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Design and Analysis of Clustered Regression Discontinuity 
Designs for Probing Mediation Effects

Fangxing Baia, Ben Kelceya, Yanli Xieb, and Kyle Coxc 

aUniversity of Cincinnati, Cincinnati, OH; bFL State University, Tallahassee, FL; cUniversity of NC at Charlotte, 
Charlotte, NC 

ABSTRACT 
Prior research has suggested that clustered regression discontinuity 
designs are a formidable alternative to cluster randomized designs because 
they provide targeted treatment assignment while maintaining a high- 
quality basis for inferences on local treatment effects. However, methods 
for the design and analysis of clustered regression discontinuity designs 
have not been fully developed to address the array of core effects (e.g., 
main, moderation and mediation) typically examined in education studies. 
In this study, we complement prior design literature by developing princi
ples of estimation, sampling variability, and closed-form expressions to pre
dict the statistical power to detect mediation effects in clustered 
regression discontinuity designs. The results suggest that sample sizes typ
ically seen in educational intervention studies (e.g., about 50 schools) can 
be sufficient to detect a mediation effect under some conditions when 
studies are carefully designed. We implement the results in software and a 
Shiny App (BLINDED FOR REVIEW).

KEYWORDS 
Mediation; regression 
discontinuity; power; 
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Introduction

Prior research has suggested that regression discontinuity designs are a formidable alternative to clus
ter randomized designs because they provide targeted treatment assignment while maintaining a 
high-quality basis for local inferences (Cook, 2008). In education, regression discontinuity designs 
often leverage cluster-level running variables to assign treatment conditions at the school-level to 
accommodate policy initiatives and/or the school-wide scope and implementation of many interven
tions. When correctly implemented and specified, these types of clustered regression discontinuity 
designs facilitate unbiased inferences concerning the local area effects of a treatment (Cook, 2008).

Despite the widespread use of clustered regression discontinuity designs in education, prior lit
erature has not fully developed methods to address the more comprehensive sets of effects that 
are typically used to supplement evidence of whether an intervention works on average (i.e., main 
effect). For example, contemporary research routinely supplements evidence on main effects by 
further examining evidence for the underlying theory of action through mediation analyses. Such 
mediational analyses provide complementary evidence by probing the mechanisms through which 
the intervention operates on the outcome. More generally, such investigations of mediation effects 
play an essential role in testing and refining teaching and learning theories.

In this study, we advance regression discontinuity designs by developing principles of estima
tion, sampling variability, and closed-form expressions to predict the statistical power with which 
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we can detect mediation effects in clustered regression discontinuity designs. The results provide 
tools intended to inform and guide researchers in planning clustered regression discontinuity 
designs with cluster- and individual-level mediators. Below, we first detail the methods for clus
ter- and individual-level mediators using a working example. We then follow with a simulation 
assessing our results and finish with an illustration of the methods.

Methods

To explicate the models and methods, let us consider a working example from the literature (e.g., 
Bonell et al., 2018): The Learning Together intervention. This intervention aims to improve 
school environments in ways that reduce incidents of bullying and aggression and increase stu
dent health and wellbeing (Bonell et al., 2018). To achieve these goals, the Learning Together 
intervention focuses on modifying school policies and systems, increasing restorative practice, 
and processing social and emotional education (Bonell et al., 2018). The underlying theory of the 
intervention suggests that improvement of the school environment (i.e., a school-level mediator) 
and/or improvement of student opinion (i.e., a student-level mediator) about learning and the 
school community are key mechanisms through which we can improve student mental health 
(i.e., an outcome) (Bonell et al., 2019).

Within this context, consider a study that draws on a clustered regression discontinuity design 
such that schools are assigned to participate in the Learning Together intervention or business as 
usual based on a continuous school-level variable such as the number of mental health referrals 
at each school during the prior year. For example, the discontinuity assignment may assign 
schools above the 50th percentile (i.e., those schools with a high number of mental health refer
rals) to the Learning Together intervention and those at or below the 50th percentile to continue 
without any changes. Further assume that we are interested in examining the extent to which the 
Learning Together intervention improves student mental health (outcome) by operating through 
changes in (a) the school environment (school-level mediator) or (b) student opinion on learning 
and school community (student-level mediator).

Cluster-level mediator

Let us first consider analysis of a cluster-level mediator using a 2-2-1 mediation framework where 
the 2-2-1 numeric acronym represents the respective levels of the intervention (school-level, 2), 
mediator (school-level, 2) and outcome (student-level, 1). We develop our regression discontinu
ity design models within the context of flexible linear, quadratic and cubic functional forms and 
assume that the conditional density functions of both the mediator and the outcome exhibit con
tinuity at the designated cutoff point. More specifically, prior literature has drawn on this 
approach to ensure the smoothness and uninterrupted flow in the distributions of both the medi
ator and the outcome variables at the threshold (e.g., Imbens & Lemieux, 2008; McCrary, 2008). 
Let us further assume that the running variable (school mental health) follows an approximate 
normal distribution

Sj ¼ eS
j eS

j � Nð0, r2
SÞ (1) 

Where Sj is the value of the running variable for school j with mean zero and variance r2
S:

To obtain inferences regarding mediation, we draw on the potential outcomes framework and 
take up the following additional requisite assumptions (e.g., VanderWeele, 2010): (1) stable unit 
treatment value assumption (SUTVA), (2) sequential ignorability, (3) consistency, (4) no down
stream confounders, and (5) no treatment-by-mediator interaction (Kelcey et al., 2017). Although 
we draw on these assumptions to develop expressions to guide design and analysis, we note that 
their validity in practice should be thoroughly considered and evaluated (see, for example, 
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Imbens & Lemieux, 2008). For the (cluster-level only) mediator model, we adopt the following 
model

Mj ¼ p0 þ aTj þ f Sjð Þ þ p1Wj þ p2Xj þ eM
j eM

j � Nð0, r2
MjÞ (2) 

Where Mj is the mediator value for school j, p0 is the intercept, Tj is the treatment condition 
(i.e., 1 as treatment and 0 as control) with a as the path coefficient of the treatment-mediator 
effect, f Sjð Þ is a (nonlinear) function of the running variable Sj, Wj is a school-level covariate 
with coefficient p1, Xj is a school-level aggregate of a student-level covariate (Xij) with coefficient 
p2, and eM

j is the error term.
For the (multilevel) outcome model, we have

Student�level: Yij ¼ b0j þ b1 Xij − Xj
� �

þ p2Vij þ eY
ij eY

ij � Nð0, r2
YjÞ

School�level: b0j ¼ c00 þ bMj þ F Sjð Þ þ c0Tj þ c01Wj þ c02Xj þ uY
0j uY

0j � Nð0, s2
j Þ (3) 

Here, Yij represents the outcome for student i in school j, F Sjð Þ is a (non)linear function of 
the running variable Sj (similar but different to f Sjð Þ), b0j is the school-specific intercept, Xij is a 
student-level covariate with school-level average Xj and coefficient b1, Vij is a student-level cova
riate that varies only across individuals (no variation among clusters) with the coefficient p2, eY

ij 

is the individual level error term, c00 is the overall intercept of the model, b is the path coefficient 
of the mediator, c0 is the path coefficient of the treatment, c01 and c02 are the coefficients of the 
covariates, and uY

0j is the cluster level random effect.
Under this model specification and aforementioned assumptions, the mediation effect (ME) 

can be described as

ME ¼ ab (4) 

Where a and b are the path coefficients obtained from expressions (2) and (3).

Error variance
Under the aforementioned specification, the error variance of the mediation effect in a clustered 
regression discontinuity design is (Bollen, 1987; Kelcey et al., 2017; MacKinnon, 2012; 
Mackinnon et al., 2007)

r2
ab ¼ b2r2

a þ a2r2
b þ r2

ar2
b þ 2abrab þ r2

ab � b2r2
a þ a2r2

b (5) 

The full expression capturing the variance can be simplified given the independence of the a 
and b paths (i.e., rab ¼ 0; Kelcey et al., 2017). Likewise, prior research has consistently found that 
the product of the error variances (r2

ar2
b) is approximately zero such that we can safely 

assume r2
ar2

b � 0:

Under the maximum likelihood, the respective error variances can be obtained as a function 
of common summary statistics or design parameters

r2
a ¼

r2
Mj

n2r2
T

¼
r2

M 1 − R2
M

� �

n2Pð1 − PÞð1 − q2
f Sð Þ, TÞ

r2
b ¼

s2
j

þ r2
Yj

=n1

n2r2
M

¼
s2 1 − R2

YL2

� �
þ r2

Y 1 − R2
YL1

� �
=n1

n2r2
Mð1 − R2

MÞ
(6) 

Here, r2
M is the unconditional variance of the mediator, r2

T is the unconditional variance of 
the treatment (i.e., P(1-P) where P is the proportion of clusters assigned to the treatment condi
tion), qf Sð Þ, T is the correlation between the treatment assignment and the function of the running 
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variable f Sð ÞT (Schochet, 2009), s2 is the unconditional school-level outcome variance, r2
Y is the 

unconditional student-level outcome variance, R2
YL2 and R2

YL1 are the outcome variance explained 
by the school- and student-level covariates, and R2

M is the mediator variance explained by the 
covariates in the models, and n1 and n2 represent the number of students per school and the 
number of school. Further, we can unpack the correlation between the function of the running 
variable (f Sð Þ) and the treatment condition qf Sð Þ, T as

qf Sð Þ, T ¼
rf Sð Þ, T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
rf ðSÞ

¼
E TRD

j f Sjð Þ
� �

− Plf ðSÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
rf ðSÞ

¼
P E f ðSjÞjSj � K

� �
− lf ðSÞ

h i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞ

p
rf ðSÞ

(7) 

Where rf Sð Þ, T is the covariance between the function of the running variable (f Sð Þ) and the treat
ment condition (T), lf ðSÞ is the mean of f Sð Þ, K is the cutoff value on the running variable S 

such that K ¼
U−1 P, 0, r2

Sð Þ
r2

S 
with U as the cumulative normal density function, and rS is the stand

ard deviation of the running variable S, and rf ðSÞ is the standard deviation of f Sð Þ:

Path formulation
When expressions tracking the sampling variability of an effect are intended for design decisions, 
studies have often reparametrized them in terms of parameters for which there is readily access
ible empirical information from in the literature (e.g., Kelcey and Shen, 2017). In this way, 
researchers can draw on prior empirical values for key parameters that govern power when plan
ning studies. For this reason, we decomposed the variance explained parameters (R-squared) into 
components attributable to the primary path coefficients (i.e., a, b, c’) of the variables that are 
specific to this intervention and study (i.e., T, M) and components attributable to control covari
ates (e.g., X, W, X) that tend to be more commonly reported in the literature. For the total vari
ance in the outcome explained at the school level, the expected value of R2

YL2 can be expressed as

R2
YL2 ¼ R2

YL2j~Z þ
b2r2

f ðSÞ
þ r2

FðSÞ
þ 2brf Sð Þ, FðsÞ

s2 þ
ab þ c0ð Þ

2P 1 − Pð Þ

s2 þ
2 brf Sð Þ, T þ rF Sð Þ, T
� �

ab þ c0ð Þ

s2

þ
b2r2

M 1 − R2
ML2

� �

s2

(8) 

Where we use the covariances between the treatment and the function of the running variable 
in the mediator model, rf Sð Þ, T , and outcome model, rF Sð Þ, T , and the covariance between f Sð Þ and 
F Sð Þ, rf Sð Þ, FðsÞ, in this equation. This expression contains the variance explained by the covariates 
that can be obtained from prior studies (R2

YL2j~Z
) and the variance explained by the key focal varia

bles in this study (i.e., T, M).
A similar decomposition of the variance explained in the mediator in the mediation model 

results in

R2
M ¼ R2

Mj~Z þ
r2

f ðSÞ

s2
M

þ
a2P 1 − Pð Þ

s2
M

þ
2arf Sð Þ, T

s2
M

: (9) 

Where where R2
Mj~Z 

represents the variance in the mediator explained by (control) covariates 
that can be obtained from prior literature.
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Student-level mediators

