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Abstract—The efficient supply of goods and transport of
materials are important factors for sustainability in any urban
environment where traffic and environmental issues also need to
be addressed. In this paper we developed a centrally coordinated
approach for routing freight in urban environments where
traffic loads are unbalanced in time and space in an effort
to improve mobility and reduce cost. We assume that freight
is moved by trucks using the road network and truck fleets
consist of a mix of diesel and electric trucks. We formulated
the routing problem as an optimization problem with several
constraints and we use a co-simulation load balancing approach
to generate routes for trucks that reduce the overall cost. We
use a simulation test of a road network in the Los Angeles/Long
Beach Metropolitan areas that includes two major ports to
demonstrate the results.

Index Terms—Load Balancing System, Co-Simulation, Mixed
Freight, Electric Truck, Routing

I. INTRODUCTION

The efficient movement of goods is a critical factor for
the sustainability and well-being of the whole society. Due
to the increasing volume of goods to be transported and
distributed as well as increases in travel demand by passenger
vehicles make traffic congestion worse with adverse effects
on the environment. Congestion results in enormous costs to
shippers, carriers and the economy. According to [1], in 2016
around 1.2 billion hours of delay is wasted across the US
national highway system, which is equal to approximately
$74.5 billion. Trucks account for a significant share of air
toxics: about on-third of all nitrous oxides (NOX) and nearly
30% of all particulate matter of 10 microns or less (PM10)
[2]. Trucks also account for a significant share of green
house gas (GHG) emissions. The US port sector accounts for
28% of all GHG emissions. Medium and heavy duty trucks
account for 27% of the transport share [2].

This work has been supported by the National Science Foundation under
grant CNS-1932615.

Petros Ioannou
Department of Electrical Engineering
University of Southern California
Los Angeles, USA
ioannou@usc.edu

Maged Dessouky
Department of Industrial
& System Engineering
University of Southern California
Los Angeles, USA
maged @usc.edu

The above statistics motivate the need for an intelligent
routing system for vehicles, especially freight trucks that not
only meets the individual user demand, but also addresses
overall system performance and optimality. Numerous re-
search efforts have been carried out in this area, especially
in view of recent advances in electric vehicles and clean fuel
technologies. According to [3], the penetration of electric
trucks into the global medium and heavy duty market is pro-
jected to be 9.4% by 2030. In comparison with diesel trucks
electric trucks add more constraints which are associated
with charging times, location of charging stations, battery
range and energy which need to be taken into account by
any routing system. Research efforts for this problem under
various constraints can be found in [4]-[12]. However, in
these methods, the dynamics of the background traffic system
are not taken into account, which means that the assumption
that the behavior of background traffic will not be affected by
the routing of trucks in the same network may not be always
true. In reality, the background traffic will be affected if many
trucks are routed along the same link due to their size and
bigger impact on traffic than passenger vehicles.

The dynamics of the transportation system can be taken into
account by formulating the problem as a variant of a traffic
assignment problem (TAP), which was first formulated by
Beckmann et al. [13]. It was first proposed to predict an op-
timum route distribution in terms of minimizing the total cost
for transportation planning purpose. These ideas have been
applied for passenger vehicles as well as freight trucks. For
example, Guelat and Florian proposed a linear approximation
algorithm to solve a multimodal and multiproduct freight
TAP [14]. Castelli et al. used a Lagrangian-based heuristic
procedure to solve the freight scheduling problem [15]. Ham,
Kim and Boyce showed the application of Wilson’s iterative
balancing method in interregional multimodal shipment plan-
ning [16]. Zografos et al. developed a dynamic programming



based algorithm for multimodal scheduling [17]. Moccia et
al. solved a multimodal routing problem with timetables and
time windows by integrating a heuristic methodology with
the column generation algorithm [18]. Crainic et al. proposed
meta-heuristic methods for freight demand distribution in
congested urban areas in [19], [20]. The trend of integrating
electric trucks routing with a TAP variant is forming with
the development of new technologies. Nan et al. presented a
mathematical programming model and solution method for
the path-constrained traffic assignment problem for electric
vehicles in congested networks [21]. Bahrami et al. proposed
a complementarity equilibrium model for electric vehicles
without violating driving range constraints [22]. Based on the
assumption of large adoption of electric vehicles, Faridimehr
et al. [23] proposed a two-stage stochastic programming
model to determine the optimal network of charging stations
for a community as well as the charging decision for each
electric vehicle.

