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ABSTRACT

We study a family of distributed stochastic optimization algorithms where gradi-
ents are sampled by a token traversing a network of agents in random-walk fash-
ion. Typically, these random-walks are chosen to be Markov chains that asymp-
totically sample from a desired target distribution, and play a critical role in the
convergence of the optimization iterates. In this paper, we take a novel approach
by replacing the standard /inear Markovian token by one which follows a non-
linear Markov chain - namely the Self-Repellent Radom Walk (SRRW). Defined
for any given ‘base’ Markov chain, the SRRW, parameterized by a positive scalar
a, is less likely to transition to states that were highly visited in the past, thus
the name. In the context of MCMC sampling on a graph, a recent breakthrough in
Doshi et al. (2023) shows that the SRRW achieves O(1/«) decrease in the asymp-
totic variance for sampling. We propose the use of a ‘generalized’ version of the
SRRW to drive token algorithms for distributed stochastic optimization in the form
of stochastic approximation, termed SA-SRRW. We prove that the optimization it-
erate errors of the resulting SA-SRRW converge to zero almost surely and prove a
central limit theorem, deriving the explicit form of the resulting asymptotic covari-
ance matrix corresponding to iterate errors. This asymptotic covariance is always
smaller than that of an algorithm driven by the base Markov chain and decreases
atrate O(1/a?) - the performance benefit of using SRRW thereby amplified in the
stochastic optimization context. Empirical results support our theoretical findings.

1 INTRODUCTION

Stochastic optimization algorithms solve optimization problems of the form

0" € argmin /(0), where [(0) £ Exu [F(6,X)] = 3" 1u:F(0,4), M)
OeR? ieN

with the objective function f : R* — R and X taking values in a finite state space N with distri-
bution gt = [11;];enr. Leveraging partial gradient information per iteration, these algorithms have
been recognized for their scalability and efficiency with large datasets (Bottou et al., 2018; Even,
2023). For any given noise sequence { X, }n>0 C N, and step size sequence {f,, } >0 C R, most
stochastic optimization algorithms can be classified as stochastic approximations (SA) of the form

9n+1 = 0n + 5n+1H(0n7Xn+1)a Vn > 07 (2)

where, roughly speaking, H(@,1:) contains gradient information VgF'(6,1), such that 8* solves
h() £ Exu[H(0,X)] = > ,c #iH(6,1) = 0. Such SA iterations include the well-known
stochastic gradient descent (SGD), stochastic heavy ball (SHB) (Gadat et al., 2018; Li et al., 2022),
and some SGD-type algorithms employing additional auxiliary variables (Barakat et al., 2021).!
These algorithms typically have the stochastic noise term X,, generated by i.i.d. random variables
with probability distribution g in each iteration. In this paper, we study a stochastic optimization
algorithm where the noise sequence governing access to the gradient information is generated from
general stochastic processes in place of i.i.d. random variables.

“Equal contributors.
"Further illustrations of stochastic optimization algorithms of the form (2) are deferred to Appendix A.



Published as a conference paper at ICLR 2024

This is commonly the case in distributed learning, where { X, } is a (typically Markovian) random
walk, and should asymptotically be able to sample the gradients from the desired probability dis-

tribution p. This is equivalent to saying that the random walker’s empirical distribution converges
A

to p almost surely (a.s.); that is, x,, = n%rl Y oreo0x, :L_)—SOO> p for any initial Xy € A, where
dx, is the delta measure whose X}, ’th entry is one, the rest being zero. Such convergence is most
commonly achieved by employing the Metropolis Hastings random walk (MHRW) which can be
designed to sample from any farget measure g and implemented in a scalable manner (Sun et al.,
2018). Unsurprisingly, convergence characteristics of the employed Markov chain affect that of the
SA sequence (2), and appear in both finite-time and asymptotic analyses. Finite-time bounds typ-
ically involve the second largest eigenvalue in modulus (SLEM) of the Markov chain’s transition
kernel P, which is critically connected to the mixing time of a Markov chain (Levin & Peres, 2017);
whereas asymptotic results such as central limit theorems (CLT) involve asymptotic covariance ma-
trices that embed information regarding the entire spectrum of P, i.e., all eigenvalues as well as
eigenvectors (Brémaud, 2013), which are key to understanding the sampling efficiency of a Markov
chain. Thus, the choice of random walker can significantly impact the performance of (2), and sim-
ply ensuring that it samples from p asymptotically is not enough to achieve optimal algorithmic
performance. In this paper, we take a closer look at the distributed stochastic optimization problem
through the lens of a non-linear Markov chain, known as the Self Repellent Random Walk (SRRW),
which was shown in Doshi et al. (2023) to achieve asymptotically minimal sampling variance for
large values of «, a positive scalar controlling the strength of the random walker’s self-repellence
behaviour. Our proposed modification of (2) can be implemented within the settings of decentral-
ized learning applications in a scalable manner, while also enjoying significant performance benefit
over distributed stochastic optimization algorithms driven by vanilla Markov chains.

