to be chosen with high
probability (dark red coloring), and vice versa. In this sense, the
DLs provided by the generative similarity model seem to give
intuitive results. At the same time, as also illustrated in the figure,
shapes that perfectly matched a training example were not neces-
sarily chosen. Thus, though selection was influenced by similarity to
the training examples, actual choices were still probabilistic.
As an additional evaluation of the predictive power of the genera-

tive similarity model, we next applied the model to data from a recent
study of shape similarity by Morgenstern et al. (2021). This study
collected similarity ratings for four groups of animal shapes. We ran
the generative similarity model on these shapes and found that
resulting DLs correlated strongly with the reported human similarity
judgments (respectively r = 0.2153, 0.1630, 0.3255, and 0.4596, all
BFs > 9,000), though admittedly not as strongly as Morgenstern
et al.’s (2021) own similarity measure. Thus, while our primary data
involve classification, this secondary analysis confirms that our
measure is predictive of overt similarity ratings as well.
Next in overall model fit after generative similarity was CNN

MNIST, the deep neural network. As discussed above, visual
classifiers based on CNNs have been found to perform well on a
variety of benchmark databases (Bates & Jacobs, 2019), and such
models have become extremely prevalent in computer vision.
However, our results suggest that in a direct comparison, such
models do not account for human similarity judgments as well as
more “structural” models such as generative similarity. As men-
tioned above, CNN classification performance is generally insensi-
tive to structural aspects of images such as shape and part structure
(Baker et al., 2017; Heinke et al., 2021). But our results suggest that
human similarity judgments are best accounted for by a model that is
sensitive to these factors, such as a skeleton-based measure.
Less easy to explain is the poor performance of the EJ model,

which performed very well in a similar comparison to Erdogan and
Jacobs (2017). Like our model, the EJ model is probabilistic and
part-based, albeit with a very different likelihood function. The EJ
likelihood function computes the probability of rendered images
given 3D models based on solid volumes, whereas ours computes

the probability of shape boundaries (approximated as 2D or 3D
polygons) conditioned on skeletons. Some of the difference in
performance presumably reflects the difference in likelihood func-
tions and the differences in the actual shapes tested in the respective
studies. Note that the idea that similarity depends on the statistical
characteristics of the shapes under consideration is itself an argu-
ment in favor of probabilistic models generally—including both
ours and EJ—because only in a probabilistic framework is such a
dependence to be expected. That said, our stimuli are relatively
naturalistic shapes (i.e., shapes with smooth boundaries and highly
articulated part structure), which we would argue provide a reason-
able test case.

Another important difference between the EJ model and ours is
the mathematics of the similarity measure, which in the EJ model is
essentially cross-likelihood (the probability of each shape condi-
tioned on the other model), whereas ours is a quantification of the
evidence in favor of a common model. The idea that shapes are
similar to the extent that they appear to have common causal origins,
which is the essential novelty in our approach, is not present in the
EJ model. It is not unreasonable to suppose that some of the
difference in performance reflects this difference.

Contour-Based Similarity

One aspect of these results that deserves further comment is the
consistently good performance of the active contour model, which
came in second in most experiments. This model simply measures
the squared deviation between corresponding points on the two
contours and has no regional or “shape” component whatsoever.
This model would be presumed by most contemporary shape
researchers to be too simplistic to model human shape judgments.
But our results suggest that—at least for simple 2D shapes—it
actually fits human data rather well, better than many more nomi-
nally sophisticated models.

Indeed, a number of previous results (Basri et al., 1998; Fleming
& Schmidt, 2019), including some of our own findings (Wilder
et al., 2015, 2016), suggest that contour structure makes a substantial
contribution to shape representation independent from that of region
structure. That is, two shapes can seem similar because their
boundaries have similar characteristics—for example, they are
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Table 1
Fitted Parameters for the Generative Similarity Model

Experiment c Branch pos. Branch angle α Axis length Axis pnlty. shape2skel Neg. example

Experiment 1, 2D 1:0 8.8423 0 0.2645 0.7355 0 79.6986 0 —

Experiment 2, 2D 2:0 6.6704 0.1915 0.1276 0.1074 0.205 67.6631 0.3685 —

Experiment 3, 2D 3:0 6.2213 0.2193 0.0833 0.0801 0.2314 64.4172 0.3859 —

Experiment 4, 2D 1:1 5.945 0.3 0.2384 0.1616 0.3 35.7593 0 0
Experiment 5, 2D 2:1 2.3429 0 0.0653 0.7619 0.0001 58.6194 0 0.1728
Experiment 6, 3D 1:0 0.0837 0.2911 0 0.6014 0 1.143 0.1075 —