Despite the amount of research in TAP, there are many issues
that need to be addressed. First, the complexity of modeling
the nonlinear behavior at the traffic flow level that caused by
the non-homogeneous dynamics of different vehicle classes
at the vehicle level is immerse. The complexity of the real
system cannot be possibly captured by TAP mathematical
models, especially with the integration of electric trucks.
Second, the development of accurate mathematical models to
describe traffic characteristics has always been a challenge
and is becoming more of a challenge if electric trucks
are included in the model. The constraints introduced by
electric trucks dealing with charging times, battery depletion
behavior, etc. make the mathematical modeling even more
complicated. These complications motivate the use of simu-
lation models by taking into account the availability of fast
computers and software tools. The simulation models can
be used to predict the traffic states and this information can
be used to optimize routes in a co-simulation approach. The
challenge is how these simulation models can be integrated
with optimization tools to generate more realistic outcomes.
In this paper, we deal with how to route a mixed freight
fleet conforming to a balanced assignment. The contribution
of this paper is the development and evaluation of a cen-
trally coordinated load balancing approach for a mixed fleet
of trucks that is computationally feasible. Specifically, the
contributions are:

o A centrally coordinated mixed freight dynamic rout-
ing system is formulated and constructed. The system
achieves system-level minimal cost while considering
the dynamics of background traffic and its interaction
with the imposed truck load on the system at the same
time.

e A co-simulation optimization method is proposed to
solve the mixed freight routing problem. The method
achieves load balancing across the road network.

e The system is tested using realistic scenarios under
various percentages of penetrations of electric trucks
in the whole mixed freight fleet and background traffic
conditions.

The remainder of this paper is organized as follows. Section
2 deals with the problem formulation and solution methodol-
ogy. Section 3 presents the numerical results of the proposed
system. Finally, conclusions are presented in Section 4.

II. PROBLEM AND METHODOLOGY

In this section, the formulation of mixed freight fleet
routing problem is presented and a centrally coordinated
routing system with a co-simulation optimization method is
proposed to address this problem. Specifically, this routing
problem deals with drayage trucks transshipping containers
and demand is expressed as containers to be transported from
origin to destination. The aim for the routing problem is to
provide each truck in the fleet with a route with minimal total
cost that includes energy cost and time cost.

A. Formulation

We consider the road network to be a directed graph
G(E,V), where E is the set of all links and V is the set of
all nodes. Among all the nodes, a subset of them are origin
nodes, denoted as O, i.e. O C V. Another subset of nodes are
destination nodes, denoted as D, i.e. D C V. For a certain
pair of origin and destination nodes (4, j), i € O,j € D, the
demand volume is ¢; ;. All the truck types are included in a
set U. To represent the distribution of trucks, we use m} as
the number of available trucks of type u at node :. To cope
with the temporal dimension, we discretize the time horizon
into |K| time intervals and use K as the set of all the time
intervals. The following notation is used in the formulation
to follow:

» R;}';: The set of routes for trucks of type u from i to j,

1€0,5€D

o Xi';, ' The number of trucks of type u from ¢ to j,
i € 0,5 € D, using route 7 in route set R;fj with a
departure time k; The collection of X', , is denoted
as X.

. S;fjmk(X ): The average service cost per container ful-
filled by a truck of type u from i to j, ¢ € O,j € D,
using route 7 in route set R}'; with a departure time £;

Given the above notation we formulate the problem as
follows:
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Equation (1) is the objective function, which aims to mini-
mize the sum of the service cost of all the freight loads which
are assumed to be containers. S;'; x(X) is the unit service
cost of transporting a container with a truck of type w using
route r from ¢ to j at time & given X. The cost S¥. . (X)

. . i,5,m,k
is given by
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where C'; ,(X) is the cost of the consumed energy,
T} . x(X) is the travel time and 7 is the value of time.

The energy and travel time cost depend on the dynamics
of the traffic network. The dynamics of the traffic network
can be expressed as nonlinear dynamic functions of all
decision variables, denoted as X, and will be discussed in the
following sections. Note here, the energy cost is calculated
based on the dynamics of the traffic network [24]. More
specifically, the energy cost coefficient of each truck type
is formulated as a polynomial function of the speed of the
road link, where the parameters of the function are estimated
using regression over a set of testing data. Here we assume
one truck can only load one container, so the total number
of trucks for an O/D pair is equal to the demand of the O/D
pair, as shown in equation (2). Equation (3) represents the
constraints on availability of a certain type of truck at each
node.

