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ABSTRACT KEYWORDS

Prior research has suggested that clustered regression discontinuity Mediation; regression

designs are a formidable alternative to cluster randomized designs because discontinuity; power;

they provide targeted treatment assignment while maintaining a high- ~ Multilevel models; sample
. - : size determination; indirect

quality basis for inferences on local treatment effects. However, methods offects

for the design and analysis of clustered regression discontinuity designs

have not been fully developed to address the array of core effects (e.g.,

main, moderation and mediation) typically examined in education studies.

In this study, we complement prior design literature by developing princi-

ples of estimation, sampling variability, and closed-form expressions to pre-

dict the statistical power to detect mediation effects in clustered

regression discontinuity designs. The results suggest that sample sizes typ-

ically seen in educational intervention studies (e.g., about 50 schools) can

be sufficient to detect a mediation effect under some conditions when

studies are carefully designed. We implement the results in software and a

Shiny App (BLINDED FOR REVIEW).

Introduction

Prior research has suggested that regression discontinuity designs are a formidable alternative to clus-
ter randomized designs because they provide targeted treatment assignment while maintaining a
high-quality basis for local inferences (Cook, 2008). In education, regression discontinuity designs
often leverage cluster-level running variables to assign treatment conditions at the school-level to
accommodate policy initiatives and/or the school-wide scope and implementation of many interven-
tions. When correctly implemented and specified, these types of clustered regression discontinuity
designs facilitate unbiased inferences concerning the local area effects of a treatment (Cook, 2008).

Despite the widespread use of clustered regression discontinuity designs in education, prior lit-
erature has not fully developed methods to address the more comprehensive sets of effects that
are typically used to supplement evidence of whether an intervention works on average (i.e., main
effect). For example, contemporary research routinely supplements evidence on main effects by
further examining evidence for the underlying theory of action through mediation analyses. Such
mediational analyses provide complementary evidence by probing the mechanisms through which
the intervention operates on the outcome. More generally, such investigations of mediation effects
play an essential role in testing and refining teaching and learning theories.

In this study, we advance regression discontinuity designs by developing principles of estima-
tion, sampling variability, and closed-form expressions to predict the statistical power with which
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we can detect mediation effects in clustered regression discontinuity designs. The results provide
tools intended to inform and guide researchers in planning clustered regression discontinuity
designs with cluster- and individual-level mediators. Below, we first detail the methods for clus-
ter- and individual-level mediators using a working example. We then follow with a simulation
assessing our results and finish with an illustration of the methods.

Methods

To explicate the models and methods, let us consider a working example from the literature (e.g.,
Bonell et al., 2018): The Learning Together intervention. This intervention aims to improve
school environments in ways that reduce incidents of bullying and aggression and increase stu-
dent health and wellbeing (Bonell et al., 2018). To achieve these goals, the Learning Together
intervention focuses on modifying school policies and systems, increasing restorative practice,
and processing social and emotional education (Bonell et al., 2018). The underlying theory of the
intervention suggests that improvement of the school environment (i.e., a school-level mediator)
and/or improvement of student opinion (i.e., a student-level mediator) about learning and the
school community are key mechanisms through which we can improve student mental health
(i.e., an outcome) (Bonell et al., 2019).

Within this context, consider a study that draws on a clustered regression discontinuity design
such that schools are assigned to participate in the Learning Together intervention or business as
usual based on a continuous school-level variable such as the number of mental health referrals
at each school during the prior year. For example, the discontinuity assignment may assign
schools above the 50th percentile (i.e., those schools with a high number of mental health refer-
rals) to the Learning Together intervention and those at or below the 50th percentile to continue
without any changes. Further assume that we are interested in examining the extent to which the
Learning Together intervention improves student mental health (outcome) by operating through
changes in (a) the school environment (school-level mediator) or (b) student opinion on learning
and school community (student-level mediator).

Cluster-level mediator

Let us first consider analysis of a cluster-level mediator using a 2-2-1 mediation framework where
the 2-2-1 numeric acronym represents the respective levels of the intervention (school-level, 2),
mediator (school-level, 2) and outcome (student-level, 1). We develop our regression discontinu-
ity design models within the context of flexible linear, quadratic and cubic functional forms and
assume that the conditional density functions of both the mediator and the outcome exhibit con-
tinuity at the designated cutoff point. More specifically, prior literature has drawn on this
approach to ensure the smoothness and uninterrupted flow in the distributions of both the medi-
ator and the outcome variables at the threshold (e.g., Imbens & Lemieux, 2008; McCrary, 2008).
Let us further assume that the running variable (school mental health) follows an approximate
normal distribution

Sj = ajs sjs ~ N(0,03) (1)

Where §; is the value of the running variable for school j with mean zero and variance o3.

To obtain inferences regarding mediation, we draw on the potential outcomes framework and
take up the following additional requisite assumptions (e.g., VanderWeele, 2010): (1) stable unit
treatment value assumption (SUTVA), (2) sequential ignorability, (3) consistency, (4) no down-
stream confounders, and (5) no treatment-by-mediator interaction (Kelcey et al., 2017). Although
we draw on these assumptions to develop expressions to guide design and analysis, we note that
their validity in practice should be thoroughly considered and evaluated (see, for example,
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Imbens & Lemieux, 2008). For the (cluster-level only) mediator model, we adopt the following
model

M; = 1o + aT; + £(S)) + mW; + mX; + &' &' ~ N(0,a3) (2)

Where M; is the mediator value for school j, m, is the intercept, T; is the treatment condition
(i.e., 1 as treatment and 0 as control) with a as the path coefficient of the treatment-mediator
effect, f(S;) is a (nonlinear) function of the running variable S;, W; is a school-level covariate
with coefficient 7;, X; is a school-level aggregate of a student-level covariate (X;) with coefficient
7, and SJM is the error term.

For the (multilevel) outcome model, we have

Student—level: Y; = fy; + 8, (X - X)) + mV; + 85 83]' ~ N(0, o%,l)
School—level: f; = gy + bM; + F(S)) + ¢'Tj + 701 W) + 702X + ué} ué; ~ N(0, ‘Ef) (3)

Here, Y represents the outcome for student i in school j, F(S;) is a (non)linear function of
the running variable §; (similar but different to f(S;)), f; is the school-specific intercept, Xj; is a
student-level covariate with school-level average X; and coefficient f5;, Vj; is a student-level cova-
riate that varies only across individuals (no variation among clusters) with the coefficient 75, 9};
is the individual level error term, 7y, is the overall intercept of the model, b is the path coefficient
of the mediator, ¢’ is the path coefficient of the treatment, y,, and y,, are the coefficients of the
covariates, and u(l); is the cluster level random effect.

Under this model specification and aforementioned assumptions, the mediation effect (ME)
can be described as

ME = ab (4)

Where a and b are the path coefficients obtained from expressions (2) and (3).

Error variance

Under the aforementioned specification, the error variance of the mediation effect in a clustered
regression discontinuity design is (Bollen, 1987; Kelcey et al, 2017; MacKinnon, 2012;
Mackinnon et al., 2007)

2 22, 22 2 2 2 122, 22
o, = b0, +aoy, + 0.0y, + 2abog, + 05, = b o, +a’oy, (5)

The full expression capturing the variance can be simplified given the independence of the a
and b paths (i.e., o, = 0; Kelcey et al,, 2017). Likewise, prior research has consistently found that
the product of the error variances (¢%07) is approximately zero such that we can safely
assume o207 ~ 0.

Under the maximum likelihood, the respective error variances can be obtained as a function

of common summary statistics or design parameters

2 _ 612\4\ _ Gﬁ/[(l_RJZVI)

“ "m0k  mP(1-P)(1- pj?

g
1)

azzr‘erail/m212(1—R§m)+a§(1—R§L1)/n1 ©)
b n,03, ny03,(1 — R%))

Here, ¢, is the unconditional variance of the mediator, 2 is the unconditional variance of
the treatment (i.e., P(1-P) where P is the proportion of clusters assigned to the treatment condi-
tion), p ()1 1S the correlation between the treatment assignment and the function of the running
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variable f(S)T (Schochet, 2009), 72 is the unconditional school-level outcome variance, 6% is the
R and R},
by the school- and student-level covariates, and R%, is the mediator variance explained by the
covariates in the models, and n; and n, represent the number of students per school and the
number of school. Further, we can unpack the correlation between the function of the running
variable (f(S)) and the treatment condition Py(s), T 3

unconditional student-level outcome variance, are the outcome variance explained

If(s).1 E(@RDf(SJ)) Phyes) [(f IS <K) - :uf(s)}

o - )
1)1 \/P(l—P)O'f(g> \/P(l— )f(S) \/P( —P)O'f<5)

Where o) 1 is the covariance between the function of the running variable (f (S)) and the treat-

ment condition (T), () is the mean of f(S), K is the cutoff value on the running variable S

o (P,o0, . . . . .
such that K = % with @ as the cumulative normal density function, and o is the stand-
N

ard deviation of the running variable S, and oy is the standard deviation of f(S).

Path formulation

When expressions tracking the sampling variability of an effect are intended for design decisions,
studies have often reparametrized them in terms of parameters for which there is readily access-
ible empirical information from in the literature (e.g., Kelcey and Shen, 2017). In this way,
researchers can draw on prior empirical values for key parameters that govern power when plan-
ning studies. For this reason, we decomposed the variance explained parameters (R-squared) into
components attributable to the primary path coefficients (ie., a, b, ¢’) of the variables that are
specific to this intervention and study (i.e., T, M) and components attributable to control covari-
ates (e.g., X, W, X) that tend to be more commonly reported in the literature. For the total vari-
ance in the outcome explained at the school level, the expected value of R, can be expressed as

R V2o + Ok T 20045 k) (ab+¢)’P(1—P)  2(bogs), 1 + res), 1) (@b + )
RYi =Ry, ;5 + 1-2 + 3 + >
be3, (1 -R2.)
+ #

(8)

Where we use the covariances between the treatment and the function of the running variable
in the mediator model, o) > and outcome model, o) 1, and the covariance between f (S) and
F(S), Of(s),F(s)» in this equation. This expression contains the variance explained by the covariates
that can be obtained from prior studies (R?
bles in this study (i.e., T, M).

A similar decomposition of the variance explained in the mediator in the mediation model
results in

- ) and the variance explained by the key focal varia-

g2 2
2 _ % @P(1—P) 2404 7
Ry = RM\Z + —M+ szvf + 1_12\/1 . 9)

Where where R? |7 Tepresents the variance in the mediator explained by (control) covariates

that can be obtained from prior literature.
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Student-level mediators

We next examined clustered regression discontinuity designs that probe a student-level mediator
(e.g., student opinion). We again approximate the distribution of the running variable S; using
expression (1). In turn, we now draw on a multilevel structure to decompose variation among
students and among schools in the mediator

Student—level: M;; = mo; + m; (Xij - Xj) + Vi + sfy 824 ~ N(0, 012\,”)
School—level: mo; = (oo + aTj + f(Sj) + Lon W + (oo Xj + uéf ugf ~ N(O, 112\4‘) (11)

Here, M;; is the mediator value of student i in school j, my; is the school-specific intercept for
school j, X;; is a student-level covariate with the coefficient 7;, and X is its school-level mean,
Vjj is a student-level covariate that varies only across students (no cluster variation) with the coef-
ficient 75, 924
assignment coded as 0/1 with associated path coefficient a, f(S;) is the (non)linear function of §;

is the individual level error term, (o is the overall intercept, T; is the treatment

in the mediator model, {;,; and {,, are the coefficients of the covariates, and ugf is the cluster

level random effect.
For the outcome model, we have

. . _ <7 ¥ Y Y 2
Ind1v1dual—leve1. Yz] = BOj + b] (Mq - M]) —+ ﬁl (Xl] - X]) + ﬁZVlj + 81’j Sij ~ N(O, O—Y\)
Cluster—level: By, = 199 + BM; + F(S;) + ' Tj + 70, W + 70X, + g, uy; ~ N(0,73)  (12)

Where Yj; is the outcome of student i’s in school j, fiy; is the school-specific intercept, Mj; is the
student-level mediator with the path coefficient b;, M; is the school-level aggregate mean of that
mediator with B as its coefficient at the school-level, ff; and f3, are the coefficient of the student-
level covariates, all]’ is the individual level error term, ¢’ is the path coefficient of the treatment,
F(S;) is the function of S; in the outcome model, y,; and 7, are the coefficients of the school-
level covariates, and ué;- is the school-level random effect.