Token Algorithms for Decentralized Learning. In decentralized learning, agents like smartphones
or IoT devices, each containing a subset of data, collaboratively train models on a graph G(N, £) by
sharing information locally without a central server (McMabhan et al., 2017). In this setup, N =|N/|
agents correspond to nodes 7 € N, and an edge (7, j) € £ indicates direct communication between
agents ¢ and j. This decentralized approach offers several advantages compared to the traditional
centralized learning setting, promoting data privacy and security by eliminating the need for raw data
to be aggregated centrally and thus reducing the risk of data breach or misuse (Bottou et al., 2018;
Nedic, 2020). Additionally, decentralized approaches are more scalable and can handle vast amounts
of heterogeneous data from distributed agents without overwhelming a central server, alleviating
concerns about single point of failure (Vogels et al., 2021).

Among decentralized learning approaches, the class of ‘Token’ algorithms can be expressed as
stochastic approximation iterations of the type (2), wherein the sequence {X,,} is realized as the
sample path of a token that stochastically traverses the graph G, carrying with it the iterate 8,, for any
time n > 0 and allowing each visited node (agent) to incrementally update 8,, using locally available
gradient information. Token algorithms have gained popularity in recent years (Hu et al., 2022; Tri-
astcyn et al., 2022; Hendrikx, 2023), and are provably more communication efficient (Even, 2023)
when compared to consensus-based algorithms - another popular approach for solving distributed
optimization problems (Boyd et al., 2006; Morral et al., 2017; Olshevsky, 2022). The construction
of token algorithms means that they do not suffer from expensive costs of synchronization and com-
munication that are typical of consensus-based approaches, where all agents (or a subset of agents
selected by a coordinator (Boyd et al., 2006; Wang et al., 2019)) on the graph are required to take
simultaneous actions, such as communicating on the graph at each iteration. While decentralized
Federated learning has indeed helped mitigate the communication overhead by processing multiple
SGD iterations prior to each aggregation (Lalitha et al., 2018; Ye et al., 2022; Chellapandi et al.,
2023), they still cannot overcome challenges such as synchronization and straggler issues.

Self Repellent Random Walk. As mentioned earlier, sample paths {X,,} of token algorithms are
usually generated using Markov chains with g € Int(X) as their limiting distribution. Here, ¥
denotes the N-dimensional probability simplex, with Int(3) representing its interior. A recent work
by Doshi et al. (2023) pioneers the use of non-linear Markov chains to, in some sense, improve upon
any given time-reversible Markov chain with transition kernel P whose stationary distribution is .
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They show that the non-linear transition kernel® K[-] : Int(X) — [0, 1]V >/, given by

Py )~ y
Kij[x] 2 1 IEI , Vi,jEN, 3

] 2oren Pi(@e/pe) = / )
for any x € Int(X), when simulated as a self-interacting random walk (Del Moral & Miclo, 2006;
Del Moral & Doucet, 2010), can achieve smaller asymptotic variance than the base Markov chain
when sampling over a graph G, for all « > 0. The argument x for the kernel K[z] is taken to
be the empirical distribution x,, at each time step n > 0. For instance, if node j has been visited
more often than other nodes so far, the entry x; becomes larger (than target value ), resulting in
a smaller transition probability from ¢ to j under K[x] in (3) compared to P;;. This ensures that
a random walker prioritizes more seldom visited nodes in the process, and is thus ‘self-repellent’.
This effect is made more drastic by increasing «, and leads to asymptotically near-zero variance at
a rate of O(1/«). Moreover, the polynomial function (x;/u;)~% chosen to encode self-repellent
behaviour is shown in Doshi et al. (2023) to be the only one that allows the SRRW to inherit the so-
called ‘scale-invariance’ property of the underlying Markov chain — a necessary component for the
scalable implementation of a random walker over a large network without requiring knowledge of
any graph-related global constants. Conclusively, such attributes render SRRW especially suitable
for distributed optimization.

