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ABSTRACT

We study a family of distributed stochastic optimization algorithms where gradi-
ents are sampled by a token traversing a network of agents in random-walk fash-
ion. Typically, these random-walks are chosen to be Markov chains that asymp-
totically sample from a desired target distribution, and play a critical role in the
convergence of the optimization iterates. In this paper, we take a novel approach
by replacing the standard linear Markovian token by one which follows a non-
linear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined
for any given ‘base’ Markov chain, the SRRW, parameterized by a positive scalar
α, is less likely to transition to states that were highly visited in the past, thus
the name. In the context of MCMC sampling on a graph, a recent breakthrough in
Doshi et al. (2023) shows that the SRRW achieves O(1/α) decrease in the asymp-
totic variance for sampling. We propose the use of a ‘generalized’ version of the
SRRW to drive token algorithms for distributed stochastic optimization in the form
of stochastic approximation, termed SA-SRRW. We prove that the optimization it-
erate errors of the resulting SA-SRRW converge to zero almost surely and prove a
central limit theorem, deriving the explicit form of the resulting asymptotic covari-
ance matrix corresponding to iterate errors. This asymptotic covariance is always
smaller than that of an algorithm driven by the base Markov chain and decreases
at rate O(1/α2) - the performance benefit of using SRRW thereby amplified in the
stochastic optimization context. Empirical results support our theoretical findings.

1 INTRODUCTION

Stochastic optimization algorithms solve optimization problems of the form

θ∗ ∈ argmin
θ∈Rd

f(θ), where f(θ) ≜ EX∼µ [F (θ, X)] =
∑

i∈N

µiF (θ, i), (1)

with the objective function f : Rd → R and X taking values in a finite state space N with distri-

bution µ ≜ [µi]i∈N . Leveraging partial gradient information per iteration, these algorithms have
been recognized for their scalability and efficiency with large datasets (Bottou et al., 2018; Even,
2023). For any given noise sequence {Xn}ng0 ¢ N , and step size sequence {βn}ng0 ¢ R+, most
stochastic optimization algorithms can be classified as stochastic approximations (SA) of the form

θn+1 = θn + βn+1H(θn, Xn+1), ∀ n g 0, (2)

where, roughly speaking, H(θ, i) contains gradient information ∇θF (θ, i), such that θ∗ solves

h(θ) ≜ EX∼µ[H(θ, X)] =
∑

i∈N µiH(θ, i) = 0. Such SA iterations include the well-known
stochastic gradient descent (SGD), stochastic heavy ball (SHB) (Gadat et al., 2018; Li et al., 2022),
and some SGD-type algorithms employing additional auxiliary variables (Barakat et al., 2021).1

These algorithms typically have the stochastic noise term Xn generated by i.i.d. random variables
with probability distribution µ in each iteration. In this paper, we study a stochastic optimization
algorithm where the noise sequence governing access to the gradient information is generated from
general stochastic processes in place of i.i.d. random variables.

*Equal contributors.
1Further illustrations of stochastic optimization algorithms of the form (2) are deferred to Appendix A.
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This is commonly the case in distributed learning, where {Xn} is a (typically Markovian) random
walk, and should asymptotically be able to sample the gradients from the desired probability dis-
tribution µ. This is equivalent to saying that the random walker’s empirical distribution converges

to µ almost surely (a.s.); that is, xn ≜ 1
n+1

∑n
k=0 δXk

a.s.
−−−−→
n→∞

µ for any initial X0 ∈ N , where

δXk
is the delta measure whose Xk’th entry is one, the rest being zero. Such convergence is most

commonly achieved by employing the Metropolis Hastings random walk (MHRW) which can be
designed to sample from any target measure µ and implemented in a scalable manner (Sun et al.,
2018). Unsurprisingly, convergence characteristics of the employed Markov chain affect that of the
SA sequence (2), and appear in both finite-time and asymptotic analyses. Finite-time bounds typ-
ically involve the second largest eigenvalue in modulus (SLEM) of the Markov chain’s transition
kernel P, which is critically connected to the mixing time of a Markov chain (Levin & Peres, 2017);
whereas asymptotic results such as central limit theorems (CLT) involve asymptotic covariance ma-
trices that embed information regarding the entire spectrum of P, i.e., all eigenvalues as well as
eigenvectors (Brémaud, 2013), which are key to understanding the sampling efficiency of a Markov
chain. Thus, the choice of random walker can significantly impact the performance of (2), and sim-
ply ensuring that it samples from µ asymptotically is not enough to achieve optimal algorithmic
performance. In this paper, we take a closer look at the distributed stochastic optimization problem
through the lens of a non-linear Markov chain, known as the Self Repellent Random Walk (SRRW),
which was shown in Doshi et al. (2023) to achieve asymptotically minimal sampling variance for
large values of α, a positive scalar controlling the strength of the random walker’s self-repellence
behaviour. Our proposed modification of (2) can be implemented within the settings of decentral-
ized learning applications in a scalable manner, while also enjoying significant performance benefit
over distributed stochastic optimization algorithms driven by vanilla Markov chains.

Token Algorithms for Decentralized Learning. In decentralized learning, agents like smartphones
or IoT devices, each containing a subset of data, collaboratively train models on a graph G(N , E) by
sharing information locally without a central server (McMahan et al., 2017). In this setup, N= |N |
agents correspond to nodes i ∈N , and an edge (i, j) ∈ E indicates direct communication between
agents i and j. This decentralized approach offers several advantages compared to the traditional
centralized learning setting, promoting data privacy and security by eliminating the need for raw data
to be aggregated centrally and thus reducing the risk of data breach or misuse (Bottou et al., 2018;
Nedic, 2020). Additionally, decentralized approaches are more scalable and can handle vast amounts
of heterogeneous data from distributed agents without overwhelming a central server, alleviating
concerns about single point of failure (Vogels et al., 2021).

Among decentralized learning approaches, the class of ‘Token’ algorithms can be expressed as
stochastic approximation iterations of the type (2), wherein the sequence {Xn} is realized as the
sample path of a token that stochastically traverses the graph G, carrying with it the iterate θn for any
time n g 0 and allowing each visited node (agent) to incrementally update θn using locally available
gradient information. Token algorithms have gained popularity in recent years (Hu et al., 2022; Tri-
astcyn et al., 2022; Hendrikx, 2023), and are provably more communication efficient (Even, 2023)
when compared to consensus-based algorithms - another popular approach for solving distributed
optimization problems (Boyd et al., 2006; Morral et al., 2017; Olshevsky, 2022). The construction
of token algorithms means that they do not suffer from expensive costs of synchronization and com-
munication that are typical of consensus-based approaches, where all agents (or a subset of agents
selected by a coordinator (Boyd et al., 2006; Wang et al., 2019)) on the graph are required to take
simultaneous actions, such as communicating on the graph at each iteration. While decentralized
Federated learning has indeed helped mitigate the communication overhead by processing multiple
SGD iterations prior to each aggregation (Lalitha et al., 2018; Ye et al., 2022; Chellapandi et al.,
2023), they still cannot overcome challenges such as synchronization and straggler issues.

Self Repellent Random Walk. As mentioned earlier, sample paths {Xn} of token algorithms are
usually generated using Markov chains with µ ∈ Int(Σ) as their limiting distribution. Here, Σ
denotes the N -dimensional probability simplex, with Int(Σ) representing its interior. A recent work
by Doshi et al. (2023) pioneers the use of non-linear Markov chains to, in some sense, improve upon
any given time-reversible Markov chain with transition kernel P whose stationary distribution is µ.
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They show that the non-linear transition kernel2 K[·] : Int(Σ) → [0, 1]N×N , given by

Kij [x] ≜
Pij(xj/µj)

−α

∑

k∈N Pik(xk/µk)−α
, ∀ i, j ∈ N , (3)

for any x ∈ Int(Σ), when simulated as a self-interacting random walk (Del Moral & Miclo, 2006;
Del Moral & Doucet, 2010), can achieve smaller asymptotic variance than the base Markov chain
when sampling over a graph G, for all α > 0. The argument x for the kernel K[x] is taken to
be the empirical distribution xn at each time step n g 0. For instance, if node j has been visited
more often than other nodes so far, the entry xj becomes larger (than target value µj), resulting in
a smaller transition probability from i to j under K[x] in (3) compared to Pij . This ensures that
a random walker prioritizes more seldom visited nodes in the process, and is thus ‘self-repellent’.
This effect is made more drastic by increasing α, and leads to asymptotically near-zero variance at
a rate of O(1/α). Moreover, the polynomial function (xi/µi)

−α chosen to encode self-repellent
behaviour is shown in Doshi et al. (2023) to be the only one that allows the SRRW to inherit the so-
called ‘scale-invariance’ property of the underlying Markov chain – a necessary component for the
scalable implementation of a random walker over a large network without requiring knowledge of
any graph-related global constants. Conclusively, such attributes render SRRW especially suitable
for distributed optimization.3

Effect of Stochastic Noise - Finite time and Asymptotic Approaches. Most contemporary token
algorithms driven by Markov chains are analyzed using the finite-time bounds approach for obtain-
ing insights into their convergence rates (Sun et al., 2018; Doan et al., 2019; 2020; Triastcyn et al.,
2022; Hendrikx, 2023). However, as also explained in Even (2023), in most cases these bounds are
overly dependent on mixing time properties of the specific Markov chain employed therein. This
makes them largely ineffective in capturing the exact contribution of the underlying random walk
in a manner which is qualitative enough to be used for algorithm design; and performance enhance-
ments are typically achieved via application of techniques such as variance reduction (Defazio et al.,
2014; Schmidt et al., 2017), momentum/Nesterov’s acceleration (Gadat et al., 2018; Li et al., 2022),
adaptive step size (Kingma & Ba, 2015; Reddi et al., 2018), which work by modifying the algorithm
iterations themselves, and never consider potential improvements to the stochastic input itself.

Complement to finite-time approaches, asymptotic analysis using CLT has proven to be an excellent
tool to approach the design of stochastic algorithms (Hu et al., 2022; Devraj & Meyn, 2017; Morral
et al., 2017; Chen et al., 2020a; Mou et al., 2020; Devraj & Meyn, 2021). Hu et al. (2022) shows
how asymptotic analysis can be used to compare the performance of SGD algorithms for various
stochastic inputs using their notion of efficiency ordering, and, as mentioned in Devraj & Meyn
(2017), the asymptotic benefits from minimizing the limiting covariance matrix are known to be a
good predictor of finite-time algorithmic performance, also observed empirically in Section 4.

From the perspective of both finite-time analysis as well as asymptotic analysis of token algorithms,
it is now well established that employing ‘better’ Markov chains can enhance the performance of
stochastic optimization algorithm. For instance, Markov chains with smaller SLEMs yield tighter
finite-time upper bounds (Sun et al., 2018; Ayache & El Rouayheb, 2021; Even, 2023). Similarly,
Markov chains with smaller asymptotic variance for MCMC sampling tasks also provide better
performance, resulting in smaller covariance matrix of SGD algorithms (Hu et al., 2022). Therefore,
with these breakthrough results via SRRW achieving near-zero sampling variance, it is within reason
to ask: Can we achieve near-zero variance in distributed stochastic optimization driven by SRRW-
like token algorithms on any general graph?4 In this paper, we answer in the affirmative.

SRRW Driven Algorithm and Analysis Approach. For any ergodic time-reversible Markov chain

with transition probability matrix P ≜ [Pij ]i,j∈N and stationary distribution µ ∈ Int(Σ), we con-
sider a general step size version of the SRRW stochastic process analysed in Doshi et al. (2023) and

2Here, non-linearity in the transition kernel implies that K[x] takes probability distribution x as the argu-
ment (Andrieu et al., 2007), as opposed to the kernel being a linear operator K[x] = P for a constant stochastic
matrix P in a standard (linear) Markovian setting.

3Recently, Guo et al. (2020) introduce an optimization scheme, which designs self-repellence into the per-
turbation of the gradient descent iterates (Jin et al., 2017; 2018; 2021) with the goal of escaping saddle points.
This notion of self-repellence is distinct from the SRRW, which is a probability kernel designed specifically for
a token to sample from a target distribution µ over a set of nodes on an arbitrary graph.

4This near-zero sampling variance implies a significantly smaller variance than even an i.i.d. sampling
counterpart, while adhering to graph topological constraints of token algorithms.
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Figure 1: Visualization of token algorithms using SRRW versus traditional MC in distributed learn-
ing. Our CLT analysis, extended from SRRW itself to distributed stochastic approximation, leads to
near-zero variance for the SA iteration θn. Node numbers on the left denote visit counts.

use it to drive the noise sequence in (2). Our SA-SRRW algorithm is as follows:

Draw: Xn+1 ∼ KXn,·[xn] (4a)

Update: xn+1 = xn + γn+1(δXn+1 − xn), (4b)

θn+1 = θn + βn+1H(θn, Xn+1), (4c)

where {βn} and {γn} are step size sequences decreasing to zero, and K[x] is the SRRW kernel in
(3). Current non-asymptotic analyses require globally Lipschitz mean field function (Chen et al.,
2020b; Doan, 2021; Zeng et al., 2021; Even, 2023) and is thus inapplicable to SA-SRRW since
the mean field function of the SRRW iterates (4b) is only locally Lipschitz (details deferred to
Appendix B). Instead, we successfully obtain non-trivial results by taking an asymptotic CLT-based
approach to analyze (4). This goes beyond just analyzing the asymptotic sampling covariance5 as
in Doshi et al. (2023), the result therein forming a special case of ours by setting γn=1/(n+1) and
considering only (4a) and (4b), that is, in the absence of optimization iteration (4c). Specifically,
we capture the effect of SRRW’s hyper-parameter α on the asymptotic speed of convergence of the
optimization error term θn − θ∗ to zero via explicit deduction of its asymptotic covariance matrix.
See Figure 1 for illustration.

Our Contributions.

1. Given any time-reversible ‘base’ Markov chain with transition kernel P and stationary distribution
µ, we generalize first and second order convergence results of xn to target measure µ (Theorems
4.1 and 4.2 in Doshi et al., 2023) to a class of weighted empirical measures, through the use of more
general step sizes γn. This includes showing that the asymptotic sampling covariance terms decrease
to zero at rate O(1/α), thus quantifying the effect of self-repellent on xn. Our generalization is not
for the sake thereof and is shown in Section 3 to be crucial for the design of step sizes βn, γn.

2. Building upon the convergence results for iterates xn, we analyze the algorithm (4) driven by the
SRRW kernel in (3) with step sizes βn and γn separated into three disjoint cases:

(i) βn = o(γn), and we say that θn is on the slower timescale compared to xn;

(ii) βn=γn, and we say that θn and xn are on the same timescale;

(iii) γn = o(βn), and we say that θn is on the faster timescale compared to xn.

For any α g 0 and let k = 1, 2 and 3 refer to the corresponding cases (i), (ii) and (iii), we show that

θn
a.s.

−−−−→
n→∞

θ∗ and (θn − θ∗)/
√

βn
dist.
−−−−→
n→∞

N
(

0,V
(k)
θ (α)

)

,

featuring distinct asymptotic covariance matrices V
(1)
θ (α),V

(2)
θ (α) and V

(3)
θ (α), respectively. The

three matrices coincide when α = 0,6. Moreover, the derivation of the CLT for cases (i) and (iii),
for which (4) corresponds to two-timescale SA with controlled Markov noise, is the first of its kind
and thus a key technical contribution in this paper, as expanded upon in Section 3.

3. For case (i), we show that V
(1)
θ (α) decreases to zero (in the sense of Loewner ordering introduced

in Section 2.1) as α increases, with rate O(1/α2). This is especially surprising, since the asymptotic
performance benefit from using the SRRW kernel with α in (3), to drive the noise terms Xn, is
amplified in the context of distributed learning and estimating θ∗; compared to the sampling case,

for which the rate is O(1/α) as mentioned earlier. For case (iii), we show that V
(3)
θ (α) =V

(3)
θ (0)

for all α g 0, implying that using the SRRW in this case provides no asymptotic benefit than the

5Sampling covariance corresponds to only the empirical distribution xn in (4b).
6The α = 0 case is equivalent to simply running the base Markov chain, since from (3) we have K[·] = P,

thus bypassing the SRRW’s effect and rendering all three cases nearly the same.
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original base Markov chain, and thus performs worse than case (i). In summary, we deduce that

V
(1)
θ (α2)<LV

(1)
θ (α1)<LV

(1)
θ (0)=V

(3)
θ (0)=V

(3)
θ (α) for all α2 > α1 > 0 and α > 0.7

4. We numerically simulate our SA-SRRW algorithm on various real-world datasets, focusing on
a binary classification task, to evaluate its performance across all three cases. By carefully choos-
ing the function H in SA-SRRW, we test the SGD and algorithms driven by SRRW. Our findings
consistently highlight the superiority of case (i) over cases (ii) and (iii) for diverse α values, even in
their finite time performance. Notably, our tests validate the variance reduction at a rate of O(1/α2)
for case (i), suggesting it as the best algorithmic choice among the three cases.

2 PRELIMINARIES AND MODEL SETUP

In Section 2.1, we first standardize the notations used throughout the paper, and define key mathe-
matical terms and quantities used in our theoretical analyses. Then, in Section 2.2, we consolidate
the model assumptions of our SA-SRRW algorithm (4). We then go on to discuss our assumptions,
and provide additional interpretations of our use of generalized step-sizes.