In this formulation the path coefficient B captures the total (conditional) association between
the mediator and outcome (including the student- and school-level relationships; Kelcey et al.
2017). The path coefficient b; captures the student- level (conditional) association between the
mediator and outcome (Kreft et al., 1995; Raudenbush & Bryk, 2002). As a result, the product of
path coefficients a and B captures the total mediation effects including both the student-level
mediator and the school-level averaged mediator values (Pituch & Stapleton, 2012; Zhang et al.,
2009). Under the model specification and the aforementioned assumptions, the mediation effect
is as follows

ME = aB (13)

Error variance
The error variance of the mediation effect in clustered regression discontinuity design is
oo = B0, +a’ag (14)
Under the maximum likelihood, we can again express the error variances of path a and path b
as follows as functions of summary statistics as
2 2
, Tt og/m g (1-R) + (1= Ryw)oy/m

g =
¢ ny0. nP(1 - P)(1 — p;“)T)




6 (&) F.BAIETAL

toy/m B (1-R) + (1-RE,)o/m
ny (T%\/I + 0'%4/111) nz(sz\/[(l - R%/[LZ) + (1 - RIZ\/[M)GJZ\/[/’ZI)

Where 73, is the unconditional variance of the cluster level aggregated mediation effect, 6%, is the
unconditional variance of the individual level mediator, o2 is the unconditional variance of
the treatment, t* is the unconditional variance of the cluster level aggregated outcome, 0% is the
unconditional variance of the individual outcome, and n; and n, represent the number of indi-
viduals per cluster and the number of clusters.

Because the treatment is assigned based on the cutoff value on the running variable, P is the pro-
portion of clusters receiving treatment and T is following Bernoulli distribution, then we have o2 =

P(1 — P). Based on Schochet (2009), the conditional GZTI =P(1-P)(1- p;(sﬁ), where Py 18 the

correlation between the treatment assignment and the express of the running variable f(S). R3,, and

oy = (15)

Riu are the outcome variance explained by the school- and student-level covariates, and Rﬁ/ﬂz and
R}, are the mediator variance explained by the school- and student- level covariates in the models.

Path formulation

Similar to the approach applied for the 2-2-1 mediation, we decomposed R-squared parameters
in 2-1-1 mediation into components specific to the intervention and study, and control covariates
more commonly reported in the literature. The total variance of the second level explained in the
outcome model is the assembling of all parts of the equations as follows.

R — R+ Baj ) + 05y + 2Bay(s) k) N (aB + ¢)*P(1 - P) . 2(Boy(s), 1 + op(s), 1) (@b + )
Y2 = By z 2 2 2
(5,01~ ) + )
+ 5 :
T
(16)
For the R squared of the individual level outcome, the expected expression is as follows
b120'2 (1 - R2 )
2 2 M MU
RYu = RY“|Z o'%, (17)
With the same approach, we can construct the R squared for the mediation effect as
a2 2p(1 — pP) 2ac
Ry =R, 20 @PUZP) 20057 (18)

MR2|Z 2 2 2
| ™ T M
Functions of the running variable

Our specification of the running variable S in shaping the mediator (f(S)) and outcome (F(S))
values allows for a broad set of flexible functions including linear, quadratic and cubic in the
regressions. For example, consider a function q(S) such that

als) = m(s) + 19 19 ~ N(0,0%) (19)

Where m(S) is the deterministic function of S and ¢ is the error term. The resulting covariance
between the treatment and this function (g, 1) is

0g(s), T = Om(s), T (20)

Where 0,5 r represents the covariance between the treatment T and m(S).
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Returning to the construction of R squared of the cluster level outcome model, the covariance
of f(S) and F(S) can be estimated as follows

Tf(5),F(s) = Tmp(5) Tme(s) (21)

Where g,, () is the deterministic function of § in f () and 0, is the deterministic function of
S in F(S).
The correlation between the treatment T and g(S) can then be obtained as follows

94(8), T Om(s), T
pq(s), T = 9 > = > > (22)
\/pu - P’ \/p(1 = P)(0%, + o)
Where an(s) is the variance of m(S).
For example, when considering a cubic function, the model is as follows
q(S) = m(S) + 1) = 118 + 1p8? + 158> + &) 1) ~ N(0> ‘7;(5)\> (23)

Where m(S) = 4;S + 1,8? + 138, and 1, 4y, and /3 are the coefficients of the S, S?, and S°.
We have 63, = 26%, 0% = 15063, and o5 ¢ = 3¢, which yields

2
Gin(s)

= M1 0% + 22°20% + 1371505 + 617304 (24)
For the covariance between T and m(S), we have

Om(s), T = 41051 + Aa0g 1+ A30g T (25)

Where o5 1 is the covariance between T and S, g r is the covariance between T and S?, and

o1 is the covariance between T and $°. Using K (K = %’;’gg); ® is the cumulative density

function of normal distribution) as the cutoff value on the running variable S, the cluster with a
value below K will be assigned to the treatment condition and the other clusters will be assigned
to the control condition. The resulting covariance between S and T is

s, T = —d)(K, O, 1)0‘5

2yer/(20°)
oer = 0.5 (az + sgn(P —0.5) (azerf< vy > - av/2ye >> —(D(K, 0, af)af

V20 Vr

2
K33

o <|K3 B+ 20%) e %
Van

Assembling these results, the covariance between the function and the treatment can be expressed as

Om(s), T = J1(=¢(K,0,1)05)

2 2 ,—K?/(26%)
+ A (0.5 <02 + sgn(P —0.5) <azerf <\/R~> /2 — a\/I_('—e) ) -0(K, 0, af)of)

(26)

o3 = —

20 V2T

2
K33

Js(\K3|% + 203 e %

V2n

+4| =

(27)
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Similarly, the correlation between the treatment T and g(S) can be obtained as follows

Poisr = Om(S)T (28)
S), T — B
! \/p(1 = P)(025) + /0% + 42"20¢ + 151563 + 671 30%)

Because we can obtain the R-squared of the aé(s) from the prior studies, the formula of the
correlation can be rewritten as follows
Om(s), T

Prs)T = (29)
1(9) \/p(1 — P)(A20% + 727208 + 1571508 + 641730%) /R2 g,

Where R?;(s) is the variance explained by m(S) in g(S).
For the expressions of S are quadratic regressions (ie, g(S) = A;S+ 1,8 + &1,

1) ~ N(O, G;(SH)) or linear regressions (ie., q(S) = 4,8+ &1, &1 ~ N(O, a;@)‘)), we can

apply the formulas we developed for the cubic regression to the quadratic regressions with setting
Az = 0 or to the linear regressions with setting 1; = 4, = 0.

Statistical power

An important consideration in the design of clustered regression discontinuity studies is the stat-
istical power with which we can detect the targeted mediation effect if it exists (Cohen, 1988).
For this reason, we developed methods to predict power by extending several common mediation
tests that are suitable for the design phase (i.e., Sobel test, joint test, and Monte Carlo interval
test).

The Sobel test

One classic approach to testing mediation effects is the Sobel test based on the asymptotic nor-
mality of the sampling distribution of the mediation effect (Sobel, 1982). The Sobel test compares
the ratio of the estimated indirect effect to its estimated standard error to a normal distribution
(which tends to be a poor approximation in samples of less than say 100 or 200 clusters). Given
our prior results, the forms of the Sobel test statistics (z5°°?) for cluster-level mediators (2-2-1)

and individual-level mediators (2-1-1) can be expressed as

Sobel — a_b _ ab
RDD;_>- Gib 2 2 (l—RilL2 )Jr()'%, (1—R§L1 )/nl b2 a3 (I—wa)
02, (1-R2)) nzP(l—P)(l—pfz(S)T)
ab
%’Dbf)lz—l—l = 2 2 2 2 2 2 2 2 (30)
2 TY(I—RYL2)+(1—RYL1 )ay/nl LB 1'M(1—RML2)Jr(l—RML1 )aM/nl
DG T mETDy A1

In turn, the power of the Sobel test can be estimated as:
!
P(|ZSObe | > Zcritical) - 1_(D(Zcritical - ZSObel) + (D(_Zcritiml - ZSUbEl) (31)

Where @ represents the normal distribution with z.uicq as the chosen critical value (e.g., 1.96)
corresponding to a nominal type I error rate.

The joint test
A common alternative test for mediation is the joint test. In the joint test, we can relax the nor-
mality assumption of the distribution of the mediation effect by examining the constituent paths
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independently (MacKinnon et al.,, 2002). The test statistics for the a paths with cluster- (2-2-1)
and individual-level (2-1-1) mediators are

o2 (1-R3))
T 2 M M
waa = 4/0, = mP(1 = P)(1 - pfy)

(- Rye) + (1 - Riw)ogy/m
taa1-1 = ajo, = a/ 2
nP(1 = P)(1 — pi)

Similarly, the test statistics for the path b under a cluster- and individual-level mediator are

(32)

1 _Rgsz) + 0'%/(1 —Réu)/nl

2
_ 2_ ¢ (
o SO S T R

12(1 - Riu) + 0%,(1 - Riu)/fh

tgo—p—1 = B 0'2 =B (33)
=B = = R + (1= Ry )ady/m)
Using these tests, the statistical power of the joint test can be obtained as
P(|ta‘ > Leritical & |th| > tcritical)
(34)

= (l_q)(tcritical - ta) + (D(_tcritical - ta))*(l_(b(tcritical - tb) + q)(_tcriticul - tb))

Where ¢ represents the t density function with corresponding degrees of freedom with #,iica as
the chosen critical value (e.g., 1.96 in large sample sizes) corresponding to a t distribution type
one error rate.

The Monte Carlo test

A modern approach is the resampling-based Monte Carlo test (Preacher & Selig, 2012). In the
Monte Carlo test, random samples are drawn from a joint distribution formed by the product of
the with the a path and b (or B) path coefficients. The distribution of each path is approximated
with a normal distribution centered at the maximum likelihood point estimate and variance set

to the sampling variability of the coefficient.
~2 ~
6, 6. ;
)
%, b %

In practice, draws are taken from
*
< o ) ~ MVN ( <
In turn, we use the product of sampled path coefficients, a*b*, to approximate the sampling
distribution of a mediation effect. Statistical power is the proportion of the asymmetric confi-
dence intervals (e.g., 95%) that exclude zero.

Q2

SO QY

Simulation

We conducted Monte Carlo simulations to assess the accuracy of our derivations regarding the
error variance of the path coefficients, the R-squared path formulations and the statistical power
to detect a mediation effect. The simulations followed the guidance and principles in prior litera-
ture in this area (Bloom, 2012; Calcagno & Long, 2008; Imbens & Lemieux, 2008; McCrary, 2008;
Schochet et al., 2010). We drew on 5000 random samples and compared the empirical values
with those predicted by our derived formulas. We simulated data based on Equations (1)-(3) for
the 2-2-1 mediation and Equations (16)-(18) for the 2-1-1 mediation using cluster sample sizes
ranging from 20 to 200.
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Table 1. Average absolute bias in sampling variability for cluster-level mediator.

Sample size Parameters Mediation error variance
Empirical Predicted  Absolute  Average
ni n2 a b < A4 4 23 Ay Ay A3 P ICC  variance variance bias  absolute bias
Con1 10 40 03 0.1 015 0.2 04 0.2 0.1 0.2 0.1 03 0.2 0.0031 0.0020 0.0011 0.0004
10 60 03 0.1 015 02 04 02 0.1 02 0.1 03 0.2 0.0017 0.0014 0.0003
10 100 0.3 0.1 0.15 0.2 04 0.2 0.1 0.2 0.1 03 0.2 0.0009 0.0008 0.0001
Con2 10 40 05 03 025 01 02 0.1 04 0.1 02 0.5 0.05 0.0143 0.0108 0.0035 0.0013
10 60 05 03 025 0.1 0.2 0.1 04 0.1 0.2 0.5 0.05 0.0087 0.0070 0.0017
10 100 0.5 03 025 0.1 02 0.1 04 0.1 0.2 0.5 0.05 0.0047 0.0044 0.0003
Con3 10 40 08 05 035 04 0.1 02 02 04 0.1 0.7 05 0.0652 0.0551 0.0101 0.0040
10 60 08 05 035 04 0.1 02 02 04 0.1 0.7 05 0.0400 0.0368 0.0032
10 100 0.8 05 035 04 0.1 02 0.2 04 0.1 0.7 05 0.0225 0.0223 0.0002
Con4 20 40 03 0.1 015 04 02 0.1 02 0.1 0.2 03 0.05 0.0022 0.0016 0.0006 0.0003
20 60 03 0.1 0.15 04 0.2 0.1 0.2 0.1 0.2 03 0.05 0.0014 0.0011 0.0003
20 100 0.3 0.1 015 04 02 0.1 02 0.1 0.2 03 0.05 0.0008 0.0006 0.0001
Con5 20 40 03 05 025 0.1 04 02 04 0.2 0.1 0.7 0.2 0.0357 0.0288 0.0069 0.0071
20 60 03 05 025 0.1 04 02 04 02 0.1 07 02 0.0321 0.0245 0.0076
20 100 03 05 025 0.1 04 02 04 0.2 0.1 0.7 0.2 0.0181 0.0154 0.0027
Con6 20 40 08 03 035 02 0.1 0.1 0.1 04 02 05 05 0.0357 0.0288 0.0069 0.0023
20 60 0.8 03 035 02 0.1 0.1 0.1 04 0.2 05 0.5 0.0210 0.0191 0.0019
20 100 0.8 03 035 02 0.1 0.1 0.1 04 02 05 05 0.0118 0.0111 0.0007

Note. Full version of Table 1 can be found in Appendix B.