Effect of Stochastic Noise - Finite time and Asymptotic Approaches. Most contemporary token
algorithms driven by Markov chains are analyzed using the finite-time bounds approach for obtain-
ing insights into their convergence rates (Sun et al., 2018; Doan et al., 2019; 2020; Triastcyn et al.,
2022; Hendrikx, 2023). However, as also explained in Even (2023), in most cases these bounds are
overly dependent on mixing time properties of the specific Markov chain employed therein. This
makes them largely ineffective in capturing the exact contribution of the underlying random walk
in a manner which is qualitative enough to be used for algorithm design; and performance enhance-
ments are typically achieved via application of techniques such as variance reduction (Defazio et al.,
2014; Schmidt et al., 2017), momentum/Nesterov’s acceleration (Gadat et al., 2018; Li et al., 2022),
adaptive step size (Kingma & Ba, 2015; Reddi et al., 2018), which work by modifying the algorithm
iterations themselves, and never consider potential improvements to the stochastic input itself.

Complement to finite-time approaches, asymptotic analysis using CLT has proven to be an excellent
tool to approach the design of stochastic algorithms (Hu et al., 2022; Devraj & Meyn, 2017; Morral
et al., 2017; Chen et al., 2020a; Mou et al., 2020; Devraj & Meyn, 2021). Hu et al. (2022) shows
how asymptotic analysis can be used to compare the performance of SGD algorithms for various
stochastic inputs using their notion of efficiency ordering, and, as mentioned in Devraj & Meyn
(2017), the asymptotic benefits from minimizing the limiting covariance matrix are known to be a
good predictor of finite-time algorithmic performance, also observed empirically in Section 4.

From the perspective of both finite-time analysis as well as asymptotic analysis of token algorithms,
it is now well established that employing ‘better’ Markov chains can enhance the performance of
stochastic optimization algorithm. For instance, Markov chains with smaller SLEMs yield tighter
finite-time upper bounds (Sun et al., 2018; Ayache & El Rouayheb, 2021; Even, 2023). Similarly,
Markov chains with smaller asymptotic variance for MCMC sampling tasks also provide better
performance, resulting in smaller covariance matrix of SGD algorithms (Hu et al., 2022). Therefore,
with these breakthrough results via SRRW achieving near-zero sampling variance, it is within reason
to ask: Can we achieve near-zero variance in distributed stochastic optimization driven by SRRW-
like token algorithms on any general graph?* In this paper, we answer in the affirmative.

SRRW Driven Algorithm and Analysis Approach. For any ergodic time-reversible Markov chain
with transition probability matrix P £ [P;;]; jen and stationary distribution p € Int(X), we con-
sider a general step size version of the SRRW stochastic process analysed in Doshi et al. (2023) and

“Here, non-linearity in the transition kernel implies that K[x] takes probability distribution x as the argu-
ment (Andrieu et al., 2007), as opposed to the kernel being a linear operator K[x] = P for a constant stochastic
matrix P in a standard (linear) Markovian setting.

3Recently, Guo et al. (2020) introduce an optimization scheme, which designs self-repellence into the per-
turbation of the gradient descent iterates (Jin et al., 2017; 2018; 2021) with the goal of escaping saddle points.
This notion of self-repellence is distinct from the SRRW, which is a probability kernel designed specifically for
a token to sample from a target distribution g over a set of nodes on an arbitrary graph.