2.1 BASIC NOTATIONS AND DEFINITIONS

Vectors are denoted by lower-case bold letters, e.g., v ≜ [vi] ∈ R
D, and matrices by upper-case

bold, e.g., M ≜ [Mij ] ∈ R
D×D. M−T is the transpose of the matrix inverse M−1. The diagonal

matrix Dv is formed by vector v with vi as the i’th diagonal entry. Let 1 and 0 denote vectors of
all ones and zeros, respectively. The identity matrix is represented by I, with subscripts indicating
dimensions as needed. A matrix is Hurwitz if all its eigenvalues possess strictly negative real parts.
1{·} denotes an indicator function with condition in parentheses. We use ∥ ·∥ to denote both the
Euclidean norm of vectors and the spectral norm of matrices. Two symmetric matrices M1,M2

follow Loewner ordering M1 <L M2 if M2−M1 is positive semi-definite and M1 ̸=M2. This
slightly differs from the conventional definition with fL, which allows M1=M2.

Throughout the paper, the matrix P ≜ [Pi,j ]i,j∈N and vector µ ≜ [µi]i∈N are used exclusively
to denote an N × N -dimensional transition kernel of an ergodic Markov chain, and its stationary
distribution, respectively. Without loss of generality, we assume Pij > 0 if and only if aij > 0.
Markov chains satisfying the detailed balance equation, where µiPij = µjPji for all i, j ∈ N , are
termed time-reversible. For such chains, we use (λi,ui) (resp. (λi,vi)) to denote the i’th left (resp.
right) eigenpair where the eigenvalues are ordered: −1<λ1f· · ·fλN−1<λN =1, with uN =µ
and vN =1 in R

N . We assume eigenvectors to be normalized such that uT
i vi=1 for all i, and we

have ui=Dµvi and uT
i vj=0 for all i, j∈N . We direct the reader to Aldous & Fill (2002, Chapter

3.4) for a detailed exposition on spectral properties of time-reversible Markov chains.

2.2 SA-SRRW: KEY ASSUMPTIONS AND DISCUSSIONS

Assumptions: All results in our paper are proved under the following assumptions.

(A1) The function H : RD × N → R
D, is a continuous at every θ ∈ R

D, and there exists a
positive constant L such that ∥H(θ, i)∥ f L(1 + ∥θ∥) for every θ ∈ R

D, i ∈ N .

(A2) Step sizes βn and γn follow βn=(n+1)−b, and γn=(n+1)−a, where a, b ∈ (0.5, 1].

(A3) Roots of function h(·) are disjoint, which comprise the globally attracting set Θ ≜
{

θ∗|h(θ∗)=0,∇h(θ∗) +
1{b=1}

2 I is Hurwitz
}

̸= ∅ of the associated ordinary differential

equation (ODE) for iteration (4c), given by dθ(t)/dt=h(θ(t)).

(A4) For any (θ0,x0, X0) ∈ R
D × Int(Σ)×N , the iterate sequence {θn}ng0 (resp. {xn}ng0)

is Pθ0,x0,X0
-almost surely contained within a compact subset of RD (resp. Int(Σ)).

Discussions on Assumptions: Assumption A1 requires H to only be locally Lipschitz albeit with
linear growth, and is less stringent than the globally Lipschitz assumption prevalent in optimization
literature (Li & Wai, 2022; Hendrikx, 2023; Even, 2023).

7In particular, this is the reason why we advocate for a more general step size γn = (n+1)−a in the SRRW

iterates with a < 1, allowing us to choose βn = (n+ 1)−b with b ∈ (a, 1] to satisfy βn = o(γn) for case (i).
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Assumption A2 is the general umbrella assumption under which cases (i), (ii) and (iii) mentioned
in Section 1 are extracted by setting: (i) a < b, (ii) a = b, and (iii) a > b. Cases (i) and (iii)
render θn,xn on different timescales; the polynomial form of βn, γn widely assumed in the two-
timescale SA literature (Mokkadem & Pelletier, 2006; Zeng et al., 2021; Hong et al., 2023). Case (ii)
characterizes the SA-SRRW algorithm (4) as a single-timescale SA with polynomially decreasing
step size, and is among the most common assumptions in the SA literature (Borkar, 2022; Fort,
2015; Li et al., 2023). In all three cases, the form of γn ensures γn f 1 such that the SRRW iterates
xn in (4b) is within Int(Σ), ensuring that K[xn] is well-defined for all n g 0.

In Assumption A3, limiting dynamics of SA iterations {θn}ng0 closely follow trajectories
{θ(t)}tg0 of their associated ODE, and assuming the existence of globally stable equilibria is stan-
dard (Borkar, 2022; Fort, 2015; Li et al., 2023). In optimization problems, this is equivalent to
assuming the existence of at most countably many local minima.

Assumption A4 assumes almost sure boundedness of iterates θn and xn, which is a common as-
sumption in SA algorithms (Kushner & Yin, 2003; Chen, 2006; Borkar, 2022; Karmakar & Bhatna-
gar, 2018; Li et al., 2023) for the stability of the SA iterations by ensuring the well-definiteness of all
quantities involved. Stability of the weighted empirical measure xn of the SRRW process is prac-
tically ensured by studying (4b) with a truncation-based procedure (see Doshi et al., 2023, Remark
4.5 and Appendix E for a comprehensive explanation), while that for θn is usually ensured either as
a by-product of the algorithm design, or via mechanisms such as projections onto a compact subset
of RD, depending on the application context. We now provide additional discussions regarding the
step-size assumptions and their implications on the SRRW iteration (4b).

SRRW with General Step Size: As shown in Benaim & Cloez (2015, Remark 1.1), albeit for a
completely different non-linear Markov kernel driving the algorithm therein, iterates xn of (4b) can
also be expressed as weighted empirical measures of {Xn}ng0, in the following form:

xn =

∑n
i=1 ωiδXi

+ ω0x0
∑n

i=0 ωi
, where ω0 = 1, and ωn =

γn
∏n

i=1(1− γi)
, (5)

for all n > 0. For the special case when γn = 1/(n+1) as in Doshi et al. (2023), we have ωn = 1 for
all n g 0 and xn is the typical, unweighted empirical measure. For the additional case considered
in our paper, when a < 1 for γn as in assumption A2, we can approximate 1 − γn ≈ e−γn and

ωn ≈ n−aen
(1−a)/(1−a). This implies that ωn will increase at sub-exponential rate, giving more

weight to recent visit counts and allowing it to quickly ‘forget’ the poor initial measure x0 and shed
the correlation with the initial choice of X0. This ‘speed up’ effect by setting a < 1 is guaranteed
in case (i) irrespective of the choice of b in Assumption A2, and in Section 3 we show how this can
lead to further reduction in covariance of optimization error θn = θ∗ in the asymptotic regime.

Additional assumption for case (iii): Before moving on to Section 3, we take another look at the
case when γn = o(βn), and replace A3 with the following, stronger assumption only for case (iii).

(A3′) For any x∈ Int(Σ), there exists a function ρ : Int(Σ)→R
D such that ∥ρ(x)∥fL2(1+∥x∥)

for some L2>0, Ei∼π[x][H(ρ(x), i)]=0 and Ei∼π[x][∇H(ρ(x), i)] +
1{b=1}

2 I is Hurwitz.

While Assumption A3′ for case (iii) is much stronger than A3, it is not detrimental to the overall
results of our paper, since case (i) is of far greater interest as impressed upon in Section 1. This is
discussed further in Appendix C.

3 ASYMPTOTIC ANALYSIS OF THE SA-SRRW ALGORITHM

In this section, we provide the main results for the SA-SRRW algorithm (4). We first present the
a.s. convergence and the CLT result for SRRW with generalized step size, extending the results in
Doshi et al. (2023). Building upon this, we present the a.s. convergence and the CLT result for the
SA iterate θn under different settings of step sizes. We then shift our focus to the analysis of the
different asymptotic covariance matrices emerging out of the CLT result, and capture the effect of α
and the step sizes, particularly in cases (i) and (iii), on θn − θ∗ via performance ordering.

Almost Sure convergence and CLT: The following result establishes first and second order conver-
gence of the sequence {xn}ng0, which represents the weighted empirical measures of the SRRW
process {Xn}ng0, based on the update rule in (4b).
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Lemma 3.1. Under Assumptions A1, A2 and A4, for the SRRW iterates (4b), we have

xn
a.s.

−−−−→
n→∞

µ, and γ−1/2
n (xn − µ)

dist.
−−−−→
n→∞

N(0,Vx(α)),

where Vx(α) =
N−1
∑

i=1

1

2α(1 + λi) + 2− 1{a=1}
·
1 + λi

1− λi
uiu

T
i . (6)

Moreover, for all α2 > α1 > 0, we have Vx(α2) <L Vx(α1) <L Vx(0).

Lemma 3.1 shows that the SRRW iterates xn converges to the target distribution µ a.s. even under
the general step size γn = (n+1)−a for a ∈ (0.5, 1]. We also observe that the asymptotic covariance
matrix Vx(α) decreases at rate O(1/α). Lemma 3.1 aligns with Doshi et al. (2023, Theorem 4.2
and Corollary 4.3) for the special case of a = 1, and is therefore more general. Critically, it helps us
establish our next result regarding the first-order convergence for the optimization iterate sequence
{θn}ng0 following update rule (4c), as well as its second-order convergence result, which follows
shortly after. The proofs of Lemma 3.1 and our next result, Theorem 3.2, are deferred to Appendix
D. In what follows, k = 1, 2, and 3 refer to cases (i), (ii), and (iii) in Section 2.2, respectively. All
subsequent results are proven under Assumptions A1 to A4, with A3′ replacing A3 only when the
step sizes βn, γn satisfy case (iii).

Theorem 3.2. For k ∈ {1, 2, 3}, and any initial (θ0,x0, X0) ∈ R
D×Int(Σ)×N , we have θn → θ∗

as n → ∞ for some θ∗ ∈ Θ, Pθ0,x0,X0
-almost surely.

In the stochastic optimization context, the above result ensures convergence of iterates θn to a local
minimizer θ∗. Loosely speaking, the first-order convergence of xn in Lemma 3.1 as well as that of

θn are closely related to the convergence of trajectories {z(t) ≜ (θ(t),x(t))}tg0 of the (coupled)
mean-field ODE, written in a matrix-vector form as

d
dtz(t) = g(z(t)) ≜

[

H(θ(t))Tπ[x(t)]
π[x(t)]− x(t)

]

∈ R
D+N . (7)

where matrix H(θ) ≜ [H(θ, 1),· · ·, H(θ, N)]T ∈ R
N×D for any θ ∈ R

D. Here, π[x] ∈ Int(Σ)
is the stationary distribution of the SRRW kernel K[x] and is shown in Doshi et al. (2023) to be
given by πi[x] ∝

∑

j∈N µiPij(xi/µi)
−α(xj/µj)

−α. The Jacobian matrix of (7) when evaluated at

equilibria z∗ = (θ∗,µ) for θ∗ ∈ Θ captures the behaviour of solutions of the mean-field in their
vicinity, and plays an important role in the asymptotic covariance matrices arising out of our CLT
results. We evaluate this Jacobian matrix J(α) as a function of α g 0 to be given by

J(α)≜∇g(z∗)=

[

∇h(θ∗) −αH(θ∗)T (PT+ I)
0N×D 2αµ1T−αPT−(α+1)I

]

≜

[

J11 J12(α)
J21 J22(α)

]

. (8)

The derivation of J(α) is referred to Appendix E.1.8 Here, J21 is a zero matrix since π[x] − x
is devoid of θ. While matrix J22(α) is exactly of the form in Doshi et al. (2023, Lemma 3.4)
to characterize the SRRW performance, our analysis includes an additional matrix J12(α), which
captures the effect of x(t) on θ(t) in the ODE (7), which translates to the influence of our generalized
SRRW empirical measure xn on the SA iterates θn in (4).

For notational simplicity, and without loss of generality, all our remaining results are stated while
conditioning on the event that {θn → θ∗}, for some θ∗ ∈Θ. We also adopt the shorthand notation
H to represent H(θ∗). Our main CLT result is as follows, with its proof deferred to Appendix E.

Theorem 3.3. For any α g 0, we have: (a) There exists V(k)(α) for all k ∈ {1, 2, 3} such that
[

β
−1/2
n (θn − θ∗)

γ
−1/2
n (xn − µ)

]

dist.
−−−−→
n→∞

N
(

0,V(k)(α)
)

.

(b) For k = 2, matrix V(2)(α) solves the Lyapunov equation J(α)V(2)(α) + V(2)(α)J(α)T +
1{b=1}V

(2)(α) = −U, where the Jacobian matrix J(α) is in (8), and

U ≜

N−1
∑

i=1

1 + λi

1− λi
·

[

HTuiu
T
i H HTuiu

T
i

uiu
T
i H uiu

T
i

]

≜

[

U11 U12

U21 U22

]

. (9)

(c) For k ∈ {1, 3}, V(k)(α) becomes block diagonal, which is given by

V(k)(α) =

[

V
(k)
θ (α) 0D×N

0N×D Vx(α)

]

, (10)

8The Jacobian J(α) is (D+N)×(D+N)– dimensional, with J11∈R
D×D and J22(α)∈R

N×N . Following
this, all matrices written in a block form, such as matrix U in (9), will inherit the same dimensional structure.
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where Vx(α) is as in (6), and V
(1)
θ (α) and V

(3)
θ (α) can be written in the following explicit form:

V
(1)
θ (α) =

∫∞

0
et(∇θh(θ

∗)+
1{b=1}

2 I)Uθ(α)e
t(∇θh(θ

∗)+
1{b=1}

2 I)T dt,

V
(3)
θ (α) =

∫∞

0
et∇θh(θ

∗)U11e
t∇θh(θ

∗)dt,

where Uθ(α) =

N−1
∑

i=1

1

(α(1 + λi) + 1)2
·
1 + λi

1− λi
HTuiu

T
i H. (11)

For k ∈ {1, 3}, SA-SRRW in (4) is a two-timescale SA with controlled Markov noise. While a few
works study the CLT of two-timescale SA with the stochastic input being a martingale-difference
(i.i.d.) noise (Konda & Tsitsiklis, 2004; Mokkadem & Pelletier, 2006), a CLT result covering the
case of controlled Markov noise (e.g., k ∈ {1, 3}), a far more general setting than martingale-
difference noise, is still an open problem. Thus, we here prove our CLT for k ∈ {1, 3} from scratch
by a series of careful decompositions of the Markovian noise, ultimately into a martingale-difference
term and several non-vanishing noise terms through repeated application of the Poisson equation
(Benveniste et al., 2012; Fort, 2015). Although the form of the resulting asymptotic covariance
looks similar to that for the martingale-difference case in (Konda & Tsitsiklis, 2004; Mokkadem

& Pelletier, 2006) at first glance, they are not equivalent. Specifically, V
(k)
θ (α) captures both the

effect of SRRW hyper-parameter α, as well as that of the underlying base Markov chain via eigen-
pairs (λi,ui) of its transition probability matrix P in matrix U, whereas the latter only covers the
martingale-difference noise terms as a special case.

When k = 2, that is, βn = γn, algorithm (4) can be regarded as a single-timescale SA algorithm.

In this case, we utilize the CLT in Fort (2015, Theorem 2.1) to obtain the implicit form of V(2)(α)
as shown in Theorem 3.3. However, J12(α) being non-zero for α > 0 restricts us from obtaining
an explicit form for the covariance term corresponding to SA iterate errors θn − θ∗. On the other
hand, for k ∈ {1, 3}, the nature of two-timescale structure causes θn and xn to become asymptoti-

cally independent with zero correlation terms inside V(k)(α) in (10), and we can explicitly deduce

V
(k)
θ (α). We now take a deeper dive into α and study its effect on V

(k)
θ (α).

Covariance Ordering of SA-SRRW: We refer the reader to Appendix F for proofs of all remaining

results. We begin by focusing on case (i) and capturing the impact of α on V
(1)
θ (α).

Proposition 3.4. For all α2 > α1 > 0, we have V
(1)
θ (α2) <L V

(1)
θ (α1) <L V

(1)
θ (0). Furthermore,

V
(1)
θ (α) decreases to zero at a rate of O(1/α2).

Proposition 3.4 proves a monotonic reduction (in terms of Loewner ordering) of V
(1)
θ (α) as α in-

creases. Moreover, the decrease rate O(1/α2) surpasses the O(1/α) rate seen in Vx(α) and the
sampling application in Doshi et al. (2023, Corollary 4.7), and is also empirically observed in our
simulation in Section 4.9 Suppose we consider the same SA now driven by an i.i.d. sequence {Xn}
with the same marginal distribution µ. Then, our Proposition 3.4 asserts that a token algorithm em-
ploying SRRW (walk on a graph) with large enough α on a general graph can actually produce better
SA iterates with its asymptotic covariance going down to zero, than a ‘hypothetical situation’ where
the walker is able to access any node j with probability µj from anywhere in one step (more like a

random jumper). This can be seen by noting that for large time n, the scaled MSE E[∥θn−θ∗∥2]/βn

is composed of the diagonal entries of the covariance matrix Vθ , which, as we discuss in detail in
Appendix F.2, are decreasing in α as a consequence of the Loewner ordering in Proposition 3.4. For
large enough α, the scaled MSE for SA-SRRW becomes smaller than its i.i.d. counterpart, which is
always a constant. Although Doshi et al. (2023) alluded this for sampling applications with Vx(α),
we broaden its horizons to distributed optimization problem with Vθ(α) using tokens on graphs.
Our subsequent result concerns the performance comparison between cases (i) and (iii).