In the first simulation we examined the error variance of the mediation effect by considering
114 different conditions for the cluster-level mediator (see Table 1) and another 114 conditions
for the individual-level mediator (see Table 2). In each simulation, we varied the individual- and
cluster-level sample sizes, each of the path coefficients, the intraclass correlation coefficient and
the proportion of clusters receiving treatment. In addition, the analysis examined situations that
involve highly nonlinear functions of the running variable (f(S) and F(S) were cubic) in terms of
the relationships with the mediator and outcome. We estimated the empirical sampling variance
of the mediation effect across the draws under each condition using

oy = —Z ME;, — ME)? (36)
k 1

Similarly, we predicted the sampling variability of the mediation effect using the formulas
derived above.

For each cluster sample size condition, we then compared the empirical sampling variance
with that predicted by our formulas using absolute bias. We summarize the absolute bias of the
predicted error variance across those draws and sample sizes using the average absolute bias

1

L
Average absolute bias(& le: — 6, (37)

Where I represents the cluster sample spanning from 20 to 200, o7 represents the empirical vari-
ance of the mediation effect within the sample size of 5000, and G represents the predicted vari-
ance of the mediation effect across the 5000 draws using the Equation (8) for the 2-2-1
mediation and Equation (23) for the 2-1-1 mediation.

In the second simulation, we examined our formula-based predictions of statistical power
while varying the functional form (i.e., linear, quadratic, cubic) of the running variable using 54
different conditions (18 conditions for linear function of running variables, 18 conditions for
quadratic function of running variables, and 18 conditions for cubic function of running varia-
bles) for the cluster-level mediator setting (see Table 3) and 54 conditions for the individual-level
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Table 2. Average absolute bias in sampling variability for individual-level mediator.

Sample Size Parameters Mediation Error Variance
Empirical Predicted Absolute  Average
n1 n2 a B b1 ¢ A4 2 A3 Ay Ay A5 P ICC variance variance bias  absolute bias
Con1 10 40 03 0.1 01 0.5 02 04 0.2 0.1 0.2 0.1 03 0.2 0.0048 0.0028 0.0020 0.0008
10 60 03 0.1 01 0.5 0.2 04 0.2 0.1 0.2 0.1 03 0.2 0.0026 0.0019 0.0008
10 100 03 0.1 0.1 0.15 0.2 04 0.2 0.1 0.2 0.1 0.3 0.2 0.0014 0.0011 0.0003
Con2 10 40 0.5 03 0.05 025 0.1 0.2 0.1 04 0.1 0.2 0.5 0.05 0.0092 0.0068 0.0024 0.0012
10 60 0.5 0.3 0.05 0.25 0.1 0.2 0.1 04 0.1 0.2 0.5 0.05 0.0058 0.0041 0.0016
10 100 0.5 0.3 0.05 0.25 0.1 0.2 0.1 04 0.1 0.2 0.5 0.05 0.0034 0.0026 0.0008
Con3 10 40 0.8 05 02 03504 0.1 020204010705 0.0775 0.0612 0.0162 0.0068
10 60 08 0.5 02 03504 0.1 02 02 04 0.1 07 05 0.0476 0.0398 0.0078
10 100 0.8 05 0.2 03504 0.1 02 02 04 0.1 0.7 05 0.0273 0.0240 0.0032
Con4 20 40 03 0.1 0.05 0.15 04 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0032 0.0021 0.0010 0.0005
20 60 0.3 0.1 0.05 0.15 04 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0019 0.0015 0.0004
20 100 0.3 0.1 0.05 0.15 0.4 0.2 0.1 0.2 0.1 0.2 0.3 0.05 0.0011 0.0007 0.0003
Con5 20 40 03 0502 0.25 0.1 04 0.2 04 0.2 0.1 0.7 0.2 0.0184 0.0136 0.0048 0.0025
20 60 03 05 02 02501 04 02 04 02 0.1 07 0.2 0.0111 0.0088 0.0023
20 100 03 05 0.2 025 0.1 04 02 04 02 0.1 0.7 0.2 0.0063 0.0053 0.0010
Con6 20 40 08 03 0.1 03502 0.1 0.1 0.1 04 02 05 05 0.0384 0.0290 0.0094 0.0044
20 60 0.8 03 0.1 035 0.2 0.1 0.1 0.1 04 0.2 0.5 05 0.0229 0.0185 0.0045
20 100 0.8 03 0.1 035 02 0.1 0.1 0.1 04 0.2 0.5 0.5 0.0127 0.0111 0.0016

Note. Full version of Table 2 can be found in Appendix B.

Table 3. Empirical versus predicted statistical power for cluster-level mediators with linear function of the running variable.

Sample Size Parameters Power
Empirical Predicted Empirical Predicted

ni n2 a b ¢ A s A A A5 P ICC R, Ry, rejection rate  power
10 30 01 01 025 01 O O 04 0 0 07 02 0.567 0.560 0.008 0.003
10 40 03 03 035 04 0 0 02 O 0 03 015 0.698 0.681 0.120 0.082
10 50 03 01 015 02 0O O 01 O 0 03 02 0.364 0.363 0.019 0.017
10 80 05 05 015 02 0o 0 01 O 0 05 005 0.927 0911 0.403 0.370
10 00 05 03 025 01 O O 04 0O O 05 005 0.900 0.882 0.469 0.447
10 300 08 05 035 04 0 0 02 O 0 07 05 0.566 0.565 0.998 0.998
20 30 08 03 025 02 0 O 01 O 0 05 015 0.661 0.642 0.351 0.322
20 4 08 05 035 01 0 0 02 O 0 03 03 0.682 0.666 0.478 0.478
20 50 03 05 025 01 0O O 04 0O O 07 02 0.793 0.777 0.154 0.105
20 80 01 01 015 04 O O 04 O 0 0.7 005 0.865 0.856 0.048 0.035
20 00 08 03 035 02 0 O 01 O 0 05 05 0.428 0.428 0.644 0.661

20 300 03 01 015 04 0O O 02 O O 03 005 0.706 0.703 0.445 0.442
50 30 05 05 035 04 0 0 02 0 0 03 02 0.772 0.748 0.237 0.160
50 40 03 03 025 01 O O 01 O 0 05 015 0.643 0.630 0.141 0.105
50 50 05 03 035 04 0 0 02 O 0 03 02 0.636 0.627 0.277 0.241

50 80 08 01 015 02 0 O 04 O 0 07 02 0.594 0.590 0.236 0.235
50 00 05 05 025 01 O O 01 O O 05 005 0.927 0914 0.458 0.434
50 300 03 01 015 02 0 O 04 O 0 07 05 0.400 0.400 0.141 0.140

mediator setting (see Table 4). Further, we probed the accuracy of our path formulations of the
R-squared parameters by also comparing our formula-based predictions (expression 8 and 16
above) with the empirical counterparts from the simulation. In these analyses, we considered a
broad range of parameter values and combinations (see Tables 3 and 4) including different non-
linear forms of the running variable. We compared the empirical rejection rates using the Monte
Carlo test across 5000 simulation draws and the predicted rejection rate using our formulas.

In the third simulation, we examined the accuracy of our power predictions when the sequen-
tial ignorability assumption is violated and when the no treatment by mediator interaction
assumption is violated. For violations of the sequential ignorability assumption, we considered
unobserved confounding such that there were (residual) conditional correlations between the
mediator and the outcome, the running variable and the outcome, or the running variable and
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Table 4. Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable.

Sample size Parameters Power

Empirical Predicted Empirical Predicted

ni n2 a B bl ¢ 4 A A A A As P ICC Ry Ry,  rejection rate  power
10 30 01 01 01 025 01 O O 04 0O O 07 02 0.538 0.530 0.006 0.002
10 40 03 03 02 035 04 0 0 02 0O O 03 015 0545 0.551 0.093 0.087
10 50 03 01 01 015 02 0O 0 01 O O 03 02 0.292 0.295 0.022 0.020
10 80 05 05 005 015 02 0 0 01 O O 05 005 0.759 0.758 0.971 0.976
10 100 05 03 005 025 01 0 O 04 O O 05 005 0835 0.824 0.828 0.838
10 300 08 05 02 035 04 0 0 02 O 0 07 05 0.571 0.572 0.996 0.995

20 30 08 03 005 025 02 0 O 01 O O 05 015 049 0.496 0.325 0.309
20 4 08 05 02 035 01 0 0 02 0 O 03 03 0.582 0.584 0.561 0.589
20 50 03 05 02 025 01 0 O 04 0 O 07 02 0.679 0.673 0.243 0.246
20 80 01 01 01 015 04 0 0 04 O O 07 005 0847 0.834 0.008 0.014
20 100 08 03 01 035 02 0 0 01 O O 05 05 0.433 0.434 0.639 0.677
20 300 03 01 005 015 04 0 0 02 O O 03 005 0635 0.633 0.384 0.412
50 30 05 05 02 035 04 0 0 02 0 0 03 02 0.626 0.624 0.302 0.295

50 4 03 03 01 025 01 0 O 01 O O 05 015 0444 0.448 0.134 0.122
50 50 05 03 01 035 04 0 0 02 0 0 03 02 0.514 0.513 0.325 0.317
50 80 08 01 005 015 02 0 0 04 0 0 07 02 0.574 0.572 0.147 0.141

50 100 05 05 005 025 01 0 O 01 O O 05 005 0.701 0.702 0.999 0.999
50 300 03 01 02 015 02 0 0 04 0O 0 07 05 0.398 0.398 0.135 0.141

the mediator. Similarly, although the expressions can be adapted to accommodate a treatment by
mediator interaction (e.g., Kelcey et al., 2017), we examined sensitivity of our predictions to a
treatment by mediator interaction. By systematically introducing these controlled violations of
assumptions, we indexed the practical accuracy and sensitivity of our formula-based predictions.

Results

Tables 1 and 2 summarize the average absolute bias in the sampling variability of the mediation
effect for each condition when considering cluster- and individual-level mediators (see Appendix
B for full results). The results suggested that our formulas demonstrated good accuracy across
conditions. For conditions with cluster sample size greater than about 50, the absolute bias of the
predicted error variance was near zero. Below 50 clusters the accuracy was still quite good in
most conditions but was slightly elevated when the running variable had a strong nonlinear rela-
tionship with the mediator or outcome. We illustrate these results for cluster- and individual-level
mediators by plotting the six parameter combinations listed in Tables 1 and 2 for cluster samples
ranging between 20 and 200 (Figures 1 and 2). The plotted comparisons demonstrate the small
sample bias (underestimation) in the formula-based predictions of the sample variability of the
mediation effect when cluster-level samples are less than about 50. That bias is most pronounced
when the running variable is highly nonlinear in its relationship with the mediator or outcome
(e.g., conditions 5 and 6) but that bias decreases quickly with cluster-level sample sizes greater
that about 50.

Similarly, we report the empirical versus predicted statistical power and R-squared values for
cluster- (Table 3) and individual-level mediators (Table 4) under linear functions of the running
varjable (see Appendix B for quadratic and cubic functions of the running variable). Our results
demonstrated excellent and consistent accuracy for both quantities even with small sample sizes
and highly nonlinear relationships between the running variable and the mediator/outcome.
Figure 3 illustrates and expands on the tabled results by plotting the empirical and predicted
power curves as a function of cluster-level sample size for the Monte Carlo interval, joint and
Sobel tests under condition 9 with cubic function of the running variables
(n; =20, ICC=0.50, a=0.80, b=10.30, ¢ =0.35, ,; = 0.20, 4, =0.10, 13 =0.10, A; =

— _ 2 _ p2 _ n2 _ 2 _ n2 —
0.10, Ay = 040, A3 =020, R}, =R}, =R, =025, and R} = Ry =075 for 2-2-1
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Figure 1. True empirical (gray) and predicted (black) error variance and absolute bias (dashed) as a function of group-level sam-
ple size for 2-2-1 mediation.

mediation; n; =20, ICC =0.50, a =0.80, B=0.30, b; =0.10, ¢ = 0.35, 4; =0.20, 4, =

0.10, /3 =0.10, A;=0.10, A, =0.40, A; =0.20, wau‘z = ij‘z = R@LI‘Z = Rzyu\z =0.25,

and R}(s) :RIZE(S) =0.75 for 2-1-1 mediation). Evident from these figures, the formula-based
power predictions for the Monte Carlo and joint tests have excellent accuracy across all sample
sizes. By contrast, the Sobel test incurs significant inaccuracies across sample sizes and will gener-
ally misestimate power and requisite sample sizes.

Tables 5a-c summarize the misprediction associated with different types and levels of viola-
tions of the sequential ignorability or the no treatment by mediator interaction assumptions.
Collectively, the results demonstrated increased errors in power prediction when there is
unaccounted for confounding among the treatment, mediator and outcome or when there is a
treatment by mediator interaction. However, the results also demonstrated that under the circum-
stances considered, our formulas still provided a reasonable prediction of power for planning
purposes.