We next examined clustered regression discontinuity designs that probe a student-level mediator 
(e.g., student opinion). We again approximate the distribution of the running variable Sj using 
expression (1). In turn, we now draw on a multilevel structure to decompose variation among 
students and among schools in the mediator

Student�level: Mij ¼ p0j þ p1 Xij − Xj
� �

þ p2Vij þ eM
ij eM

ij � Nð0, r2
MjÞ

School�level: p0j ¼ f00 þ aTj þ f ðSjÞ þ f01Wj þ f02Xj þ uM
0j uM

0j � N 0, s2
Mj

� �
(11) 

Here, Mij is the mediator value of student i in school j, p0j is the school-specific intercept for 
school j, Xij is a student-level covariate with the coefficient p1, and Xj is its school-level mean, 
Vij is a student-level covariate that varies only across students (no cluster variation) with the coef
ficient p2, eM

ij is the individual level error term, f00 is the overall intercept, Tj is the treatment 
assignment coded as 0/1 with associated path coefficient a, f Sjð Þ is the (non)linear function of Sj 

in the mediator model, f01 and f02 are the coefficients of the covariates, and uM
0j is the cluster 

level random effect.
For the outcome model, we have

Individual�level: Yij ¼ b0j þ b1 Mij − Mj
� �

þ b1 Xij − Xj
� �

þ b2Vij þ eY
ij eY

ij � Nð0, r2
YjÞ

Cluster�level: b0j ¼ c00 þ BMj þ FðSjÞ þ c0Tj þ c01Wj þ c02Xj þ uY
0j uY

0j � Nð0, s2
YjÞ (12) 

Where Yij is the outcome of student i’s in school j, b0j is the school-specific intercept, Mij is the 
student-level mediator with the path coefficient b1, Mj is the school-level aggregate mean of that 
mediator with B as its coefficient at the school-level, b1 and b2 are the coefficient of the student- 
level covariates, eY

ij is the individual level error term, c0 is the path coefficient of the treatment, 
F Sjð Þ is the function of Sj in the outcome model, c01 and c02 are the coefficients of the school- 
level covariates, and uY

0j is the school-level random effect.
In this formulation the path coefficient B captures the total (conditional) association between 

the mediator and outcome (including the student- and school-level relationships; Kelcey et al. 
2017). The path coefficient b1 captures the student- level (conditional) association between the 
mediator and outcome (Kreft et al., 1995; Raudenbush & Bryk, 2002). As a result, the product of 
path coefficients a and B captures the total mediation effects including both the student-level 
mediator and the school-level averaged mediator values (Pituch & Stapleton, 2012; Zhang et al., 
2009). Under the model specification and the aforementioned assumptions, the mediation effect 
is as follows

ME ¼ aB (13) 

Error variance
The error variance of the mediation effect in clustered regression discontinuity design is

r2
aB ¼ B2r2

a þ a2r2
B (14) 

Under the maximum likelihood, we can again express the error variances of path a and path b 
as follows as functions of summary statistics as

r2
a ¼

s2
Mj

þ r2
Mj

=n1

n2r2
T

¼
s2

M 1 − R2
ML2

� �
þ 1 − R2

ML1

� �
r2

M=n1

n2Pð1 − PÞð1 − q2
f Sð ÞTÞ
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r2
B ¼

s2
Yj

þ r2
Yj

=n1

n2 s2
M þ r2

M=n1
� � ¼

s2
Y 1 − R2

YL2

� �
þ 1 − R2

YL1

� �
r2

Y=n1

n2 s2
M 1 − R2

ML2

� �
þ 1 − R2

ML1

� �
r2

M=n1
� � (15) 

Where s2
M is the unconditional variance of the cluster level aggregated mediation effect, r2

M is the 
unconditional variance of the individual level mediator, r2

T is the unconditional variance of 
the treatment, s2 is the unconditional variance of the cluster level aggregated outcome, r2

Y is the 
unconditional variance of the individual outcome, and n1 and n2 represent the number of indi
viduals per cluster and the number of clusters.

Because the treatment is assigned based on the cutoff value on the running variable, P is the pro
portion of clusters receiving treatment and T is following Bernoulli distribution, then we have r2

T ¼

P 1 − Pð Þ: Based on Schochet (2009), the conditional r2
Tj

¼ Pð1 − PÞð1 − q2
f Sð ÞTÞ, where qf Sð ÞT is the 

correlation between the treatment assignment and the express of the running variable f Sð Þ: R2
YL2 and 

R2
YL1 are the outcome variance explained by the school- and student-level covariates, and R2

ML2 and 
R2

ML1 are the mediator variance explained by the school- and student- level covariates in the models.

Path formulation
Similar to the approach applied for the 2-2-1 mediation, we decomposed R-squared parameters 
in 2-1-1 mediation into components specific to the intervention and study, and control covariates 
more commonly reported in the literature. The total variance of the second level explained in the 
outcome model is the assembling of all parts of the equations as follows.

R2
YL2 ¼ R2

YL2j~Z þ
Br2

f ðSÞ
þ r2

FðSÞ
þ 2Brf Sð Þ, FðsÞ

s2 þ
aB þ c0ð Þ

2P 1 − Pð Þ

s2 þ
2 Brf Sð Þ, T þ rF Sð Þ, T
� �

ab þ c0ð Þ

s2

þ
B2 s2

M 1 − R2
ML2

� �
þ

r2
M 1−R2

ML1ð Þ
n1

� �

s2

(16) 

For the R squared of the individual level outcome, the expected expression is as follows

R2
YL1 ¼ R2

YL1j~Z þ
b1

2r2
M 1 − R2

ML1

� �

r2
Y

(17) 

With the same approach, we can construct the R squared for the mediation effect as

R2
ML2 ¼ R2

ML2j~Z þ
r2

f ðSÞ

s2
M

þ
a2P 1 − Pð Þ

s2
M

þ
2arf Sð Þ, T

s2
M

(18) 

Functions of the running variable

Our specification of the running variable S in shaping the mediator (f Sð Þ) and outcome (F Sð Þ) 
values allows for a broad set of flexible functions including linear, quadratic and cubic in the 
regressions. For example, consider a function q Sð Þ such that

q Sð Þ ¼ m Sð Þ þ eqðSÞ eqðSÞ � N 0, r2
q Sð Þj

� �
(19) 

Where m Sð Þ is the deterministic function of S and eqðSÞ is the error term. The resulting covariance 
between the treatment and this function (rq Sð Þ, T) is

rq Sð Þ, T ¼ rm Sð Þ, T (20) 

Where rm Sð Þ, T represents the covariance between the treatment T and m Sð Þ:
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Returning to the construction of R squared of the cluster level outcome model, the covariance 
of f Sð Þ and F Sð Þ can be estimated as follows

rf Sð Þ, FðsÞ ¼ rmf Sð ÞrmF Sð Þ (21) 

Where rmf Sð Þ is the deterministic function of S in f Sð Þ and rmF Sð Þ is the deterministic function of 
S in F Sð Þ:

The correlation between the treatment T and q Sð Þ can then be obtained as follows

qq Sð Þ, T ¼
rq Sð Þ, T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞr2

q Sð Þ

q ¼
rm Sð Þ, T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞðr2

q Sð Þj
þ r2

m Sð Þ
Þ

q (22) 

Where r2
m Sð Þ

is the variance of m Sð Þ:

For example, when considering a cubic function, the model is as follows

q Sð Þ ¼ m Sð Þ þ eqðSÞ ¼ k1S þ k2S2 þ k3S3 þ eqðSÞ eqðSÞ � N 0, r2
q Sð Þj

� �
(23) 

Where m Sð Þ ¼ k1S þ k2S2 þ k3S3, and k1, k2, and k3 are the coefficients of the S, S2, and S3:

We have r2
S2 ¼ 2r4

S, r2
S3 ¼ 15r6

S, and rS, S3 ¼ 3r4
S, which yields

r2
m Sð Þ ¼ k1

2r2
S þ k2

22r4
S þ k3

215r6
S þ 6k1k3r4

S (24) 

For the covariance between T and m Sð Þ, we have

rm Sð Þ, T ¼ k1rS, T þ k2rS2, T þ k3rS3, T (25) 

Where rS, T is the covariance between T and S, rS2, T is the covariance between T and S2, and 

rS3T is the covariance between T and S3: Using K (K ¼
U−1 P, 0, r2

Sð Þ
r2

S
; U is the cumulative density 

function of normal distribution) as the cutoff value on the running variable S, the cluster with a 
value below K will be assigned to the treatment condition and the other clusters will be assigned 
to the control condition. The resulting covariance between S and T is

rS, T ¼ −/ K, 0, 1ð ÞrS 

rS2T ¼ 0:5 r2 þ sgn P − 0:5ð Þ r2erf
ffiffiffiyp

ffiffiffi
2

p
r

� �

−
r
ffiffiffiffiffi
2y

p
e−y= 2r2ð Þ

ffiffiffi
p

p

 ! !

�U K, 0, r2
s

� �
r2

s 

rS3T ¼ −
rS jK3j

2
3 þ 2r2

S

� �

e
−jK3 j

2
3

2r2
S

ffiffiffiffiffi
2p

p (26) 

Assembling these results, the covariance between the function and the treatment can be expressed as

rm Sð Þ, T ¼ k1 −/ K, 0, 1ð ÞrSð Þ

þ k2 0:5 r2 þ sgn P − 0:5ð Þ r2erf
ffiffiffiffiffiffi
K2

p

ffiffiffi
2

p
r

 !

=2 −
r
ffiffiffiffiffiffi
K2

p
e−K2= 2r2ð Þ

ffiffiffiffiffi
2p

p

 ! !

�U K, 0, r2
s

� �
r2

s

 !

þ k3 −
rS jK3j

2
3 þ 2r2

S

� �

e
−jK3 j

2
3

2r2
S

ffiffiffiffiffi
2p

p

0

B
@

1

C
A

(27) 
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Similarly, the correlation between the treatment T and q Sð Þ can be obtained as follows

qq Sð Þ, T ¼
rm Sð ÞT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞðr2

q Sð Þj
þ k1

2r2
S þ k2

22r4
S þ k3

215r6
S þ 6k1k3r4

SÞ
q (28) 

Because we can obtain the R-squared of the r2
q Sð Þ

from the prior studies, the formula of the 
correlation can be rewritten as follows

qf Sð Þ, T ¼
rm Sð Þ, T

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 − PÞðk1

2r2
S þ k2

22r4
S þ k3

215r6
S þ 6k1k3r4

SÞ=R2
qðSÞ

q (29) 

Where R2
qðSÞ

is the variance explained by m Sð Þ in q Sð Þ:

For the expressions of S are quadratic regressions (i.e., q Sð Þ ¼ k1S þ k2S2 þ eqðSÞ, 
eqðSÞ � N 0, r2

q Sð Þj

� �
) or linear regressions (i.e., q Sð Þ ¼ k1S þ eqðSÞ, eqðSÞ � N 0, r2

q Sð Þj

� �
), we can 

apply the formulas we developed for the cubic regression to the quadratic regressions with setting 
k3 ¼ 0 or to the linear regressions with setting k3 ¼ k2 ¼ 0:

Statistical power

An important consideration in the design of clustered regression discontinuity studies is the stat
istical power with which we can detect the targeted mediation effect if it exists (Cohen, 1988). 
For this reason, we developed methods to predict power by extending several common mediation 
tests that are suitable for the design phase (i.e., Sobel test, joint test, and Monte Carlo interval 
test).