Corollary 3.5. For any α > 0, we have V
(1)
θ (α) <L V

(3)
θ (α) = V

(3)
θ (0).

We show that case (i) is asymptotically better than case (iii) for α > 0. In view of Proposition 3.4
and Corollary 3.5, the advantages of case (i) become prominent.

9Further insights of O(1/α2) are tied to the two-timescale structure, particularly βn = o(γn) in case (i),
which places θn on the slow timescale so that the correlation terms J12(α),J22(α) in the Jacobian matrix
J(α) in (8) come into play. Technical details are referred to Appendix E.2, where we show the form of Uθ(α).
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Figure 2: Simulation results under case (i): (a) and (b) show the performance of SGD-SRRW and
SHB-SRRW for various ³ values. (c) shows that MSE decreases at O(1/³2) speed.
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Figure 3: Comparison of the performance among cases (i) - (iii) for ³ ∈ {1, 5, 10}.

4 SIMULATION

In this section, we simulate our SA-SRRW algorithm on the wikiVote graph (Leskovec & Krevl,
2014), comprising 889 nodes and 2914 edges. We configure the SRRW’s base Markov chain P as
the MHRW with a uniform target distribution µ = 1

N 1. For distributed optimization, we consider
the following L2 regularized binary classification problem:

minθ∈RD

{

f(θ) ≜ 1
N

∑N
i=1 log

(

1 + eθ
T si

)

− yi
(

θT si
)

+ »
2 ∥θ∥2

}

, (12)

where {(si, yi)}Ni=1 is the ijcnn1 dataset (with 22 features, i.e., si ∈ R
22) from LIBSVM (Chang

& Lin, 2011), and penalty parameter » = 1. Each node in the wikiVote graph is assigned one
data point, thus 889 data points in total. We perform SRRW driven SGD (SGD-SRRW) and SRRW
driven stochastic heavy ball (SHB-SRRW) algorithms (see (13) in Appendix A for its algorithm).
We fix the step size ´n = (n + 1)−0.9 for the SA iterates and adjust µn = (n + 1)−a in the SRRW
iterates to cover all three cases discussed in this paper: (i) a=0.8; (ii) a=0.9; (iii) a=1. We use
mean square error (MSE), i.e., E[∥θn−θ∗∥2], to measure the error on the SA iterates.

Our results are presented in Figures 2 and 3, where each experiment is repeated 100 times. Figures
2a and 2b, based on wikiVote graph, highlight the consistent performance ordering across different
³ values for both algorithms over almost all time (not just asymptotically). Notably, curves for
³ g 5 outperform that of the i.i.d. sampling (in black) even under the graph constraints. Figure 2c
on the smaller Dolphins graph (Rossi & Ahmed, 2015) - 62 nodes and 159 edges - illustrates that
the points of (³, MSE) pair arising from SGD-SRRW at time n = 107 align with a curve in the form
of g(x)= c1

(x+c2)2
+c3 to showcase O(1/³2) rates. This smaller graph allows for longer simulations

to observe the asymptotic behaviour. Additionally, among the three cases examined at identical ³
values, Figures 3a - 3c confirm that case (i) performs consistently better than the rest, underscoring
its superiority in practice. Further results, including those from non-convex functions and additional
datasets, are deferred to Appendix H due to space constraints.

5 CONCLUSION

In this paper, we show both theoretically and empirically that the SRRW as a drop-in replacement
for Markov chains can provide significant performance improvements when used for token algo-
rithms, where the acceleration comes purely from the careful analysis of the stochastic input of the
algorithm, without changing the optimization iteration itself. Our paper is an instance where the
asymptotic analysis approach allows the design of better algorithms despite the usage of uncon-
ventional noise sequences such as nonlinear Markov chains like the SRRW, for which traditional
finite-time analytical approaches fall short, thus advocating their wider adoption.
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A EXAMPLES OF STOCHASTIC ALGORITHMS OF THE FORM (2).

In the literature of stochastic optimizations, many SGD variants have been proposed by introducing
an auxiliary variable to improve convergence. In what follows, we present two SGD variants with
decreasing step size that can be presented in the form of (2): SHB (Gadat et al., 2018; Li et al., 2022)
and momentum-based algorithm (Barakat et al., 2021; Barakat & Bianchi, 2021).

{

θn+1=θn−´n+1mn

mn+1=mn+´n+1(∇F (θn, Xn+1)−mn),







vn+1=vn+´n+1(∇F (θn, Xn+1)
2−vn),

mn+1=mn+´n+1(∇F (θn, Xn+1)−mn),

θn+1=θn−´n+1mn/
√
vn + ϵ,

(a). SHB (b). Momentum-based Algorithm

(13)

where ϵ > 0, θn,mn,vn,∇F (θ, X) ∈ R
d, and the square and square root in (13) (b) are element-

wise operators.10

For SHB, we introduce an augmented variable zn and function H(zn, Xn+1) defined as follows:

zn ≜

[

θn
mn

]

∈ R
2d, H(zn, Xn+1) ≜

[

−mn

∇F (θn, Xn+1)−mn

]

∈ R
2d.

For the general momentum-based algorithm, we define

zn ≜

[

vn

mn

θn

]

∈ R
3d, H(zn, X) ≜





∇F (θn, Xn+1)
2 − vn

∇F (θn, Xn+1)−mn

−mn/
√
vn + ϵ



 ∈ R
3d.

Thus, we can reformulate both algorithms in (13) as zn+1 = zn + ´n+1H(zn, Xn+1). This aug-
mentation approach was previously adopted in (Gadat et al., 2018; Barakat et al., 2021; Barakat &
Bianchi, 2021; Li et al., 2022) to analyze the asymptotic performance of algorithms in (13) using an
i.i.d. sequence {Xn}ng0. Consequently, the general SA iteration (2) includes these SGD variants.
However, we mainly focus on the CLT for the general SA driven by SRRW in this paper. Pursuing
the explicit CLT results of these SGD variants with specific form of function H(θ, X) driven by the
SRRW sequence {Xn} is out of the scope of this paper.

When we numerically test the SHB algorithm in Section 4, we use the exact form of (13) (a) and
the stochastic sequence {Xn} is now driven by the SRRW. Specifically, we consider MHRW with
transition kernel P as the base Markov chain of the SRRW process, e.g.,

Pij =

{

min
{

1
di
, 1
dj

}

if node j is the neighbor of node i,

0 otherwise,

Pii = 1−
∑

j∈N

Pij .

Then, at each time step n,

Draw: Xn+1 ∼ KXn,·[xn],

where Kij [x] ≜
Pij(xj/µj)

−³

∑

k∈N Pik(xk/µk)−³
, ∀ i, j ∈ N ,

Update: xn+1 = xn + µn+1(δXn+1 − xn),

θn+1 = θn − ´n+1mn,

mn+1 = mn + ´n+1(∇F (θn, Xn+1)−mn).

10For ease of expression, we simplify the original SHB and momentum-based algorithms from Gadat et al.
(2018); Li et al. (2022); Barakat et al. (2021); Barakat & Bianchi (2021), setting all tunable parameters to 1 and
resulting in (13).
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B DISCUSSION ON MEAN FIELD FUNCTION OF SRRW ITERATES (4b)

Non-asymptotic analyses have seen extensive attention recently in both single-timescale SA litera-
ture (Sun et al., 2018; Karimi et al., 2019; Chen et al., 2020b; 2022) and two-timescale SA literature
(Doan, 2021; Zeng et al., 2021). Specifically, single-timescale SA has the following form:

xn+1 = xn + ´n+1H(xn, Xn+1),

and function h(x) ≜ EX∼µ[H(x, X)] is the mean field of function H(x, X). Similarly, for two-
timescale SA, we have the following recursions:

xn+1 = xn + ´n+1H1(xn,yn, Xn+1),

yn+1 = yn + µn+1H2(xn,yn, Xn+1),

where {´n} and {µn} are on different timescales, and function hi(x,y) ≜ EX∼µ[Hi(x,y, X)] is
the mean field of function Hi(x,y, X) for i = {1, 2}. All the aforementioned works require the
mean field function h(x) in the single-timescale SA (or h1(x,y), h2(x,y) in the two-timescale SA)
to be globally Lipschitz with a Lipschitz constant L to proceed with the derivation of finite-time
bounds including the constant L.

Here, we show that the mean field function π[x] − x in the SRRW iterates (4b) is not globally
Lipschitz, where π[x] is the stationary distribution of the SRRW kernel K[x] defined in (3). To this
end, we show that each entry of Jacobian matrix of π[x]−x goes unbounded because a multivariate
function is Lipschitz if and only if it has bounded partial derivatives. Note that from Doshi et al.
(2023, Proposition 2.1), for the i-th entry of π[x], we have

πi[x] =

∑

j∈N µiPij (xi/µi)
−³

(xj/µj)
−³

∑

i∈N

∑

j∈N µiPij (xi/µi)
−³

(xj/µj)
−³ . (16)

Then, the Jacobian matrix of the mean field function π[x] − x , which has been derived in Doshi
et al. (2023, Proof of Lemma 3.4 in Appendix B), is given as follows:

∂(πi[x]− xi)

∂xj

=
2³

xj
· (
∑

k∈N µiPik (xi/µi)
−³

(xk/µk)
−³

)(
∑

k∈N µjPjk (xj/µj)
−³

(xk/µk)
−³

)

(
∑

l∈N

∑

k∈N µlPlk (xl/µl)
−³

(xk/µk)
−³

)2

− ³

xj
· µiPij (xi/µi)

−³
(xj/µj)

−³

∑

l∈N

∑

k∈N µlPlk (xl/µl)
−³

(xk/µk)
−³

(17)

for i, j ∈ N , i ̸= j, and

∂(πi[x]− xi)

∂xi

=
2³

xi
· (

∑

k∈N µiPik (xi/µi)
−³

(xk/µk)
−³

)2

(
∑

l∈N

∑

k∈N µlPlk (xl/µl)
−³

(xk/µk)
−³

)2

− ³

xi
·
∑

k∈N µiPik (xi/µi)
−³

(xk/µk)
−³

+ µiPii(xi/µi)
−2³

∑

l∈N

∑

k∈N µlPlk (xl/µl)
−³

(xk/µk)
−³ − 1

(18)

for i ∈ N . Since the empirical distribution x ∈ Int(Σ), we have xi ∈ (0, 1) for all i ∈ N . For
fixed i, assume xi = xj and as they approach zero, the terms (xi/µi)

−³, (xj/µj)
−³ dominate the

fraction in (17) and both the numerator and the denominator of the fraction have the same order in
terms of xi, xj . Thus, we have

∂(πi[x]− xi)

∂xj
= O

(
1

xj

)

such that the (i, j)-th entry of the Jacobian matrix can go unbounded as xj → 0. Consequently,
π[x]− x is not globally Lipschitz for x ∈ Int(Σ).
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C DISCUSSION ON ASSUMPTION A3′

When µn = o(´n), iterates xn has smaller step size compared to θn, thus converges ‘slower’ than
θn. From Assumption A3′, θn will intuitively converge to some point Ä(x) with the current value
x from the iteration xn, i.e., EX∼π[x][H(Ä(x), X)] = 0, while the Hurwitz condition is to ensure

the stability around Ä(x). We can see that Assumption A3 is less stringent than A3′ in that it only
assumes such condition when x = µ such that Ä(µ) = θ∗ rather than for all x ∈ Int(Σ).

One special instance of Assumption A3′ is by assuming the linear SA, e.g., H(θ, i) = Aiθ + bi. In
this case, EX∼π[x][H(Ä(x), X)] = 0 is equivalent to Ei∼π[x][Ai]Ä(x)+Ei∼π[x][bi] = 0. Under the

condition that for every x ∈ Int(Σ), matrix Ei∼π[x][Ai] is invertible, we then have

Ä(x) = −(Ei∼π[x][Ai])
−1 · Ei∼π[x][bi].

However, this condition is quite strict. Loosely speaking, Ei∼π[x][Ai] being invertible for any x

is similar to saying that any convex combination of {Ai} is invertible. For example, if we assume

{Ai}i∈N are negative definite and they all share the same eigenbasis {ui}, e.g.,Ai =
∑D

j=1 ¼
i
juiu

T
i

and ¼ij < 0 for all i ∈ N , j ∈ [D]. Then, Ei∼π[x][Ai] is invertible.

Another example for Assumption A3′ is when H(θ, i) = H(θ, j) for all i, j ∈ N , which implies
that each agent in the distributed learning has the same local dataset to collaboratively train the
model. In this example, Ä(x) = θ∗ such that

Ei∼π[x][H(Ä(x), i)] = h(θ∗) = 0,

Ei∼π[x][∇H(Ä(x), i)] +
1{b=1}

2
I = ∇h(θ∗) +

1{b=1}

2
I being Hurwitz.

D PROOF OF LEMMA 3.1 AND LEMMA 3.2

In this section, we demonstrate the almost sure convergence of both θn and xn together. This proof
naturally incorporates the almost certain convergence of the SRRW iteration in Lemma 3.1, since
xn is independent of θn (as indicated in (4)), allowing us to separate out its asymptotic results. The
same reason applies to the CLT analysis of SRRW iterates and we refer the reader to Section E.1 for
the CLT result of xn in Lemma 3.1.

We will use different techniques for different settings of step sizes in Assumption A2. Specifically,
for step sizes µn = (n+ 1)−a, ´n = (n+ 1)−b, we consider the following scenarios:

Scenario 1: We consider case(ii): 1/2 < a = b f 1, and will apply the almost sure convergence
result of the single-timescale stochastic approximation in Theorem G.8 and verify all the
conditions therein.

Scenario 2: We consider both case(i): 1/2 < a < b f 1 and case (iii): 1/2 < b < a f 1. In these
two cases, step sizes µn, ´n decrease at different rates, thereby putting iterates xn,θn on
different timescales and resulting in a two-timescale structure. We will apply the existing
almost sure convergence result of the two-timescale stochastic approximation with iterate-
dependent Markov chain in Yaji & Bhatnagar (2020, Theorem 4) where our SA-SRRW
algorithm can be regarded as a special instance.11

D.1 SCENARIO 1

In Scenario 1, we have ´n = µn. First, we rewrite (4) as
[
θn+1

xn+1

]

=

[
θn
xn

]

+ µn+1

[
H(θn.Xn+1)
δXn+1 − xn

]

. (19)

11However, Yaji & Bhatnagar (2020) paper only analysed the almost sure convergence. The central limit
theorem analysis remains unknown in the literature for the two-timescale stochastic approximation with iterate-
dependent Markov chains. Thus, our CLT analysis in Section E for this two-timescale structure with iterate-
dependent Markov chain is still novel and recognized as our contribution.
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By augmentations, we define the variable zn ≜

[
θn
xn

]

∈ R
(N+D)×1 and the function G(zn, i) ≜

[
H(θn, i)
δi − xn

]

∈ R
(N+d)×1. In addition, we define a new Markov chain {Yn}ng0 in the same state

space N as SRRW sequence {Xn}ng0. With slight abuse of notation, the transition kernel of {Yn}
is denoted by K′[zn] ≡ K[xn] and its stationary distribution π′[zn] ≡ π[xn], where K[xn] and
π(xn) are the transition kernel and its corresponding stationary distribution of SRRW, with π[x] of
the form

Ãi[x] ∝
∑

j∈N

µiPij(xi/µi)
−³(xj/µj)

−³. (20)

Recall that µ is the fixed point, i.e., π[µ] = µ, and P is the base Markov chain inside SRRW (see
(3)). Then, the mean field

g(z) = EY∼π′(z)[G(z, Y )] =

[∑

i∈N Ãi[x]H(θ, i)
π[x]− x

]

,

and z∗ = (θ∗,µ) for θ∗ ∈ Θ in Assumption A3 is the root of g(z), i.e., g(z∗) = 0. The augmented
iteration (19) becomes

zn+1 = zn + µn+1G(zn, Yn+1) (21)

with the goal of solving g(z) = 0. Therefore, we can treat (21) as an SA algorithm driven by
a Markov chain {Yn}ng0 with its kernel K′[z] and stationary distribution π′[z], which has been
widely studied in the literature (e.g., Delyon (2000); Benveniste et al. (2012); Fort (2015); Li et al.
(2023)). In what follows, we demonstrate that for any initial point z0 = (θ0,x0) ∈ R

D × Int(Σ),
the SRRW iteration {xn}ng0 will almost surely converge to the target distribution µ, and the SA
iteration {θn}ng0 will almost surely converge to the set Θ.

Now we verify conditions C1 - C4 in Theorem G.8. Our assumption A4 is equivalent to condition
C1 and assumption A2 corresponds to condition C2. For condition C3, we set ∇w(z) ≡ −g(z),
and the set S ≡ {z∗|θ∗ ∈ Θ,x∗ = µ}, including disjoint points. For condition C4, since K′[z],
or equivalently K[x], is ergodic and time-reversible for a given z, as shown in the SRRW work
Doshi et al. (2023), it automatically ensures a solution to the Poisson equation, which has been well
discussed in Chen et al. (2020a, Section 2) and Benveniste et al. (2012); Meyn (2022). To show (97)
and (98) in condition C4, for each given z and any i ∈ N , we need to give the explicit solutionmz(i)
to the Poisson equation mz(i) − (K′

zmz)(i) = G(z, i) − g(z) in (96). The notation (K′
zmz)(i) is

defined as follows.
(K′

zmz)(i) =
∑

j∈N

K′
z(i, j)m(z, j).