The dynamics of a traffic network are highly nonlinear and
exhibit the following temporal-spatial relations: traffic flow
dynamics in a link and between links. The dynamics in a link
describe how the traffic flow moves from the upstream end
of a link to the downstream end, while the dynamics between
links describe how the traffic flow propagates across the
traffic network. In most of the literature of vehicle routing, the
complex dynamics of the traffic network are overly simplified
and the dynamics between links are ignored. The optimum
routes from these methods may not be optimum in a realistic
situation if the impact of routing on background traffic is
ignored. In our approach, we introduce the following way
to connect the traffic flow on each route with the number of
trucks of a certain type on a road edge. First, a subset of nodes
in the traffic network including all O/D nodes as well as the
nodes necessary for the routing of freight vehicles are chosen.
These nodes are called service nodes. Then a set of virtual
service links connecting the service nodes are constructed. To
differentiate the link in the road network, the virtual service
links are called segments. Let ', be the number of trucks
of type u passing through segment [ at time k. Then the
relations between routes and service segments can be shown
as follows:
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where ! € L,k € K and 4}, , = 1 when the truck of type u
uses route r with departure time 7 passing through segment [
at time k, otherwise, d;*,. . ;. = 0. As for the relations between
the service segment and traffic network links, we denote as
tﬁ  the travel time on path p if a truck departs from the
origin of segment [ at time k. Assume links constituting path
ptobeeyi,epo,...,epnN,, where Ny is the total number of
links on path p. We define & as the entering time at link
e of a truck with a departure time %k from the origin of that
path. With w, , to be the travel time of link e at time k, we

now write the travel time of a path as follows:

Np
=D Wepny hcpn, ™
np=1
Ekrepy =1 (3)
Ehiepmpir = Skepny T Wep o iy )
where n, = 1,..., N, — 1. To make the notation simpler, we

let Wy, x = Wep 1, bk ey, 1O denote the travel time of link
€p,n, On path p with the path departure time being fk,ep,n,,~
Then the mixed freight routing problem can be formulated
in the form of service-road two-layer structure as:
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where T'C' stands for the total cost of the assignment with
mixed freight vehicles, which is a combined value of energy
consumption cost and travel time cost. ¢/} is the energy
consumption coefficient for trucks of type u passing through
path p of segment [ at time k, ¢} is the travel time of path
p in segment [ that departs at time k, y;;" is the number of
trucks of type u assigned to pass through path p of segment
l at time k and 7 is the value of time. This objective function
is constrained by equations (6)-(9) as well as the following
equations:
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which represent the relation between variables from the ser-
vice network and the simulated traffic network. In a summary,
we introduce the following changes to make routing decisions
close to a theoretical optimum:

o« We use a traffic simulation model to capture the dy-
namics of the background traffic when it is loaded with
trucks instead of using a simplified mathematical model.
The simulation model provides a far more accurate
description of the traffic dynamical characteristics to be
used by the optimum route generator.

« We construct a service network layer to efficiently
utilize the simulation model and apply the optimization
algorithms.

o In the algorithm, the direction and step size are intelli-
gently chosen based on the knowledge of the marginal
cost.

In the next subsection, we present a co-simulation optimiza-
tion method for solving the multi-layer routing problem.

B. Solution Methodology

Figure 1 gives a general overview of the method. The
input to the routing system are demands, vehicle-related
characteristics and other predetermined parameters. Demands
represent the number of containers to be transfered from
origin to destination nodes. The truck characteristics include
the physical (weight, length, frontal area, et al.), dynamic
(max speed, acceleration, et al.). The energy consumption