Illustration

Returning to our working example, consider a theory that the Learning Together intervention is
hypothesized impact student mental health through changes in the school environment (cluster-
level mediator) or/and student opinion on learning and school community (student-level medi-
ator) (MacKinnon, 2008). Assume researchers draw on a clustered regression discontinuity design
such that schools with an average pretest score below the 50th percentile will be assigned to
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Figure 2. True empirical (gray) and predicted (black) error variance and absolute bias (dashed) as a function of group-level sam-
ple size for 2-1-1 mediation.

receive the Learning Together intervention (treatment), and the other schools will be assigned to
receive no new intervention (control).

Let us assume that we intend to sample 50 students per school (n;) and the intraclass correl-
ation coefficient (ICC) for the outcome is 0.20. For the R squared, we assume the selected covari-
ates can explain 25% of the variance in the mediator and the outcome on both the student- and
school-level, and the deterministic functions can explain 75% of the variance of the cubic func-
tions of the running variable. For the path coefficients, we assume the approximated treatment-
mediator difference between the treatment and control condition (a) is 0.50 standard deviations,
the approximated mediator-outcome conditional association (b) is 0.30 standard deviations, and
the direct effect (') is 0.35 standard deviations. For the running variable, we adopt a cubic rela-
tionships such that the coefficients predicting the mediator are linear (4;), quadratic (4,), and
cubic (43) term are all equal to 0.12; the coefficients predicting the outcome model are linear
(A1), quadratic (A;), and cubic (Aj) are all equal to 0.20. In brief, we assume n; = 50, ICC =
0.20, a=10.50, b=0.30, ¢ =035, Jy =4, =43 = 0.12, Ay = A, = A3 =0.02, R? - =R?

M|Z Yz
Rzyu\z =0.25, and RY = Ry = 0.75.

With the given parameter values, we can obtain an appropriate school-level sample size pro-
viding an 80% chance to detect the school-level mediation effect with the Type I error rate as
0.05. We implemented this in the accompanying Shiny App (BLINDED FOR REVIEW). As
shown in Figure 4, we plotted the statistical power curves of Sobel (light grey dash curve), joint
(middle grey dot curve), and Monte Carlo interval (black curve) tests calculated by our developed
power formulas. Our results showed that under the Monte Carlo test a school sample size of 57
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Figure 3. Bias (stars) and power (curves) as functions of group sample size (n2) when utilizing the parameters in condition 9
with cubic function of the running variables for (a) cluster- and (b) individual-level mediators.

with 50 students each can provide a 0.8 statistical power. Under the same scenario, if we are
intended to test the main effect, the school sample size 34 with 50 students each would provide a
0.8 statistical power. While switching to the cluster randomized trial and using the running vari-
able as a covariate uncorrelated to the treatment, 32 schools with 50 students each would provide
0.8 for detecting the school-level mediation effect.

Similarly, for a clustered regression discontinuity study planning to detect the effect of student
opinion (student-level mediator; 2-1-1 mediation), assume we sample 20 students per school (r;)
with the ICCs for the mediation and outcome are both 0.20, the selected covariates can explain
25% of the variance in both the mediator and outcome on the student- and school-level, the
deterministic functions can explain 75% of the variance of the cubic functions of the running
variable, the approximated treatment-mediator difference between the treatment and control con-
dition (a) is 0.50 standard deviations, the approximated total mediator-outcome effect (B) is 0.30
standard deviations, the student-level approximated mediator-outcome effect (b;) is 0.20 standard
deviations, and the direct effect (/) is 0.35 standard deviations. For the expression of running
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Table 5. Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable
when the Assumption (2) sequential ignorability is violated (treatment-outcome and mediator-outcome relationship are both
confounded), Assumption (2) sequential ignorability is violated (treatment-mediator and mediator-outcome relationship are
both confounded) and Assumption (5) no treatment-by-mediator interaction is violated.

(a) Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable when
the Assumption (2) sequential ignorability is violated (treatment-outcome and mediator-outcome relationship are both
confounded).

Sample size Parameters Power
Empirical Predicted
ni n2 a b C A A A3 Ay A, Az P ICC rejection rate power
10 30 0.1 0.1 025 0.1 0 0 0.4 0 0 07 02 0.072 0.032
10 40 0.3 0.3 0.35 04 0 0 0.2 0 0 0.3 0.15 0.152 0.103
10 50 03 0.1 015 0.2 0 0 0.1 0 0 03 02 0.144 0.111
10 80 0.5 0.5 0.15 02 0 0 0.1 0 0 0.5 0.05 0.406 0.378
10 100 05 03 025 0.1 0 0 0.4 0 0 05 0.05 0.463 0.438
10 300 0.8 0.5 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.998 0.998
20 30 08 03 025 02 0 0 0.1 0 0 05 015 0.456 0.385
20 40 0.8 0.5 035 0.1 0 0 0.2 0 0 0.3 0.3 0.502 0.448
20 50 03 05 025 0.1 0 0 0.4 0 0 07 02 0.158 0.118
20 80 0.1 0.1 0.15 04 0 0 04 0 0 0.7 0.05 0.068 0.052
20 100 08 03 035 02 0 0 0.1 0 0 05 05 0.833 0.828
20 300 0.3 0.1 0.15 04 0 0 0.2 0 0 0.3 0.05 0.443 0.442
50 30 05 05 035 04 0 0 0.2 0 0 03 02 0.243 0.159
50 40 0.3 0.3 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.161 0.111
50 50 05 03 035 04 0 0 0.2 0 0 03 02 0.285 0.240
50 80 0.8 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.2 0.717 0.718
50 100 05 05 025 0.1 0 0 0.1 0 0 0.5  0.05 0.477 0.452
50 300 0.3 0.1 0.15 0.2 0 0 04 0 0 0.7 0.5 0.434 0.418

Note. The running variable and outcome are correlated with correlation as 0.5 conditional on all other variables, which means
the treatment-outcome relationship is confounded; the mediator and outcome are correlated with correlation as 0.5 condi-
tional on all other variables, which means the mediator-outcome relationship is confounded.

(b). Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable
when the Assumption (2) sequential ignorability is violated (treatment-mediator and mediator-outcome relationship are both
confounded).

Sample size Parameters Power
Empirical Predicted
nl n2 a b C M 2 23 Ay A, Az P ICC rejection rate power
10 30 0.1 0.1 0.25 0.1 0 0 0.4 0 0 0.7 0.2 0.036 0.010
10 40 03 03 035 04 0 0 0.2 0 0 03 015 0.089 0.060
10 50 0.3 0.1 0.15 0.2 0 0 0.1 0 0 0.3 0.2 0.087 0.058
10 80 05 05 015 02 0 0 0.1 0 0 0.5 005 0.244 0.293
10 100 0.5 0.3 0.25 0.1 0 0 0.4 0 0 0.5 0.05 0.295 0377
10 300 08 05 035 04 0 0 0.2 0 0 07 05 0.978 0.998
20 30 0.8 0.3 0.25 0.2 0 0 0.1 0 0 0.5 0.15 0.367 0.359
20 40 08 05 035 0.1 0 0 0.2 0 0 03 03 0.385 0.490
20 50 0.3 0.5 0.25 0.1 0 0 04 0 0 0.7 0.2 0.092 0.079
20 80 0.1 0.1 015 04 0 0 0.4 0 0 0.7  0.05 0.031 0.016
20 100 0.8 0.3 0.35 0.2 0 0 0.1 0 0 0.5 0.5 0.690 0.785
20 300 03 0.1 015 04 0 0 0.2 0 0 03 005 0.162 0.219
50 30 0.5 0.5 0.35 04 0 0 0.2 0 0 0.3 0.2 0.180 0.168
50 40 03 03 025 0.1 0 0 0.1 0 0 05 015 0.101 0.073
50 50 0.5 0.3 0.35 0.4 0 0 0.2 0 0 0.3 0.2 0.198 0.229
50 80 08 0.1 015 0.2 0 0 0.4 0 0 07 02 0.573 0.680
50 100 0.5 0.5 0.25 0.1 0 0 0.1 0 0 0.5 0.05 0.283 0.374
50 300 03 0.1 015 0.2 0 0 0.4 0 0 07 05 0.163 0.236

Note. The running variable and outcome are correlated with correlation as 0.5 conditional on all other variables, which means
the treatment-outcome relationship is confounded; the running variable and mediator are correlated with correlation as 0.2
conditional on all other variables, which means the mediator-outcome relationship is confounded.
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(c). Empirical versus predicted statistical power for individual-level mediators with linear function of the running variable when
the Assumption (5) no treatment-by-mediator interaction is violated.

Sample size Parameters Power
Empirical Predicted
nl n2 a b C M A A3 Aq A A3 P ICC rejection rate power
10 30 0.1 0.1 025 0.1 0 0 0.4 0 0 07 02 0.072 0.033
10 40 0.3 03 0.35 04 0 0 0.2 0 0 0.3 0.15 0.143 0.098
10 50 03 0.1 015 0.2 0 0 0.1 0 0 03 02 0.086 0.067
10 80 0.5 0.5 0.15 02 0 0 0.1 0 0 0.5 0.05 0.396 0372
10 100 05 03 025 0.1 0 0 0.4 0 0 0.5 005 0.473 0.447
10 300 0.8 0.5 0.35 0.4 0 0 0.2 0 0 0.7 0.5 0.997 0.997
20 30 08 03 025 02 0 0 0.1 0 0 05 015 0.442 0.367
20 40 0.8 0.5 0.35 0.1 0 0 0.2 0 0 0.3 03 0.497 0.416
20 50 03 05 025 0.1 0 0 0.4 0 0 07 02 0.148 0.122
20 80 0.1 0.1 0.15 04 0 0 0.4 0 0 0.7 0.05 0.073 0.053
20 100 08 03 035 02 0 0 0.1 0 0 05 05 0.825 0.822
20 300 0.3 0.1 0.15 04 0 0 0.2 0 0 0.3 0.05 0.447 0.446
50 30 05 05 035 04 0 0 0.2 0 0 03 02 0.248 0.173
50 40 0.3 0.3 0.25 0.1 0 0 0.1 0 0 0.5 0.15 0.152 0.092
50 50 05 03 035 04 0 0 0.2 0 0 03 02 0.290 0.234
50 80 0.8 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.2 0.713 0.701
50 100 05 05 025 0.1 0 0 0.1 0 0 0.5 005 0.471 0.458
50 300 0.3 0.1 0.15 0.2 0 0 0.4 0 0 0.7 0.5 0.441 0.432

Note. The interaction of the treatment and mediator is appeared in the outcome model with a coefficient of 0.5.

variable, we assume for the mediation model, the coefficient for the linear (1;), quadratic (4,),
and cubic (43) term is 0.05; for the outcome model, the coefficient for the linear (A;), quadratic
(Ay), and cubic (A3) term is 0.04. That is, we have n; = 20, ICC = 0.20, a = 0.50, B =

0.30, by =0.05, ¢ =035 1, =74 =12=005 A =A;,=A;=004 R]ZMZ = walz =
Ré“‘z = Riu‘z =025, and R = Ry = 0.75. The resulting power curves are plotted in the

second panel of Figure 4. The analyses suggested that the required school-level sample size for
80% power is about 84 under the Monte Carlo test. That is, we need to sample 84 schools to
achieve 80% chance to detect the existence of the mediation effect. Under the same scenario, for
detecting the main effect, we need to sample only 48 schools to achieve a 0.8 statistical power.
Similarly, drawing on a cluster randomized trial (as opposed to a clustered regression discontinu-
ity assignment) and using the running variable as a covariate, we would need 76 schools to reach
a power level of 0.8 to detect the school-level mediation effect.

Discussion

Prior research has repeatedly detailed the versatility and utility of the regression discontinuity
design across a broad range of disciplines, interventions and policy initiatives because it allows
for targeted treatment assignment while retaining a strong basis of inference. For example, prior
research has suggested that the clustered regression discontinuity design can be an effective
approach for interventions aimed at promoting equity in schools and communities (Hahn et al.,
2001). By selectively providing treatment only to disadvantaged schools, the design allows
researchers to focus and concentrate resources on those that need them most while maintaining a
basis for inference about the program under study (e.g., Angrist & Pischke, 2008/2009).

Similarly, designing studies with the capacity to test the mechanisms underlying the program
theory has become a prominent and critical aim of research studies. To date there is little guid-
ance for power calculations and design strategies for probing mediation effects when considering
clustered regression discontinuity designs. Our work here is intended to establish such power cal-
culations and streamline the careful planning of clustered regression discontinuity studies to
detect mediation effects.
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Figure 4. Power to detect (a) cluster- and (b) individual-level mediation.