Let G(z) ≜ [G(z, 1), · · · , G(z, N)]T ∈ R
N×D. We use [A]:,i to denote the i-th column of matrix

A. Then, we let mz(i) such that

mz(i) =

∞∑

k=0

(
[G(z)(K′[z]k)T ][:,i] − g(z)

)
=

∞∑

k=0

[G(z)((K′[z]k)T − π′[z]1T )][:,i]. (22)

In addition,

(K′
zmz)(i) =

∞∑

k=1

[G(z)(K′[z]T − π′[z]1T )][:,i]. (23)

We can check that the mz(i) form in (22) is indeed the solution of the above Poisson equation.
Now, by induction, we get K′[z]k − 1π′[z]T = (K′[z] − 1π′[z]T )k for k g 1 and for k = 0,
K′[z]0 − 1π′[z]T = (K′[z]− 1π′[z]T )0 − 1π′[z]T . Then,

mz(i) =

∞∑

k=0

[G(z)(K′[z]T − π′[z]1T )k][:,i] − g(z)

=

[

G(z)
∞∑

k=0

(K′[z]T − π′[z]1T )k

]

[:,i]

− g(z)

=
[
G(z)(I−K′[z]T + π′[z]1T )−1

]

[:,i]
− g(z)

=
∑

j∈N

(I−K′[z] + 1π′[z]T )−1(i, j)G(z, j)− g(z).

(24)
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Here, (I−K′[z] + 1π′[z]T )−1 is well defined because K′[z] is ergodic and time-reversible for any
given z (proved in Doshi et al. (2023, Appendix A)). Now that both functions H(θ, i) and δi − x
are bounded for each compact subset of RD × Σ by our assumption A1, function G(z, i) is also
bounded within the compact subset of its domain. Thus, function mz(i) is bounded, and (97) is
verified. Moreover, for a fixed i ∈ N ,
∑

j∈N

(I−K′[z] + 1π′[z]T )−1(i, j)δj = (I−K′[z] + 1π′[z]T )−1
[:,i] = (I−K[x] + 1π[x]T )−1

[:,i]

and this vector-valued function is continuous in x because K[x],π[x] are continuous. We then
rewrite (24) as

mz(i) =

[∑

j∈N (I−K[x] + 1π[x]T )−1(i, j)H(x, j)

(I−K[x]T + π[x]1T )−1
[:,i]

]

−
[∑

i∈N Ãi[x]H(θ, i)
π[x]− x

]

.

With continuous functionsH(θ, i),K[x],π[x], we havemz(i) continuous with respect to z, so does
(K′

zmz)(i). This implies that functions mz(i) and (K′
zmz)(i) are locally Lipschitz, which satisfies

(98) with ϕC(x) = CCx for some constant CC that depends on the compact set C. Therefore,
condition C4 is checked, and we can apply Theorem G.8 to show the almost convergence result of
(19), i.e., almost surely,

lim
n→∞

xn = µ, and lim sup
n→∞

inf
θ∗∈Θ

∥θn − θ∗∥ = 0.

Therefore, the almost sure convergence of xn in Lemma 3.1 is also proved. This finishes the proof
in Scenario 1.

D.2 SCENARIO 2

Now in this subsection, we consider the steps sizes µn, ´n with 1/2 < a < b f 1 and 1/2 < b <
a f 1. We will frequently use assumptions (B1) - (B5) in Section G.3 and Theorem G.10 to prove
the almost sure convergence.

D.2.1 CASE (I): 1/2 < a < b f 1

In case (i), θn is on the slow timescale and xn is on the fast timescale because iteration θn has
smaller step size than xn, making θn converge slower than xn. Here, we consider the two-timescale
SA of the form:

θn+1 = θn + ´n+1H(θ, Xn+1),

xn+1 = xn + µn+1(δXn+1
− x).

Now, we verify assumptions (B1) - (B5) listed in Section G.3.

• Assumptions (B1) and (B5) are satisfied by our assumptions A2 and A4.

• Our assumption A3 shows that the function H(θ, X) is continuous and differentiable w.r.t
θ and grows linearly with ∥θ∥. In addition, δX − x also satisfies this property. Therefore,
(B2) is satisfied.

• Now that the function π[x]− x is independent of θ, we can set Ä(θ) = µ for any θ ∈ R
D

such that π[µ]− µ = 0 from Doshi et al. (2023, Proposition 3.1), and

∇x(π(x)− x)|x=µ = 2³u1T − ³PT − (³+ 1)I

from Doshi et al. (2023, Lemma 3.4), which is Hurwitz. Furthermore, Ä(θ) = µ inherently
satisfies the condition ∥Ä(θ)∥ f L2(1+∥θ∥) for any L2 g ∥µ∥. Thus, conditions (i) - (iii)
in (B3) are satisfied. Additionally,

∑

i∈N πi[Ä(θ)]H(θ, i) =
∑

i∈N πi[x] = h(θ) such

that for θ∗ ∈ Θ defined in assumption A3,
∑

i∈N πi[Ä(θ
∗)]H(θ∗, i) = h(θ∗) = 0, and

∇θh(θ
∗) is Hurwitz. Therefore, (B3) is checked.

• Assumption (B4) is verified by the nature of SRRW, i.e., its transition kernel K[x] and the
corresponding stationary distribution π[x] with π[µ] = µ.
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Consequently, assumptions (B1) - (B5) are satisfied by our assumptoins A1 - A4 and by Theorem
G.10, we have limn→∞ xn = µ and θn → Θ almost surely.

Next, we consider 1/2 < b < a f 1. As discussed before, (B1), (B2), (B4) and (B5) are satisfied by
our assumptions A1 - A4 and the properties of SRRW. The only difference for this step size setting,
compared to the previous one 1/2 < a < b f 1, is that the roles of θn,xn are now flipped, that is,
θn is now on the fast timescale while xn is on the slow timescale. By a much stronger Assumption
A3′, for any x ∈ Int(Σ), (i) EX∼π[x][H(Ä(x), X)] = 0; (ii) EX∼π[x][∇H(Ä(x), X)] is Hurwitz;

(iii) ∥Ä(x)∥ f L2(1 + ∥x∥). Hence, conditions (i) - (iii) in (B3) are satisfied. Moreover, we have
π[µ]−µ = 0, ∇(π[x]−x)|x=µ being Hurwitz, as mentioned in the previous part. Therefore, (B3)
is verified. Accordingly, (B1) - (B5) are checked by our assumptions A1, A2, A3′, A4. By Theorem
G.10, we have limn→∞ xn = µ and θn → Θ almost surely.

E PROOF OF THEOREM 3.3

This section is devoted to the proof of Theorem 3.3, which also includes the proof of the CLT results
for the SRRW iteration xn in Lemma 3.1. We will use different techniques depending on the step
sizes in Assumption A2. Specifically, for step sizes µn = (n + 1)−a, ´n = (n + 1)−b, we will
consider three cases: case (i): ´n = o(µn); case (ii): ´n = µn; and case (iii): µn = o(´n). For case
(ii), we will use the existing CLT result for single-timescale SA in Theorem G.9. For cases (i) and
(iii), we will construct our own CLT analysis for the two-timescale structure. We start with case (ii).

E.1 CASE (II): ´n = µn

In this part, we stick to the notations for single-timescale SA studied in Section D.1. To utilize
Theorem G.9, apart from Conditions C1 - C4 that have been checked in Section D.1, we still need
to check conditions C5 and C6 listed in Section G.2.

Assumption A3 corresponds to condition C5. For condition C6, we need to obtain the explicit form
of function Qz to the Poisson equation defined in (96), that is,

Qz(i)− (K′
zQz)(i) = È(z, i)− Ej∼π[z][È(z, j)]

where

È(z, i) ≜
∑

j∈N

K′
z(i, j)mz(j)mz(j)

T − (K′
zmz)(i)(K

′
zmz)(i)

T .

Following the similar steps in the derivation of mz(i) from (22) to (24), we have

Qz(i) =
∑

j∈N

(I−K′[z] + 1π′[z]T )−1(i, j)mz(j)− Ã′
j [z]mz(j).

We also know that Qz(i) and (K′
zQz)(i) are continuous in z for any i ∈ N . For any z in a compact

set Ω, Qz(i) and (K′
zQz)(i) are bounded because function mz(i) is bounded. Therefore, C6 is

checked. By Theorem G.9, assume zn =

[
θn
xn

]

converges to a point z∗ =

[
θ∗

µ

]

for θ∗ ∈ Θ, we

have

µ−1/2
n (zn − z∗)

dist.−−−−→
n→∞

N(0,V), (26)

where V is the solution of the following Lyapunov equation

V

(
1{b=1}

2
I+∇g(z∗)T

)

+

(
1{b=1}

2
I+∇g(z∗)

)

V +U = 0, (27)

and U =
∑

i∈N µi

(
mz∗(i)mz∗(i)T − (Kz∗mz∗)(i)(Kz∗mz∗)(i)T

)
.
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By algebraic calculations of derivative of π[x] with respect to x in (20),12 we can rewrite ∇g(z∗) in
terms of x,θ, i.e.,

J(³) ≜ ∇g(z∗) =
[

∂
∑

i∈N Ãi[x]H(θ,i)

∂θ

∂
∑

i∈N Ãi[x]H(θ,i)

∂x
∂(π[x]−x)

∂θ
∂π[x]−x

∂x

]

z=z∗

=

[
∇h(θ∗) −³HT (PT + I)

0 2³µ1T − ³PT − (³+ 1)I

]

≜

[
J11 J12(³)
J21 J22(³)

]

,

where matrix H = [H(θ∗, 1), · · · , H(θ, N)]T . Then, we further clarify the matrix U. Note that

mz∗(i) =

∞∑

k=0

[G(z∗)((Pk)T −µ1T )][:,i] =

∞∑

k=0

[G(z∗)(Pk)T ][:,i] = E

[
∞∑

k=0

[G(z∗, Xk)]

∣
∣
∣
∣
∣
X0 = i

]

,

(28)
where the first equality holds because K′[µ] = P from the definition of SRRW kernel (3), the
second equality stems from G(z∗)µ = g(z∗) = 0, and the last term is a conditional expectation
over the base Markov chain {Xk}kg0 (with transition kernel P) conditioned on X0 = i. Similarly,
with (K′

zmz)(i) in the form of (23), we have

(K′
zmz)(i) = E

[
∞∑

k=1

[G(z∗, Xk)]

∣
∣
∣
∣
∣
X0 = i

]

.

From the form ‘
∑

i∈N µi’ inside the matrix U, the Markov chain {Xk}kg0 is in its stationary regime
from the beginning, i.e., Xk ∼ µ for any k g 0. Hence,

U = E





(
∞∑

k=0

[G(z∗, Xk)]

)(
∞∑

k=0

[G(z∗, Xk)]

)T




− E





(
∞∑

k=1

[G(z∗, Xk)]

)(
∞∑

k=1

[G(z∗, Xk)]

)T




= E
[
G(z∗, X0)G(z

∗, X0)
T
]
+E



G(z∗, X0)

(
∞∑

k=1

G(z∗, Xk)

)T




+ E

[(
∞∑

k=1

G(z∗, Xk)

)

G(z∗, X0)
T

]

= Cov(G(z∗, X0), G(z
∗, X0))

+

∞∑

k=1

[Cov(G(z∗, X0), G(z
∗, Xk)) + Cov(G(z∗, Xk), G(z

∗, X0))] ,

(29)

where the covariance between G(z∗, X0) and G(z∗, Xk) for the Markov chain {Xn} in the station-
ary regime is Cov(G(z∗, X0), G(z

∗, Xk)). By Brémaud (2013, Theorem 6.3.7), it is demonstrated
that U is the sampling covariance of the base Markov chain P for the test function G(z∗, ·). More-
over, Brémaud (2013, equation (6.34)) states that this sampling covariance U can be rewritten in the
following form:

U =

N−1∑

i=1

G(z∗)TuiuiG(z∗) =

N−1∑

i=1

1 + ¼i
1− ¼i

[
HTuiu

T
i H HTuiu

T
i

uiu
T
i H uiu

T
i

]

≜

[
U11 U12

U21 U22

]

, (30)

where {(¼i,ui)}i∈N is the eigenpair of the transition kernel P of the ergodic and time-reversible
base Markov chain. This completes the proof of case 1.

12One may refer to Doshi et al. (2023, Appendix B, Proof of Lemma 3.4) for the computation of
∂π[x]−x

∂x
.
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Remark E.1. For the CLT result (26), we can look further into the asymptotic covariance matrix V

as in (27). For convenience, we denote V =

[
V11 V12

V21 V22

]

and U in the form of (30) such that

[
V11 V12

V21 V22

](
1{b=1}

2
I+ J(³)T

)

+

(
1{b=1}

2
I+ J(³)

)[
V11 V12

V21 V22

]

+U = 0. (31)

For the SRRW iteration xn, from (26) we know that µ
−1/2
n (xn−µ)

dist.−−−−→
n→∞

N(0,V4). Thus, in this

remark, we want to obtain the closed form of V22. By algebraic computations of the bottom-right
sub-block matrix, we have

(

2³µ1T −³PT −
(

³+ 1−1{a=1}

2

)

I

)

V22

+V22

(

2³µ1T −³PT −
(

³+ 1−1{a=1}

2

)

I

)T

+U22 = 0.

By using result of the closed form solution to the Lyapunov equation (e.g., Lemma G.1) and the
eigendecomposition of P, we have

V22 =

N−1∑

i=1

1

2³(1 + ¼i) + 2− 1{a=1}
· 1 + ¼i
1− ¼i

uiu
T
i . (32)

E.2 CASE (I): ´n = o(µn)

In this part, we mainly focus on the CLT of the SA iteration θn because the SRRW iteration xn is
independent of θn and its CLT result has been shown in Remark E.1.

E.2.1 DECOMPOSITION OF SA-SRRW ITERATION (4)

We slightly abuse the math notation and define the function

h(θ,x) ≜ Ei∼π[x]H(θ, i) =
∑

i∈N

Ãi[x]H(θ, i)

such that h(θ,µ) ≡ h(θ). Then, we reformulate (25) as

θn+1 = θn + ´n+1h(θn,xn) + ´n+1(H(θn, Xn+1)− h(θn,xn)). (33a)

xn+1 = xn + µn+1(π[xn]− xn) + µn+1(δXn+1)− π[xn]). (33b)

There exist functions qx : N → R
N , H̃θ,x : N → R

D satisfying the following Poisson equations

δi − π(x) = qx(i)− (Kxqx)(i) (34a)

H(θ, i)− h(θ,x) = H̃θ,x(i)− (KxH̃θ,x)(i), (34b)

for any θ ∈ R
D,x ∈ Int(Σ) and i ∈ N , where (Kxqx)(i) ≜

∑

j∈N Kij [x]qx(j), (KxH̃θ,x)(j) ≜
∑

j∈N Kij [x]H̃θ,x(j). The existence and explicit form of the solutions qx, H̃θ,x, which are contin-

uous w.r.t x,θ, follow the similar steps that can be found in Section D.1 from (22) to (24). Thus, we
can further decompose (33) into

θn+1 =θn + ´n+1h(θn,xn) + ´n+1 (H̃θn,xn
(Xn+1)− (Kxn

H̃θn,xn
)(Xn))

︸ ︷︷ ︸

M
(θ)
n+1

+ ´n+1 ((Kxn+1
H̃θn+1,xn+1

)(Xn+1)− (Kxn
H̃θn,xn

)(Xn+1))
︸ ︷︷ ︸

r
(θ,1)
n

+ ´n+1 ((Kxn
H̃θn,xn

)(Xn)− (Kxn+1H̃θn+1,xn+1)(Xn+1))
︸ ︷︷ ︸

r
(θ,2)
n

,

(35a)
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xn+1 =xn + µn+1(π(xn)− xn) + µn+1 (qxn
(Xn+1)− (Kxn

qxn
)(Xn))

︸ ︷︷ ︸

M
(x)
n+1

+ µn+1 ([Kxn
qxn

](Xn+1)− [Kxn
qxn+1

](Xn+1))
︸ ︷︷ ︸

r
(x,1)
n

+ µn+1 ((Kxn
qxn

)(Xn)− (Kxn+1
qxn+1

)(Xn+1))
︸ ︷︷ ︸

r
(x,2)
n

.

(35b)

such that

θn+1 = θn + ´n+1h(θn,xn) + ´n+1M
(θ)
n+1 + ´n+1r

(θ,1)
n + ´n+1r

(θ,2)
n , (36a)

xn+1 = xn + µn+1(π(xn)− xn) + µn+1M
(x)
n+1 + µn+1r

(x,1)
n + µn+1r

(x,2)
n . (36b)

We can observe that (36) differs from the expression in Konda & Tsitsiklis (2004); Mokkadem &
Pelletier (2006), which studied the two-timescale SA with Martingale difference noise. Here, due to
the presence of the iterate-dependent Markovian noise and the application of the Poisson equation

technique, we have additional non-vanishing terms r
(θ,2)
n , r

(x,2)
n , which will be further examined in

Lemma E.2. Additionally, when we apply the Poisson equation to the Martingale difference terms

M
(θ)
n+1, M

(x)
n+1, we find that there are some covariances that are also non-vanishing as in Lemma E.1.