The Sobel test
One classic approach to testing mediation effects is the Sobel test based on the asymptotic nor
mality of the sampling distribution of the mediation effect (Sobel, 1982). The Sobel test compares 
the ratio of the estimated indirect effect to its estimated standard error to a normal distribution 
(which tends to be a poor approximation in samples of less than say 100 or 200 clusters). Given 
our prior results, the forms of the Sobel test statistics (zSobel) for cluster-level mediators (2-2-1) 
and individual-level mediators (2-1-1) can be expressed as

zSobel
RDD2−2−1

¼
ab
r2

ab
¼

ab

a2 s2 1−R2
YL2ð Þþr2

Y 1−R2
YL1ð Þ=n1

n2r2
Mð1−R2

MÞ
þ b2 r2

M 1−R2
Mð Þ

n2Pð1−PÞð1−q2
f ðSÞTÞ

zSobel
RDD2−1−1

¼
ab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a2 s2
Y 1−R2

YL2ð Þþ 1−R2
YL1ð Þr2

Y =n1

n2 s2
M 1−R2

ML2ð Þþ 1−R2
ML1ð Þr2

M=n1ð Þ
þ B2 s2

M 1−R2
ML2ð Þþ 1−R2

ML1ð Þr2
M=n1

n2Pð1−PÞð1−q2
f ðSÞT Þ

r (30) 

In turn, the power of the Sobel test can be estimated as:

P jzSobelj > zcritical
� �

¼ 1�U zcritical − zSobel
� �

þ U −zcritical − zSobel
� �

(31) 

Where U represents the normal distribution with zcritical as the chosen critical value (e.g., 1.96) 
corresponding to a nominal type I error rate.

The joint test
A common alternative test for mediation is the joint test. In the joint test, we can relax the nor
mality assumption of the distribution of the mediation effect by examining the constituent paths 
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independently (MacKinnon et al., 2002). The test statistics for the a paths with cluster- (2-2-1) 
and individual-level (2-1-1) mediators are

ta 2−2−1 ¼ a=r2
a ¼ a=

r2
M 1 − R2

M
� �

n2Pð1 − PÞð1 − q2
TSÞ

ta 2−1−1 ¼ a=r2
a ¼ a=

s2
M 1 − R2

ML2

� �
þ 1 − R2

ML1

� �
r2

M=n1

n2Pð1 − PÞð1 − q2
TSÞ

(32) 

Similarly, the test statistics for the path b under a cluster- and individual-level mediator are

tb 2−2−1 ¼ b=r2
b ¼ b=

s2 1 − R2
YL2

� �
þ r2

Y 1 − R2
YL1

� �
=n1

n2r2
Mð1 − R2

MÞ

tB 2−2−1 ¼ B=r2
B ¼ B=

s2 1 − R2
YL2

� �
þ r2

Y 1 − R2
YL1

� �
=n1

n2 s2
M 1 − R2

ML2

� �
þ 1 − R2

ML1

� �
r2

M=n1
� � (33) 

Using these tests, the statistical power of the joint test can be obtained as

P jtaj > tcritical & jtbj > tcriticalð Þ

¼ 1�U tcritical − tað Þ þ U −tcritical − tað Þð Þ� 1�U tcritical − tbð Þ þ U −tcritical − tbð Þð Þ
(34) 

Where t represents the t density function with corresponding degrees of freedom with tcritical as 
the chosen critical value (e.g., 1.96 in large sample sizes) corresponding to a t distribution type 
one error rate.

The Monte Carlo test
A modern approach is the resampling-based Monte Carlo test (Preacher & Selig, 2012). In the 
Monte Carlo test, random samples are drawn from a joint distribution formed by the product of 
the with the a path and b (or B) path coefficients. The distribution of each path is approximated 
with a normal distribution centered at the maximum likelihood point estimate and variance set 
to the sampling variability of the coefficient.

In practice, draws are taken from

a�

b�

� �

� MVN â
b̂

� �

,
r̂2

â r̂â , b̂
r̂â , b̂ r̂2

b̂

 ! !

(35) 

In turn, we use the product of sampled path coefficients, a�b�, to approximate the sampling 
distribution of a mediation effect. Statistical power is the proportion of the asymmetric confi
dence intervals (e.g., 95%) that exclude zero.

Simulation

We conducted Monte Carlo simulations to assess the accuracy of our derivations regarding the 
error variance of the path coefficients, the R-squared path formulations and the statistical power 
to detect a mediation effect. The simulations followed the guidance and principles in prior litera
ture in this area (Bloom, 2012; Calcagno & Long, 2008; Imbens & Lemieux, 2008; McCrary, 2008; 
Schochet et al., 2010). We drew on 5000 random samples and compared the empirical values 
with those predicted by our derived formulas. We simulated data based on Equations (1)–(3) for 
the 2-2-1 mediation and Equations (16)–(18) for the 2-1-1 mediation using cluster sample sizes 
ranging from 20 to 200.
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In the first simulation we examined the error variance of the mediation effect by considering 
114 different conditions for the cluster-level mediator (see Table 1) and another 114 conditions 
for the individual-level mediator (see Table 2). In each simulation, we varied the individual- and 
cluster-level sample sizes, each of the path coefficients, the intraclass correlation coefficient and 
the proportion of clusters receiving treatment. In addition, the analysis examined situations that 
involve highly nonlinear functions of the running variable (f ðSÞ and FðSÞ were cubic) in terms of 
the relationships with the mediator and outcome. We estimated the empirical sampling variance 
of the mediation effect across the draws under each condition using

r2
ME ¼

1
K

XK

k¼1
ðMEk − MEÞ

2 (36) 

Similarly, we predicted the sampling variability of the mediation effect using the formulas 
derived above.

For each cluster sample size condition, we then compared the empirical sampling variance 
with that predicted by our formulas using absolute bias. We summarize the absolute bias of the 
predicted error variance across those draws and sample sizes using the average absolute bias

Average absolute bias r̂2ð Þ ¼
1
L

XL

l
jr̂2

l − r2
l j (37) 

Where l represents the cluster sample spanning from 20 to 200, r2
l represents the empirical vari

ance of the mediation effect within the sample size of 5000, and r̂2
l represents the predicted vari

ance of the mediation effect across the 5000 draws using the Equation (8) for the 2-2-1 
mediation and Equation (23) for the 2-1-1 mediation.

In the second simulation, we examined our formula-based predictions of statistical power 
while varying the functional form (i.e., linear, quadratic, cubic) of the running variable using 54 
different conditions (18 conditions for linear function of running variables, 18 conditions for 
quadratic function of running variables, and 18 conditions for cubic function of running varia
bles) for the cluster-level mediator setting (see Table 3) and 54 conditions for the individual-level 

Table 1. Average absolute bias in sampling variability for cluster-level mediator.

Sample size Parameters Mediation error variance

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  
variance

Predicted  
variance

Absolute  
bias

Average  
absolute bias

Con 1 10 40 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0031 0.0020 0.0011 0.0004
10 60 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0017 0.0014 0.0003
10 100 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0009 0.0008 0.0001

Con 2 10 40 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0143 0.0108 0.0035 0.0013
10 60 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0087 0.0070 0.0017
10 100 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0047 0.0044 0.0003

Con 3 10 40 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0652 0.0551 0.0101 0.0040
10 60 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0400 0.0368 0.0032
10 100 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0225 0.0223 0.0002

Con 4 20 40 0.3 0.1 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0022 0.0016 0.0006 0.0003
20 60 0.3 0.1 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0014 0.0011 0.0003
20 100 0.3 0.1 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0008 0.0006 0.0001

Con 5 20 40 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0357 0.0288 0.0069 0.0071
20 60 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0321 0.0245 0.0076
20 100 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0181 0.0154 0.0027

Con 6 20 40 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0357 0.0288 0.0069 0.0023
20 60 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0210 0.0191 0.0019
20 100 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0118 0.0111 0.0007

Note. Full version of Table 1 can be found in Appendix B.
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mediator setting (see Table 4). Further, we probed the accuracy of our path formulations of the 
R-squared parameters by also comparing our formula-based predictions (expression 8 and 16 
above) with the empirical counterparts from the simulation. In these analyses, we considered a 
broad range of parameter values and combinations (see Tables 3 and 4) including different non
linear forms of the running variable. We compared the empirical rejection rates using the Monte 
Carlo test across 5000 simulation draws and the predicted rejection rate using our formulas.

In the third simulation, we examined the accuracy of our power predictions when the sequen
tial ignorability assumption is violated and when the no treatment by mediator interaction 
assumption is violated. For violations of the sequential ignorability assumption, we considered 
unobserved confounding such that there were (residual) conditional correlations between the 
mediator and the outcome, the running variable and the outcome, or the running variable and 

Table 2. Average absolute bias in sampling variability for individual-level mediator.

Sample Size Parameters Mediation Error Variance

n1 n2 a B b1 c k1 k2 k3 K1 K2 K3 P ICC
Empirical  
variance

Predicted  
variance

Absolute  
bias

Average  
absolute bias

Con 1 10 40 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0048 0.0028 0.0020 0.0008
10 60 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0026 0.0019 0.0008
10 100 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0014 0.0011 0.0003

Con 2 10 40 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0092 0.0068 0.0024 0.0012
10 60 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0058 0.0041 0.0016
10 100 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0034 0.0026 0.0008

Con 3 10 40 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0775 0.0612 0.0162 0.0068
10 60 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0476 0.0398 0.0078
10 100 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0273 0.0240 0.0032

Con 4 20 40 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0032 0.0021 0.0010 0.0005
20 60 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0019 0.0015 0.0004
20 100 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0011 0.0007 0.0003

Con 5 20 40 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0184 0.0136 0.0048 0.0025
20 60 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0111 0.0088 0.0023
20 100 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0063 0.0053 0.0010

Con 6 20 40 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0384 0.0290 0.0094 0.0044
20 60 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0229 0.0185 0.0045
20 100 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0127 0.0111 0.0016

Note. Full version of Table 2 can be found in Appendix B.

Table 3. Empirical versus predicted statistical power for cluster-level mediators with linear function of the running variable.

Sample Size Parameters Power

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

R2
YL2

Predicted  
R2

YL2

Empirical  
rejection rate

Predicted  
power

10 30 0.1 0.1 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.567 0.560 0.008 0.003
10 40 0.3 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.15 0.698 0.681 0.120 0.082
10 50 0.3 0.1 0.15 0.2 0 0 0.1 0 0 0.3 0.2 0.364 0.363 0.019 0.017
10 80 0.5 0.5 0.15 02 0 0 0.1 0 0 0.5 0.05 0.927 0.911 0.403 0.370
10 100 0.5 0.3 0.25 0.1 0 0 0.4 0 0 0.5 0.05 0.900 0.882 0.469 0.447
10 300 0.8 0.5 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.566 0.565 0.998 0.998
20 30 0.8 0.3 0.25 0.2 0 0 0.1 0 0 0.5 0.15 0.661 0.642 0.351 0.322
20 40 0.8 0.5 0.35 0.1 0 0 0.2 0 0 0.3 0.3 0.682 0.666 0.478 0.478
20 50 0.3 0.5 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.793 0.777 0.154 0.105
20 80 0.1 0.1 0.15 0.4 0 0 0.4 0 0 0.7 0.05 0.865 0.856 0.048 0.035
20 100 0.8 0.3 0.35 0.2 0 0 0.1 0 0 0.5 0.5 0.428 0.428 0.644 0.661
20 300 0.3 0.1 0.15 0.4 0 0 0.2 0 0 0.3 0.05 0.706 0.703 0.445 0.442
50 30 0.5 0.5 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.772 0.748 0.237 0.160
50 40 0.3 0.3 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.643 0.630 0.141 0.105
50 50 0.5 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.636 0.627 0.277 0.241
50 80 0.8 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.2 0.594 0.590 0.236 0.235
50 100 0.5 0.5 0.25 0.1 0 0 0.1 0 0 0.5 0.05 0.927 0.914 0.458 0.434
50 300 0.3 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.5 0.400 0.400 0.141 0.140
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the mediator. Similarly, although the expressions can be adapted to accommodate a treatment by 
mediator interaction (e.g., Kelcey et al., 2017), we examined sensitivity of our predictions to a 
treatment by mediator interaction. By systematically introducing these controlled violations of 
assumptions, we indexed the practical accuracy and sensitivity of our formula-based predictions.

Results

Tables 1 and 2 summarize the average absolute bias in the sampling variability of the mediation 
effect for each condition when considering cluster- and individual-level mediators (see Appendix 
B for full results). The results suggested that our formulas demonstrated good accuracy across 
conditions. For conditions with cluster sample size greater than about 50, the absolute bias of the 
predicted error variance was near zero. Below 50 clusters the accuracy was still quite good in 
most conditions but was slightly elevated when the running variable had a strong nonlinear rela
tionship with the mediator or outcome. We illustrate these results for cluster- and individual-level 
mediators by plotting the six parameter combinations listed in Tables 1 and 2 for cluster samples 
ranging between 20 and 200 (Figures 1 and 2). The plotted comparisons demonstrate the small 
sample bias (underestimation) in the formula-based predictions of the sample variability of the 
mediation effect when cluster-level samples are less than about 50. That bias is most pronounced 
when the running variable is highly nonlinear in its relationship with the mediator or outcome 
(e.g., conditions 5 and 6) but that bias decreases quickly with cluster-level sample sizes greater 
that about 50.