Our initial analysis of the results suggests several planning considerations that largely parallel
those well-documented in the literature for other designs (e.g., experiments, individual-level
regression discontinuity designs; e.g., Kelcey et al. 2017). First, a balanced design in which the
treatment and control groups have equal cluster-level sample sizes will generally yield the highest
statistical power compared to designs with imbalanced cluster-level sample sizes. However, the
loss of power resulting from unbalanced designs will typically be minimal in clustered regression
discontinuity studies probing mediation. To illustrate the loss of power, Figures 5 plot the power
curves as a function of the proportion of clusters assigned to the treatment under the Monte
Carlo interval test (in condition 11 in Tables 3 and 4 for both the cluster- and individual-level
mediator with cubic function of running variables). The plots suggest that small to medium devi-
ations from an even split or balanced assigned have a negligible influence on power. However,
once treatment assignment dips below 0.2 or above 0.8, statistical power declines quickly.

A second well-worn design strategy that is useful in clustered regression discontinuity designs
is conditioning on predictive covariates. Most importantly, the tenability of the sequential ignora-
bility assumption and unbiased estimates of mediation effects will typically require adjustment for
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prognostic covariates regardless of whether or not they improve precision. Still, prior research has
demonstrated some gains in precision and power when adjusting for prognostic covariates.
However, the impact of such adjustments is much more complicated with mediation effects.
Because mediation is principally composed of multiple paths, covariance adjustment can improve
or reduce the precision with which we can detect mediation. Conceptually, this phenomenon
arises because although explained variability in the mediator improves the power to detect the
treatment-mediator a path, that same adjustment has the potential to deflate the power to detect
the mediator-outcome b path because its standard error involves the ratio of the residual outcome
and mediator variances.

To illustrate the differences in power that accompany covariate adjustment, Figure 6 plots the
power curves as a function of cluster-level sample size for a model that controls for covariates
(R* = 0.25 at both levels) versus a model that does not adjust for covariates. The plots demon-
strate the increased power that accrues from adjusting for covariates when considering (a) cluster-
(Figure 6(a,b) individual-level mediators (Figure 6(b)). To attain a statistical power of 0.8 (i.e., an
80% probability of detecting a significant effect if one exists) in the 2-2-1 mediation model
depicted in Figure 6(a), the cluster-level sample size would need to increase by approximately 40
when not adjusting for covariates, given the same conditions as in the illustration. Conversely, in
the 2-1-1 mediation model illustrated in Figure 6(b), the statistical power would only experience
a slight reduction when not adjusting for covariates. Unlike the consistent power benefits gained
when adjusting for covariates in detecting main effects, the gains in power of covariate adjust-
ment in mediation effects are more complicated. In some instances when covariates explain a
substantial amount of the variability in the mediator but not the outcome, the power can decrease
when controlling for covariates. Figures 7(a,b) provide examples when varying the proportion of
variance explained in the mediator by covariates when considering a cluster-level mediator (with
50 clusters) and an individual-level mediator (with 100 clusters). In the example with the cluster-
level mediator (In Figure 7(a)), power is not monotonic and is maximized when covariates
explain about 35% of the mediator variation. By contrast, the example with the individual-level
demonstrated a monotonic decrease in power as the proportion of variance explained in the
mediator increased holding other factors constant.

A third conclusion suggested by our results was the use of Monte Carlo test over more con-
ventional tests. This contemporary test consistently provided the highest level of power compared
to the Sobel and joint tests and is consistent with the literature (e.g., Kelcey et al., 2020). That
said, the joint test provided very similar estimates of power under most conditions and is much
less computationally intense.

A fourth consideration offers a cautionary design principle for nonlinear relationships.
Specifically, if researchers anticipate a that the running variable has a nonlinear impact on the
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Figure 6. Comparison of statistical power for (a) cluster- and (b) individual-level mediators when adjusting and not adjusting for
covariates.

mediator/outcome, the predicted power may be overestimated when the cluster-level sample size
is small (e.g., less than 50). As a result, when anticipating a nonlinear relationship between the
running variable and mediator/outcome, a prudent strategy would be to sample slightly more
clusters than suggested by the power analysis (e.g., up to 10% more when samples include less
than 50 clusters). That said, it is also important to note that while the use of a cubic function in
regression discontinuity design is intended to improve the accuracy of estimated treatment effects
by accounting for non-linearity in the relationship between the running variable and the out-
come, it also increases the complexity of the model and may result in overfitting or unstable esti-
mates when the sample size is small.

A fifth consideration is the sequential ignorability assumption. Our sensitivity analyses exam-
ined the predictive efficacy of our power formulas to violations of this assumption. Although the
results suggested that in many cases the power predictions were still reasonable when this
assumption is violated, a more important consideration is the degree of bias introduced into the
estimated mediation effect through such violations. Prior literature has widely examined this
from a theoretical perspective and concluded that approximating sequential ignorability to critical
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Figure 7. The impact of the variance explained by a covariate in the mediator on the statistical power to detect mediation with
(a) cluster- and (b) individual-level mediators.

to the validity of inferences (e.g., VanderWeele et al., 2014). When amalgamated within the larger
context of mediation analysis, our results simply suggested that we can precisely predict the
power to detect a biased mediation effect. As a result, we emphasize the need for designs to pro-
actively incorporate confounding variables and to carefully consider the plausibility of the sequen-
tially ignorability assumption in a study. A final consideration is to consider a range of plausible
values for key design parameters. For example, the value and accuracy of power predictions is
contingent upon how well the assumed parameters values approximate the true values. Even
though recent literature has developed an increasingly large collection of empirical estimates of
these values for a broad range of outcomes and mediators, in most instances these values will not
be without error (e.g., (Jacob et al., 2012); Kelcey and Phelps, 2013). As a result, considering
plausible ranges of parameter values can help probe the sensitivity of design choices to parameter
value misspecifications and provide a more comprehensive assessment of requisite sample sizes.
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Although our results provide some initial tools and strategies to design clustered regression
discontinuity studies, there are some limitations of our work and directions for future research.
First, our study only considered a sharp clustered regression discontinuity design. Tools for fuzzy
clustered regression discontinuity designs are a potentially important direction for future research
because they often map onto practice better. Second, we considered two-level clustered regression
discontinuity designs in this study, but many studies in education involve three or more levels.
For example, many educational studies directly involve teachers as the primary vehicle or mech-
anism through which a program is delivered. In these settings, investigating mediation through a
teacher mediator variable such as instruction may require the introduction of an intermediate
level. Third, our analysis considered only a single mediator with no treatment by mediator inter-
action. Exploring interactions between treatment and mediators in future research could uncover
valuable insights into the nuanced pathways through which the treatment effect unfolds. Multiple
mediator and interactive models are also important considerations and directions for future
research. Investigating the combined and decomposed effects of multiple mediators can offer an
even richer comprehension of the underlying mechanisms driving treatment outcomes.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the National Science Foundation [grant numbers 1552535,1760884]. The National
Science Foundation had no role or involvement in the conduct of the research or the preparation of the
manuscript.

References

Angrist, J. D., & Pischke, J. (2008/2009). Mostly harmless econometrics: An empiricist’s companion. Princeton
University Press. https://doi.org/10.1515/9781400829828

Bloom, H. S. (2012). Modern regression discontinuity analysis. Journal of Research on Educational Effectiveness,
5(1), 43-82. https://doi.org/10.1080/19345747.2011.578707

Bollen, K. A. (1987). Total, Direct, and Indirect Effects in Structural Equation Models. Sociological Methodology,
17, 37. https://doi.org/10.2307/271028

Bonell, C., Allen, E.,, Warren, E., McGowan, J., Bevilacqua, L., Jamal, F., Legood, R., Wiggins, M., Opondo, C,,
Mathiot, A., Sturgess, J., Fletcher, A., Sadique, Z., Elbourne, D., Christie, D., Bond, L., Scott, S., & Viner, R. M.
(2018). Effects of the learning together intervention on bullying and aggression in english secondary schools
(INCLUSIVE): A cluster randomised controlled trial. Lancet (London, England), 392(10163), 2452-2464. https://
doi.org/10.1016/S0140-6736(18)31782-3

Bonell, C., Allen, E., Opondo, C., Warren, E., Elbourne, D. R., Sturgess, J., Bevilacqua, L., McGowan, J., Mathiot,
A., & Viner, R. M. (2019). Examining intervention mechanisms of action using mediation analysis within a
randomised trial of a whole-school health intervention. Journal of Epidemiology and Community Health, 73(5),
455-464. https://doi.org/10.1136/jech-2018-211443

Calcagno, J. C., & Long, B. T. (2008). The impact of postsecondary remediation using a regression discontinuity
approach: Addressing endogenous sorting and noncompliance. National Bureau of Economic Research. https://
doi.org/10.3386/w14194

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. (2nd ed.) L. Erlbaum Associates.
Cook, T. D. (2008). “Waiting for life to arrive” A history of the regression-discontinuity design in psychology, sta-
tistics and economics. Journal of Econometrics, 142(2), 636-654. https://doi.org/10.1016/j.jeconom.2007.05.002
Hahn, J., Todd, P., & Klaauw, W. (2001). Identification and estimation of treatment effects with a regression-dis-
continuity design. Econometrica, 69(1), 201-209. https://doi.org/10.1111/1468-0262.00183

Imbens, G. W., & Lemieux, T. (2008). Regression discontinuity designs: A guide to practice. Journal of
Econometrics, 142(2), 615-635. https://doi.org/10.1016/j.jeconom.2007.05.001

Jacob, Robin, Zhu, Pei, Somers, Marie-Andrée, Bloom, Howard. (2012). A practical guide to regression discontinu-
ity. MDRC.


https://doi.org/10.1515/9781400829828
https://doi.org/10.1080/19345747.2011.578707
https://doi.org/10.2307/271028
https://doi.org/10.1016/S0140-6736(18)31782-3
https://doi.org/10.1016/S0140-6736(18)31782-3
https://doi.org/10.1136/jech-2018-211443
https://doi.org/10.3386/w14194
https://doi.org/10.3386/w14194
https://doi.org/10.1016/j.jeconom.2007.05.002
https://doi.org/10.1111/1468-0262.00183
https://doi.org/10.1016/j.jeconom.2007.05.001

THE JOURNAL OF EXPERIMENTAL EDUCATION e 23

Kelcey, Ben., & Phelps, G. (2013). Strategies for Improving Power in School-Randomized Studies of Professional
Development. Evaluation Review, 37(6), 520-554. https://doi.org/10.1177/0193841X14528906

Kelcey, Ben., & Shen, Z. (2017). Planning community-based assessments of HIV educational intervention programs
in sub-Saharan Africa. Health Education Research, 32(4), 353-363. https://doi.org/10.1093/her/cyx04628854572

Kelcey, B., Dong, N., Spybrook, J., & Cox, K. (2017). Statistical power for causally defined indirect effects in
group-randomized trials with individual-level mediators. Journal of Educational and Behavioral Statistics, 42(5),
499-530. https://doi.org/10.3102/1076998617695506

Kelcey, B., Dong, N., Spybrook, J., & Shen, Z. (2017). Experimental power for indirect effects in group-randomized
studies with group-level mediators. Multivariate Behavioral Research, 52(6), 699-719. https://doi.org/10.1080/
00273171.2017.1356212

Kelcey, B., Spybrook, J., Dong, N., & Bai, F. (2020). Cross-level mediation in school-randomized studies of teacher
development: Experimental design and power. Journal of Research on Educational Effectiveness, 13(3), 459-487.
https://doi.org/10.1080/19345747.2020.1726540

Kelcey, B., Xie, Y., Spybrook, J., & Dong, N. (2020). Power and sample size determination for multilevel mediation
in three-level cluster-randomized trials. Multivariate Behavioral Research, 56(3), 496-513. https://doi.org/10.
1080/00273171.2020.1738910

Kreft, I. G. G., de Leeuw, J., & Aiken, L. S. (1995). The effect of different forms of centering in hierarchical linear
models. Multivariate Behavioral Research, 30(1), 1-21. https://doi.org/10.1207/s15327906mbr3001_1

MacKinnon, D. P., Lockwood, C. M., Brown, C. H., Wang, W., & Hoffman, J. M. (2007). The intermediate end-
point effect in logistic and probit regression. Clinical Trials (London, England), 4(5), 499-513. https://doi.org/10.
1177/174077450708343417942466

MacKinnon, D. P., Lockwood, C. M., Hoffman, J. M., West, S. G., & Sheets, V. (2002). A comparison of methods
to test mediation and other intervening variable effects. Psychological Methods, 7(1), 83-104. https://doi.org/10.
1037/1082-989X.7.1.83

MacKinnon, D. P. (2012). Introduction to statistical mediation analysis. Routledge.

McCrary, J. (2008). Manipulation of the running variable in the regression discontinuity design: A density test.
Journal of Econometrics, 142(2), 698-714. https://doi.org/10.1016/j.jeconom.2007.05.005

Pituch, K. A., & Stapleton, L. M. (2012). Distinguishing between cross- and cluster-level mediation processes in the
cluster randomized trial. Sociological Methods & Research, 41(4), 630-670. https://doi.org/10.1177/
0049124112460380

Preacher, K. J., & Selig, J. P. (2012). Advantages of monte carlo confidence intervals for indirect effects.
Communication Methods and Measures, 6(2), 77-98. https://doi.org/10.1080/19312458.2012.679848

Raudenbush, S. W., & Bryk, A. S. (2002). Hierarchical linear models: Applications and data analysis methods. (Vol.
1). sage.