“This near-zero sampling variance implies a significantly smaller variance than even an i.i.d. sampling
counterpart, while adhering to graph topological constraints of token algorithms.
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Figure 1: Visualization of token algorithms using SRRW versus traditional MC in distributed learn-
ing. Our CLT analysis, extended from SRRW itself to distributed stochastic approximation, leads to
near-zero variance for the SA iteration 8,,. Node numbers on the left denote visit counts.

use it to drive the noise sequence in (2). Our SA-SRRW algorithm is as follows:

Draw: Xnt+1 ~ Kx,, . [xn] (4a)
Update: x,+1 =X, + ”yn+1(5xn+1 — Xp), (4b)
0n+1 = en + ﬂn—&-lH(en; Xn+1)a (4C)

where {3,,} and {,,} are step size sequences decreasing to zero, and K[x] is the SRRW kernel in
(3). Current non-asymptotic analyses require globally Lipschitz mean field function (Chen et al.,
2020b; Doan, 2021; Zeng et al., 2021; Even, 2023) and is thus inapplicable to SA-SRRW since
the mean field function of the SRRW iterates (4b) is only locally Lipschitz (details deferred to
Appendix B). Instead, we successfully obtain non-trivial results by taking an asymptotic CLT-based
approach to analyze (4). This goes beyond just analyzing the asymptotic sampling covariance’ as
in Doshi et al. (2023), the result therein forming a special case of ours by setting v,, =1/(n+1) and
considering only (4a) and (4b), that is, in the absence of optimization iteration (4c). Specifically,
we capture the effect of SRRW’s hyper-parameter a on the asymptotic speed of convergence of the
optimization error term 0,, — 6* to zero via explicit deduction of its asymptotic covariance matrix.
See Figure 1 for illustration.

Our Contributions.

1. Given any time-reversible ‘base’ Markov chain with transition kernel P and stationary distribution
1, we generalize first and second order convergence results of x,, to target measure p (Theorems
4.1 and 4.2 in Doshi et al., 2023) to a class of weighted empirical measures, through the use of more
general step sizes 7y,,. This includes showing that the asymptotic sampling covariance terms decrease
to zero at rate O(1/«), thus quantifying the effect of self-repellent on x,,. Our generalization is not
for the sake thereof and is shown in Section 3 to be crucial for the design of step sizes 3, Vn-

2. Building upon the convergence results for iterates x,,, we analyze the algorithm (4) driven by the
SRRW kernel in (3) with step sizes 3,, and -,, separated into three disjoint cases:

(1) Bn = o(yn), and we say that 8,, is on the slower timescale compared to X,,;
(i1) B, ="n, and we say that 8,, and x,, are on the same timescale;
(iii) v, = o(Bn), and we say that 0,, is on the faster timescale compared to x,.

For any o > 0 and let £ = 1, 2 and 3 refer to the corresponding cases (i), (i) and (iii), we show that

6, 20" and (6, - 6")/V/B, = N (0,V (),

n— oo n—oo
featuring distinct asymptotic covariance matrices V(el) (), V(BQ) («) and Vég) (), respectively. The
three matrices coincide when av = 0,°. Moreover, the derivation of the CLT for cases (i) and (iii),
for which (4) corresponds to two-timescale SA with controlled Markov noise, is the first of its kind
and thus a key technical contribution in this paper, as expanded upon in Section 3.

3. For case (i), we show that V((,l) () decreases to zero (in the sense of Loewner ordering introduced
in Section 2.1) as « increases, with rate O(1/a?). This is especially surprising, since the asymptotic
performance benefit from using the SRRW kernel with « in (3), to drive the noise terms X,,, is
amplified in the context of distributed learning and estimating 8*; compared to the sampling case,
for which the rate is O(1/«) as mentioned earlier. For case (iii), we show that V(ed)(oz) = Vé‘s)(o)
for all a > 0, implying that using the SRRW in this case provides no asymptotic benefit than the

SSampling covariance corresponds to only the empirical distribution x., in (4b).
The o = 0 case is equivalent to simply running the base Markov chain, since from (3) we have K[-] = P,
thus bypassing the SRRW'’s effect and rendering all three cases nearly the same.
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original base Markov chain, and thus performs worse than case (i). In summary, we deduce that
Vi (02) <2 VE (1) <. VP (0) =V (0) =V (a) forall oy > oy > 0and a > 0.7

4. We numerically simulate our SA-SRRW algorithm on various real-world datasets, focusing on
a binary classification task, to evaluate its performance across all three cases. By carefully choos-
ing the function H in SA-SRRW, we test the SGD and algorithms driven by SRRW. Our findings
consistently highlight the superiority of case (i) over cases (ii) and (iii) for diverse « values, even in
their finite time performance. Notably, our tests validate the variance reduction at a rate of O(1/a?)
for case (i), suggesting it as the best algorithmic choice among the three cases.