Experiment 7, 3D 2:0 1.0E − 05 0.2079 0.3997 0.3584 0.034 98.7818 0 —

Experiment 8, 3D 3:0 8.4005 0.4718 0.1733 0.1335 0.0045 18.32 0.2169 —

Experiment 9, 3D 1:1 0.0598 0 0.3338 0.3326 0.3336 10.1941 0 0
Experiment 10, 3D 2:1 2.3171 0.2439 0.3046 0.2720 0.0376 96.7593 0.1418 0.0001

Note. Explanations of parameters: c = sensitivity parameter in the exemplar model; branch pos. = weight on location on parent axis at which branching
occurs; branch angle = weight on angle relative to parent axis at which branching occurs; α = weight on differences in turning angle at corresponding axis
points; axis length = weight on axis length; axis pnlty. = penalty for the absence of a corresponding axis (DL units); shape2skel = weight on probability of
the shape given the skeleton; neg. example = weight on the negative example; DL = description length.
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Figure 8
Results From Experiment 1–5 (2D Experiments)

Note. (a) Experiment 1 (1:0). (b) Experiment 2 (2:0). (c) Experiment 3 (3:0). (d) Experiment 4 (1:1). (e) Experiment 5 (2:1).
Note differences among scales on the ordinates. See the online article for the color version of this figure.
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Figure 9
Results From Experiment 6–10 (3D Experiments)

Note. (a) Experiment 6 (1:0). (b) Experiment 7 (2:0). (c) Experiment 8 (3:0). (d) Experiment 9 (1:1). (e) Experiment 10 (2:1).
Note differences among scales on the ordinates. See the online article for the color version of this figure.
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similarly “fuzzy” or “bumpy”—separate from the configural quali-
ties of the enclosed region.
The generative similarity model as presented above is primarily

regional, meaning that it represents shapes as regions generated by
the shape skeleton, without any specifically contour-based compo-
nent. (Note, though, that it is not based solely on similarity of the
skeletons themselves, as are classical graph matching methods; it
also includes a measure of the probabilistic degree of fit between
each shape and its skeleton.) However, as emphasized in our
previous articles (e.g., Feldman et al., 2013), there is a very close
mathematical affinity between the axis-generating probabilistic
process in the skeletal generative model and a contour-generating
process (e.g., as presented in Feldman & Singh, 2005). This means

that it is fairly straightforward to define a similarity measure over
contours, analogous to the model above, except with a probabilistic
contour-generating boundary process substituting for a region-
generating skeletal process. For example, the probabilistic cost of
transforming one contour into another would depend on the inte-
grated log probability of the von Mises distribution over differences
in corresponding turning angles—just as for axes in the above
model. The resulting contour similarity model is almost identical
to the skeletal model, except there is no “shape lattice” because all
contours have the same topology.

We ran a version of the generative similarity model that incorpo-
rated this contour similarity component, with an additional free
parameter representing the relative weight of the contour component
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Figure 10
Aggregate Fits (Summed AICs) From (a) Experiments 1–5 (2D Experiments), (b) Experiments 6–10
(3D Experiments), and (c) All Experiments

Note. SE = standard error. Differences among scales on the ordinates. Error bars are ±1 SE around the mean aggregating over
experiments. See the online article for the color version of this figure.
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relative to the skeletal component. We found that it did indeed
substantially improve the fit of the model, typically by about 200–
300AIC points across the board. This difference does not change the
overall conclusion from the model comparisons, namely that gen-
erative similarity fits human judgments better than other models
whether region-based (skeletal deviation, cross-likelihood, and EJ),
contour-based (active contours), or image-based (MNIST). (Recall
that ΔAIC between our model and the next best was always more
than 700 points; including the contour component would have
simply increased this margin to 900–1,000 points.) However, the
difference is very large in absolute terms and is thus enough to
conclude that—in keeping with the previous literature mentioned
above—human shape similarity judgments do indeed include an
element of pure contour similarity. We have not included the
contour component in our basic model description above, in part
to avoid overburdening the article and in part to keep the conceptual
focus on skeleton-based similarity models. But the downloadable
version of our code (see link above) includes an option to incorpo-
rate the contour component in similarity calculations.

General Discussion

Shape similarity is a fundamental and ubiquitous problem,
underlying not only shape category formation (Landau et al.,
1988), but also shape recognition (Ayzenberg & Lourenco, 2019;

Biederman, 1987), superordinate categorization (Tiedemann et al.,
2022; Wilder et al., 2011), and shape discrimination (Destler et al.,
2019). In many other contexts, similarity is assumed to take the form
of exponential decay in some simple metric space (Jäkel et al., 2008;
Luce, 1959; Minda & Smith, 2011). However, shape representation
is notable for lacking any simple metric structure and is thus not
easily associated with a simple probability distribution. That is, there
is no single parameter or set of parameters of shape over which to
measure distances. Instead, shape similarity, like shape representa-
tion itself, depends on numerous subtle and complex configural
qualities that are difficult to express in any simple way. This is why
shape similarity has proven to be such a difficult problem.