(the amount of energy consumed based on the dynamic
states) characteristics for each type of truck is included in the
predetermined parameters. Based on the energy consumption
characteristics of diesel/electric trucks, the cost coefficients
on each segment of both types of trucks are calculated under
different traffic conditions. We use an emission model from
National Renewal Energy Laboratory (NREL) to calculate
the emissions. In the routing system, two major components,
the service graph and traffic simulator form a feedback
loop that stops when certain criteria are satisfied. Like a
central coordinator, the optimization of truck assignment is
performed on the service graph aiming to fulfill demands at
minimal system cost. A real-time traffic simulator is used to
capture the dynamical characteristics of traffic and provide
traffic state predictions such as travel times along the links
and routes as well as estimates of the energy cost of diesel
and electric trucks depending on the simulated traffic flow.
The information from the simulator is used by the service
graph optimization component to update the status, such as
marginal cost of each service segment which is then used
to update the route cost. Based on the simulated route cost,
the route collection for each O/D pair is updated as well.
The updates of route collection start by trying to find if
there is a new minimum cost route. If there is, add the
new route to the route collection; otherwise, do nothing.
Then given the updated route collection, the assignment of
diesel/electric trucks for each O/D pair is then updated by
solving an integer combinatorial programming problem using
a properly selected efficient step size. The new assignment is
then generated in the form of route flow vector and passed
to the traffic simulator for another iteration. Other than the
route flow vector from the service graph, the background
traffic data accounts for the other part in the road network.
The background traffic flow data are obtained from various
sources, such as PeMS [26] and Google Maps [27]. The
assignment traffic flow is generated by the optimizer in
the service graph. The co-simulation optimization procedure
iterates in a feedback loop that involves the traffic simulator
and service graph optimization. Through this procedure, the
states of route flow vector and road network feedback are
sequentially updated until both states converge. The difficulty
in this procedure is to calculate the marginal cost of each
route, which represents the change in the total cost as a
result of adding one unit of demand on that route. Since
the total cost T'C' of equation (10) is complex, the marginal
cost with respect to a route cannot be calculated directly. One
way to calculate the marginal cost is to use Monte Carlo to
simulate the impact of one unit of demand on each route at
each time. However, it is impractical to enumerate all routes
due to the fact that the number of possible routes grows
exponentially with respect to the service network size. Our
proposed approach bypasses this issue and works as follows:

Step 1: Initialize cost coefficients based on the physical
features such as speed limit for each segment [ and
iteration number n = 0. Initialize the diesel/electric
route collections for each O/D pair based on the
segment cost calculated with the cost coefficients.

Establish the initial route flow vector X () by as-
signing the portion of demands in the origin node
to electric trucks with the portion of demand to be
equal to the portion of electric trucks in the mixed
fleet.

If n > 1, check if the objective function value of
the current iteration converges, i.e., |[TC(X (”)) -
TCO(X™= )| < ¢; ¢ is set to be a small number.
If it converges, then stop the procedure and return
with route flow vector; otherwise, continue to the
next step.

Input the route flow vector X () into the traffic sim-
ulator and obtain the marginal cost of each segment.
Update the marginal cost of each segment as well
as diesel/electric routes for each O/D pair and check
whether there is a new minimal marginal cost route.
If there is, then add it into the route collection.
Solve the following optimization problem for each
origin node o to obtain a feasible route flow vector
X",

Step 2:

Step 3:

Step 4:

Step 5:
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where MCY j,rk 18 the marginal cost of route r from
o to j with a truck of type u departing at time k. The
marginal cost of a route is the sum of the marginal
costs of the segments along it. The computation of
the marginal cost of a segment will be addressed in
the next subsection.

Set the route flow vector for the next iteration as
X)) = x () A (X7 — X)) where A is
the step size at the nth iteration, and go back to step
2. The step size A(™) at the nth iteration is selected

Step 6:

as in [25].
/\T'L‘ = min )\ma:m
v t (16)
Z Z Non o(gi) )
i€cO jeD w7 ZiGO ZjGD U(%j)

where o(q; ;) is the standard deviation of the
marginal cost of all the routes by demand ¢; ; and
Amaz 18 the upper bound of the step size.

Different from the load-balancing cases with single-type
vehicles, we address the problem with two types of trucks,
diesel and electric trucks. Due to that, the type of steepest
descent direction used in the work of [25] may not be feasible
for the mixed freight case. The update of each iteration should
consider not only the marginal cost of a certain route but also
the availability of each type of truck at a certain node. In
step 5, a linear programming subproblem is formulated by
explicitly imposing the availability constraints for each type
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Fig. 1. Framework of proposed mixed freight dynamic routing system

of truck as shown in equations (13 - 15).

The marginal cost of a service segment represents the change
in the total cost if one unit of demand/container is changed
on the segment. Let M CP/;" be the marginal cost of path
p of segment [ with departdre time k for the trucks of type
u. The final form of marginal cost is:
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The derivation details of marginal cost can be found in [24],
[25].