Similarly, we report the empirical versus predicted statistical power and R-squared values for 
cluster- (Table 3) and individual-level mediators (Table 4) under linear functions of the running 
variable (see Appendix B for quadratic and cubic functions of the running variable). Our results 
demonstrated excellent and consistent accuracy for both quantities even with small sample sizes 
and highly nonlinear relationships between the running variable and the mediator/outcome. 
Figure 3 illustrates and expands on the tabled results by plotting the empirical and predicted 
power curves as a function of cluster-level sample size for the Monte Carlo interval, joint and 
Sobel tests under condition 9 with cubic function of the running variables 
(n1 ¼ 20, ICC ¼ 0:50, a ¼ 0:80, b ¼ 0:30, c0 ¼ 0:35, k1 ¼ 0:20, k2 ¼ 0:10, k3 ¼ 0:10, K1 ¼

0:10, K2 ¼ 0:40, K3 ¼ 0:20, R2
Mj~Z

¼ R2
YL1j~Z

¼ R2
YL2j~Z

¼ 0:25, and R2
f ðSÞ

¼ R2
FðSÞ

¼ 0:75 for 2-2-1 

Table 4. Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable.

Sample size Parameters Power

n1 n2 a B b1 c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

R2
YL2

Predicted  
R2

YL2

Empirical  
rejection rate

Predicted  
power

10 30 0.1 0.1 0.1 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.538 0.530 0.006 0.002
10 40 0.3 0.3 0.2 0.35 0.4 0 0 0.2 0 0 0.3 0.15 0.545 0.551 0.093 0.087
10 50 0.3 0.1 0.1 0.15 0.2 0 0 0.1 0 0 0.3 0.2 0.292 0.295 0.022 0.020
10 80 0.5 0.5 0.05 0.15 0.2 0 0 0.1 0 0 0.5 0.05 0.759 0.758 0.971 0.976
10 100 0.5 0.3 0.05 0.25 0.1 0 0 0.4 0 0 0.5 0.05 0.835 0.824 0.828 0.838
10 300 0.8 0.5 0.2 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.571 0.572 0.996 0.995
20 30 0.8 0.3 0.05 0.25 0.2 0 0 0.1 0 0 0.5 0.15 0.494 0.496 0.325 0.309
20 40 0.8 0.5 0.2 0.35 0.1 0 0 0.2 0 0 0.3 0.3 0.582 0.584 0.561 0.589
20 50 0.3 0.5 0.2 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.679 0.673 0.243 0.246
20 80 0.1 0.1 0.1 0.15 0.4 0 0 0.4 0 0 0.7 0.05 0.847 0.834 0.008 0.014
20 100 0.8 0.3 0.1 0.35 0.2 0 0 0.1 0 0 0.5 0.5 0.433 0.434 0.639 0.677
20 300 0.3 0.1 0.05 0.15 0.4 0 0 0.2 0 0 0.3 0.05 0.635 0.633 0.384 0.412
50 30 0.5 0.5 0.2 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.626 0.624 0.302 0.295
50 40 0.3 0.3 0.1 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.444 0.448 0.134 0.122
50 50 0.5 0.3 0.1 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.514 0.513 0.325 0.317
50 80 0.8 0.1 0.05 0.15 0.2 0 0) 0.4 0 0 0.7 0.2 0.574 0.572 0.147 0.141
50 100 0.5 0.5 0.05 0.25 0.1 0 0 0.1 0 0 0.5 0.05 0.701 0.702 0.999 0.999
50 300 0.3 0.1 0.2 0.15 0.2 0 0 0.4 0 0 0.7 0.5 0.398 0.398 0.135 0.141
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mediation; n1 ¼ 20, ICC ¼ 0:50, a ¼ 0:80, B ¼ 0:30, b1 ¼ 0:10, c0 ¼ 0:35, k1 ¼ 0:20, k2 ¼

0:10, k3 ¼ 0:10, K1 ¼ 0:10, K2 ¼ 0:40, K3 ¼ 0:20, R2
ML1j~Z

¼ R2
ML2j~Z

¼ R2
YL1j~Z

¼ R2
YL2j~Z

¼ 0:25, 

and R2
f ðSÞ

¼ R2
FðSÞ

¼ 0:75 for 2-1-1 mediation). Evident from these figures, the formula-based 
power predictions for the Monte Carlo and joint tests have excellent accuracy across all sample 
sizes. By contrast, the Sobel test incurs significant inaccuracies across sample sizes and will gener
ally misestimate power and requisite sample sizes.

Tables 5a–c summarize the misprediction associated with different types and levels of viola
tions of the sequential ignorability or the no treatment by mediator interaction assumptions. 
Collectively, the results demonstrated increased errors in power prediction when there is 
unaccounted for confounding among the treatment, mediator and outcome or when there is a 
treatment by mediator interaction. However, the results also demonstrated that under the circum
stances considered, our formulas still provided a reasonable prediction of power for planning 
purposes.

Illustration

Returning to our working example, consider a theory that the Learning Together intervention is 
hypothesized impact student mental health through changes in the school environment (cluster- 
level mediator) or/and student opinion on learning and school community (student-level medi
ator) (MacKinnon, 2008). Assume researchers draw on a clustered regression discontinuity design 
such that schools with an average pretest score below the 50th percentile will be assigned to 

Figure 1. True empirical (gray) and predicted (black) error variance and absolute bias (dashed) as a function of group-level sam
ple size for 2-2-1 mediation.
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receive the Learning Together intervention (treatment), and the other schools will be assigned to 
receive no new intervention (control).

Let us assume that we intend to sample 50 students per school (n1) and the intraclass correl
ation coefficient (ICC) for the outcome is 0.20. For the R squared, we assume the selected covari
ates can explain 25% of the variance in the mediator and the outcome on both the student- and 
school-level, and the deterministic functions can explain 75% of the variance of the cubic func
tions of the running variable. For the path coefficients, we assume the approximated treatment- 
mediator difference between the treatment and control condition (a) is 0.50 standard deviations, 
the approximated mediator-outcome conditional association (b) is 0.30 standard deviations, and 
the direct effect (c0) is 0.35 standard deviations. For the running variable, we adopt a cubic rela
tionships such that the coefficients predicting the mediator are linear (k1), quadratic (k2), and 
cubic (k3) term are all equal to 0.12; the coefficients predicting the outcome model are linear 
(K1), quadratic (K2), and cubic (K3) are all equal to 0.20. In brief, we assume n1 ¼ 50, ICC ¼

0:20, a ¼ 0:50, b ¼ 0:30, c0 ¼ 0:35, k1 ¼ k2 ¼ k3 ¼ 0:12, K1 ¼ K2 ¼ K3 ¼ 0:02, R2
Mj~Z

¼ R2
YL1j~Z

¼

R2
YL2j~Z

¼ 0:25, and R2
f ðSÞ

¼ R2
FðSÞ

¼ 0:75:

With the given parameter values, we can obtain an appropriate school-level sample size pro
viding an 80% chance to detect the school-level mediation effect with the Type I error rate as 
0.05. We implemented this in the accompanying Shiny App (BLINDED FOR REVIEW). As 
shown in Figure 4, we plotted the statistical power curves of Sobel (light grey dash curve), joint 
(middle grey dot curve), and Monte Carlo interval (black curve) tests calculated by our developed 
power formulas. Our results showed that under the Monte Carlo test a school sample size of 57 

Figure 2. True empirical (gray) and predicted (black) error variance and absolute bias (dashed) as a function of group-level sam
ple size for 2-1-1 mediation.
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with 50 students each can provide a 0.8 statistical power. Under the same scenario, if we are 
intended to test the main effect, the school sample size 34 with 50 students each would provide a 
0.8 statistical power. While switching to the cluster randomized trial and using the running vari
able as a covariate uncorrelated to the treatment, 32 schools with 50 students each would provide 
0.8 for detecting the school-level mediation effect.

Similarly, for a clustered regression discontinuity study planning to detect the effect of student 
opinion (student-level mediator; 2-1-1 mediation), assume we sample 20 students per school (n1) 
with the ICCs for the mediation and outcome are both 0.20, the selected covariates can explain 
25% of the variance in both the mediator and outcome on the student- and school-level, the 
deterministic functions can explain 75% of the variance of the cubic functions of the running 
variable, the approximated treatment-mediator difference between the treatment and control con
dition (a) is 0.50 standard deviations, the approximated total mediator-outcome effect (B) is 0.30 
standard deviations, the student-level approximated mediator-outcome effect (b1) is 0.20 standard 
deviations, and the direct effect (c0) is 0.35 standard deviations. For the expression of running 

Figure 3. Bias (stars) and power (curves) as functions of group sample size (n2) when utilizing the parameters in condition 9 
with cubic function of the running variables for (a) cluster- and (b) individual-level mediators.
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Table 5. Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable 
when the Assumption (2) sequential ignorability is violated (treatment-outcome and mediator-outcome relationship are both 
confounded), Assumption (2) sequential ignorability is violated (treatment-mediator and mediator-outcome relationship are 
both confounded) and Assumption (5) no treatment-by-mediator interaction is violated.  

(a) Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable when 
the Assumption (2) sequential ignorability is violated (treatment-outcome and mediator-outcome relationship are both 
confounded).

Sample size Parameters Power

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

rejection rate
Predicted  

power

10 30 0.1 0.1 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.072 0.032
10 40 0.3 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.15 0.152 0.103
10 50 0.3 0.1 0.15 0.2 0 0 0.1 0 0 0.3 0.2 0.144 0.111
10 80 0.5 0.5 0.15 02 0 0 0.1 0 0 0.5 0.05 0.406 0.378
10 100 0.5 0.3 0.25 0.1 0 0 0.4 0 0 0.5 0.05 0.463 0.438
10 300 0.8 0.5 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.998 0.998
20 30 0.8 0.3 0.25 0.2 0 0 0.1 0 0 0.5 0.15 0.456 0.385
20 40 0.8 0.5 0.35 0.1 0 0 0.2 0 0 0.3 0.3 0.502 0.448
20 50 0.3 0.5 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.158 0.118
20 80 0.1 0.1 0.15 0.4 0 0 0.4 0 0 0.7 0.05 0.068 0.052
20 100 0.8 0.3 0.35 0.2 0 0 0.1 0 0 0.5 0.5 0.833 0.828
20 300 0.3 0.1 0.15 0.4 0 0 0.2 0 0 0.3 0.05 0.443 0.442
50 30 0.5 0.5 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.243 0.159
50 40 0.3 0.3 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.161 0.111
50 50 0.5 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.285 0.240
50 80 0.8 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.2 0.717 0.718
50 100 0.5 0.5 0.25 0.1 0 0 0.1 0 0 0.5 0.05 0.477 0.452
50 300 0.3 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.5 0.434 0.418

Note. The running variable and outcome are correlated with correlation as 0.5 conditional on all other variables, which means 
the treatment-outcome relationship is confounded; the mediator and outcome are correlated with correlation as 0.5 condi
tional on all other variables, which means the mediator-outcome relationship is confounded.

(b). Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable 
when the Assumption (2) sequential ignorability is violated (treatment-mediator and mediator-outcome relationship are both 
confounded).