Indeed, Ashby and Perrin (1988) have argued that even when a
simple similarity space is available, human judgments of perceptual
similarity are not actually well accounted for by simple metric
distances. Instead, they argued that similarities reflect the structure
of the probability distributions associated with the stimulus space. In
our proposal, there is no comprehensive metric space and thus no
simple way to define a distribution over one. Instead, we assume that
shapes are the product of complex probabilistic generative processes
(Ons &Wagemans, 2012; Sprote & Fleming, 2016), modeled by the
skeletal prior and likelihood function. Our skeletal probability
framework yields shapes with a parametric structure that depends
on the topology of the shape skeleton, growing in complexity as the
shape skeleton itself grows and branches. In this framework, we can
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Figure 11
Illustration of Absolute Performance of the Generative Similarity Model (Data From Experiment 1, 2D 1:1)

Note. DL = description length. Each shape is colored according to the frequency with which subjects selected it (darker red = higher frequency), and the
seven shapes that the generative similarity model judged most similar to the positive example (left) are indicated by green boxes. Also indicated for each shape
is the proportion of subjects who chose it and its DL relative to the positive example under the generative similarity model. See the online article for the color
version of this figure.
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use Bayes’ rule to estimate the likely generative model for a given
shape or set of shapes.
The core idea underlying the resulting similarity measure is that

two items should be regarded as similar in proportion to the
evidence that they share a common generative origin—that is,
the same skeletal model. We quantify that evidence via the Bayes
factor in favor of a common model relative to the alternative
hypothesis that the shapes have distinct generative models. The
similarity measure is high when two (or more) shapes appear to be
the result of common generative processes and is low when they
appear to be of distinct kinds.
More specifically, the shape lattice illustrated in Figure 2 is a way

of conceptualizing the set of potential common models. In the lattice,
the most likely common model of skeletons A and B lies within the
lattice join A ∨ B, which is the skeletal model containing all the axes
common to both shapes. The pathway on the lattice from A to B
necessarily passes through the common model: the path from A to
A ∨ B represents the removal of axis branches present in A but not
present in A ∨ B, whereas the path from A ∨ B to B represents the
addition of axes present in B but not present in A ∨ B. Because the
generative model specifies the probabilities of axis additions and
removals, the “length” (really, DL) of the path from skeleton A to
skeleton B represents the probability of transforming A into B (or
vice versa). Once these skeletons are coupled with shapes via the
likelihood function ðpðajAÞ;pðbjBÞÞ, the resulting overall DL re-
presents the probability cost of transforming one shape into another
(via their respective MAP skeletons connected by the least common
model). This is the link between the “common model” conceptions
of generative similarity and the more traditional “edit distance”
conception of similarity: The BF in favor of the common model
turns out to incorporate the probabilistic penalty associated with
transforming one shape into the other.
Our experimental data suggest that this similarity measure pre-

dicts human category judgments well, providing the best fit for
human judgments in the 2D experiments, the 3D experiments, and
overall. Given this strong empirical support, combined with its
principled derivation, we would argue that the generative similarity
model represents the best available account of human shape simi-
larity. More broadly, these results argue strongly for a skeleton-
based account of human similarity judgments, and in particular, one
in which shapes are regarded as similar to the extent that they share
common generative models.

Conclusion

Why does a cat look more like a dog than it looks like a hammer?
Our answer (see again Figure 3) is, first, because cats and dogs have
relatively similar skeletal structures: They both have body plans in
which a head, forelegs, hind legs, and a tail are attached to a central
torso—while a hammer has an elongated handle attached to a small
perpendicular head. In this sense, cats and dogs have a relatively
specific common model, whereas cats and hammers only share the
coarsest of common models, a central elongated body. On the other
hand, cats and dogs still look somewhat different because the
parameters of their limbs and other parts have somewhat different
probability distributions, for example, dogs have longer legs relative
to their bodies, more horizontal tails, and so forth.
Our similarity measure incorporates all these aspects—differences

in skeletal topology, differences in axial parameters, and so forth—in

a unified probabilistic framework. Of course, the framework is very
simple; more finely tuned similarity comparisons would require more
elaborate and carefully chosen distributional assumptions, perhaps
tailored to particular classes of shapes. However, given its impressive
performance in fitting our subjects’ data, especially in comparison to
a number of sophisticated alternative proposals, we conclude that our
framework provides a way forward in solving the difficult problem of
shape similarity.
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