We will mention this again when we obtain those covariances. These extra non-zero noise terms
make our analysis distinct from the previous ones since the key assumption (A4) in Mokkadem &
Pelletier (2006) is not satisfied. We demonstrate that the long-term average performance of these
terms can be managed so that they do not affect the final CLT result.

Analysis of Terms M
(θ)
n+1,M

(x)
n+1

Consider the filtration Fn ≜ Ã(θ0,x0, X0, · · · ,θn,xn, Xn), it is evident that M
(θ)
n+1,M

(x)
n+1 are

Martingale difference sequences adapted to Fn. Then, we have

E

[

M
(x)
n+1(M

(x)
n+1)

T
∣
∣
∣Fn

]

= E[qxn
(Xn+1)qxn

(Xn+1)
T |Fn] + (Kxn

qxn
)(Xn) ((Kxn

qxn
)(Xn))

T

− E[qxn
(Xn+1)|Fn] (Kxn

qxn
)(Xn))

T − (Kxn
qxn

)(Xn)E[qxn
(Xn+1)

T |Fn]

= E[qxn
(Xn+1)qxn

(Xn+1)
T |Fn]− (Kxn

qxn
)(Xn) ((Kxn

qxn
)(Xn))

T
.

(37)

Similarly, we have

E

[

M
(θ)
n+1(M

(θ)
n+1)

T
∣
∣
∣Fn

]

= E[H̃θn,xn
(Xn+1)H̃θn,xn

(Xn+1)
T |Fn]− (Kxn

H̃θn,xn
)(Xn)

(

(Kxn
H̃θn,xn

)(Xn)
)T

,
(38)

and

E

[

M
(x)
n+1(M

(θ)
n+1)

T
∣
∣
∣Fn

]

= E[qxn
(Xn+1)H̃θn,xn

(Xn+1)
T |Fn]− (Kxn

qxn
)(Xn)

(

(Kxn
H̃θn,xn

)(Xn)
)T

.

We now focus on E

[

M
(x)
n+1(M

(x)
n+1)

T
∣
∣
∣Fn

]

. Denote by

V1(x, i) ≜
∑

j∈N

Ki,j [x]qx(j)qx(j)
T − (Kxqx)(i) ((Kxqx)(i))

T
, (39)

and let its expectation w.r.t the stationary distribution π(x) be v1(x) ≜ Ei∼π(x)[V1(x, i)], we can
construct another Poisson equation, i.e.,

E

[

M
(x)
n+1(M

(x)
n+1)

T
∣
∣
∣Fn

]

−
∑

Xn∈N

ÃXn
(xn)E

[

M
(x)
n+1(M

(x)
n+1)

T
∣
∣
∣Fn

]

= V1(xn, Xn+1)− v1(xn)

= φ(1)
x (Xn+1)− (Kxn

φ(1)
xn

)(Xn+1),
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for some matrix-valued function φ
(1)
x : N → R

N×N . Since qx and K[x] are continuous in x,
functions V1, v1 are also continuous in x. Then, we can decompose (39) into

V1(xn, Xn+1) = v1(µ)
︸ ︷︷ ︸

U22

+ v1(xn)− v1(µ)
︸ ︷︷ ︸

D
(1)
n

+φ(1)
xn

(Xn+1)− (Kxn
φ(1)
xn

)(Xn)
︸ ︷︷ ︸

J
(1,a)
n

+ (Kxn
φ(1)
xn

)(Xn)− (Kxn
φ(1)
xn

)(Xn+1)
︸ ︷︷ ︸

J
(1,b)
n

.
(40)

Thus, we have

E[M
(x)
n+1(M

(x)
n+1)

T |Fn] = U22 +D(1)
n + J(1)

n , (41)

where J
(1)
n = J

(1,a)
n + J

(1,b)
n .

Following the similar steps above, we can decompose E

[

M
(x)
n+1(M

(θ)
n+1)

T
∣
∣
∣Fn

]

and

E

[

M
(θ)
n+1(M

(θ)
n+1)

T
∣
∣
∣Fn

]

as

E

[

M
(x)
n+1(M

(θ)
n+1)

T
∣
∣
∣Fn

]

= U21 +D(2)
n + J(2)

n , (42a)

E

[

M
(θ)
n+1(M

(θ)
n+1)

T
∣
∣
∣Fn

]

= U11 +D(3)
n + J(3)

n . (42b)

where J
(2)
n = J

(2,a)
n +J

(2,b)
n and J

(3)
n = J

(3,a)
n +J

(3,b)
n . Here, we note that matrices Ji

n for i = 1, 2, 3
are in presence of the current CLT analysis of the two-timescale SA with Martingale difference noise.
In addition, U11, U12 and U22 inherently include the information of the underlying Markov chain
(with its eigenpair (¼i,ui)), which is an extension of the previous works (Konda & Tsitsiklis, 2004;
Mokkadem & Pelletier, 2006).

Lemma E.1. For M
(θ)
n+1,M

(x)
n+1 defined in (35) and their decomposition in (41) and (42), we have

U11 =

N−1∑

i=1

1 + ¼i
1− ¼i

uiu
T
i , U21 =

N−1∑

i=1

1 + ¼i
1− ¼i

uiu
T
i H, U11 =

N−1∑

i=1

1 + ¼i
1− ¼i

HTuiu
T
i H,

(43a)

lim
n→∞

D(i)
n = 0 a.s. for i = 1, 2, 3, (43b)

lim
n→∞

µnE

[∥
∥
∥
∥
∥

n∑

k=1

J
(i)
k

∥
∥
∥
∥
∥

]

= 0, for i = 1, 2, 3. (43c)

Proof. We now provide the properties of the four terms inside (41) as an example. Note that

U11 = Ei∼µ[V1(µ, i)] =
∑

i∈N

µi




∑

j∈N

P(i, j)qµ(j)qµ(j)
T − (Pqµ)(i) ((Pqµ)(i))

T





=
∑

j∈N

µjqµ(j)qµ(j)
T − (Pqµ)(j) ((Pqµ)(j))

T
.

We can see that it has exactly the same structure as matrix U in (27). Following the similar steps in
deducing the explicit form of U from (28) to (30), we get

U11 =

N−1∑

i=1

1 + ¼i
1− ¼i

uiu
T
i . (44)

By the almost sure convergence result xn → µ in Lemma 3.1, v1(xn) → v1(µ) a.s. such that

limn→∞ D
(1)
n = 0 a.s.

We next prove that limn→∞ µnE
[∥
∥
∥
∑n

k=1 J
(1,a)
k

∥
∥
∥

]

= 0 and limn→∞ µnE
[∥
∥
∥
∑n

k=1 J
(1,b)
k

∥
∥
∥

]

= 0.
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Since {J(1,a)
n } is a Martingale difference sequence adapted to Fn, with the Burkholder inequality in

Lemma G.2 and p = 1, we show that

E

[∥
∥
∥
∥
∥

n∑

k=1

J
(1,a)
k

∥
∥
∥
∥
∥

]

f C1E





√
√
√
√

(
n∑

k=1

∥
∥
∥J

(1,a)
k

∥
∥
∥

2
)

 . (45)

By assumption A4, xn is always within some compact set Ω such that supn ∥J(1,a)
n ∥ f CΩ < ∞

and for a given trajectory É of xn(É),

µnCp

√
√
√
√

(
n∑

k=1

∥
∥
∥J

(1,a)
k

∥
∥
∥

2
)

f CpCΩµn
√
n, (46)

and the last term decreases to zero in n since a > 1/2.

For J
(1,b)
n , we use Abel transformation and obtain

n∑

k=1

J
(1,b)
k =

n∑

k=1

((Kxk
φ(1)
xk

)(Xk−1)− (Kxk−1
φ(1)
xk−1

)(Xk−1))

+ (Kx0φ
(1)
x0

)(X0)− (Kxn
φ(1)
xn

)(Xn).

Since (Kxφ
(1)
x )(X) is continuous in x, for xn within a compact set Ω (assumption A4), it is local

Lipschitz with a constant LΩ such that

∥(Kxk
φ(1)
xk

)(Xk−1)−Kxk−1
φ(1)
xk−1

)(Xk−1)∥ f LΩ∥xk − xk−1∥ f 2LΩµk.

where the last inequality arises from (4b), i.e., xk−xk−1 = µk(δXk
−xk−1) and ∥δXk

−xk−1∥ f 2

because xn ∈ Int(Σ). Also, ∥(Kx0
φ
(1)
x0 )(X0)∥ + ∥(Kxn

φ
(1)
xn

)(Xn)∥ are upper-bounded by some
positive constant C ′

Ω. This implies that
∥
∥
∥
∥
∥

n∑

k=1

J
(1,b)
k

∥
∥
∥
∥
∥
f C ′

Ω + 2LΩ

n∑

k=1

µk.

Note that

µn

∥
∥
∥
∥
∥

n∑

k=1

J
(1,b)
k

∥
∥
∥
∥
∥
f µnC

′
Ω + 2LΩµn

n∑

k=1

µk f µnC
′
Ω +

2LΩ

a
n1−2a, (47)

where the last inequality is from
∑n

k=1 µk < 1
an

1−a. We observe that the last term in (47) is
decreasing to zero in n because a > 1/2.

Note that J
(1)
k = J

(1,a)
k + J

(1,b)
k , by triangular inequality we have

µnE

[∥
∥
∥
∥
∥

n∑

k=1

J
(11)
k

∥
∥
∥
∥
∥

]

f µnE

[∥
∥
∥
∥
∥

n∑

k=1

J
(11,A)
k

∥
∥
∥
∥
∥

]

+ µnE

[∥
∥
∥
∥
∥

n∑

k=1

J
(11,B)
k

∥
∥
∥
∥
∥

]

f µnC1E





√
√
√
√

(
n∑

k=1

∥
∥
∥J

(11,A)
k

∥
∥
∥

2
)

+ µnE

[∥
∥
∥
∥
∥

n∑

k=1

J
(11,B)
k

∥
∥
∥
∥
∥

]

= E



µnC1

√
√
√
√

(
n∑

k=1

∥
∥
∥J

(11,A)
k

∥
∥
∥

2
)

+ µn

∥
∥
∥
∥
∥

n∑

k=1

J
(11,B)
k

∥
∥
∥
∥
∥



 ,

(48)

where the second inequality comes from (45). By (46) and (47) we know that both terms in the last
line of (48) are uniformly bounded by constants over time n that depend on the set Ω. Therefore, by
dominated convergence theorem, taking the limit over the last line of (48) gives

lim
n→∞

E



µnC1

√
√
√
√

(
n∑

k=1

∥
∥
∥J

(11,A)
k

∥
∥
∥

2
)

+µn

∥
∥
∥
∥
∥

n∑

k=1

J
(11,B)
k

∥
∥
∥
∥
∥





= E



 lim
n→∞

µnC1

√
√
√
√

(
n∑

k=1

∥
∥
∥J

(11,A)
k

∥
∥
∥

2
)

+µn

∥
∥
∥
∥
∥

n∑

k=1

J
(11,B)
k

∥
∥
∥
∥
∥



=0.
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Therefore, we have

lim
n→∞

µnE

[∥
∥
∥
∥
∥

n∑

k=1

J
(1)
k

∥
∥
∥
∥
∥

]

= 0,

In sum, in terms of E[M
(x)
n+1(M

(x)
n+1)

T |Fn] in (41), we have U11 in (44), limn→∞ D
(1)
n = 0 a.s. and

limn→∞ µnE
[∥
∥
∥
∑n

k=1 J
(1)
k

∥
∥
∥

]

= 0.

We can apply the same steps as above for the other two terms i = 2, 3 in (42) and obtain the
results.

Analysis of Terms r
(θ,1)
n , r

(θ,2)
n , r

(x,1)
n , r

(x,2)
n

Lemma E.2. For r
(θ,1)
n , r

(θ,2)
n , r

(x,1)
n , r

(x,2)
n defined in (35), we have the following results:

∥r(θ,1)n ∥ = O(µn) = o(
√

´n),
√
µn

∥
∥
∥
∥
∥

n∑

k=1

r
(θ,2)
k

∥
∥
∥
∥
∥
= O(

√
µn) = o(1). (49a)

∥r(x,1)n ∥ = O(µn) = o(
√

´n),
√
µn

∥
∥
∥
∥
∥

n∑

k=1

r
(x,2)
k

∥
∥
∥
∥
∥
= O(

√
µn) = o(1). (49b)

Proof. For r
(θ,1)
n , note that

r(θ,1)n = (Kxn+1H̃θn+1,xn+1)(Xn+1)− (Kxn
H̃θn,xn

)(Xn+1)

=
∑

j∈N

(

KXn,j [xn+1]H̃θn+1,xn+1
(j)−KXn,j [xn]H̃θn,xn

(j)
)

f
∑

j∈N

LC(∥θn+1 − θn∥+ ∥xn+1 − xn∥)

fNLC(CC´n+1 + 2µn+1)

(50)

where the second last inequality is because Ki,j [x]H̃θ,x(j) is continuous in θ,x K[x], which

stems from continuous functions K[x] and H̃θ,x. The last inequality is from update rules (4) and

(θn,xn) ∈ Ω for some compact subset Ω by assumption A4. Then, we have ∥r(θ,1)n ∥ = O(µn) =
o(
√
´n) because of a > 1/2 g b/2 by assumption A2.

We let ¿n ≜ (Kxn
H̃θn,xn

)(Xn) such that r
(θ,2)
n = ¿n−¿n+1. Note that

∑n
k=1 r

(θ,2)
k = ¿1−¿n+1,

and by assumption A4, ∥¿n∥ is upper bounded by a constant dependent on the compact set, which
leads to

√
µn

∥
∥
∥
∥
∥

n∑

k=1

r
(θ,2)
k

∥
∥
∥
∥
∥
=

√
µn∥¿1 − ¿n+1∥ = O(

√
µn) = o(1).

Similarly, we can also obtain ∥r(x,1)n ∥ = o(
√
´n) and

√
µn

∥
∥
∥
∑n

k=1 r
(x,2)
k

∥
∥
∥ = O(

√
µn) = o(1).

E.2.2 EFFECT OF SRRW ITERATION ON SA ITERATION

In view of the almost sure convergence results in Lemma 3.1 and Lemma 3.2, for large enough n so
that both iterations θn,xn are close to the equilibrium (θ∗,µ), we can apply the Taylor expansion
to functions h(θ,x) and π[x]− x in (36) at the point (θ∗,µ), which results in

h(θ,x) = h(θ∗,µ)+∇θh(θ
∗,µ)(θ−θ∗)+∇xh(θ

∗,µ)(x−µ)+O(∥θ−θ∗∥2+∥x−µ∥2), (51a)

π[x]− x = π[µ]− µ+∇x(π(x)− x)|x=µ(x− µ) +O(∥x− µ∥2). (51b)

With matrix J(³), we have the following:

J11 = ∇θh(θ
∗,µ) = ∇h(θ∗),

J12(³) = ∇xh(θ
∗,µ) = −³HT (PT + I),

J22(³) = ∇x(π(x)− x)|x=µ = 2³µ1T − ³PT − (³+ 1)I.

(52)
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Then, (36) becomes

θn+1 = θn + ´n+1(J11(θn − θ∗) + J12(³)(xn − µ) + r(θ,1)n + r(θ,2)n +M
(θ)
n+1 + ¸(θ)n ), (53a)

xn+1 = xn + µn+1(J22(³)(xn − µ) + r(x,1)n + r(x,2)n +M
(x)
n+1 + ¸(x)n ), (53b)

where ¸
(θ)
n = O(∥xn∥2 + ∥θn∥2) and ¸

(x)
n = O(∥xn∥2).

Then, inspired by Mokkadem & Pelletier (2006), we decompose iterates {xn} and {θn} into xn =

L
(x)
n +∆

(x)
n and θn = L

(θ)
n +R

(θ)
n +∆

(θ)
n . Rewriting (53b) gives

xn − µ = µ−1
n+1J22(³)

−1(xn+1 − xn)− J22(³)
−1(r(x,1)n + r(x,2)n +M

(x)
n+1 + ¸(x)n ),

and substituting the above equation back in (53a) gives

θn+1 − θ∗ = θn − θ∗ + ´n+1

(

J11(θn − θ∗) + µ−1
n+1J12(³)J22(³)

−1(xn+1 − xn)

− J12(³)J22(³)
−1(r(x,1)n + r(x,2)n +M

(x)
n+1 + ¸(x)n ) + r(θ,1)n + r(θ,2)n +M

(θ)
n+1 + ¸(θ)n

)

= (I+ ´n+1J11)(θn − θ∗) + [´n+1µ
−1
n+1J12(³)J22(³)

−1(xn+1 − xn)]

+ ´n+1(M
(θ)
n+1 − J12(³)J22(³)

−1M
(x)
n+1)

+ ´n+1(r
(θ,1)
n + r(θ,2)n + ¸(θ)n − J12(³)J22(³)

−1(r(x,1)n + r(x,2)n + ¸(x)n )),
(54)

From (54) we can see the iteration {θn} implicitly embeds the recursions of three sequences

• ´n+1µ
−1
n+1J12(³)J22(³)

−1(xn+1 − xn);

• ´n+1(M
(θ)
n+1 − J12(³)J22(³)

−1M
(x)
n+1);

• ´n+1(r
(θ,1)
n + r

(θ,2)
n + ¸

(θ)
n − J12(³)J22(³)

−1(r
(x,1)
n + r

(x,2)
n + ¸

(x)
n ))).