Sample size Parameters Power

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

rejection rate
Predicted  

power

10 30 0.1 0.1 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.036 0.010
10 40 0.3 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.15 0.089 0.060
10 50 0.3 0.1 0.15 0.2 0 0 0.1 0 0 0.3 0.2 0.087 0.058
10 80 0.5 0.5 0.15 02 0 0 0.1 0 0 0.5 0.05 0.244 0.293
10 100 0.5 0.3 0.25 0.1 0 0 0.4 0 0 0.5 0.05 0.295 0.377
10 300 0.8 0.5 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.978 0.998
20 30 0.8 0.3 0.25 0.2 0 0 0.1 0 0 0.5 0.15 0.367 0.359
20 40 0.8 0.5 0.35 0.1 0 0 0.2 0 0 0.3 0.3 0.385 0.490
20 50 0.3 0.5 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.092 0.079
20 80 0.1 0.1 0.15 0.4 0 0 0.4 0 0 0.7 0.05 0.031 0.016
20 100 0.8 0.3 0.35 0.2 0 0 0.1 0 0 0.5 0.5 0.690 0.785
20 300 0.3 0.1 0.15 0.4 0 0 0.2 0 0 0.3 0.05 0.162 0.219
50 30 0.5 0.5 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.180 0.168
50 40 0.3 0.3 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.101 0.073
50 50 0.5 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.198 0.229
50 80 0.8 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.2 0.573 0.680
50 100 0.5 0.5 0.25 0.1 0 0 0.1 0 0 0.5 0.05 0.283 0.374
50 300 0.3 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.5 0.163 0.236

Note. The running variable and outcome are correlated with correlation as 0.5 conditional on all other variables, which means 
the treatment-outcome relationship is confounded; the running variable and mediator are correlated with correlation as 0.2 
conditional on all other variables, which means the mediator-outcome relationship is confounded.
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variable, we assume for the mediation model, the coefficient for the linear (k1), quadratic (k2), 
and cubic (k3) term is 0.05; for the outcome model, the coefficient for the linear (K1), quadratic 
(K2), and cubic (K3) term is 0.04. That is, we have n1 ¼ 20, ICC ¼ 0:20, a ¼ 0:50, B ¼

0:30, b1 ¼ 0:05, c0 ¼ 0:35, k1 ¼ k2 ¼ k3 ¼ 0:05, K1 ¼ K2 ¼ K3 ¼ 0:04, R2
ML1j~Z

¼ R2
ML2j~Z

¼

R2
YL1j~Z

¼ R2
YL2j~Z

¼ 0:25, and R2
f ðSÞ

¼ R2
FðSÞ

¼ 0:75: The resulting power curves are plotted in the 
second panel of Figure 4. The analyses suggested that the required school-level sample size for 
80% power is about 84 under the Monte Carlo test. That is, we need to sample 84 schools to 
achieve 80% chance to detect the existence of the mediation effect. Under the same scenario, for 
detecting the main effect, we need to sample only 48 schools to achieve a 0.8 statistical power. 
Similarly, drawing on a cluster randomized trial (as opposed to a clustered regression discontinu
ity assignment) and using the running variable as a covariate, we would need 76 schools to reach 
a power level of 0.8 to detect the school-level mediation effect.

Discussion

Prior research has repeatedly detailed the versatility and utility of the regression discontinuity 
design across a broad range of disciplines, interventions and policy initiatives because it allows 
for targeted treatment assignment while retaining a strong basis of inference. For example, prior 
research has suggested that the clustered regression discontinuity design can be an effective 
approach for interventions aimed at promoting equity in schools and communities (Hahn et al., 
2001). By selectively providing treatment only to disadvantaged schools, the design allows 
researchers to focus and concentrate resources on those that need them most while maintaining a 
basis for inference about the program under study (e.g., Angrist & Pischke, 2008/2009).

Similarly, designing studies with the capacity to test the mechanisms underlying the program 
theory has become a prominent and critical aim of research studies. To date there is little guid
ance for power calculations and design strategies for probing mediation effects when considering 
clustered regression discontinuity designs. Our work here is intended to establish such power cal
culations and streamline the careful planning of clustered regression discontinuity studies to 
detect mediation effects.

(c). Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable when 
the Assumption (5) no treatment-by-mediator interaction is violated.

Sample size Parameters Power

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

rejection rate
Predicted  

power

10 30 0.1 0.1 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.072 0.033
10 40 0.3 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.15 0.143 0.098
10 50 0.3 0.1 0.15 0.2 0 0 0.1 0 0 0.3 0.2 0.086 0.067
10 80 0.5 0.5 0.15 02 0 0 0.1 0 0 0.5 0.05 0.396 0.372
10 100 0.5 0.3 0.25 0.1 0 0 0.4 0 0 0.5 0.05 0.473 0.447
10 300 0.8 0.5 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.997 0.997
20 30 0.8 0.3 0.25 0.2 0 0 0.1 0 0 0.5 0.15 0.442 0.367
20 40 0.8 0.5 0.35 0.1 0 0 0.2 0 0 0.3 0.3 0.497 0.416
20 50 0.3 0.5 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.148 0.122
20 80 0.1 0.1 0.15 0.4 0 0 0.4 0 0 0.7 0.05 0.073 0.053
20 100 0.8 0.3 0.35 0.2 0 0 0.1 0 0 0.5 0.5 0.825 0.822
20 300 0.3 0.1 0.15 0.4 0 0 0.2 0 0 0.3 0.05 0.447 0.446
50 30 0.5 0.5 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.248 0.173
50 40 0.3 0.3 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.152 0.092
50 50 0.5 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.290 0.234
50 80 0.8 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.2 0.713 0.701
50 100 0.5 0.5 0.25 0.1 0 0 0.1 0 0 0.5 0.05 0.471 0.458
50 300 0.3 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.5 0.441 0.432

Note. The interaction of the treatment and mediator is appeared in the outcome model with a coefficient of 0.5.
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Our initial analysis of the results suggests several planning considerations that largely parallel 
those well-documented in the literature for other designs (e.g., experiments, individual-level 
regression discontinuity designs; e.g., Kelcey et al. 2017). First, a balanced design in which the 
treatment and control groups have equal cluster-level sample sizes will generally yield the highest 
statistical power compared to designs with imbalanced cluster-level sample sizes. However, the 
loss of power resulting from unbalanced designs will typically be minimal in clustered regression 
discontinuity studies probing mediation. To illustrate the loss of power, Figures 5 plot the power 
curves as a function of the proportion of clusters assigned to the treatment under the Monte 
Carlo interval test (in condition 11 in Tables 3 and 4 for both the cluster- and individual-level 
mediator with cubic function of running variables). The plots suggest that small to medium devi
ations from an even split or balanced assigned have a negligible influence on power. However, 
once treatment assignment dips below 0.2 or above 0.8, statistical power declines quickly.

A second well-worn design strategy that is useful in clustered regression discontinuity designs 
is conditioning on predictive covariates. Most importantly, the tenability of the sequential ignora
bility assumption and unbiased estimates of mediation effects will typically require adjustment for 

Figure 4. Power to detect (a) cluster- and (b) individual-level mediation.
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prognostic covariates regardless of whether or not they improve precision. Still, prior research has 
demonstrated some gains in precision and power when adjusting for prognostic covariates. 
However, the impact of such adjustments is much more complicated with mediation effects. 
Because mediation is principally composed of multiple paths, covariance adjustment can improve 
or reduce the precision with which we can detect mediation. Conceptually, this phenomenon 
arises because although explained variability in the mediator improves the power to detect the 
treatment-mediator a path, that same adjustment has the potential to deflate the power to detect 
the mediator-outcome b path because its standard error involves the ratio of the residual outcome 
and mediator variances.

To illustrate the differences in power that accompany covariate adjustment, Figure 6 plots the 
power curves as a function of cluster-level sample size for a model that controls for covariates 
(R2 ¼ 0.25 at both levels) versus a model that does not adjust for covariates. The plots demon
strate the increased power that accrues from adjusting for covariates when considering (a) cluster- 
(Figure 6(a,b) individual-level mediators (Figure 6(b)). To attain a statistical power of 0.8 (i.e., an 
80% probability of detecting a significant effect if one exists) in the 2-2-1 mediation model 
depicted in Figure 6(a), the cluster-level sample size would need to increase by approximately 40 
when not adjusting for covariates, given the same conditions as in the illustration. Conversely, in 
the 2-1-1 mediation model illustrated in Figure 6(b), the statistical power would only experience 
a slight reduction when not adjusting for covariates. Unlike the consistent power benefits gained 
when adjusting for covariates in detecting main effects, the gains in power of covariate adjust
ment in mediation effects are more complicated. In some instances when covariates explain a 
substantial amount of the variability in the mediator but not the outcome, the power can decrease 
when controlling for covariates. Figures 7(a,b) provide examples when varying the proportion of 
variance explained in the mediator by covariates when considering a cluster-level mediator (with 
50 clusters) and an individual-level mediator (with 100 clusters). In the example with the cluster- 
level mediator (In Figure 7(a)), power is not monotonic and is maximized when covariates 
explain about 35% of the mediator variation. By contrast, the example with the individual-level 
demonstrated a monotonic decrease in power as the proportion of variance explained in the 
mediator increased holding other factors constant.

A third conclusion suggested by our results was the use of Monte Carlo test over more con
ventional tests. This contemporary test consistently provided the highest level of power compared 
to the Sobel and joint tests and is consistent with the literature (e.g., Kelcey et al., 2020). That 
said, the joint test provided very similar estimates of power under most conditions and is much 
less computationally intense.

A fourth consideration offers a cautionary design principle for nonlinear relationships. 
Specifically, if researchers anticipate a that the running variable has a nonlinear impact on the 

Figure 5. Statistical power with the selection of the proportion of clusters assigned to treatment (P).
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mediator/outcome, the predicted power may be overestimated when the cluster-level sample size 
is small (e.g., less than 50). As a result, when anticipating a nonlinear relationship between the 
running variable and mediator/outcome, a prudent strategy would be to sample slightly more 
clusters than suggested by the power analysis (e.g., up to 10% more when samples include less 
than 50 clusters). That said, it is also important to note that while the use of a cubic function in 
regression discontinuity design is intended to improve the accuracy of estimated treatment effects 
by accounting for non-linearity in the relationship between the running variable and the out
come, it also increases the complexity of the model and may result in overfitting or unstable esti
mates when the sample size is small.

A fifth consideration is the sequential ignorability assumption. Our sensitivity analyses exam
ined the predictive efficacy of our power formulas to violations of this assumption. Although the 
results suggested that in many cases the power predictions were still reasonable when this 
assumption is violated, a more important consideration is the degree of bias introduced into the 
estimated mediation effect through such violations. Prior literature has widely examined this 
from a theoretical perspective and concluded that approximating sequential ignorability to critical 

Figure 6. Comparison of statistical power for (a) cluster- and (b) individual-level mediators when adjusting and not adjusting for 
covariates.
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to the validity of inferences (e.g., VanderWeele et al., 2014). When amalgamated within the larger 
context of mediation analysis, our results simply suggested that we can precisely predict the 
power to detect a biased mediation effect. As a result, we emphasize the need for designs to pro
actively incorporate confounding variables and to carefully consider the plausibility of the sequen
tially ignorability assumption in a study. A final consideration is to consider a range of plausible 
values for key design parameters. For example, the value and accuracy of power predictions is 
contingent upon how well the assumed parameters values approximate the true values. Even 
though recent literature has developed an increasingly large collection of empirical estimates of 
these values for a broad range of outcomes and mediators, in most instances these values will not 
be without error (e.g., (Jacob et al., 2012); Kelcey and Phelps, 2013). As a result, considering 
plausible ranges of parameter values can help probe the sensitivity of design choices to parameter 
value misspecifications and provide a more comprehensive assessment of requisite sample sizes.

Figure 7. The impact of the variance explained by a covariate in the mediator on the statistical power to detect mediation with 
(a) cluster- and (b) individual-level mediators.
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Although our results provide some initial tools and strategies to design clustered regression 
discontinuity studies, there are some limitations of our work and directions for future research. 
First, our study only considered a sharp clustered regression discontinuity design. Tools for fuzzy 
clustered regression discontinuity designs are a potentially important direction for future research 
because they often map onto practice better. Second, we considered two-level clustered regression 
discontinuity designs in this study, but many studies in education involve three or more levels. 
For example, many educational studies directly involve teachers as the primary vehicle or mech
anism through which a program is delivered. In these settings, investigating mediation through a 
teacher mediator variable such as instruction may require the introduction of an intermediate 
level. Third, our analysis considered only a single mediator with no treatment by mediator inter
action. Exploring interactions between treatment and mediators in future research could uncover 
valuable insights into the nuanced pathways through which the treatment effect unfolds. Multiple 
mediator and interactive models are also important considerations and directions for future 
research. Investigating the combined and decomposed effects of multiple mediators can offer an 
even richer comprehension of the underlying mechanisms driving treatment outcomes.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the National Science Foundation [grant numbers 1552535,1760884]. The National 
Science Foundation had no role or involvement in the conduct of the research or the preparation of the 
manuscript.