2 PRELIMINARIES AND MODEL SETUP

In Section 2.1, we first standardize the notations used throughout the paper, and define key mathe-
matical terms and quantities used in our theoretical analyses. Then, in Section 2.2, we consolidate
the model assumptions of our SA-SRRW algorithm (4). We then go on to discuss our assumptions,
and provide additional interpretations of our use of generalized step-sizes.

2.1 BASIC NOTATIONS AND DEFINITIONS

Vectors are denoted by lower-case bold letters, e.g., v = [v;] € RP, and matrices by upper-case
bold, e.g., M £ [M;;] € RP*P.M~T is the transpose of the matrix inverse M~!. The diagonal
matrix D, is formed by vector v with v; as the ¢’th diagonal entry. Let 1 and O denote vectors of
all ones and zeros, respectively. The identity matrix is represented by I, with subscripts indicating
dimensions as needed. A matrix is Hurwitz if all its eigenvalues possess strictly negative real parts.
1y denotes an indicator function with condition in parentheses. We use ||-|| to denote both the
Euclidean norm of vectors and the spectral norm of matrices. Two symmetric matrices My, My
follow Loewner ordering M; <y My if My —M; is positive semi-definite and M; # M. This
slightly differs from the conventional definition with <, which allows M; =M.

Throughout the paper, the matrix P £ [P, ;]; jenr and vector p £ [u;];en are used exclusively
to denote an N x N-dimensional transition kernel of an ergodic Markov chain, and its stationary
distribution, respectively. Without loss of generality, we assume P;; > 0 if and only if a;; > 0.
Markov chains satisfying the detailed balance equation, where p; P;; = ju; Pj; for all i,j € N, are
termed time-reversible. For such chains, we use (\;, u;) (resp. (\;, v;)) to denote the ¢ th left (resp.
right) eigenpair where the eigenvalues are ordered: —1< A <--- < Ay_1 <Ay=1, withuy=p
and vy =1 in R, We assume eigenvectors to be normalized such that uv; =1 for all 4, and we
have u; =D, v; and u?vj =0 for all 7, j € /. We direct the reader to Aldous & Fill (2002, Chapter
3.4) for a detailed exposition on spectral properties of time-reversible Markov chains.

2.2 SA-SRRW: KEY ASSUMPTIONS AND DISCUSSIONS

Assumptions: All results in our paper are proved under the following assumptions.

(A1) The function H : RP x N' — RP, is a continuous at every & € R”, and there exists a
positive constant L such that ||H(0,7)|| < L(1+ ||@]|) for every 8 € RP i € N.

(A2) Step sizes 3, and ,, follow 3, =(n-+1)~°, and 7,, = (n+1)~%, where a,b € (0.5, 1].

(A3) Roots of function h(-) are disjoint, which comprise the globally attracting set © =
{0* |h(6*)=0,Vh(6*) + ]IU’T:”I is Hurwitz} # () of the associated ordinary differential
equation (ODE) for iteration (4c), given by d@(t)/dt=h(0(t)).

(A4) For any (0, %o, Xo) € RP x Int(X) x N, the iterate sequence {6, },>0 (resp. {X, }n>0)
is Pg, x,.x,-almost surely contained within a compact subset of R” (resp. Int(X)).

Discussions on Assumptions: Assumption Al requires H to only be locally Lipschitz albeit with
linear growth, and is less stringent than the globally Lipschitz assumption prevalent in optimization
literature (Li & Wai, 2022; Hendrikx, 2023; Even, 2023).

"In particular, this is the reason why we advocate for a more general step size v, = (n+1)~“ in the SRRW
iterates with @ < 1, allowing us to choose 3, = (n 4+ 1)~° with b € (a, 1] to satisfy 3, = o(») for case (i).
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Assumption A2 is the general umbrella assumption under which cases (i), (ii) and (iii) mentioned
in Section 1 are extracted by setting: (i) @ < b, (ii) @ = b, and (iii) a > b. Cases (i) and (iii)
render 0,,,x,, on different timescales; the polynomial form of (,,,~, widely assumed in the two-
timescale SA literature (Mokkadem & Pelletier, 2006; Zeng et al., 2021; Hong et al., 2023). Case (ii)
characterizes the SA-SRRW algorithm (4) as a single-timescale SA with polynomially decreasing
step size, and is among the most common assumptions in the SA literature (Borkar, 2022; Fort,
2015; Li et al., 2023). In all three cases, the form of ~,, ensures v, < 1 such that the SRRW iterates
Xy, in (4b) is within Int(X), ensuring that K[x,,] is well-defined for all n > 0.