Schochet, P. Z. (2009). Statistical power for regression discontinuity designs in education evaluations. Journal of
Educational and Behavioral Statistics, 34(2), 238-266. https://doi.org/10.3102/1076998609332748

Schochet, P., Cook, T., Deke, J., Imbens, G., Lockwood, J. R, Porter, J., Smith, J., & What Works Clearinghouse
(ED) (2010). Standards for regression discontinuity designs. What Works Clearinghouse.

Sobel, M. E. (1982). Asymptotic confidence intervals for indirect effects in structural equation models. Sociological
Methodology, 13, 290-312. https://doi.org/10.2307/270723

VanderWeele, T. J., Vansteelandt, S., & Robins, J. M. (2014). Effect Decomposition in the Presence of an
Exposure-Induced Mediator-Outcome Confounder. Epidemiology, 25(2), 300-306. https://doi.org/10.1097/EDE.
0000000000000034

VanderWeele, T. J. (2010). Direct and indirect effects for neighborhood-based clustered and longitudinal data.
Sociological Methods & Research, 38(4), 515-544. https://doi.org/10.1177/0049124110366236

Zhang, Z., Zyphur, M. J., & Preacher, K. J. (2009). Testing multilevel mediation using hierarchical linear models:
Problems and solutions. Organizational Research Methods, 12(4), 695-719. https://doi.org/10.1177/
1094428108327450

Appendix A. Path decomposition for cluster-level mediator

We sequentially increase the conditional partitions, and finally, the formula will be able to express
the R squared of total used variables. For the cluster level R squared of outcome, the formula will
be as follows

Ry = R?/LZ\Z + R?/MTRDS\Z + Ri’“M |TR0SZ (A

The right part of the expression is constructed as a sequential addition of R squared of the left

subscript part given or controlling the right subscript part. The vector Z is an arbitrary vector
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which represents the covariates. Take R? , . as an example, it represents the outcome on the clus-

vi2|Z
ter level explained by the covariates, which can be obtained by prior studies. The second symbol

on the right arm RYLZTRD 57 Tepresents the outcome on the cluster level explained by the function

of the running variable and the treatment while controlling for the covariates. Because of the cor-
relation between the treatment and the functions of the running variable, we consider them

together. The expected value of RYL2T3| 5 can be reduced as follows
@ bafz(s> + 0k 26049 (ab+)P(1—P)  2(bogsr + ops)r)(ab + ) .
YRTSZ 2 + 2 + 2 (A2)

We include the covariances between the treatment and the function of the running variable for
both the mediator model, o)y, and outcome model, o557, and the covariance between f (S)

and F(S), 0f(s)r(s)» in this equation. The last term on the right hand RYL2 M{TROSE is the level two

outcome variance explained by the mediator while controlling for the treatment, the cutoff vari-
able, and the covariates. The expected expression of it can be reconstructed as follows

e _Pa(-R)

YR2M|TROSZ — 2 (A3)

The total variance of the second level explained in the outcome model is the assembling of all
parts of the equations as follows

) bofis) + o)+ 200556 (ab+ )’ P(1—P)  2(bogsyr + opsyr)(ab + )
R =R+ % + > + >
I b2op (1 = Ripw)
72 '

(A4)

This expression contains the variance explained by the covariates that can be obtained from
prior studies and the variance explained by the other variables that we have reconstructed. With
the same approach, we can construct the R squared for the mediation effect as follows

a a’P(1-P) 240
R =R 408 FPUZD) | 260gr (A5)

M|Z 2 2 2
l M M Tm

We can use ICC and a (standardized) total error variance to replace the cluster and individual
level output error variances, which are more accessible for researchers.

Appendix B. Path decomposition for student-level mediator

For the student-level (2-1-1) mediation, we followed the approach in the 2-2-1 mediation part to
decompose the R squared with sequential addition of conditional R squared of the elements. The
cluster level R squared of the outcome is the same as the 2-2-1 case, the formula will be as
follows

2 2 2
RYL2 RYL2|Z + RyLZTRL)s‘Z + RyLZM‘TRDsz (16)
The expected value of RYL2 gz can be reduced as follows
5 Bojs, + o) + 2B0ssp)  (aB+)’P(1—P)  2(Bops)r + opsr)(ab+¢)
Ryiopmogz = 2 + 2 + 2 (17)
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The expected expression of R can be reconstructed as follows

R2

YLZM‘TRDsZ = ) (18)

The total variance of the second level explained in the outcome model is the assembling of all
parts of the equations as follows.

Bo} s, + 0f(s) + 2Bas(s)r(s) N (aB+ ¢)*P(1 - P) . 2(Bags)r + ops)r)(ab+¢)

2 p2
Ryn = RYLZ\Z + 2 2 2

o (1-R )

+BZ(T%\4(1 _R?\/[LZ) + M . ML1 )
2
(19)
For the R squared of the individual level outcome, the expected expression is as follows
bi’o3, (1 - R2
R%zu - R?/“ |Z M (20)
Y

With the same approach, we can construct the R squared for the cluster-level aggregated medi-
ation effect,
%) , @P(1=P) 2405y

2 o2
M M M

21)

Like 2-2-1 mediation, we can also use ICC and a (standardized) total error variance to replace
the cluster and individual level output error variances, which is more accessible for researchers.
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Appendix B. Detailed tables for average absolute biases.

Table B1. (Full Version).

Sample size Parameters Mediation error variance
Empirical Predicted Absolute Average
ni n2 a b C M A A3 Ay Ay A3 P ICC variance  variance bias absolute bias
(a) Average absolute bias in sampling variability for cluster-level mediator for Condition 1.
10 20 03 01 015 02 04 02 01 02 01 03 02 0.0108 0.0038 0.0069 0.0004
10 30 03 01 015 02 04 02 01 02 01 03 02 0.0050 0.0027 0.0023
10 40 03 01 015 02 04 02 01 02 01 03 02 0.0031 0.0020 0.0011
10 50 03 01 015 02 04 02 01 02 01 03 02 0.0022 0.0017 0.0006
10 60 03 01 015 02 04 02 01 02 01 03 02 0.0017 0.0014 0.0003
10 70 03 01 015 02 04 02 01 02 01 03 02 0.0014 0.0011 0.0002
10 80 03 01 015 02 04 02 01 02 01 03 02 0.0011 0.0010 0.0001
10 9 03 01 015 02 04 02 01 02 01 03 02 0.0010 0.0009 0.0001
10 100 03 01 015 02 04 02 01 02 01 03 02 0.0009 0.0008 0.0001
10 110 03 01 015 02 04 02 01 02 01 03 0.2 0.0008 0.0007 0.0000
10 120 03 01 015 02 04 02 01 02 01 03 02 0.0007 0.0007 0.0000
10 130 03 01 015 02 04 02 01 02 01 03 0.2 0.0007 0.0006 0.0000
10 140 03 01 015 02 04 02 01 02 01 03 02 0.0006 0.0006 0.0000
10 150 03 01 015 02 04 02 01 02 01 03 0.2 0.0005 0.0005 0.0000
10 160 03 01 015 02 04 02 01 02 01 03 02 0.0005 0.0005 0.0000
10 170 03 01 015 02 04 02 01 02 01 03 02 0.0005 0.0005 0.0000
10 180 03 01 015 02 04 02 01 02 01 03 02 0.0004 0.0004 0.0000
10 1% 03 01 015 02 04 02 01 02 01 03 0.2 0.0004 0.0004 0.0000
10 200 03 01 015 02 04 02 01 02 01 03 02 0.0004 0.0004 0.0000
(b) Average absolute bias in sampling variability for cluster-level mediator for Condition 2.
10 20 05 03 025 01 02 01 04 01 02 05 005 0.0344 0.0216 0.0128 0.0013
10 30 05 03 025 01 02 01 04 01 02 05 005 0.0198 0.0149 0.0049
10 40 05 03 025 01 02 01 04 01 02 05 005 0.0143 0.0108 0.0035
10 50 05 03 025 01 02 01 04 01 02 05 005 0.0107 0.0088 0.0019
10 60 05 03 025 01 02 01 04 01 02 05 005 0.0087 0.0070 0.0017
10 70 05 03 025 01 02 01 04 01 02 05 005 0.0071 0.0062 0.0010
10 80 05 03 025 01 02 01 04 01 02 05 005 0.0063 0.0054 0.0010
10 9 05 03 025 01 02 01 04 01 02 05 005 0.0056 0.0048 0.0007
10 100 05 03 025 01 02 01 04 01 02 05 005 0.0047 0.0044 0.0003
10 110 05 03 025 01 02 01 04 01 02 05 005 0.0044 0.0040 0.0004
10 120 05 03 025 01 02 01 04 01 02 05 005 0.0039 0.0036 0.0003
10 130 05 03 025 01 02 01 04 01 02 05 005 0.0036 0.0034 0.0002
10 140 05 03 025 01 02 01 04 01 02 05 005 0.0037 0.0031 0.0005
10 150 05 03 025 01 02 01 04 01 02 05 0.05 0.0033 0.0029 0.0004
10 160 05 03 025 01 02 01 04 01 02 05 005 0.0031 0.0028 0.0003
10 170 05 03 025 01 02 01 04 01 02 05 005 0.0028 0.0026 0.0002
10 180 05 03 025 01 02 01 04 01 02 05 005 0.0026 0.0025 0.0001
10 19 05 03 025 01 02 01 04 01 02 05 005 0.0025 0.0024 0.0001
10 200 05 03 025 01 02 01 04 01 02 05 005 0.0023 0.0022 0.0001
(c) Average absolute bias in sampling variability for cluster-level mediator for Condition 3.
10 20 08 05 035 04 01 02 02 04 01 07 05 0.1796 0.1137 0.0659 0.0040
10 30 08 05 035 04 01 02 02 04 01 07 05 0.0931 0.0743 0.0188
10 40 08 05 035 04 01 02 02 04 01 07 05 0.0652 0.0551 0.0101
10 50 08 05 035 04 01 02 02 04 01 07 05 0.0496 0.0439 0.0057
10 60 08 05 035 04 01 02 02 04 01 07 05 0.0400 0.0368 0.0032
10 70 08 05 035 04 01 02 02 04 01 07 05 0.0327 0.0308 0.0019
10 80 08 05 035 04 01 02 02 04 01 07 05 0.0286 0.0279 0.0008
10 9 08 05 035 04 01 02 02 04 01 07 05 0.0252 0.0246 0.0006
10 00 08 05 035 04 01 02 02 04 01 07 05 0.0225 0.0223 0.0002
10 110 08 05 035 04 01 02 02 04 01 07 05 0.0200 0.0203 0.0002
10 120 08 05 035 04 01 02 02 04 01 07 05 0.0188 0.0184 0.0003
10 130 08 05 035 04 01 02 02 04 01 07 05 0.0165 0.0172 0.0007
10 140 08 05 035 04 01 02 02 04 01 07 05 0.0160 0.0157 0.0003
10 150 08 05 035 04 01 02 02 04 01 07 05 0.0141 0.0146 0.0005
10 160 08 05 035 04 01 02 02 04 01 07 05 0.0133 0.0138 0.0005
10 170 08 05 035 04 01 02 02 04 01 07 05 0.0123 0.0130 0.0007
10 180 08 05 035 04 01 02 02 04 01 07 05 0.0117 0.0123 0.0006

(continued)
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Table B1. Continued.

Sample size Parameters Mediation error variance
Empirical Predicted Absolute Average
nl n2 a b C M A A3 Ay Ay Ay P ICC variance  variance bias absolute bias

10 19 08 05 035 04 01 02 02 04 01 07 05 0.0113 0.0116 0.0003
10 200 08 05 035 04 01 02 02 04 01 07 05 0.0106 0.0112 0.0007

(d) Average absolute bias in sampling variability for cluster-level mediator for Condition 4.