References

Angrist, J. D., & Pischke, J. (2008/2009). Mostly harmless econometrics: An empiricist’s companion. Princeton 
University Press. https://doi.org/10.1515/9781400829828

Bloom, H. S. (2012). Modern regression discontinuity analysis. Journal of Research on Educational Effectiveness, 
5(1), 43–82. https://doi.org/10.1080/19345747.2011.578707

Bollen, K. A. (1987). Total, Direct, and Indirect Effects in Structural Equation Models. Sociological Methodology, 
17, 37. https://doi.org/10.2307/271028

Bonell, C., Allen, E., Warren, E., McGowan, J., Bevilacqua, L., Jamal, F., Legood, R., Wiggins, M., Opondo, C., 
Mathiot, A., Sturgess, J., Fletcher, A., Sadique, Z., Elbourne, D., Christie, D., Bond, L., Scott, S., & Viner, R. M. 
(2018). Effects of the learning together intervention on bullying and aggression in english secondary schools 
(INCLUSIVE): A cluster randomised controlled trial. Lancet (London, England), 392(10163), 2452–2464. https:// 
doi.org/10.1016/S0140-6736(18)31782-3

Bonell, C., Allen, E., Opondo, C., Warren, E., Elbourne, D. R., Sturgess, J., Bevilacqua, L., McGowan, J., Mathiot, 
A., & Viner, R. M. (2019). Examining intervention mechanisms of action using mediation analysis within a 
randomised trial of a whole-school health intervention. Journal of Epidemiology and Community Health, 73(5), 
455–464. https://doi.org/10.1136/jech-2018-211443

Calcagno, J. C., & Long, B. T. (2008). The impact of postsecondary remediation using a regression discontinuity 
approach: Addressing endogenous sorting and noncompliance. National Bureau of Economic Research. https:// 
doi.org/10.3386/w14194

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed.) L. Erlbaum Associates.
Cook, T. D. (2008). “Waiting for life to arrive”: A history of the regression-discontinuity design in psychology, sta

tistics and economics. Journal of Econometrics, 142(2), 636–654. https://doi.org/10.1016/j.jeconom.2007.05.002
Hahn, J., Todd, P., & Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-dis

continuity design. Econometrica, 69(1), 201–209. https://doi.org/10.1111/1468-0262.00183
Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of 

Econometrics, 142(2), 615–635. https://doi.org/10.1016/j.jeconom.2007.05.001
Jacob, Robin, Zhu, Pei, Somers, Marie-Andr�ee, Bloom, Howard. (2012). A practical guide to regression discontinu

ity. MDRC.

22 F. BAI ET AL.

https://doi.org/10.1515/9781400829828
https://doi.org/10.1080/19345747.2011.578707
https://doi.org/10.2307/271028
https://doi.org/10.1016/S0140-6736(18)31782-3
https://doi.org/10.1016/S0140-6736(18)31782-3
https://doi.org/10.1136/jech-2018-211443
https://doi.org/10.3386/w14194
https://doi.org/10.3386/w14194
https://doi.org/10.1016/j.jeconom.2007.05.002
https://doi.org/10.1111/1468-0262.00183
https://doi.org/10.1016/j.jeconom.2007.05.001


Kelcey, Ben., & Phelps, G. (2013). Strategies for Improving Power in School-Randomized Studies of Professional 
Development. Evaluation Review, 37(6), 520–554. https://doi.org/10.1177/0193841X14528906

Kelcey, Ben., & Shen, Z. (2017). Planning community-based assessments of HIV educational intervention programs 
in sub-Saharan Africa. Health Education Research, 32(4), 353–363. https://doi.org/10.1093/her/cyx04628854572

Kelcey, B., Dong, N., Spybrook, J., & Cox, K. (2017). Statistical power for causally defined indirect effects in 
group-randomized trials with individual-level mediators. Journal of Educational and Behavioral Statistics, 42(5), 
499–530. https://doi.org/10.3102/1076998617695506

Kelcey, B., Dong, N., Spybrook, J., & Shen, Z. (2017). Experimental power for indirect effects in group-randomized 
studies with group-level mediators. Multivariate Behavioral Research, 52(6), 699–719. https://doi.org/10.1080/ 
00273171.2017.1356212

Kelcey, B., Spybrook, J., Dong, N., & Bai, F. (2020). Cross-level mediation in school-randomized studies of teacher 
development: Experimental design and power. Journal of Research on Educational Effectiveness, 13(3), 459–487. 
https://doi.org/10.1080/19345747.2020.1726540

Kelcey, B., Xie, Y., Spybrook, J., & Dong, N. (2020). Power and sample size determination for multilevel mediation 
in three-level cluster-randomized trials. Multivariate Behavioral Research, 56(3), 496–513. https://doi.org/10. 
1080/00273171.2020.1738910

Kreft, I. G. G., de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear 
models. Multivariate Behavioral Research, 30(1), 1–21. https://doi.org/10.1207/s15327906mbr3001_1

MacKinnon, D. P., Lockwood, C. M., Brown, C. H., Wang, W., & Hoffman, J. M. (2007). The intermediate end
point effect in logistic and probit regression. Clinical Trials (London, England), 4(5), 499–513. https://doi.org/10. 
1177/174077450708343417942466

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods 
to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83–104. https://doi.org/10. 
1037/1082-989X.7.1.83

MacKinnon, D. P. (2012). Introduction to statistical mediation analysis. Routledge.
McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test. 

Journal of Econometrics, 142(2), 698–714. https://doi.org/10.1016/j.jeconom.2007.05.005
Pituch, K. A., & Stapleton, L. M. (2012). Distinguishing between cross- and cluster-level mediation processes in the 

cluster randomized trial. Sociological Methods & Research, 41(4), 630–670. https://doi.org/10.1177/ 
0049124112460380

Preacher, K. J., & Selig, J. P. (2012). Advantages of monte carlo confidence intervals for indirect effects. 
Communication Methods and Measures, 6(2), 77–98. https://doi.org/10.1080/19312458.2012.679848

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. (Vol. 
1). sage.

Schochet, P. Z. (2009). Statistical power for regression discontinuity designs in education evaluations. Journal of 
Educational and Behavioral Statistics, 34(2), 238–266. https://doi.org/10.3102/1076998609332748

Schochet, P., Cook, T., Deke, J., Imbens, G., Lockwood, J. R., Porter, J., Smith, J., & What Works Clearinghouse 
(ED) (2010). Standards for regression discontinuity designs. What Works Clearinghouse.

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological 
Methodology, 13, 290–312. https://doi.org/10.2307/270723

VanderWeele, T. J., Vansteelandt, S., & Robins, J. M. (2014). Effect Decomposition in the Presence of an 
Exposure-Induced Mediator-Outcome Confounder. Epidemiology, 25(2), 300–306. https://doi.org/10.1097/EDE. 
0000000000000034

VanderWeele, T. J. (2010). Direct and indirect effects for neighborhood-based clustered and longitudinal data. 
Sociological Methods & Research, 38(4), 515–544. https://doi.org/10.1177/0049124110366236

Zhang, Z., Zyphur, M. J., & Preacher, K. J. (2009). Testing multilevel mediation using hierarchical linear models: 
Problems and solutions. Organizational Research Methods, 12(4), 695–719. https://doi.org/10.1177/ 
1094428108327450

Appendix A. Path decomposition for cluster-level mediator

We sequentially increase the conditional partitions, and finally, the formula will be able to express 
the R squared of total used variables. For the cluster level R squared of outcome, the formula will 
be as follows

R2
YL2 ¼ R2

YL2j~Z þ R2
YL2TRDSj~Z þ R2

YL2MjTRDS~Z (A1) 

The right part of the expression is constructed as a sequential addition of R squared of the left 
subscript part given or controlling the right subscript part. The vector ~Z is an arbitrary vector 
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which represents the covariates. Take R2
YL2j~Z 

as an example, it represents the outcome on the clus
ter level explained by the covariates, which can be obtained by prior studies. The second symbol 
on the right arm R2

YL2TRDSj~Z 
represents the outcome on the cluster level explained by the function 

of the running variable and the treatment while controlling for the covariates. Because of the cor
relation between the treatment and the functions of the running variable, we consider them 
together. The expected value of R2

YL2TSj~Z 
can be reduced as follows

R2
YL2TSj~Z ¼

br2
f ðSÞ

þ r2
FðSÞ

þ 2brf Sð ÞFðsÞ

s2 þ
ab þ c0ð Þ

2P 1 − Pð Þ

s2 þ
2 brf Sð ÞT þ rF Sð ÞT
� �

ab þ c0ð Þ

s2 (A2) 

We include the covariances between the treatment and the function of the running variable for 
both the mediator model, rf Sð ÞT , and outcome model, rF Sð ÞT , and the covariance between f Sð Þ

and F Sð Þ, rf Sð ÞFðsÞ, in this equation. The last term on the right hand R2
YL2MjTRDS~Z 

is the level two 
outcome variance explained by the mediator while controlling for the treatment, the cutoff vari
able, and the covariates. The expected expression of it can be reconstructed as follows

R2
YL2MjTRDS~Z ¼

b2r2
M 1 − R2

M
� �

s2 (A3) 

The total variance of the second level explained in the outcome model is the assembling of all 
parts of the equations as follows

R2
YL2 ¼ R2

YL2j~Z þ
br2

f ðSÞ
þ r2

FðSÞ
þ 2brf Sð ÞFðsÞ

s2 þ
ab þ c0ð Þ

2P 1 − Pð Þ

s2 þ
2 brf Sð ÞT þ rF Sð ÞT
� �

ab þ c0ð Þ

s2

þ
b2r2

M 1 − R2
ML2

� �

s2 :

(A4) 

This expression contains the variance explained by the covariates that can be obtained from 
prior studies and the variance explained by the other variables that we have reconstructed. With 
the same approach, we can construct the R squared for the mediation effect as follows

R2
M ¼ R2

Mj~Z þ
rf Sð Þ

s2
M

þ
a2P 1 − Pð Þ

s2
M

þ
2arf Sð ÞT

s2
M

: (A5) 

We can use ICC and a (standardized) total error variance to replace the cluster and individual 
level output error variances, which are more accessible for researchers.

Appendix B. Path decomposition for student-level mediator

For the student-level (2-1-1) mediation, we followed the approach in the 2-2-1 mediation part to 
decompose the R squared with sequential addition of conditional R squared of the elements. The 
cluster level R squared of the outcome is the same as the 2-2-1 case, the formula will be as 
follows

R2
YL2 ¼ R2

YL2j~Z þ R2
YL2TRDSj~Z þ R2

YL2MjTRDS~Z (16) 

The expected value of R2
YL2Sj~Z 

can be reduced as follows

R2
YL2TRDSj~Z ¼

Br2
f ðSÞ

þ r2
FðSÞ

þ 2Brf Sð ÞFðsÞ

s2 þ
aB þ c0ð Þ

2P 1 − Pð Þ

s2 þ
2 Brf Sð ÞT þ rF Sð ÞT
� �

ab þ c0ð Þ

s2 (17) 
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The expected expression of R2
YL2MjTRDS~Z 

can be reconstructed as follows

R2
YL2MjTRDS~Z ¼

B2 s2
M 1 − R2

ML2

� �
þ

r2
M 1−R2

ML1ð Þ
n1

� �

s2 (18) 

The total variance of the second level explained in the outcome model is the assembling of all 
parts of the equations as follows.