Let un ≜
∑n

k=1 ´k and sn ≜
∑n

k=1 µk. Below we define two iterations:

L(θ)
n = e´nJ11L

(θ)
n−1 + ´n(M

(θ)
n − J12(³)J22(³)

−1M (x)
n )

=
n∑

k=1

e(un−uk)J11´k(M
(θ)
k − J12(³)J22(³)

−1M
(x)
k )

(55a)

R(θ)
n = e´nJ11R

(θ)
n−1 + ´nµ

−1
n J12(³)J22(³)

−1(xn − xn−1)

=

n∑

k=1

e(un−uk)J11´kµ
−1
k J12(³)J22(³)

−1(xk − xk−1)
(55b)

and a remaining term ∆
(θ)
n ≜ θn − θ∗ − L

(θ)
n −R

(θ)
n .

Similarly, for iteration xn, define the sequence L
(x)
n such that

L(x)
n = eµnJ22(³)L

(x)
n−1 + µnM

(x)
n =

n∑

k=1

e(sn−sk)J22(³)µkM
(x)
k , (56)

and a remaining term

∆(x)
n ≜ xn − µ− L(θ)

n (57)

The decomposition of θn−θ∗ and xn−µ in the above form is also standard in the single-timescale
SA literature (Delyon, 2000; Fort, 2015).

Characterization of Sequences {L(θ)
n } and {L(x)

n }

we set a Martingale Z(n) = {Z(n)
k }kg1 such that

Z
(n)
k =

(

´
−1/2
n eunJ11 0

0 µ
−1/2
n esnJ22(³)

)

×
k∑

j=1

(

e−ukJ11´k(M
(θ)
k − J12(³)J22(³)

−1M
(x)
k )

e−skJ22(³)µkM
(x)
k

)

.
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Then, the Martingale difference array Z
(n)
k − Z

(n)
k−1 becomes

Z
(n)
k − Z

(n)
k−1 =

(

´
−1/2
n e(un−uk)J11´k(M

(θ)
k − J12(³)J22(³)

−1M
(x)
k )

µ
−1/2
n e(sn−sk)J22(³)µkM

(x)
k

)

and
n∑

k=1

E

[

(Z
(n)
k − Z

(n)
k−1)(Z

(n)
k − Z

(n)
k−1)

T |Fk−1

]

=

(
A1,n A2,n

AT
2,n A4,n

)

,

where, in view of decomposition of M
(θ)
n and M

(x)
n in (41) and (42), respectively,

A1,n = ´−1
n

n∑

k=1

´2
ke

(un−uk)J11

(

U22+D
(1)
k +J

(1)
k −(U21+D

(2)
k +J

(2)
k )(J12(³)J22(³)

−1)T

+ J12(³)J22(³)
−1(U11 +D

(3)
k + J

(3)
k )(J12(³)J22(³)

−1)T

− J12(³)J22(³)
−1(U21 +D

(2)
k + J

(2)
k )T

)

e(un−uk)(J11)
T

,

(58a)

A2,n = ´−1/2
n µ−1/2

n

n∑

k=1

´kµke
(un−uk)J11(U21 − J12(³)J22(³)

−1U11)e
(sn−sk)J22(³)

T

, (58b)

A4,n = µ−1
n

n∑

k=1

µ2ke
(sn−sk)J22(³)(U11 +D

(3)
k + J

(3)
k )e(sn−sk)J22(³)

T

. (58c)

We further decompose A1,n into three parts:

A1,n =´−1
n

n∑

k=1

(

´2
ke

(un−uk)J11(U22 −U21(J12(³)J22(³)
−1)T

− J12(³)J22(³)
−1U12 + J12(³)J22(³)

−1U11(J12(³)J22(³)
−1)T )e(un−uk)(J11)

T

)

+ ´−1
n

n∑

k=1

(

´2
ke

(un−uk)J11(D
(1)
k + J12(³)J22(³)

−1D
(3)
k (J12(³)J22(³)

−1)T

−D
(2)
k (J12(³)J22(³)

−1)T − J12(³)J22(³)
−1(D

(2)
k )T )e(un−uk)(J11)

T

)

+ ´−1
n

n∑

k=1

(

´2
ke

(un−uk)J11(J
(1)
k + J12(³)J22(³)

−1J
(3)
k (J12(³)J22(³)

−1)T

− J
(2)
k (J12(³)J22(³)

−1)T − J12(³)J22(³)
−1(J

(2)
k )T )e(un−uk)(J11)

T

)

≜A
(a)
1,n +A

(b)
1,n +A

(c)
1,n.

(59)

Here, we define Uθ(³) ≜ U22 − U21(J12(³)J22(³)
−1)T − J12(³)J22(³)

−1U12 +
J12(³)J22(³)

−1U11(J12(³)J22(³)
−1)T . By (52) and (43a) in Lemma E.1, we have

Uθ(³) =

N−1∑

i=1

1

(³(1 + ¼i) + 1)2
· 1 + ¼i
1− ¼i

HTuiu
T
i H. (60)

Then, we have the following lemma.

Lemma E.3. For A
(a)
1,n, A

(b)
1,n, A

(c)
1,n defined in (59), we have

lim
n→∞

A
(a)
1,n = Vθ(³), lim

n→∞
∥A(b)

1,n∥ = 0, lim
n→∞

∥A(c)
1,n∥ = 0, (61)

where Vθ(³) is the solution to the Lyapunov equation
(

J11 +
1{b=1}

2
I

)

Vθ(³) +Vθ(³)

(

J11 +
1{b=1}

2
I

)T

+Uθ(³) = 0.
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Proof. First, from Lemma G.4, we have for some c, T > 0 such that

∥A(b)
1,n∥ f ´−1

n

n∑

k=1

∥
∥
∥
∥
D

(1)
k + J12(³)J22(³)

−1D
(3)
k (J12(³)J22(³)

−1)T −D
(2)
k (J12(³)J22(³)

−1)T

− J12(³)J22(³)
−1(D

(2)
k )T

∥
∥
∥
∥
· ´2

kc
2e−2T (un−uk).

Applying Lemma G.6, together with D
(i)
n → 0 a.s. in Lemma E.1, gives

lim sup
n

∥A(b)
1,n∥

f 1

C(b, p)
lim sup

n
∥(D(1)

n + J12(³)J22(³)
−1D(4)

n (J12(³)J22(³)
−1)T

−D(2)
n (J12(³)J22(³)

−1)T − J12(³)J22(³)
−1D(3)

n )∥
= 0.

We now consider ∥A(c)
1,n∥. Set

Ξn ≜

n∑

k=1

(
J(1)
n + J12(³)J22(³)

−1J
(3)
k (J12(³)J22(³)

−1)T

− J
(2)
k (J12(³)J22(³)

−1)T − J12(³)J22(³)
−1(J

(2)
k )T

)
,

we can rewrite A
(c)
1,n as

A
(c)
1,n = ´−1

n

n∑

k=1

´2
ke

(un−uk)J11(Ξk − Ξk−1)e
(un−uk)(J11)

T

.

By the Abel transformation, we have

A
(c)
1,n = ´nΞn + ´−1

n

n−1∑

k=1

[

´2
ke

(un−uk)J11Ξke
(un−uk)(J11)

T

− ´2
k+1e

(un−uk+1)J11Ξke
(un−uk+1)(J11)

T
]

.

(62)

We know from Lemma E.1 that ´nΞn → 0 a.s. because Ξn = o(µ−1
n ). Besides,

∥´ke(un−uk)J11 − ´k+1e
(un−uk+1)J11∥

= ∥(´k − ´k+1)e
(un−uk)J11 + ´k+1e

(un−uk)J11(I− e−´k+1J11)∥
f C1´

2
ke

−(un−uk)T

for some constant C1 > 0 because ´n − ´n+1 f C2´
2
n and ∥I− e−´k+1J11∥ f C3´k+1. Moreover,

∥´ke(un−uk)J11∥+ ∥´k+1e
(un−uk+1)J11∥

f´k∥e(un−uk)J11∥+ ´k∥e(un−uk)J11∥ · ∥e−´k+1J11∥
fC4´ke

−(un−uk)T .

Using Lemma G.7 on (62) gives

∥A(c)
1,n∥ f C1C4´

−1
n

n−1∑

k=1

´2
ke

−2(un−uk)T ∥´kΞk∥+ ∥´nΞn∥.

Applying Lemma G.6 again gives

lim sup
n

∥A(c)
1,n∥ f C5 lim sup

n
∥´nΞn∥ = 0

for some constant C5 > 0.

Finally, we provide an existing lemma below.
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Lemma E.4 (Mokkadem & Pelletier (2005) Lemma 4). For a sequence with decreasing step size
´n = (n + 1)−b for b ∈ (1/2, 1], un =

∑n
k=1 ´k, a positive semi-definite matrix Γ and a Hurwitz

matrix Q, which is given by

´−1
n

n∑

k=1

´2
ne

(un−uk)QΓe(un−uk)Q
T

,

we have

lim
n→∞

´−1
n

n∑

k=1

´2
ne

(un−uk)QΓe(un−uk)Q
T

= V

where V is the solution of the Lyapunov equation
(

Q+
1{b=1}

2
I

)

V +V

(

QT +
1{b=1}

2
I

)

+ Γ = 0.

Then, limn→∞A
(a)
1,n = Vθ(³) is a direct application of Lemma E.4.

We can follow the similar steps in Lemma E.3 to obtain

lim
n→∞

A4,n = Vx(³),

where Vx(³) is in the form of (32).

The last step is to show limn→∞A2,n = 0. Note that

∥A2,n∥ = O

(

´−1/2
n µ−1/2

n

n∑

k=1

´kµk∥e(un−uk)J11∥∥e(sn−sk)J22(³)
T ∥
)

= O

(

´−1/2
n µ−1/2

n

n∑

k=1

´kµke
−(un−uk)T e−(sn−sk)T

′

)

= O

(

´−1/2
n µ−1/2

n

n∑

k=1

´kµke
−(sn−sk)T

′

)

,

where the second equality is from Lemma G.4. Then, we use Lemma G.6 with p = 0 to obtain

n∑

k=1

´kµke
−(sn−sk)T

′

= O(´n) (63)

Additionally, since ´n = o(µn), we have

´−1/2
n µ−1/2

n

n∑

k=1

´kµ
−1/2
k µ

3/2
k e−(sn−sk)T

′

= O(´1/2
n µ−1/2

n ) = o(1).

Then, it follows that limn→∞A2,n = 0. Therefore, we obtain

lim
n→∞

n∑

k=1

E

[

(Z
(n)
k − Z

(n)
k−1)(Z

(n)
k − Z

(n)
k−1)

T |Fk−1

]

=

(
Vθ(³) 0

0 Vx(³)

)

.

Now, we turn to verifying the conditions in Theorem G.3. For some Ä > 0, we have

n∑

k=1

E

[

∥Z(n)
k − Z

(n)
k−1∥2+Ä |Fk−1

]

= O

(

´
−(1+ τ

2 )
n

n∑

k=1

´
2+ τ

2

k ´
τ
2

k e
−(2+Ä)(un−uk)T + µ

−(1+ τ
2 )

n

n∑

k=1

µ
2+ τ

2

k µ
τ
2

k e
−(2+Ä)(sn−sk)T

′

)

= O
(

´
τ
2
n + µ

τ
2
n

)

(64)
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where the last equality comes from Lemma G.6. Since (64) also holds for Ä = 0, we have

n∑

k=1

E

[

∥Z(n)
k − Z

(n)
k−1∥2|Fk−1

]

= O(1) <∞.

Therefore, all the conditions in Theorem G.3 are satisfied and its application then gives

Z(n) =

(√

´−1
n L

(θ)
n√

µ−1
n L

(x)
n

)

n→∞−−−−→
dist.

N

(

0,

(
Vθ(³) 0

0 Vx(³)

))

. (65)

Furthermore, we have the following lemma about the strong convergence rate of {L(θ)
n } and {L(x)

n }.

Lemma E.5.

∥L(θ)
n ∥ = O

(√

´n log(un)
)

a.s. (66a)

∥L(x)
n ∥ = O

(√

µn log(sn)
)

a.s. (66b)

Proof. This proof follows Pelletier (1998, Lemma 1). We only need the special case of Pelletier
(1998, Lemma 1) that fits our scenario; e.g., we let the two types of step sizes therein to be the same.
Specifically, we attach the following lemma.

Lemma E.6 (Pelletier (1998) Lemma 1). Consider a sequence

Ln+1 = eunH

n∑

k=1

e−ukH´kMk+1,

where ´n = n−b, 1/2 < b f 1, and {Mn} is a Martingale difference sequence adapted to the
filtration F such that, almost surely, lim supn E[∥Mn+1∥2|Fn] f M2 and there exists Ä ∈ (0, 2),
b(2 + Ä) > 2, such that supn E[∥Mn+1∥2+Ä |Fn] <∞. Then, almost surely,

lim sup
n

∥Ln∥
√

´n log(un)
f CM , (67)

where CM is a constant dependent on M .

By assumption A4, the iterates (θn,xn) are bounded within a compact subset Ω. Recall the form

of M
(θ)
n+1,M

(x)
n+1 defined in (35), it comprises the functions H̃θn,xn

(i) and (Kxn
H̃θn,xn

)(i), which
in turn include the function H(θ, i). We know that H(θ, i) is bounded for θ in some compact set

C. Thus, for any (θn,xn) ∈ Ω for some compact set Ω, M
(θ)
n+1,M

(x)
n+1 are bounded and we denote

by cθ and cx as their upper bounds, i.e., E[∥M (θ)
n+1∥2|Fn] f c

(θ)
Ω and E[∥M (x)

n+1∥2|Fn] f c
(x)
Ω . We

only need to replace the upper bound c in Lemma E.6 by c
(θ)
Ω for the sequence {L(θ)

n } (resp. c
(x)
Ω

for the sequence {L(x)
n }), i.e.,

lim sup
n

∥L(θ)
n ∥

√

´n log(un)
f C

(θ)
Ω , (68a)

lim sup
n

∥L(x)
n ∥

√

µn log(sn)
f C

(x)
Ω , (68b)

such that ∥L(θ)
n ∥ = O(

√

´n log(un)) a.s. and ∥L(x)
n ∥ = O(

√

µn log(sn)) a.s. which completes the
proof.

Note that we have xn−µ and L
(x)
n weakly converge to the same Gaussian distribution from Remark

E.1 and (65). Then, µ
−1/2
n ∆

(x)
n weakly converges to zero, implying that µ

−1/2
n ∆

(x)
n converges to

zero with probability 1. Therefore, together with {µn} being strictly positive, we have

∆(x)
n = o(

√
µn) a.s. (69)
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Characterization of Sequences {R(θ)
n } and {∆(θ)

n }

We first consider the sequence {R(θ)
n }. We assume a positive real-valued bounded sequence {wn}

under the same conditions as in Mokkadem & Pelletier (2006, Definition 1), i.e.,

Definition E.1. In the case b < 1, wn

wn+1
= 1 + o(´n), which also implies wn

wn+1
= 1 + o(µn).

In the case b = 1, there exist ϵ g 0 and a nondecreasing slowly varying function l(n) such that
wn = n−ϵl(n). When ϵ = 0, we require function l(n) to be bounded.

Since ∥xn − µ∥ = o(1) by a.s. convergence result, we can assume that there exists {wn} such that
∥xn − µ∥ = O(wn). Then, from (55b), we can use the Abel transformation and obtain

R(θ)
n = ´nµ

−1
n J12(³)J22(³)

−1(xn − µ)− e(un−u1)J11´1µ
−1
1 U11J12(³)J22(³)

−1(x1 − µ)

+ eunJ11

n−1∑

k=1

(
e−ukJ11´kµ

−1
k − e−uk+1J11´k+1µ

−1
k+1

)
J12(³)J22(³)

−1(xk+1 − µ),

where the last term on the RHS can be rewritten as

Wn =

n−1∑

k=1

e(un−uk+1)J11´k+1µ
−1
k+1

(
e´k+1J11´k´

−1
k+1µ

−1
k µk+1 − I

)
J12(³)J22(³)

−1(xk+1 − µ).

Using Lemma G.6 on Wn gives ∥Wn∥ = O(µ−1
n ∥e´nJ11 − I∥∥xn − µ∥) = O(µ−1

n ´nÉn). Then,
it follows that for some T > 0,

∥R(θ)
n ∥ = O

(
´nµ

−1
n Én + ∥eunJ11∥

)
= O(´nµ

−1
n Én + e−unT ) (70)

with the application of Lemma G.4 to the second equality.

Then, we shift our focus on {∆(θ)
n }. Specifically, we take (54), (55a), and (56) back to ∆

(θ)
n =

θn − θ∗ − L
(θ)
n −R

(θ)
n , and obtain

∆
(θ)
n+1 =(I+ ´n+1J11)(θn − θ∗)

+ ´n+1(r
(θ,1)
n + r(θ,2)n + ¸(θ)n − J12(³)J22(³)

−1(r(x,1)n + r(x,2)n + ¸(x)n ))

− e´n+1J11L(θ)
n − e´n+1J11R(θ)

n

=(I+ ´n+1J11)(θn − θ∗)

+ ´n+1(r
(θ,1)
n + r(θ,2)n + ¸(θ)n − J12(³)J22(³)

−1(r(x,1)n + r(x,2)n + ¸(x)n ))

− (I+ ´n+1J11 +O(´2
n+1))L

(θ)
n − (I+ ´n+1J11 +O(´2

n+1))R
(θ)
n

=(I+ ´n+1J11)∆
(θ)
n +O(´2

n+1)(L
(θ)
n +R(θ))

n )

+ ´n+1(r
(θ,1)
n + r(θ,2)n + ¸(θ)n − J12(³)J22(³)

−1(r(x,1)n + r(x,2)n + ¸(x)n )),

(71)

where the second equality is by taking the Taylor expansion e´n+1J11 = I+ ´n+1J11 +O(´2
n+1).