20 20 03 01 015 01 04 02 04 02 01 07 02 0.0066 0.0032 0.0034 0.0003
20 30 03 01 015 01 04 02 04 02 01 07 02 0.0034 0.0021 0.0013
20 4 03 01 015 01 04 02 04 02 01 07 02 0.0022 0.0016 0.0006
20 50 03 01 015 01 04 02 04 02 01 07 02 0.0018 0.0014 0.0004
20 60 03 01 015 01 04 02 04 02 01 07 02 0.0014 0.0011 0.0003
20 70 03 01 015 01 04 02 04 02 01 07 02 0.0011 0.0009 0.0002
20 80 03 01 015 01 04 02 04 02 01 07 02 0.0010 0.0008 0.0002
20 9 03 01 015 01 04 02 04 02 01 07 02 0.0008 0.0007 0.0001

20 100 03 01 015 01 04 02 04 02 01 07 02 0.0008 0.0006 0.0001
20 110 03 01 0315 01 04 02 04 02 01 07 02 0.0007 0.0006 0.0001
20 120 03 01 015 01 04 02 04 02 01 07 02 0.0006 0.0005 0.0001
20 130 03 01 035 01 04 02 04 02 01 07 02 0.0005 0.0005 0.0000
20 140 03 01 015 01 04 02 04 02 01 07 02 0.0005 0.0005 0.0000
20 150 03 01 015 01 04 02 04 02 01 07 02 0.0005 0.0004 0.0000
20 160 03 01 015 01 04 02 04 02 01 07 02 0.0004 0.0004 0.0000
20 170 03 01 035 01 04 02 04 02 01 07 02 0.0004 0.0004 0.0000
20 180 03 01 015 01 04 02 04 02 01 07 02 0.0004 0.0004 0.0000
20 19 03 01 0315 01 04 02 04 02 01 07 02 0.0004 0.0003 0.0000
20 200 03 01 015 01 04 02 04 02 01 07 02 0.0004 0.0003 0.0000

(e) Average absolute bias in sampling variability for cluster-level mediator for Condition 5.

20 20 03 05 025 01 04 02 04 02 01 07 02 0.1362 0.0637 0.0725 0.0071
20 30 03 05 025 01 04 02 04 02 01 07 02 0.0765 0.0444 0.0322
20 40 03 05 025 01 04 02 04 02 01 07 02 0.0529 0.0349 0.0180
20 50 03 05 025 01 04 02 04 02 01 07 02 0.0384 0.0291 0.0094
20 60 03 05 025 01 04 02 04 02 01 07 02 0.0321 0.0245 0.0076
20 70 03 05 025 01 04 02 04 02 01 07 02 0.0262 0.0203 0.0059
20 80 03 05 025 01 04 02 04 02 01 07 02 0.0231 0.0185 0.0046
20 9% 03 05 025 01 04 02 04 02 01 07 02 0.0207 0.0168 0.0039

20 100 03 05 025 01 04 02 04 02 01 07 02 0.0181 0.0154 0.0027
20 110 03 05 025 01 04 02 04 02 01 07 02 0.0165 0.0137 0.0028
20 120 03 05 025 01 04 02 04 02 01 07 02 0.0145 0.0125 0.0019
20 130 03 05 025 01 04 02 04 02 01 07 02 0.0128 0.0117 0.0011
20 140 03 05 025 01 04 02 04 02 01 07 02 0.0122 0.0110 0.0012
20 150 03 05 025 01 04 02 04 02 01 07 02 0.0112 0.0100 0.0012
20 160 03 05 025 01 04 02 04 02 01 07 02 0.0105 0.0096 0.0009
20 170 03 05 025 01 04 02 04 02 01 07 02 0.0097 0.0091 0.0006
20 180 03 05 025 01 04 02 04 02 01 07 02 0.0095 0.0086 0.0009
20 19 03 05 025 01 04 02 04 02 01 07 02 0.0087 0.0082 0.0005
20 200 03 05 025 01 04 02 04 02 01 07 02 0.0083 0.0078 0.0006

(f) Average absolute bias in sampling variability for cluster-level mediator for Condition 6.

20 20 08 03 035 02 01 01 01 04 02 05 05 0.0973 0.0627 0.0346 0.0023
20 30 08 03 035 02 01 01 01 04 02 05 05 0.0513 0.0415 0.0098
20 4 08 03 035 02 01 01 01 04 02 05 05 0.0357 0.0288 0.0069
20 50 08 03 035 02 01 01 01 04 02 05 05 0.0260 0.0226 0.0034
20 60 08 03 035 02 01 01 01 04 02 05 05 0.0210 0.0191 0.0019
20 70 08 03 035 02 01 01 01 04 02 05 05 0.0176 0.0162 0.0015
20 80 08 03 035 02 01 01 01 04 02 05 05 0.0151 0.0143 0.0007
20 9% 08 03 035 02 01 01 01 04 02 05 05 0.0130 0.0125 0.0006

20 100 08 03 035 02 01 01 01 04 02 05 05 0.0118 0.0111 0.0007
20 10 08 03 035 02 01 01 01 04 02 05 05 0.0105 0.0103 0.0003
20 120 08 03 035 02 01 01 01 04 02 05 05 0.0094 0.0094 0.0000
20 130 08 03 035 02 01 01 01 04 02 05 05 0.0085 0.0086 0.0001
20 140 08 03 035 02 01 01 01 04 02 05 05 0.0081 0.0080 0.0000
20 150 08 03 035 02 01 01 01 04 02 05 05 0.0073 0.0076 0.0002
20 160 08 03 035 02 01 01 01 04 02 05 05 0.0070 0.0071 0.0001
20 170 08 03 035 02 01 01 01 04 02 05 05 0.0065 0.0065 0.0001
20 180 08 03 035 02 01 01 01 04 02 05 05 0.0059 0.0062 0.0003
20 19 08 03 035 02 01 01 01 04 02 05 05 0.0058 0.0059 0.0002
20 200 08 03 035 02 01 01 01 04 02 05 05 0.0052 0.0056 0.0004
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Table B2. (Full Version).

Sample size Parameters Mediation error variance
Empirical Predicted Absolute Average
nl n2 a B bl ¢ M A A A Ay Ay P ICC Variance Variance Bias Absolute Bias
(a) Average absolute bias in sampling variability for individual-level mediator in Condition 1.
10 20 03 01 01 015 02 04 02 01 02 01 03 02 0.0168 0.0054 0.0114 0.0008
10 30 03 01 01 015 02 04 02 01 02 01 03 02  0.0078 0.0037  0.0041
10 40 03 01 01 015 02 04 02 01 02 01 03 02 0.0048 0.0028 0.0020
10 50 03 01 01 015 02 04 02 01 02 01 03 02  0.0035 0.0023 0.0012
10 60 03 01 01 015 02 04 02 01 02 01 03 02 0.0026 0.0019 0.0008
10 70 03 01 01 015 02 04 02 01 02 01 03 02  0.0021 0.0016  0.0005
10 80 03 01 01 035 02 04 02 01 02 01 03 02 0.0018 0.0014 0.0004
10 90 03 01 01 015 02 04 02 01 02 01 03 02  0.0015 0.0013 0.0003
10 100 03 01 01 015 02 04 02 01 02 01 03 02 0.0014 0.0011 0.0003
10 110 03 01 01 015 02 04 02 01 02 01 03 02  0.0012 0.0010  0.0002
10 120 03 01 01 015 02 04 02 01 02 01 03 02 0.0011 0.0009 0.0002
10 130 03 01 01 015 02 04 02 01 02 01 03 02  0.0010 0.0009  0.0001
10 140 03 01 01 015 02 04 02 01 02 0.1 03 02 0.0009 0.0008 0.0001
10 150 03 01 01 015 02 04 02 01 02 01 03 02  0.0009 0.0007  0.0001
10 160 03 0.1 01 035 02 04 02 01 02 01 03 02 0.0008 0.0007 0.0001
10 170 03 0.1 01 015 02 04 02 01 02 01 03 02  0.0007 0.0007  0.0001
10 180 03 01 01 015 02 04 02 01 02 01 03 02 0.0007 0.0006 0.0001
10 19 03 01 01 015 02 04 02 01 02 01 03 02  0.0006 0.0006  0.0001
10 200 03 01 01 015 02 04 02 01 02 01 03 0.2 0.0006 0.0006 0.0001
(b) Average absolute bias in sampling variability for individual-level mediator in Condition 2.
10 20 05 03 005 025 01 02 0.1 04 01 02 05 005 0.0224 0.0147 0.0077 0.0012
10 30 05 03 005 025 01 02 01 04 01 02 05 005 0.0130 0.0087  0.0044
10 40 05 03 005 025 0.1 02 01 04 01 02 05 005 0.0092 0.0068 0.0024
10 50 05 03 005 025 01 02 01 04 01 02 05 005 0.0072 0.0055 0.0017
10 60 05 03 005 025 0.1 02 01 04 0.1 02 05 005 0.0058 0.0041 0.0016
10 70 05 03 005 025 01 02 01 04 01 02 05 005 0.0049 0.0041 0.0008
10 80 05 03 005 025 0.1 02 0.1 04 0.1 02 05 005 0.0042 0.0030 0.0013
10 90 05 03 005 025 01 02 0.1 04 01 02 05 005 0.0037 0.0031 0.0007
10 100 05 03 0.05 025 0.1 02 01 04 0.1 02 05 005 0.0034 0.0026 0.0008
10 170 05 03 0.05 025 01 02 01 04 01 02 05 005 0.0030 0.0023 0.0007
10 120 05 03 0.05 025 0.1 02 01 04 0.1 02 05 005 0.0027 0.0020 0.0007
10 130 05 03 005 025 01 02 01 04 01 02 05 005 0.0025 0.0019  0.0006
10 140 05 03 0.05 025 0.1 02 01 04 01 02 05 0.05 0.0023 0.0018 0.0005
10 150 05 03 005 025 01 02 01 04 01 02 05 005 0.0022 0.0017  0.0004
10 160 05 03 005 025 01 02 01 04 01 02 05 0.05 0.0020 0.0016 0.0004
10 170 05 03 0.05 025 01 02 0.1 04 0.1 02 05 005 0.0019 0.0014  0.0005
10 180 05 03 0.05 025 0.1 02 01 04 01 02 05 005 0.0018 0.0014 0.0004
10 190 05 03 005 025 01 02 01 04 01 02 05 005 0.0017 0.0015 0.0002
10 200 05 03 005 025 01 02 01 04 01 02 05 0.05 0.0016 0.0013 0.0003
(c) Average absolute bias in sampling variability for individual-level mediator in Condition 3.
10 20 08 05 02 035 04 01 02 02 04 01 07 05 0.1935 0.1266 0.0669 0.0068
10 30 08 05 02 035 04 01 02 02 04 01 07 05 0.1113 0.0850  0.0263
10 40 08 05 02 035 04 01 02 02 04 01 0.7 05 0.0775 0.0612 0.0162
10 50 08 05 02 035 04 01 02 02 04 01 07 05 0.0586 0.0482  0.0104
10 60 08 05 02 035 04 01 02 02 04 01 07 05 0.0476 0.0398 0.0078
10 70 08 05 02 035 04 01 02 02 04 01 07 05 0.0400 0.0352 0.0048
10 80 08 05 02 035 04 01 02 02 04 01 07 05 0.0343 0.0300 0.0043
10 90 08 05 02 035 04 01 02 02 04 01 07 05  0.0303 0.0262 0.0041
10 00 08 05 02 035 04 01 02 02 04 01 0.7 05 0.0273 0.0240 0.0032
10 110 08 05 02 035 04 01 02 02 04 01 07 05 0.0243 0.0218  0.0025
10 120 08 05 02 035 04 01 02 02 04 01 0.7 05 0.0222 0.0199 0.0024
10 130 08 05 02 035 04 01 02 02 04 01 07 05 0.0203 0.0182  0.0021
10 140 08 05 02 035 04 01 02 02 04 01 0.7 05 0.0188 0.0170 0.0018
10 150 08 05 02 035 04 01 02 02 04 01 07 05 0.0173 0.0157 0.0016
10 160 08 05 02 035 04 01 02 02 04 01 07 05 0.0163 0.0148 0.0015
10 170 08 05 02 035 04 01 02 02 04 01 07 05 00152 0.0138  0.0014
10 180 08 05 02 035 04 01 02 02 04 01 07 05 0.0144 0.0130 0.0014
10 190 08 05 02 035 04 01 02 02 04 01 07 05 0.0136 0.0125 0.0011
10 200 08 05 02 035 04 01 02 02 04 01 07 05 0.0128 0.0118 0.0010

(continued)
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Table B2. Continued.

Sample size Parameters Mediation error variance

Empirical Predicted Absolute Average

nl n2 a B b1 ¢ M A A A Ay As P ICC Variance Variance Bias Absolute Bias
(d) Average absolute bias in sampling variability for individual-level mediator in Condition 4.