R2
YL2 ¼ R2

YL2j~Z þ
Br2

f ðSÞ
þ r2

FðSÞ
þ 2Brf Sð ÞFðsÞ

s2 þ
aB þ c0ð Þ

2P 1 − Pð Þ

s2 þ
2 Brf Sð ÞT þ rF Sð ÞT
� �

ab þ c0ð Þ

s2

þ
B2 s2

M 1 − R2
ML2

� �
þ

r2
M 1−R2

ML1ð Þ
n1

� �

s2

(19) 

For the R squared of the individual level outcome, the expected expression is as follows

R2
YL1 ¼ R2

YL1j~Z þ
b1

2r2
M 1 − R2

ML1

� �

r2
Y

(20) 

With the same approach, we can construct the R squared for the cluster-level aggregated medi
ation effect,

R2
ML2 ¼ R2

ML2j~Z þ
r2

f ðSÞ

s2
M

þ
a2P 1 − Pð Þ

s2
M

þ
2arf Sð ÞT

s2
M

(21) 

Like 2-2-1 mediation, we can also use ICC and a (standardized) total error variance to replace 
the cluster and individual level output error variances, which is more accessible for researchers.
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Appendix B. Detailed tables for average absolute biases.

Table B1. (Full Version).

Sample size Parameters Mediation error variance

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  
variance

Predicted  
variance

Absolute  
bias

Average  
absolute bias

(a) Average absolute bias in sampling variability for cluster-level mediator for Condition 1.

10 20 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0108 0.0038 0.0069 0.0004
10 30 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0050 0.0027 0.0023
10 40 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0031 0.0020 0.0011
10 50 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0022 0.0017 0.0006
10 60 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0017 0.0014 0.0003
10 70 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0014 0.0011 0.0002
10 80 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0011 0.0010 0.0001
10 90 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0010 0.0009 0.0001
10 100 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0009 0.0008 0.0001
10 110 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0008 0.0007 0.0000
10 120 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0007 0.0007 0.0000
10 130 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0007 0.0006 0.0000
10 140 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0006 0.0006 0.0000
10 150 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0005 0.0005 0.0000
10 160 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0005 0.0005 0.0000
10 170 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0005 0.0005 0.0000
10 180 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0004 0.0004 0.0000
10 190 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0004 0.0004 0.0000
10 200 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0004 0.0004 0.0000

(b) Average absolute bias in sampling variability for cluster-level mediator for Condition 2.

10 20 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0344 0.0216 0.0128 0.0013
10 30 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0198 0.0149 0.0049
10 40 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0143 0.0108 0.0035
10 50 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0107 0.0088 0.0019
10 60 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0087 0.0070 0.0017
10 70 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0071 0.0062 0.0010
10 80 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0063 0.0054 0.0010
10 90 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0056 0.0048 0.0007
10 100 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0047 0.0044 0.0003
10 110 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0044 0.0040 0.0004
10 120 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0039 0.0036 0.0003
10 130 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0036 0.0034 0.0002
10 140 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0037 0.0031 0.0005
10 150 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0033 0.0029 0.0004
10 160 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0031 0.0028 0.0003
10 170 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0028 0.0026 0.0002
10 180 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0026 0.0025 0.0001
10 190 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0025 0.0024 0.0001
10 200 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0023 0.0022 0.0001

(c) Average absolute bias in sampling variability for cluster-level mediator for Condition 3.

10 20 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.1796 0.1137 0.0659 0.0040
10 30 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0931 0.0743 0.0188
10 40 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0652 0.0551 0.0101
10 50 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0496 0.0439 0.0057
10 60 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0400 0.0368 0.0032
10 70 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0327 0.0308 0.0019
10 80 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0286 0.0279 0.0008
10 90 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0252 0.0246 0.0006
10 100 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0225 0.0223 0.0002
10 110 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0200 0.0203 0.0002
10 120 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0188 0.0184 0.0003
10 130 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0165 0.0172 0.0007
10 140 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0160 0.0157 0.0003
10 150 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0141 0.0146 0.0005
10 160 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0133 0.0138 0.0005
10 170 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0123 0.0130 0.0007
10 180 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0117 0.0123 0.0006

(continued)
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Table B1. Continued.

Sample size Parameters Mediation error variance

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  
variance

Predicted  
variance

Absolute  
bias

Average  
absolute bias

10 190 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0113 0.0116 0.0003
10 200 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0106 0.0112 0.0007

(d) Average absolute bias in sampling variability for cluster-level mediator for Condition 4.

20 20 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0066 0.0032 0.0034 0.0003
20 30 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0034 0.0021 0.0013
20 40 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0022 0.0016 0.0006
20 50 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0018 0.0014 0.0004
20 60 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0014 0.0011 0.0003
20 70 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0011 0.0009 0.0002
20 80 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0010 0.0008 0.0002
20 90 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0008 0.0007 0.0001
20 100 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0008 0.0006 0.0001
20 110 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0007 0.0006 0.0001
20 120 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0006 0.0005 0.0001
20 130 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0005 0.0005 0.0000
20 140 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0005 0.0005 0.0000
20 150 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0005 0.0004 0.0000
20 160 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0004 0.0004 0.0000
20 170 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0004 0.0004 0.0000
20 180 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0004 0.0004 0.0000
20 190 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0004 0.0003 0.0000
20 200 0.3 0.1 0.15 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0004 0.0003 0.0000

(e) Average absolute bias in sampling variability for cluster-level mediator for Condition 5.

20 20 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.1362 0.0637 0.0725 0.0071
20 30 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0765 0.0444 0.0322
20 40 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0529 0.0349 0.0180
20 50 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0384 0.0291 0.0094
20 60 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0321 0.0245 0.0076
20 70 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0262 0.0203 0.0059
20 80 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0231 0.0185 0.0046
20 90 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0207 0.0168 0.0039
20 100 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0181 0.0154 0.0027
20 110 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0165 0.0137 0.0028
20 120 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0145 0.0125 0.0019
20 130 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0128 0.0117 0.0011
20 140 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0122 0.0110 0.0012
20 150 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0112 0.0100 0.0012
20 160 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0105 0.0096 0.0009
20 170 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0097 0.0091 0.0006
20 180 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0095 0.0086 0.0009
20 190 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0087 0.0082 0.0005
20 200 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0083 0.0078 0.0006

(f) Average absolute bias in sampling variability for cluster-level mediator for Condition 6.

20 20 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0973 0.0627 0.0346 0.0023
20 30 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0513 0.0415 0.0098
20 40 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0357 0.0288 0.0069
20 50 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0260 0.0226 0.0034
20 60 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0210 0.0191 0.0019
20 70 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0176 0.0162 0.0015
20 80 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0151 0.0143 0.0007
20 90 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0130 0.0125 0.0006
20 100 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0118 0.0111 0.0007
20 110 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0105 0.0103 0.0003
20 120 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0094 0.0094 0.0000
20 130 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0085 0.0086 0.0001
20 140 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0081 0.0080 0.0000
20 150 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0073 0.0076 0.0002
20 160 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0070 0.0071 0.0001
20 170 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0065 0.0065 0.0001
20 180 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0059 0.0062 0.0003
20 190 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0058 0.0059 0.0002
20 200 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0052 0.0056 0.0004

THE JOURNAL OF EXPERIMENTAL EDUCATION 27



Table B2. (Full Version).

Sample size Parameters Mediation error variance

n1 n2 a B b1 c k1 k2 k3 K1 K2 K3 P ICC
Empirical  
Variance

Predicted  
Variance

Absolute  
Bias

Average  
Absolute Bias

(a) Average absolute bias in sampling variability for individual-level mediator in Condition 1.

10 20 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0168 0.0054 0.0114 0.0008
10 30 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0078 0.0037 0.0041
10 40 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0048 0.0028 0.0020
10 50 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0035 0.0023 0.0012
10 60 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0026 0.0019 0.0008
10 70 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0021 0.0016 0.0005
10 80 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0018 0.0014 0.0004
10 90 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0015 0.0013 0.0003
10 100 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0014 0.0011 0.0003
10 110 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0012 0.0010 0.0002
10 120 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0011 0.0009 0.0002
10 130 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0010 0.0009 0.0001
10 140 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0009 0.0008 0.0001
10 150 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0009 0.0007 0.0001
10 160 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0008 0.0007 0.0001
10 170 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0007 0.0007 0.0001
10 180 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0007 0.0006 0.0001
10 190 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0006 0.0006 0.0001
10 200 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.0006 0.0006 0.0001

(b) Average absolute bias in sampling variability for individual-level mediator in Condition 2.

10 20 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0224 0.0147 0.0077 0.0012
10 30 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0130 0.0087 0.0044
10 40 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0092 0.0068 0.0024
10 50 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0072 0.0055 0.0017
10 60 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0058 0.0041 0.0016
10 70 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0049 0.0041 0.0008
10 80 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0042 0.0030 0.0013
10 90 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0037 0.0031 0.0007
10 100 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0034 0.0026 0.0008
10 110 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0030 0.0023 0.0007
10 120 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0027 0.0020 0.0007
10 130 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0025 0.0019 0.0006
10 140 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0023 0.0018 0.0005
10 150 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0022 0.0017 0.0004
10 160 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0020 0.0016 0.0004
10 170 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0019 0.0014 0.0005
10 180 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0018 0.0014 0.0004
10 190 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0017 0.0015 0.0002
10 200 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.0016 0.0013 0.0003

(c) Average absolute bias in sampling variability for individual-level mediator in Condition 3.

10 20 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.1935 0.1266 0.0669 0.0068
10 30 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.1113 0.0850 0.0263
10 40 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0775 0.0612 0.0162
10 50 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0586 0.0482 0.0104
10 60 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0476 0.0398 0.0078
10 70 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0400 0.0352 0.0048
10 80 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0343 0.0300 0.0043
10 90 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0303 0.0262 0.0041
10 100 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0273 0.0240 0.0032
10 110 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0243 0.0218 0.0025
10 120 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0222 0.0199 0.0024
10 130 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0203 0.0182 0.0021
10 140 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0188 0.0170 0.0018
10 150 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0173 0.0157 0.0016
10 160 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0163 0.0148 0.0015
10 170 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0152 0.0138 0.0014
10 180 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0144 0.0130 0.0014
10 190 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0136 0.0125 0.0011
10 200 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.0128 0.0118 0.0010

(continued)
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Table B2. Continued.

Sample size Parameters Mediation error variance

n1 n2 a B b1 c k1 k2 k3 K1 K2 K3 P ICC
Empirical  
Variance

Predicted  
Variance

Absolute  
Bias

Average  
Absolute Bias

(d) Average absolute bias in sampling variability for individual-level mediator in Condition 4.

20 20 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0086 0.0044 0.0043 0.0005
20 30 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0047 0.0026 0.0021
20 40 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0032 0.0021 0.0010
20 50 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0024 0.0019 0.0005
20 60 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0019 0.0015 0.0004
20 70 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0016 0.0011 0.0005
20 80 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0014 0.0010 0.0004
20 90 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0012 0.0009 0.0003
20 100 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0011 0.0007 0.0003
20 110 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0010 0.0008 0.0002
20 120 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0009 0.0007 0.0001
20 130 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0008 0.0006 0.0002
20 140 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0007 0.0006 0.0002
20 150 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0007 0.0006 0.0001
20 160 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0006 0.0006 0.0001
20 170 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0006 0.0005 0.0001
20 180 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0006 0.0005 0.0001
20 190 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0005 0.0005 0.0001
20 200 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0005 0.0004 0.0001

(e) Average absolute bias in sampling variability for individual-level mediator in Condition 5.

20 20 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0498 0.0218 0.0280 0.0025
20 30 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0270 0.0195 0.0075
20 40 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0184 0.0136 0.0048
20 50 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0139 0.0100 0.0039
20 60 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0111 0.0088 0.0023
20 70 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0093 0.0072 0.0021
20 80 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0081 0.0066 0.0015
20 90 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0070 0.0054 0.0016
20 100 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0063 0.0053 0.0010
20 110 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0057 0.0045 0.0011
20 120 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0051 0.0043 0.0008
20 130 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0047 0.0038 0.0009
20 140 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0043 0.0037 0.0006
20 150 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0040 0.0036 0.0005
20 160 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0038 0.0032 0.0005
20 170 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0035 0.0030 0.0005
20 180 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0033 0.0028 0.0005
20 190 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0031 0.0027 0.0004
20 200 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.0030 0.0026 0.0004

(f) Average absolute bias in sampling variability for individual-level mediator in Condition 6.