III. NUMERICAL EVALUATION

The evaluation of the proposed approach is performed
using a regional transportation network covering the road
network from the Los Angeles/Long Beach terminal ports to
I-105 freeway. A commercial traffic simulator VISUM [28] is
used to configure the digital twin of the road network. Road
network features such as such as lane length, capacity, speed
limit et al. are configured in the traffic simulator. The road
network in the traffic simulator is shown in Figure 2. The
road network is on the right and its service network is on the
left. The circles with number in them are the service nodes.
The service network nodes are composed of O/D nodes as

well as intersections of freeways and major arterial ways.
The service nodes also include charging stations. To make
sure the routes of electric trucks are feasible, we assume
every charging station has enough capacity for charging and
electric trucks always get charged the amount of electricity
they consumed on the previous segment along the route.
Other than the lane features, background traffic also needs
to be configured in the traffic simulator. We use freeway
traffic flow data from PeMS [26] and arterial way data from
Google Maps [27]. Background traffic data in three time
periods are extracted from the raw data: from 2am to 6am
representing a light background traffic condition, from 12pm
to 4pm representing a medium background traffic condition
and from 7am to 1lam representing a heavy background
traffic condition. The extracted traffic data are then processed
(formatted/truncated/aggregated) to fit the format of the traf-
fic simulator. The total number of demands is 3430. The
hourly time value is set to be $60 in terms of year 2020
US Dollar value [29]. We assume the charging cost to be
the same with time cost at $60 per hour. In our simulation
we assume that it takes 4 hours for a full charge which is
equivalent to $240.

The routing system is tested under different scenarios of
various percentages of electric vehicles. The experimental
scenarios are constructed in the following manner: 3 back-
ground traffic conditions (light, medium and heavy) are
constructed and under each background traffic condition, the
percentage of electric vehicles in the fleet is varied from 0%
to 100% in increments of 10%. Let v be the speed of the
truck, according to [24], the energy cost coefficient function



Fig. 2. Road Network and Service Network Overview

for diesel trucks is:

hi(v) = 11.327 — 0.649v + 0.0450% — 0.001v® (18)
For electric trucks, it is:
hé(v) = 66.552 — 7.670v + 0.291v% — 0.004v® (19)

The experiments are performed on a desktop computer con-
figured with 4.2GHz CPU and 16G memory. The results
include total costs in unit of dollar of the assignment (with
and with out charging time cost), the weight in unit of gram
of several emissions (CO, NOX, CO2, PM25) as well as fuel
consumed in unit of kg. A modified EPA model MOVES [30]
is used to calculate the emissions. Figures 3 - 5 show the
results under medium background traffic condition. Similar
results patterns are observed under light and heavy traffic
conditions, which are not included in this paper due to space
limit. We can see that by increasing the % of electric trucks
the overall cost without charging time cost is decreasing. But
the total cost with the inclusion of charging time cost does not
decrease since the cost of charging time becomes more and
more dominant as the % of electric trucks increases. Another
observation is that by increasing the % of electric trucks, all
types of emissions are decreasing.

In summary, the following observations can be made from
the experiments:

o The total cost without including charging cost decreases
as the % of electric vehicles increases.

o The total cost that also includes the charging cost tends
to increase in general since the cost of charging time
becomes more and more dominant with increasing % of
electric trucks in the fleet.

o The difference between the total cost including and
excluding charging time is the charging time, which
we assume that the time of driver waiting for charging
is included in. Due to that, we can observe that if
charging is done off-duty the total cost can be reduced
considerably.

o The emissions go down as the number of electric vehi-
cles increases in the fleet.

IV. CONCLUSION

In this paper, we have proposed a mixed freight routing
system with central coordination. A multi-layer co-simulation
optimization method to achieve freight load balancing across
the road network is proposed and tested under a realistic
regional road network. The method considers the inclusion
of electric trucks with their penetration varying from 0%
to 100% and manages to optimally route a mixed freight
fleet with the complexity of the traffic network dynamics
and constraints imposed from the electric trucks such as
charging time and energy depletion. The multi-layer co-
simulation optimization method consists of one layer for the
traffic simulator and another layer for service network. The
traffic simulator is used to accurately predict the states of the
transportation system and the service network to generate the
optimum routes. Numerical experiments are performed using
a realistic traffic network in the Los Angeles/Long Beach area
that includes the two ports to evaluate the approach with a
mixed freight fleet. The results show that the use of electric
trucks can notably reduce the emissions and total cost when
the charging time cost is not included. If charging is done
during working hours then the driver cost should be included
and this will make the operational cost of electric trucks to
be comparable or even higher than those of diesel trucks. As
a result scheduling the charging of trucks when the driver is
off or resting should be taken into account in scheduling and
routing electric trucks.
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