In Assumption A3, limiting dynamics of SA iterations {6, },>o closely follow trajectories
{0(t) }+>0 of their associated ODE, and assuming the existence of globally stable equilibria is stan-
dard (Borkar, 2022; Fort, 2015; Li et al., 2023). In optimization problems, this is equivalent to
assuming the existence of at most countably many local minima.

Assumption A4 assumes almost sure boundedness of iterates 8,, and x,,, which is a common as-
sumption in SA algorithms (Kushner & Yin, 2003; Chen, 2006; Borkar, 2022; Karmakar & Bhatna-
gar, 2018; Li et al., 2023) for the stability of the SA iterations by ensuring the well-definiteness of all
quantities involved. Stability of the weighted empirical measure x,, of the SRRW process is prac-
tically ensured by studying (4b) with a truncation-based procedure (see Doshi et al., 2023, Remark
4.5 and Appendix E for a comprehensive explanation), while that for 6,, is usually ensured either as
a by-product of the algorithm design, or via mechanisms such as projections onto a compact subset
of RP, depending on the application context. We now provide additional discussions regarding the
step-size assumptions and their implications on the SRRW iteration (4b).

SRRW with General Step Size: As shown in Benaim & Cloez (2015, Remark 1.1), albeit for a
completely different non-linear Markov kernel driving the algorithm therein, iterates x,, of (4b) can
also be expressed as weighted empirical measures of { X, },,>0, in the following form:

2z nX" + w0x07 where wg =1, and w, = =——— i ,
Do Wi [T (=)

for all n > 0. For the special case when 7, = 1/(n+1) as in Doshi et al. (2023), we have w,, = 1 for

all n > 0 and x,, is the typical, unweighted empirical measure. For the additional case considered

in our paper, when a < 1 for v, as in assumption A2, we can approximate 1 — v, ~ e~ 7 and
7aen(1_“)/(1fa)

(&)

Xn =

Wy N . This implies that w,, will increase at sub-exponential rate, giving more
weight to recent visit counts and allowing it to quickly ‘forget’ the poor initial measure x( and shed
the correlation with the initial choice of X. This ‘speed up’ effect by setting a < 1 is guaranteed
in case (i) irrespective of the choice of b in Assumption A2, and in Section 3 we show how this can
lead to further reduction in covariance of optimization error 8,, = 6* in the asymptotic regime.

Additional assumption for case (iii): Before moving on to Section 3, we take another look at the
case when v, = o(f3,,), and replace A3 with the following, stronger assumption only for case (iii).

(A3') For any x € Int(X), there exists a function p : Int(3¥) — RP such that || p(x) || < La(1+||x]|)
for some Ly >0, Ejrx) [H (p(x),7)] =0 and E; [« [VH (p(x), )] + MT:”I is Hurwitz.

While Assumption A3’ for case (iii) is much stronger than A3, it is not detrimental to the overall
results of our paper, since case (i) is of far greater interest as impressed upon in Section 1. This is
discussed further in Appendix C.

3 ASYMPTOTIC ANALYSIS OF THE SA-SRRW ALGORITHM

In this section, we provide the main results for the SA-SRRW algorithm (4). We first present the
a.s. convergence and the CLT result for SRRW with generalized step size, extending the results in
Doshi et al. (2023). Building upon this, we present the a.s. convergence and the CLT result for the
SA iterate 8,, under different settings of step sizes. We then shift our focus to the analysis of the
different asymptotic covariance matrices emerging out of the CLT result, and capture the effect of «
and the step sizes, particularly in cases (i) and (iii), on 8,, — 8* via performance ordering.

Almost Sure convergence and CLT: The following result establishes first and second order conver-
gence of the sequence {x,,},>0, which represents the weighted empirical measures of the SRRW
process { X, } >0, based on the update rule in (4b).
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Lemma 3.1. Under Assumptions Al, A2 and A4, for the SRRW iterates (4b), we have

a.s. _ dist.
Xn m w, and v, 1/2(Xn — W) m N(0, Vi (a)),
= 1 1+N o

where Vy(a) =

. wu; . (6)
; 204(1+)\i)+2—]l{a:1} 1—X

Moreover, for all ag > a1 > 0, we have Vx(as) <p, Vx(a1) < Vx(0).