Define Φk,n ≜
∏n

j=k+1(I+ ´jJ11) and by convention Φn,n = I. Then, we rewrite (71) as

∆
(θ)
n+1 =

n∑

k=1

Φk,n´k+1

(

O(´k+1)L
(θ)
k +O(´k+1)R

(θ)
k

)

+
n∑

k=1

Φk,n´k+1(r
(θ,1)
k + r

(θ,2)
k + ¸

(θ)
k − J12(³)J22(³)

−1(r
(x,1)
k + r

(x,2)
k + ¸

(x)
k ))

=
n∑

k=1

Φk,n´k+1

(

O(´k+1)L
(θ)
k +O(´k+1)R

(θ)
k

)

+

n∑

k=1

Φk,n´k+1(r
(θ,1)
k + ¸

(θ)
k − J12(³)J22(³)

−1(r
(x,1)
k + ¸

(x)
k ))

+

n∑

k=1

Φk,n´k+1(r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k ).

(72)
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From (72), we can indeed decompose ∆
(x)
n+1 into two parts ∆

(θ)
n+1 = ∆

(θ,1)
n+1 +∆

(θ,2)
n+1 , where

∆
(θ,1)
n+1 ≜

n∑

k=1

Φk,n´k+1

(

O(´k+1)L
(θ)
k +O(´k+1)R

(θ)
k

)

+

n∑

k=1

Φk,n´k+1(r
(θ,1)
k + ¸

(θ)
k − J12(³)J22(³)

−1(r
(x,1)
k + ¸

(x)
k )),

(73a)

∆
(θ,2)
n+1 ≜

n∑

k=1

Φk,n´k+1(r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k ). (73b)

This term ∆
(θ,1)
n+1 shares the same recursive form as in the sequence defined in Mokkadem & Pelletier

(2006, Lemma 6), which is given below.

Lemma E.7 (Mokkadem & Pelletier (2006) Lemma 6). For ∆
(θ,1)
n+1 in the form of (73a), assume

∥xn −µ∥ = O(Én) and ∥∆(x)
n ∥ = O(¶n) for the sequences Én, ¶n defined in (E.1). Then, we have

∥∆(θ,1)
n+1 ∥ = O(´2

nµ
−2
n É2

n + ´nµ
−1
n ¶n) + o(

√

´n) a.s.

Since we already have ∆
(x)
n = o(

√
µn) in (69), together with Lemma E.7, we have

∥∆(θ,1)
n+1 ∥ = O(´2

nµ
−2
n É2

n) + o(´nµ
−1/2
n ) + o(

√

´n) = O(´2
nµ

−2
n É2

n) + o(
√

´n)

where the second equality comes from o(´nµ
−1/2
n ) = o(´

1/2
n (´nµ

−1
n )1/2) = o(´

1/2
n ).

We now focus on ∆
(θ,2)
n+1 . Define a sequence

Ψn ≜

n∑

k=1

r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k , (74)

and we have

´
−1/2
n+1

n∑

k=1

Φk,n´k+1(r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k )

=´
−1/2
n+1

n∑

k=1

Φk,n´k+1(Ψk −Ψk−1)

=´
1/2
n+1Ψn + ´

−1/2
n+1

n−1∑

k=1

(´kΦk,n − ´k+1Φk+1,n)Ψk

where the last equality comes from the Abel transformation. Note that

∥´kΦk,n − ´k+1Φk+1,n∥ f ´k+1∥Φk,n − Φk+1,n∥+ (´k − ´k+1)∥Φk,n∥
f ´k+1∥Φk+1,n∥´k∥J11∥+ C7´

2
k∥Φk,n∥

f C8´
2
ke

−(un−uk)T

for some constant C7, C8 > 0, where the last inequality is from Lemma G.4 and ∥Φk+1,n∥ f
C9∥Φk,n∥ for some constant C9 > 0 that depends on e´0T . Then,

´
−1/2
n+1

∥
∥
∥
∥
∥

n∑

k=1

Φk,n´k+1(r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k )

∥
∥
∥
∥
∥

f ∥´1/2
n+1Ψn∥+

(
´n+1

´n

)1/2

´−1/2
n

n∑

k=1

∥´kΦk,n − ´k+1Φk+1,n∥∥Ψk∥

f ∥´1/2
n+1Ψn∥+ C8

(
´n+1

´n

)1/2

´−1/2
n

n∑

k=1

´
3/2
k e−(un−uk)T ∥´1/2

k Ψk∥.
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By Lemma E.1, we have ´
1/2
n Ψn → 0 a.s. such that by Lemma G.6, it follows that

lim sup
n

´
−1/2
n+1

∥
∥
∥
∥
∥

n∑

k=1

Φk,n´k+1(r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k )

∥
∥
∥
∥
∥
f lim supn ∥´1/2

n Ψn∥
C(T, 1/2)

= 0.

Therefore, we have

∆
(θ,2)
n+1 =

n∑

k=1

Φk,n´k+1(r
(θ,2)
k − J12(³)J22(³)

−1r
(x,2)
k ) = o(

√

´n). (75)

Consequently, ∆
(θ)
n+1 = O(´2

nµ
−2
n É2

n) + o(
√
´n) almost surely.

Now we are dealing with xn − µ and its related sequence Én. Note that by Lemma E.5 and (69),
we have almost surely,

∥xn − µ∥ = O(∥L(x)
n ∥+ ∥∆x

n∥)
= O(

√

µn log(sn) + o(
√
µn))

= O(
√

µn log(sn)).

(76)

Thus, we can set Én ≡ O(
√

µn log(sn)) such that ∥R(θ)
n ∥ in (70) can be written as

∥R(θ)
n ∥ = O(na/2−b

√

log(sn) + e−unT ),

and

∥∆(θ)
n+1∥ = O(na−2blog(sn)) + o(

√

´n).

In view of assumption A2 and ´n = o(µn), a/2−b < −b/2 and a−2b < −b, there exists a c > b/2
such that almost surely,

∥R(θ)
n ∥ = O(n−s), ∥∆(θ)

n+1∥ = o(
√

´n).

Therefore, ´
−1/2
n (R

(θ)
n +∆

(θ)
n+1) → 0 almost surely. This completes the proof of Scenario 2.

E.3 CASE (III): µn = o(´n)

For µn = o(´n), we can see that the roles of θn and xn are flipped, i.e., θn is now on fast timescale
while xn is on slow timescale.

We still decompose xn as xn − µ = L
(x)
n + ∆

(x)
n , where L

(x)
n ,∆

(x)
n are defined in (56) and (57),

respectively. Since xn is independent of θn, the results of L
(x)
n and ∆

(x)
n remain the same, i.e.,

almost surely, L
(x)
n = O(

√

µn log(sn)) from Lemma E.5 and ∆
(x)
n = o(

√
µn) from (69). Then, we

define sequences L̂
(θ)
n and R̂

(θ)
n as follows.

L̂(θ)
n ≜ e´nJ11L̂

(θ)
n−1 + ´nM

(θ)
n =

n∑

k=1

e(un−uk)J11´kM
(θ)
k , (77a)

R̂(θ)
n ≜ e´nJ11R̂

(θ)
n−1 + ´nJ12(³)(L

(x)
n−1 +R

(x)
n−1) =

n∑

k=1

e(un−uk)J11´kJ12(³)(L
(x)
k−1 +R

(x)
k−1).

(77b)

Moreover, the remaining term ∆̂
(θ)
n ≜ θn − θ∗ − L̂

(θ)
n − R̂

(θ)
n .

The proof outline is the same as in the previous scenario:

• We first show ´
−1/2
n ∆̂

(θ)
n weakly converges to the distribution N(0,V

(3)
θ )(³);

• We analyse L̂
(θ)
n and R̂

(θ)
n to ensure that these two terms decrease faster than the CLT scale

´
−1/2
n , i.e., limn→∞ ´

−1/2
n (L̂

(θ)
n − R̂

(θ)
n ) = 0;
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• With above two steps, we can show that ´
−1/2
n (θn − θ∗) weakly converges to the distribu-

tion N(0,V
(3)
θ )(³).

Analysis of L̂
(θ)
n

We first focus on L̂
(θ)
n and follow similar steps as we did when we analysed L

(θ)
n in the previous

scenario. We set a Martingale Z(n) = {Z(n)
k }kg1 such that

Z
(n)
k = ´−1/2

n

n∑

k=1

e(un−uk)J11´kM
(θ)
k .

Then,

An ≜

n∑

k=1

E

[

(Z
(n)
k − Z

(n)
k−1)(Z

(n)
k − Z

(n)
k−1)

T
∣
∣
∣Fk−1

]

.

Following the similar steps in (59) to decompose M
(θ)
k with (42b), we have

An = ´−1
n

n∑

k=1

´2
ke

(un−uk)J11

(

U11 +D
(3)
k + J

(3)
k

)

e(un−uk)J
T
11

= ´−1
n

n∑

k=1

´2
ke

(un−uk)J11U11e
(un−uk)J

T
11

︸ ︷︷ ︸

A
(a)
n

+´−1
n

n∑

k=1

´2
ke

(un−uk)J11D
(3)
k e(un−uk)J

T
11

︸ ︷︷ ︸

A
(b)
n

+ ´−1
n

n∑

k=1

´2
ke

(un−uk)J11J
(3)
k e(un−uk)J

T
11

︸ ︷︷ ︸

A
(c)
n

(78)

Since A
(a)
n , A

(b)
n , A

(c)
n share similar forms as in Lemma E.3, we follow the same steps as the proof

therein, with the application of Lemma E.1. To avoid repetition, we omit the proof and directly give
the following lemma.

Lemma E.8. For A
(a)
n , A

(b)
n , A

(c)
n defined in (78), we have

lim
n→∞

A(a)
n = V

(3)
θ (³), lim

n→∞
∥A(b)

n ∥ = 0, lim
n→∞

∥A(c)
n ∥ = 0, (79)

where V
(3)
θ (³) is the solution to the Lyapunov equation

J11V +VJT
11 +U11 = 0.

Note that here we don’t have the term
1{b=1}

2 I in above lemma, compared to Lemma E.3, because
in the case of µn = o(´n), b < 1 such that 1{b=1} = 0. Then, applying Lemma G.1 to derive the

closed form of V
(3)
θ (³) gives

V
(3)
θ (³) =

∫∞

0
et∇θh(θ

∗)U11e
t∇θh(θ

∗)dt.

Thus, it follows that

lim
n→∞

n∑

k=1

E

[

(Z
(n)
k − Z

(n)
k−1)(Z

(n)
k − Z

(n)
k−1)

T |Fk−1

]

= V
(3)
θ (³).

Again, we use the Martingale CLT result in Theorem G.3 and have the following result.

Zn = ´−1/2
n L̂(θ)

n
n→∞−−−−→
dist.

N
(

0,V
(3)
θ (³)

)

.

Moreover, similar to the tighter upper bound of L
(x)
n proved in Lemma E.5, we utilize the tighter

upper bound Lemma E.6 in the proof thereof, and obtain L̂
(θ)
n = O(

√

´n log(un)).

34



Published as a conference paper at ICLR 2024

Analysis of R̂
(θ)
n

Next, we turn to the term R̂
(θ)
n in (77b). Taking the norm gives the following inequality for some

constant C, T > 0 by applying Lemma G.4,

∥R̂(θ)
n ∥ f C

n∑

k=1

e−(un−uk)T´k(∥L(x)
k−1∥+ ∥R(x)

k−1∥).

Using Lemma G.6 gives

n∑

k=1

e−(un−uk)T´k(∥L(x)
k−1∥+ ∥R(x)

k−1∥) = O(∥L(x)
k−1∥+ ∥R(x)

n−1∥).

Thus, ´
−1/2
n ∥R̂(θ)

n ∥ = o(
√

µn´
−1
n ) + O

(√

µn´
−1
n log(sn)

)

. Since µn = o(´n), µn´
−1
n = (n +

1)b−a, where b − a < 0. Then, there exists some s > 0 such that b − a < −s < 0. Together with

log(sn) = O(log(n)), we have O

(√

µn´
−1
n log(sn)

)

= O(
√

n−s log(n)) = o(1). Therefore, we

have

lim
n→∞

´−1/2
n R̂(θ)

n = 0.

Analysis of ∆̂
(θ)
n

Lastly, let’s focus on the term ∆̂
(θ)
n . We have

∆̂
(θ)
n+1 = θn+1 − θ∗ − L̂

(θ)
n+1 − R̂

(θ)
n+1

= θn − θ∗ + ´n+1

(

J11(θn − θ∗) + J12(³)(xn − µ) +M
(θ)
n+1 + r(θ,1)n + r(θ,2)n + ¸(θ)n

)

− e´n+1J11L̂(θ)
n − ´n+1M

(θ)
n+1 − e´n+1J11R̂(θ)

n − ´n+1J12(³)(L
(x)
n +R(x)

n )

= (I+ ´n+1J11)(θn − θ∗) + ´n+1J12(³)∆
(x)
n + ´n+1(r

(θ,1)
n + r(θ,2)n + ¸(θ)n )

− (I+ ´n+1J11 +O(´2
n+1))(L̂

(θ)
n + R̂(θ)

n )

= (I+ ´n+1J11)∆̂
(θ)
n + ´n+1J12(³)∆

(x)
n + ´n+1(r

(θ,1)
n + r(θ,2)n + ¸(θ)n )

+O(´2
n+1)(L̂

(θ)
n + R̂(θ)

n ).

where the second equality is from (53a), the third equality stems from the approximation of e´n+1J11 .

Then, we again use the definition Φk,n ≜
∏n

j=k+1(I+ ´jJ11) and reiterate the above equation as

∆̂
(θ)
n+1 =

n∑

k=1

Φk,n´k+1

(

O(´k+1)L
(θ)
k +O(´k+1)R

(θ)
k

)

+

n∑

k=1

Φk,n´k+1J12(³)∆
(x)
n +

n∑

k=1

Φk,n´k+1(r
(θ,1)
k + ¸

(θ)
k )

+

n∑

k=1

Φk,n´k+1r
(θ,2)
k

≜ ∆̂
(θ,1)
n+1 + ∆̂

(θ,2)
n+1 ,

where ∆̂
(θ,2)
n+1 =

∑n
k=1 Φk,n´k+1r

(θ,2)
k and

∆̂
(θ,1)
n+1 =

n∑

k=1

Φk,n´k+1

(

O(´k+1)L
(θ)
k +O(´k+1)R

(θ)
k

)

+

n∑

k=1

Φk,n´k+1(r
(θ,1)
k + ¸

(θ)
k + J12(³)∆

(x)
n ).

(80)
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For ∆̂
(θ,2)
n+1 , we follow the same steps from (74) to (75), and obtain ∆̂

(θ,2)
n+1 = o(

√
´n).

Next, we consider ∆̂
(θ,1)
n+1 and want to show that ∆̂

(θ,1)
n+1 = o(

√
´n). Again, we utilize Mokkadem &

Pelletier (2006, Lemma 6) for ∆̂
(θ,1)
n+1 and adapt the notation here for the case µn = o(´n).

Lemma E.9. For ∆̂
(θ,1)
n+1 in the form of (80), assume ∥θn − θ∗∥ = O(Én) and ∥∆̂(θ,1)

n ∥ = O(¶n)
for the sequences Én, ¶n defined in (E.1). Then, we have

∥∆̂(θ,1)
n+1 ∥ = O(µ2n´

−2
n É2

n + µn´
−1
n ¶n) + o(

√
µn) a.s. (81)

Now we need to further analyse ¶n and tighten its big O form, starting from ¶n ≡ 1, so that we

can finally obtain the big O form of ∥∆̂(θ,1)
n+1 ∥. The following steps are borrowed from the ideas in

Mokkadem & Pelletier (2006, Section 2.3.2).

By almost sure convergence result limn→∞ θn = θ∗, we have limn→∞ ∆
(θ)
n = 0 a.s. such that we

can first set ¶n ≡ 1, and ∥∆̂(θ,1)
n+1 ∥ = O(µ2n´

−2
n É2

n + µn´
−1
n ) + o(

√
µn). Then, we redefine

¶n ≡ O(µ2n´
−2
n É2

n + µn´
−1
n ) + o(

√
µn),

and notice that it still satisfies definition E.1. Then, reapplying this ¶n form to (81) gives

∥∆̂(θ,1)
n+1 ∥ = O(µ2n´

−2
n É2

n + [µn´
−1
n ]2) + o(

√
µn)

and by induction we have for all integers k g 1,

∥∆̂(θ,1)
n+1 ∥ = O(µ2n´

−2
n É2

n + [µn´
−1
n ]k) + o(

√
µn).

Since [µn´
−1
n ]k = n(b−a)k, there exists k0 > a/2(a− b) such that [µn´

−1
n ]k0 = o(

√
µn), and

∥∆̂(θ,1)
n+1 ∥ = O(µ2n´

−2
n É2

n) + o(
√
µn). (82)

Then, as suggested in Mokkadem & Pelletier (2006, Section 2.3.2), we can choose Én =

O(
√

´n log(un) + [µn´
−1
n ]k), which also satisfies definition E.1. Then,

∥θn − θ∗∥ = ∥L̂(θ)
n + R̂(θ)

n + ∆̂(θ)
n ∥

=O

(
√

´n log(un)+

√

µn´
−1
n log(sn)+

(

[µn´
−1
n ]k+1+µn´

−1
n

√

´n log(un)
)2
)

+ o(
√

´n +
√
µn)

=O(
√

´n log(un) + [µn´
−1
n ]k+1).