20 20 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.1101 0.0624 0.0477 0.0044
20 30 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0579 0.0375 0.0205
20 40 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0384 0.0290 0.0094
20 50 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0287 0.0221 0.0066
20 60 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0229 0.0185 0.0045
20 70 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0195 0.0163 0.0032
20 80 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0166 0.0140 0.0026
20 90 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0144 0.0123 0.0021
20 100 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0127 0.0111 0.0016
20 110 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0116 0.0100 0.0015
20 120 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0105 0.0094 0.0011
20 130 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0096 0.0086 0.0010
20 140 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0088 0.0079 0.0009
20 150 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0082 0.0074 0.0008
20 160 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0077 0.0070 0.0007
20 170 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0072 0.0065 0.0007
20 180 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0067 0.0062 0.0005
20 190 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0063 0.0058 0.0005
20 200 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.0060 0.0056 0.0005

THE JOURNAL OF EXPERIMENTAL EDUCATION 29



Sample size Parameters Power

n1 n2 a b c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

R2
YL2

Predicted  
R2

YL2

Empirical  
rejection rate

Predicted  
power

(a) Empirical versus predicted statistical power for cluster-level mediators with quadratic function of the running variable.

10 30 0.1 0.1 0.25 0.1 0.2 0 0.4 0.1 0 0.7 0.2 0.586 0.600 0.005 0.003
10 40 0.3 0.3 0.35 0.4 0.1 0 0.2 0.4 0 0.3 0.15 0.865 0.898 0.134 0.095
10 50 0.3 0.1 0.15 0.2 0.4 0 0.1 0.2 0 0.3 0.2 0.584 0.579 0.025 0.029
10 80 0.5 0.5 0.15 0.2 0.4 0 0.1 0.2 0 0.5 0.05 0.961 0.949 0.630 0.606
10 100 0.5 0.3 0.25 0.1 0.2 0 0.4 0.1 0 0.5 0.05 0.916 0.951 0.705 0.702
10 300 0.8 0.5 0.35 0.4 0.1 0 0.2 0.4 0 0.7 0.5 0.656 0.687 0.994 0.994
20 30 0.8 0.3 0.25 0.2 0.4 0 0.1 0.2 0 0.5 0.15 0.797 0.781 0.511 0.505
20 40 0.8 0.5 0.35 0.1 0.1 0 0.2 0.2 0 0.3 0.3 0.745 0.730 0.657 0.638
20 50 0.3 0.5 0.25 0.1 0.4 0 0.4 0.2 0 0.7 0.2 0.858 0.889 0.203 0.157
20 80 0.1 0.1 0.15 0.4 0.2 0 0.4 0.1 0 0.7 0.05 0.875 0.870 0.043 0.032
20 100 0.8 0.3 0.35 0.2 0.1 0 0.1 0.4 0 0.5 0.5 0.586 0.597 0.719 0.749
20 300 0.3 0.1 0.15 0.4 0.2 0 0.2 0.1 0 0.3 0.05 0.781 0.780 0.602 0.587
50 30 0.5 0.5 0.35 0.4 0.2 0 0.2 0.4 0 0.3 0.2 0.879 0.875 0.302 0.225
50 40 0.3 0.3 0.25 0.1 0.4 0 0.1 0.2 0 0.5 0.15 0.795 0.781 0.213 0.153
50 50 0.5 0.3 0.35 0.4 0.2 0 0.2 0.1 0 0.3 0.2 0.698 0.690 0.349 0.313
50 80 0.8 0.1 0.15 0.2 0.1 0 0.4 0.1 0 0.7 0.2 0.610 0.608 0.227 0.233
50 100 0.5 0.5 0.25 0.1 0.4 0 0.1 0.4 0 0.5 0.05 0.974 0.963 0.715 0.717
50 300 0.3 0.1 0.15 0.2 0.1 0 0.4 0.2 0 0.7 0.5 0.444 0.445 0.143 0.146

(b) Empirical versus predicted statistical power for cluster-level mediators with cubic function of the running variable.

10 30 0.1 0.1 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.7 0.2 0.876 0.903 0.005 0.002
10 40 0.3 0.3 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.3 0.15 0.916 0.980 0.152 0.126
10 50 0.3 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.742 0.776 0.016 0.023
10 80 0.5 0.5 0.15 0.2 0.4 0.4 0.1 0.2 0.4 0.5 0.05 0.995 1.000 0.555 0.638
10 100 0.5 0.3 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.981 0.992 0.650 0.649
10 300 0.8 0.5 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.787 0.832 1.000 1.000
20 30 0.8 0.3 0.25 0.2 0.4 0.2 0.1 0.2 0.1 0.5 0.15 0.873 0.901 0.487 0.510
20 40 0.8 0.5 0.35 0.1 0.1 0.4 0.2 0.2 0.2 0.3 0.3 0.926 0.949 0.605 0.676
20 50 0.3 0.5 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.926 0.941 0.171 0.140
20 80 0.1 0.1 0.15 0.4 0.2 0.1 0.4 0.1 0.4 0.7 0.05 0.991 1.000 0.045 0.044
20 100 0.8 0.3 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.729 0.754 0.761 0.770
20 300 0.3 0.1 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.971 0.978 0.589 0.581
50 30 0.5 0.5 0.35 0.4 0.2 0.4 0.2 0.4 0.2 0.3 0.2 0.962 0.984 0.306 0.274
50 40 0.3 0.3 0.25 0.1 0.4 0.2 0.1 0.2 0.4 0.5 0.15 0.965 0.998 0.198 0.156
50 50 0.5 0.3 0.35 0.4 0.2 0.1 0.2 0.1 0.4 0.3 0.2 0.954 0.980 0.345 0.327
50 80 0.8 0.1 0.15 0.2 0.1 0.1 0.4 0.1 0.1 0.7 0.2 0.810 0.816 0.262 0.281
50 100 0.5 0.5 0.25 0.1 0.4 0.2 0.1 0.4 0.2 0.5 0.05 0.987 1.000 0.674 0.691
50 300 0.3 0.1 0.15 0.2 0.1 0.4 0.4 0.2 0.1 0.7 0.5 0.657 0.665 0.148 0.224
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Sample size Parameters Power

n1 n2 a B b1 c k1 k2 k3 K1 K2 K3 P ICC
Empirical  

R2
YL2

Predicted  
R2

YL2

Empirical  
Rejection Rate

Predicted  
Power

(a) Empirical versus predicted statistical power for individual-level mediators with quadratic function of the running variable.

10 30 0.1 0.1 0.1 0.25 0.1 0.2 0 0.4 0.1 0 0.7 0.2 0.559 0.577 0.003 0.001
10 40 0.3 0.3 0.2 0.35 0.4 0.1 0 0.2 0.4 0 0.3 0.15 0.836 0.882 0.114 0.124
10 50 0.3 0.1 0.1 0.15 0.2 0.4 0 0.1 0.2 0 0.3 0.2 0.559 0.566 0.019 0.030
10 80 0.5 0.5 0.05 0.15 0.2 0.4 0 0.1 0.2 0 0.5 0.05 0.936 0.933 0.999 0.996
10 100 0.5 0.3 0.05 0.25 0.1 0.2 0 0.4 0.1 0 0.5 0.05 0.873 0.936 0.887 0.912
10 300 0.8 0.5 0.2 0.35 0.4 0.1 0 0.2 0.4 0 0.7 0.5 0.659 0.693 0.990 0.990
20 30 0.8 0.3 0.05 0.25 0.2 0.4 0 0.1 0.2 0 0.5 0.15 0.745 0.747 0.356 0.394
20 40 0.8 0.5 0.2 0.35 0.1 0.1 0 0.2 0.2 0 0.3 0.3 0.681 0.678 0.752 0.783
20 50 0.3 0.5 0.2 0.25 0.1 0.4 0 0.4 0.2 0 0.7 0.2 0.807 0.865 0.356 0.351
20 80 0.1 0.1 0.1 0.15 0.4 0.2 0 0.4 0.1 0 0.7 0.05 0.862 0.865 0.004 0.014
20 100 0.8 0.3 0.1 0.35 0.2 0.1 0 0.1 0.4 0 0.5 0.5 0.587 0.600 0.722 0.752
20 300 0.3 0.1 0.05 0.15 0.4 0.2 0 0.2 0.1 0 0.3 0.05 0.743 0.742 0.367 0.414
50 30 0.5 0.5 0.2 0.35 0.4 0.2 0 0.2 0.4 0 0.3 0.2 0.845 0.860 0.408 0.435
50 40 0.3 0.3 0.1 0.25 0.1 0.4 0 0.1 0.2 0 0.5 0.15 0.733 0.730 0.217 0.227
50 50 0.5 0.3 0.1 0.35 0.4 0.2 0 0.2 0.1 0 0.3 0.2 0.613 0.612 0.423 0.429
50 80 0.8 0.1 0.05 0.15 0.2 0.1 0 0.4 0.1 0 0.7 0.2 0.588 0.585 0.136 0.137
50 100 0.5 0.5 0.05 0.25 0.1 0.4 0 0.1 0.4 0 0.5 0.05 0.963 0.963 1.000 0.997
50 300 0.3 0.1 0.2 0.15 0.2 0.1 0 0.4 0.2 0 0.7 0.5 0.443 0.445 0.140 0.135

(b) Empirical versus predicted statistical power for individual-level mediators with cubic function of the running variable.

10 30 0.1 0.1 0.1 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.7 0.2 0.875 0.880 0.002 0.002
10 40 0.3 0.3 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.3 0.15 0.906 0.995 0.092 0.228
10 50 0.3 0.1 0.1 0.15 0.2 0.4 0.2 0.1 0.2 0.1 0.3 0.2 0.730 0.766 0.008 0.030
10 80 0.5 0.5 0.05 0.15 0.2 0.4 0.1 0.1 0.2 0.1 0.5 0.1 0.930 0.965 0.991 0.994
10 100 0.5 0.3 0.05 0.25 0.1 0.2 0.1 0.4 0.1 0.2 0.5 0.05 0.978 0.995 0.926 0.933
10 300 0.8 0.5 0.2 0.35 0.4 0.1 0.2 0.2 0.4 0.1 0.7 0.5 0.785 0.834 0.999 1.000
20 30 0.8 0.3 0.05 0.25 0.2 0.4 0.2 0.1 0.2 0.1 0.5 0.15 0.850 0.892 0.300 0.346
20 40 0.8 0.5 0.2 0.35 0.1 0.1 0.1 0.2 0.2 0.2 0.3 0.3 0.844 0.876 0.728 0.785
20 50 0.3 0.5 0.2 0.25 0.1 0.4 0.2 0.4 0.2 0.1 0.7 0.2 0.912 0.938 0.295 0.318
20 80 0.1 0.1 0.1 0.15 0.4 0.2 0.2 0.4 0.1 0.1 0.7 0.05 0.955 0.953 0.001 0.016
20 100 0.8 0.3 0.1 0.35 0.2 0.1 0.1 0.1 0.4 0.2 0.5 0.5 0.726 0.756 0.771 0.794
20 300 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.970 0.978 0.314 0.446
50 30 0.5 0.5 0.2 0.35 0.4 0.2 0.1 0.2 0.4 0.2 0.3 0.2 0.919 0.956 0.414 0.480
50 40 0.3 0.3 0.1 0.25 0.1 0.4 0.1 0.1 0.2 0.1 0.5 0.15 0.826 0.873 0.195 0.245
50 50 0.5 0.3 0.1 0.35 0.4 0.2 0.2 0.2 0.1 0.1 0.3 0.2 0.838 0.864 0.406 0.419
50 80 0.8 0.1 0.05 0.15 0.2 0.1 0.1 0.4 0.1 0.1 0.7 0.2 0.804 0.809 0.104 0.145
50 100 0.5 0.5 0.05 0.25 0.1 0.4 0.2 0.1 0.4 0.1 0.5 0.05 0.978 1.000 1.000 1.000
50 300 0.3 0.1 0.2 0.15 0.2 0.1 0.1 0.4 0.2 0.2 0.7 0.5 0.733 0.739 0.160 0.164
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