20 20 03 0.1 005 015 04 02 01 02 0.1 02 03 0.05 0.0086 0.0044 0.0043 0.0005

20 30 03 01 005 015 04 02 01 02 0.1 02 03 0.05 0.0047 0.0026 0.0021

20 40 03 0.1 0.05 015 04 02 01 02 01 02 03 005 0.0032 0.0021 0.0010

20 50 03 01 005 015 04 02 01 02 01 02 03 0.05 0.0024 0.0019 0.0005

20 60 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0019 0.0015 0.0004

20 70 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0016 0.0011 0.0005

20 80 03 0.1 005 015 04 02 01 02 0.1 02 03 0.05 00014 0.0010 0.0004

20 90 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0012 0.0009 0.0003

20 100 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0011 0.0007 0.0003
20 110 03 0.1 005 015 04 02 01 02 01 02 03 005 0.0010 0.0008 0.0002
20 120 03 0.1 005 015 04 02 01 02 01 02 03 005 0.0009 0.0007 0.0001
20 130 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0008 0.0006 0.0002
20 140 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0007 0.0006 0.0002
20 150 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0007 0.0006 0.0001
20 160 03 0.1 005 015 04 02 01 02 0.1 02 03 0.05 0.0006 0.0006 0.0001
20 170 03 0.1 0.05 015 04 02 01 02 01 02 03 0.05 0.0006 0.0005 0.0001
20 180 03 0.1 0.05 015 04 02 01 02 01 02 03 005 0.0006 0.0005 0.0001
20 19 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.0005 0.0005 0.0001
20 200 03 0.1 005 015 04 02 01 02 0.1 02 03 005 0.0005 0.0004 0.0001

(e) Average absolute bias in sampling variability for individual-level mediator in Condition 5.

20 20 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0498 0.0218 0.0280 0.0025
20 30 03 05 02 025 01 04 02 04 02 01 07 02 0.0270 0.0195 0.0075
20 40 03 05 02 025 01 04 02 04 02 01 07 02 0.0184 0.0136 0.0048
20 50 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0139 0.0100 0.0039
20 60 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0111 0.0088 0.0023
20 70 03 05 02 025 01 04 02 04 02 01 07 02 0.0093 0.0072 0.0021
20 80 03 05 02 025 01 04 02 04 02 01 07 02 0.0081 0.0066 0.0015
20 9 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0070 0.0054 0.0016

20 100 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0063 0.0053 0.0010
20 110 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0057 0.0045 0.0011
20 120 03 05 02 025 01 04 02 04 02 01 07 02 0.0051 0.0043 0.0008
20 130 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0047 0.0038 0.0009
20 140 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0043 0.0037 0.0006
20 150 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0040 0.0036 0.0005
20 160 03 05 02 025 01 04 02 04 02 01 07 02 0.0038 0.0032 0.0005
20 170 03 05 02 025 01 04 02 04 02 0.1 07 02 0.0035 0.0030 0.0005
20 180 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0033 0.0028 0.0005
20 19 03 05 02 025 01 04 02 04 02 01 07 0.2 0.0031 0.0027 0.0004
20 200 03 05 02 025 01 04 02 04 02 01 07 02 0.0030 0.0026 0.0004

(f) Average absolute bias in sampling variability for individual-level mediator in Condition 6.

20 20 08 03 01 035 02 01 01 01 04 02 05 05 0.1101 0.0624 0.0477 0.0044
20 30 08 03 01 035 02 01 01 01 04 02 05 05 0.0579 0.0375 0.0205
20 40 08 03 01 035 02 01 01 01 04 02 05 05 0.0384 0.0290 0.0094
20 50 08 03 01 035 02 01 01 01 04 02 05 05 0.0287 0.0221 0.0066
20 60 08 03 01 035 02 01 01 01 04 02 05 05 0.0229 0.0185 0.0045
20 70 08 03 01 035 02 01 01 01 04 02 05 05 0.0195 0.0163 0.0032
20 80 08 03 01 035 02 01 01 01 04 02 05 05 0.0166 0.0140 0.0026
20 9% 08 03 01 035 02 01 01 01 04 02 05 05 0.0144 0.0123 0.0021

20 100 08 03 01 035 02 01 01 01 04 02 05 05 0.0127 0.01M 0.0016
20 110 08 03 01 035 02 01 01 01 04 02 05 05 0.0116 0.0100 0.0015
20 120 08 03 01 035 02 01 01 01 04 02 05 05 0.0105 0.0094 0.0011
20 130 08 03 01 035 02 01 01 01 04 02 05 05 0.0096 0.0086 0.0010
20 140 08 03 01 035 02 01 01 01 04 02 05 05 0.0088 0.0079 0.0009
20 150 08 03 01 035 02 01 01 01 04 02 05 05 0.0082 0.0074 0.0008
20 160 08 03 01 035 02 01 01 01 04 02 05 05 0.0077 0.0070 0.0007
20 170 08 03 01 035 02 01 01 01 04 02 05 05 0.0072 0.0065 0.0007
20 180 08 03 01 035 02 01 01 01 04 02 05 05 0.0067 0.0062 0.0005
20 1% 08 03 01 035 02 01 01 01 04 02 05 05 0.0063 0.0058 0.0005
20 200 08 03 01 035 02 01 01 01 04 02 05 05 0.0060 0.0056 0.0005
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Sample size Parameters Power
Empirical  Predicted Empirical Predicted

n1 n2 a b ¢ A A 3 M A A P ICC R, Ry, rejection rate  power
(a) Empirical versus predicted statistical power for cluster-level mediators with quadratic function of the running variable.
10 30 01 01 025 01 02 O 04 01 O 0.7 0.2 0.586 0.600 0.005 0.003
10 40 03 03 035 04 01 0O 02 04 0O 03 015 0.865 0.898 0.134 0.095
10 50 03 01 015 02 04 O 01 02 O 03 0.2 0.584 0.579 0.025 0.029
10 80 05 05 015 02 04 0 01 02 0O 05 005 0961 0.949 0.630 0.606
10 100 05 03 025 01 02 O 04 01 O 0.5 0.05 0.916 0.951 0.705 0.702
10 300 08 05 035 04 01 0 02 04 0 07 05 0.656 0.687 0.994 0.994
20 30 08 03 025 02 04 O 01 02 0 0.5 0.15 0.797 0.781 0.511 0.505
20 40 08 05 035 01 01 0 02 02 0O 03 03 0.745 0.730 0.657 0.638
20 50 03 05 025 01 04 O 04 02 O 0.7 0.2 0.858 0.889 0.203 0.157
20 8 01 01 015 04 02 0O 04 01 0 07 005 0875 0.870 0.043 0.032
20 00 08 03 035 02 01 O 01 04 O 05 05 0.586 0.597 0.719 0.749
20 300 03 01 015 04 02 0 02 01 0 03 005 0781 0.780 0.602 0.587
50 30 05 05 035 04 02 0 02 04 0 03 0.2 0.879 0.875 0.302 0.225
50 40 03 03 025 01 04 O 01 02 0 05 015 0.79 0.781 0.213 0.153
50 50 05 03 035 04 02 O 02 01 0 03 02 0.698 0.690 0.349 0313
50 80 08 01 015 02 01 0O 04 01 0 07 02 0.610 0.608 0.227 0.233
50 100 05 05 025 01 04 O 01 04 O 0.5 0.05 0.974 0.963 0.715 0.717
50 300 03 01 015 02 01 0 04 02 0 07 05 0.444 0.445 0.143 0.146
(b) Empirical versus predicted statistical power for cluster-level mediators with cubic function of the running variable.

10 30 01 01 025 01 02 01 04 01 02 07 02 0.876 0.903 0.005 0.002
10 40 03 03 035 04 01 02 02 04 01 03 0.15 0.916 0.980 0.152 0.126
10 50 03 01 015 02 04 02 01 02 01 03 02 0.742 0.776 0.016 0.023
10 80 05 05 015 02 04 04 01 02 04 05 0.05 0.995 1.000 0.555 0.638
10 100 05 03 025 01 02 01 04 01 02 05 005 0981 0.992 0.650 0.649
10 300 08 05 035 04 01 02 02 04 01 07 05 0.787 0.832 1.000 1.000
20 30 08 03 025 02 04 02 01 02 01 05 015 0873 0.901 0.487 0.510
20 40 08 05 035 01 01 04 02 02 02 03 03 0.926 0.949 0.605 0.676
20 5 03 05 025 01 04 02 04 02 01 07 02 0.926 0.941 0.171 0.140
20 80 01 01 015 04 02 01 04 01 04 0.7 0.05 0.991 1.000 0.045 0.044
20 100 08 03 035 02 01 01 01 04 02 05 05 0.729 0.754 0.761 0.770
20 300 03 01 015 04 02 01 02 01 02 03 0.05 0.971 0.978 0.589 0.581
50 30 05 05 035 04 02 04 02 04 02 03 02 0.962 0.984 0.306 0.274
50 40 03 03 025 01 04 02 01 02 04 05 015 0.965 0.998 0.198 0.156
50 5 05 03 035 04 02 01 02 01 04 03 02 0.954 0.980 0.345 0.327
50 80 08 01 015 02 01 01 04 01 01 07 0.2 0.810 0.816 0.262 0.281
50 100 05 05 025 01 04 02 01 04 02 05 005 0987 1.000 0.674 0.691

50 300 03 01 015 02 01 04 04 02 01 07 05 0.657 0.665 0.148 0.224
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Sample size Parameters Power
Empirical Predicted Empirical Predicted

nt n2 a B bl ¢ 4 M A3 A A A P ICC Ry, R%,  Rejection Rate  Power
(a) Empirical versus predicted statistical power for individual-level mediators with quadratic function of the running variable.
10 30 01 01 01 025 01 02 O 04 01 0O 0.7 02 0.559 0.577 0.003 0.001
10 40 03 03 02 035 04 01 0 02 04 0 03 015 0836 0.882 0.114 0.124
10 50 03 01 01 015 02 04 O 01 02 0 03 02 0.559 0.566 0.019 0.030
10 80 05 05 005 015 02 04 0 01 02 0 05 005 0936 0.933 0.999 0.996
10 100 05 03 005 025 01 02 0O 04 01 O 05 0.05 0.873 0.936 0.887 0.912
10 300 08 05 02 035 04 01 0 02 04 0 07 05 0.659 0.693 0.990 0.990
20 30 08 03 005 025 02 04 0 01 02 0 05 015 0.745 0.747 0.356 0.394
20 40 08 05 02 035 01 01 0 02 02 0 03 03 0.681 0.678 0.752 0.783
20 50 03 05 02 025 01 04 0 04 02 0 0.7 02 0.807 0.865 0.356 0.351
20 80 01 01 01 015 04 02 0 04 01 0 07 005 0.862 0.865 0.004 0.014
20 100 08 03 01 035 02 01 0O 01 04 0O 05 05 0.587 0.600 0.722 0.752
20 300 03 01 005 015 04 02 0 02 01 0 03 005 0.743 0.742 0.367 0414
50 30 05 05 02 035 04 02 0 02 04 0 03 02 0.845 0.860 0.408 0.435
50 40 03 03 01 025 01 04 0 01 02 0O 05 015 0.733 0.730 0.217 0.227
50 50 05 03 01 035 04 02 0 02 01 0 03 02 0.613 0.612 0.423 0.429
50 8 08 01 005 015 02 01 0 04 01 0 07 02 0.588 0.585 0.136 0.137
50 100 05 05 005 025 01 04 O 01 04 0O 05 0.05 0.963 0.963 1.000 0.997
50 300 03 01 02 015 02 01 0 04 02 0 07 05 0.443 0.445 0.140 0.135
(b) Empirical versus predicted statistical power for individual-level mediators with cubic function of the running variable.

10 30 01 01 01 025 01 02 01 04 01 02 07 02 0.875 0.880 0.002 0.002
10 40 03 03 02 035 04 01 02 02 04 01 03 015 0.906 0.995 0.092 0.228
10 50 03 01 01 035 02 04 02 01 02 01 03 0.2 0.730 0.766 0.008 0.030
10 80 05 05 0.05 0.15 02 04 0.1 01 02 0.1 05 0.1 0.930 0.965 0.991 0.994
10 100 05 03 0.05 025 0.1 02 0.1 04 01 02 05 005 0978 0.995 0.926 0.933
10 300 08 05 02 035 04 01 02 02 04 01 07 05 0.785 0.834 0.999 1.000
20 30 08 03 005 025 02 04 02 01 02 01 05 015 0.850 0.892 0.300 0.346
20 4 08 05 02 035 01 01 01 02 02 02 03 03 0.844 0.876 0.728 0.785
20 50 03 05 02 025 01 04 02 04 02 01 07 02 0.912 0.938 0.295 0.318
20 80 0.1 01 01 015 04 02 02 04 0.1 0.1 0.7 0.05 0.955 0.953 0.001 0.016
20 100 08 03 01 035 02 01 01 01 04 02 05 05 0.726 0.756 0.771 0.794
20 300 03 0.1 005 015 04 02 01 02 01 02 03 0.05 0.970 0.978 0314 0.446
50 30 05 05 02 035 04 02 01 02 04 02 03 02 0.919 0.956 0414 0.480
50 4 03 03 01 025 0.1 04 01 01 02 01 05 0.15 0.826 0.873 0.195 0.245
50 50 05 03 01 035 04 02 02 02 01 01 03 02 0.838 0.864 0.406 0.419
50 80 08 0.1 0.05 015 02 0.1 0.1 04 01 0.1 0.7 02 0.804 0.809 0.104 0.145
50 100 05 0.5 005 025 01 04 02 0.1 04 01 05 005 0978 1.000 1.000 1.000

50 300 03 01 02 015 02 01 01 04 02 02 07 05 0.733 0.739 0.160 0.164
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