By induction, this holds for all k g 1 such that there exists k0, [µn´
−1
n ]k0 = o(

√
´n) and ∥θn −

θ∗∥ = O(
√

´n log(un)). Equivalently, Én =
√

´n log(un). Therefore, from (82) we have

∥∆̂(θ,1)
n+1 ∥ = O(µ2n´

−1
n log(un)) + o(

√
µn) = o(

√
µn).

Together with ∥∆̂(θ,2)
n+1 ∥ = o(

√
´n), we have ´

−1/2
n ∥∆̂(θ)

n+1∥ = o(
√

µn´
−1
n ) + 1) such that

lim
n→∞

´−1/2
n ∆̂

(θ)
n+1 = 0.

Thus, we have finished the proof according to the proof outline mentioned at the beginning of this
part.

F DISCUSSION OF COVARIANCE ORDERING OF SA-SRRW

F.1 PROOF OF PROPOSITION 3.4

For any ³ > 0 and any vector x ∈ R
d, we have

xTV
(1)
θ (³)x =

∫ ∞

0

xT et(∇θh(θ
∗)+

1{b=1}
2 I)Uθ(³)e

t(∇θh(θ
∗)+

1{b=1}
2 I)T x dt
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where the first equality is from the form of V
(1)
θ (³) in Theorem 3.3. Let y ≜ et(∇θh(θ

∗)+
1{b=1}

2 I)x,
with the dependence on variable t left implicit. The matrix Uθ(³), given explicitly in (11) positive
semi definite, since ¼i ∈ (−1, 1) for all i ∈ {1, · · · , N − 1}. Thus, the terms yTUθ(³)y inside the
integral are non-negative, and it is enough to provide an ordering on yTUθ(³)y with respect to ³.

For any ³2 > ³1 > 0,

yTUθ(³2)y =
N−1∑

i=1

1

(³2(1 + ¼i) + 1)2
· 1 + ¼i
1− ¼i

yTHTuiu
T
i Hy

<

N−1∑

i=1

1

(³1(1 + ¼i) + 1)2
· 1 + ¼i
1− ¼i

yTHTuiu
T
i Hy = yTUθ(³1)y

<

N−1∑

i=1

·1 + ¼i
1− ¼i

yTHTuiu
T
i Hy = yTUθ(0)y,

where the inequality13 is because ³(1 + ¼i) > 0 for all i ∈ {1, · · · , N} and any ³ > 0. In fact,
the ordering is monotone in ³, and yTUθ(³2)y decreases at rate 1/³2 as seen form its form in the
equation above. This completes the proof.

F.2 DISCUSSION REGARDING PROPOSITION 3.4 AND MSE ORDERING

We can use Proposition 3.4 to show that the MSE of SA iterates of (4c) driven by SRRW eventually
becomes smaller than that SA iterates when the stochastic noise is driven by an i.i.d. sequence of ran-

dom variables. The diagonal entries of V
(1)
θ (³) are obtained by evaluating eTi V

(1)
θ (³)ei, where ei is

the i’th standard basis vector.14 These diagonal entries are the asymptotic variance corresponding to

the element-wise iterate errors, and for large enough n, we have eTi V
(1)
θ (³)ei ≈ E[(θn − θ∗)2i ]/´n

for all i ∈ {1, · · · , D}. Thus, the trace of matrix V
(1)
θ (³) approximates the scaled MSE, that is

Tr(V
(1)
θ (³)) =

∑

i e
T
i V

(1)
θ (³)ei ≈

∑

i E[(θn − θ∗)2i ]/´n = E[∥θn − θ∗∥2]/´n for large n. Since

all entries of V
(1)
θ (³) go to zero as ³ increases, they get smaller than the corresponding term for the

SA algorithm with i.i.d. input for large enough ³, which achieves a constant MSE in the similarly
scaled limit, since the asymptotic covariance is not a function of ³. Moreover, the value of ³ only
needs to be moderately large, since the asymptotic covariance terms decrease at rate O(1/³2) as
shown in Proposition 3.4.

F.3 PROOF OF COROLLARY 3.5

We see that V
(3)
θ (³) = V

(3)
θ (0) for all ³ > 0, because the form of V

(3)
θ (³) in Theorem 3.3 is

independent of ³. To prove that V
(1)
θ (³) <L V

(3)
θ (0), it is enough to show that V

(1)
θ (0) = V

(3)
θ (0),

since V
(1)
θ (³) <L V

(1)
θ (0) from Proposition 3.4. This is easily checked by substituting ³ = 0 in 11,

for which Uθ(0) = U11. Substituting in the respective forms of V
(1)
θ (0) and V

(3)
θ (0) in Theorem

3.3, we get equivalence. This completes the proof.

G BACKGROUND THEORY

G.1 TECHNICAL LEMMAS

Lemma G.1 (Solution to the Lyapunov Equation). If all the eigenvalues of matrix M have negative
real part, then for every positive semi-definite matrix U there exists a unique positive semi-definite

13The inequality may not be strict when H is low rank, however it will always be true for some choice of x,
since H is not a zero matrix. Thus, the ordering derived still follows our definition of <L in Section 1, footnote
6.

14
D-dimensional vector of all zeros except at the i’th position which is 1.
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matrix V satisfying the Lyapunov equation U+MV+VMT = 0. The explicit solution V is given
as

V =

∫ ∞

0

eMtUe(M
T )tdt. (83)

Chellaboina & Haddad (2008, Theorem 3.16) states that for a positive definite matrix U, there exists
a positive definite matrix V. The reason they focus on the positive definite matrix U is that they
require the related autonomous ODE system to be asymptotically stable. However, in this paper we
don’t need this requirement. The same steps therein can be used to prove Lemma G.1 and show that
if U is positive semi-definite, then V in the form of (83) is unique and also positive semi-definite.

Lemma G.2 (Burkholder Inequality, Davis (1970), Hall et al. (2014) Theorem 2.10). Given a Mar-
tingale difference sequence {Mi,n}ni=1, for p g 1 and some positive constant Cp, we have

E

[∥
∥
∥
∥
∥

n∑

i=1

Mi,n

∥
∥
∥
∥
∥

p]

f CpE





(
n∑

i=1

∥Mi,n∥2
)p/2



 (84)

Theorem G.3 (Martingale CLT, Delyon (2000) Theorem 30). If a Martingale difference array
{Xn,i} satisfies the following condition: for some Ä > 0,

n∑

k=1

E
[
∥Xn,k∥2+Ä |Fk−1

]
P−→ 0, (85)

sup
n

n∑

k=1

E
[
∥Xn,k∥2|Fk−1

]
<∞, (86)

and
n∑

k=1

E
[
Xn,kX

T
n,k|Fk−1

]
P−→ V , (87)

then
n∑

i=1

Xn,i
dist.−−−→ N(0,V ). (88)

Lemma G.4 (Duflo (1996) Proposition 3.I.2). For a Hurwitz matrix H , there exist some positive
constants C, b such that for any n,

∥
∥eHn

∥
∥ f Ce−bn. (89)

Lemma G.5 (Fort (2015) Lemma 5.8). For a Hurwitz matrix A, denote by −r, r > 0, the largest
real part of its eigenvalues. Let a positive sequence {µn} such that limn µn = 0. Then for any
0 < r′ < r, there exists a positive constant C such that for any k < n,

∥
∥
∥
∥
∥
∥

n∏

j=k

(I + µjA)

∥
∥
∥
∥
∥
∥

f Ce−r′
∑n

j=k
µj . (90)

Lemma G.6 (Fort (2015) Lemma 5.9, Mokkadem & Pelletier (2006) Lemma 10). Let {µn} be a
positive sequence such that limn µn = 0 and

∑

n µn = ∞. Let {ϵn, n g 0} be a nonnegative
sequence. Then, for b > 0, p g 0,

lim sup
n

µ−p
n

n∑

k=1

µp+1
k e−b

∑n
j=k+1 µj ϵk f 1

C(b, p)
lim sup

n
ϵn (91)

for some constant C(b, p) > 0.

When p = 0 and define a positive sequence {wn} satisfying wn−1/wn = 1 + o(µn), we have

n∑

k=1

µke
−b

∑n
j=k+1 µj ϵk =

{
O(wn), if ϵn = O(wn),

o(wn), if ϵn = o(wn).
(92)

Lemma G.7 (Fort (2015) Lemma 5.10). For any matrices A,B,C,

∥ABAT − CBCT ∥ f ∥A− C∥∥B∥(∥A∥+ ∥C∥). (93)
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G.2 ASYMPTOTIC RESULTS OF SINGLE-TIMESCALE SA

Consider the stochastic approximation in the form of

zn+1 = zn + µn+1G(zn, Xn+1). (94)

Let Kz be the transition kernel of the underlying Markov chain {Xn}ng0 with stationary distribu-

tion Ã(z) such that g(z) ≜ EX∼Ã(z)[G(z, X)] with domain O ¦ R
d. Define an operator Kzf for

any function f : N → R
D such that

(Kzf)(i) =
∑

j∈N

f(j)Kz(i, j). (95)

Assume that

C1. W.p.1, the closure of {zn}ng0 is a compact subset of O.

C2. µn = µ0/n
a, a ∈ (1/2, 1].

C3. Function g is continuous on O and there exists a non-negativeC1 functionw and a compact
set K ¢ O such that

• ∇w(z)T g(z) f 0 for all z ∈ O and ∇w(z)T g(z) < 0 if z /∈ K;

• the set S ≜ {z | ∇w(z)T g(z) = 0} is such that w(S) has an empty interior;

C4. For every z, there exists a solution mz : N → R
d for the following Poisson equation

mz(i)− (Kzmz)(i) = G(z, i)− g(z) (96)

for any i ∈ N ; for any compact set C ¢ O,

sup
z∈C,i∈N

∥(Kzmz)(i)∥+ ∥mz(i)∥ <∞ (97)

and there exist a continuous function ϕC , ϕC(0) = 0, such that for any z, z′ ∈ C,

sup
i∈N

∥(Kzmz)(i)− (Kz′mz′)(i)∥ f ϕC(∥z − z′∥). (98)

C5. Denote by −r the largest real part of the eigenvalues of the Jacobian matrix ∇g(z∗) and

assume r >
1{a=1}

2 .

C6. For every z, there exists a solution Qz : N → R
d×d for the following Poisson equation

Qz(i)− (KzQz)(i) = F (z, i)− Ej∼Ã(z)[F (z, j)] (99)

for any i ∈ N , where

F (z, i) ≜
∑

j∈N

mz(j)mz(j)
TKz(i, j)− (Kzmz)(i)(Kzmz)(i)

T . (100)

For any compact set C ¢ O,

sup
z∈C,i∈N

∥Qz(i)∥+ ∥(KzQz)(i)∥ <∞ (101)

and there exist p, CC > 0, such that for any z, z′ ∈ C,

sup
i∈N

∥(KzQz)(i)− (Kz′Qz′)(i)∥ f CC∥z − z′∥p. (102)

Theorem G.8 (Delyon et al. (1999) Theorem 2). Consider (94) and assume C1 - C4. Then, w.p.1,
lim supn d(zn, S) = 0.

Theorem G.9 (Fort (2015) Theorem 2.1 & Proposition 4.1). Consider (94) and assume C1 - C6.
Then, given the condition that zn converges to one point z∗ ∈ S, we have

µ−1/2
n (zn − z∗)

dist.−−−−→
n→∞

N(0,V), (103)

where

V

(
1{b=1}

2
I+∇g(z∗)T

)

+

(
1{b=1}

2
I+∇g(z∗)

)

V +U = 0, (104)

and
U ≜

∑

i∈N

µi

(
mz∗(i)mz∗(i)T − (Kz∗mz∗)(i)(Kz∗mz∗)(i)T

)
. (105)
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G.3 ASYMPTOTIC RESULTS OF TWO-TIMESCALE SA

For the two-timescale SA with iterate-dependent Markov chain, we have the following iterations:

zn+1 = zn + ´n+1G1(zn,ynXn+1), (106a)

yn+1 = yn + µn+1G2(zn,yn, Xn+1), (106b)

with the goal of finding the root (z∗,y∗) such that

g1(z
∗,y∗) = EX∼µ[G1(z

∗,y∗, X)] = 0, g2(z
∗,y∗) = EX∼µ[G2(z

∗,y∗, X)] = 0. (107)

We present here a simplified version of the assumptions for single-valued functions G1, G2 that
are necessary for the almost sure convergence result in Yaji & Bhatnagar (2020, Theorem 4). The
original assumptions are intended for more general set-valued functions G1, G2.

(B1) The step sizes ´n ≜ n−b and µn ≜ n−a, where 0.5 < a < b f 1.

(B2) Assume the function G1(z,y, X) is continuous and differentiable with respect to z,y.
There exists a positive constant L1 such that ∥G1(z,y, X)∥ f L1(1 + ∥z∥ + ∥y∥) for
every z ∈ R

d1 ,y ∈ R
d2 , X ∈ N . The same condition holds for the function G2 as well.

(B3) Assume there exists a function Ä : Rd1 → R
d2 such that the following three properties hold:

(i) ∥Ä(z)∥ f L2(1 + ∥z∥) for some positive constant L2; (ii) the ODE ẏ = g2(z,y) has
a globally asymptotically stable equilibrium ¼(z) such that g2(z, Ä(z)) = 0. Additionally,

let ĝ1(z) ≜ g1(z, Ä(z)), there exists a set of disjoint roots Λ ≜ {z∗ : ĝ1(z
∗) = 0}, which

is the set of globally asymptotically stable equilibria of the ODE ż = ĝ1(z).

(B4) {Xn}ng0 is an iterate-dependent Markov process in finite state space N . For every
n g 0, P (Xn+1 = j|zm,ym, Xm, 0 f m f n) = P (Xn+1 = j|zn,yn, Xn = i) =
Pi,j [zn,yn], where the transition kernel P[z,y] is continuous in z,y, and the Markov
chain generated by P[z,y] is ergodic so that it admits a stationary distribution π(z,y), and
π(z∗, Ä(z∗)) = µ.

(B5) supng0(∥zn∥+ ∥yn∥) <∞ a.s.

Yaji & Bhatnagar (2020) included assumptions A1 - A9 and A11 for the following Theorem G.10.
We briefly show the correspondence of our assumptions (B1) - (B5) and theirs: (B1) with A5, (B2)
with A1 and A2, (B3) with A9 and A11, (B4) with A3 and A4, and (B5) with A8. Given that our
two-timescale SA framework (106) excludes additional noises (setting them to zero), A6 and A7
therein are inherently met.

Theorem G.10 (Yaji & Bhatnagar (2020) Theorem 4). Under Assumptions (B1) - (B5), iterations
(zn,yn) in (106) almost surely converge to a set of roots, i.e., (zn,yn) →

⋃

z∗∈Λ(z
∗, Ä(z∗)) a.s.

H ADDITIONAL SIMULATION RESULTS

H.1 BINARY CLASSIFICATION ON ADDITIONAL DATASETS

In this part, we perform the binary classification task as in Section 4 on additional datasets, i.e.,
a9a (with 123 features) and splice (with 60 features) from LIBSVM (Chang & Lin, 2011). Figure
4 provides the performance ordering of different ³ values, and we empirically demonstrate that the
curves with ³ g 5 still outperform the i.i.d. counterpart. Additionally, Figure 5 compare cases (i) -
(iii) under both a9a and splice datasets, and case (i) consistently perform the best.

H.2 NON-CONVEX LINEAR REGRESSION

We further test SGD-SRRW and SHB-SRRW algorithms with a non-convex function to demonstrate
the efficiency of our SA-SRRW algorithm beyond the convex setting. In this task, we simulate the
following linear regression problem in Khaled & Richtárik (2023) with non-convex regularization

min
θ∈Rd






f(θ) ≜

1

N

N∑

i=1

li(θ) + »

d∑

j=1

θ2
j

θ2
j + 1






(108)
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Figure 4: Simulation results with various ³ values in a9a and splice datasets.
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Figure 5: Performance comparison among cases (i) - (iii) for α ∈ {5, 10, 20} in a9a and splice
datasets.

where the loss function li(θ) = ∥sT
i
θ− yi∥

2 and κ = 1, with the data points {(si, yi)}i∈N from the
ijcnn1 dataset of LIBVIM (Chang & Lin, 2011). We still perform the optimization over the wikiVote
graph, as done in Section 4.

The numerical results for the non-convex linear regression taks are presented in Figures 6 and 7,
where each experiment is repeated 100 times. Figures 6a and 6b show that the performance ordering
across different α values is still preserved for both algorithms over almost all time, and curves
for α g 5 outperform that of the i.i.d. sampling (in black) under the graph topological constraints.
Additionally, among the three cases examined at identical α values, Figures 7a - 7c confirm that case
(i) performs consistently better than the other two cases, implying that case (i) can even become the
best choice for non-convex distributed optimization tasks.
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Figure 6: Simulation results for non-convex linear regression under case (i) with various α values.
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Figure 7: Performance comparison among cases (i) - (iii) for non-convex regression.
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