Lemma 3.1 shows that the SRRW iterates x,, converges to the target distribution g a.s. even under
the general step size v, = (n+1)~*fora € (0.5, 1]. We also observe that the asymptotic covariance
matrix Vx(a) decreases at rate O(1/«). Lemma 3.1 aligns with Doshi et al. (2023, Theorem 4.2
and Corollary 4.3) for the special case of a = 1, and is therefore more general. Critically, it helps us
establish our next result regarding the first-order convergence for the optimization iterate sequence
{0, } n>0 following update rule (4c), as well as its second-order convergence result, which follows
shortly after. The proofs of Lemma 3.1 and our next result, Theorem 3.2, are deferred to Appendix
D. In what follows, k = 1,2, and 3 refer to cases (i), (ii), and (iii) in Section 2.2, respectively. All
subsequent results are proven under Assumptions Al to A4, with A3’ replacing A3 only when the
step sizes B, 7, satisfy case (iii).

Theorem 3.2. For k € {1,2, 3}, and any initial (69, %o, Xo) € RP x Int(X) x N/, we have 6,, — 0*
as n — oo for some 0* € O, Py, «, x,-almost surely.

In the stochastic optimization context, the above result ensures convergence of iterates 8,, to a local
minimizer 8*. Loosely speaking, the first-order convergence of x,, in Lemma 3.1 as well as that of
0., are closely related to the convergence of trajectories {z(t) £ (8(t),x(t))}:>0 of the (coupled)
mean-field ODE, written in a matrix-vector form as
T
sratt) = sttt 2 | OO € o )
where matrix H(0) = [H(0,1),---, H(8, N)|T € R¥P for any § € RP. Here, w[x] € Int(%)
is the stationary distribution of the SRRW kernel K[x] and is shown in Doshi et al. (2023) to be
given by m;[x] oc 3 ar piPij (2 /pi) =% (25 /p15) . The Jacobian matrix of (7) when evaluated at
equilibria z* = (0*, u) for 8* € O captures the behaviour of solutions of the mean-field in their
vicinity, and plays an important role in the asymptotic covariance matrices arising out of our CLT
results. We evaluate this Jacobian matrix J(«) as a function of & > 0 to be given by
A o [Vh(0*)  —aHO)T(PT+I) |4 [J11 Jia(a)
J(Oé)—vg(z )— |: 0N><D 2aH1T_aPT_(a+1)I:| - |:J21 J22(a)i| . (8)
The derivation of J(«) is referred to Appendix E.1.> Here, Jo; is a zero matrix since m[x] — x
is devoid of . While matrix Joz(cv) is exactly of the form in Doshi et al. (2023, Lemma 3.4)
to characterize the SRRW performance, our analysis includes an additional matrix Jq2(c), which
captures the effect of x(¢) on 6(t) in the ODE (7), which translates to the influence of our generalized
SRRW empirical measure x,, on the SA iterates 8,, in (4).

For notational simplicity, and without loss of generality, all our remaining results are stated while
conditioning on the event that {@,, — 6*}, for some 8* € ©. We also adopt the shorthand notation
H to represent H(6*). Our main CLT result is as follows, with its proof deferred to Appendix E.

Theorem 3.3. For any o > 0, we have: (a) There exists V*)(a) for all k € {1,2, 3} such that
—1/2 « ,
@11/2(0,1 -0 ) dist. N <O7V(k) (a)) )
Yo' (Xp — @) | e
(b) For k = 2, matrix V) (a) solves the Lyapunov equation J(a)V® (a) + V@ (a)J ()T +
Lp—1, VP (a) = —U, where the Jacobian matrix J(c) is in (8), and

U A = 1 + )\i . HTuiulTH HTuiu;fF A U11 U12 (9)
- ~1- w,ulH wu! | |Ua Uy’
(c) For k € {1,3}, V(*)(a) becomes block diagonal, which is given by
(k)
V&) (q) = [Ve (@) ODxN} , 10
() Onxp  Vx(a) (10)

8The Jacobian J () is (D-+N) x (D+N)- dimensional, with J1; € R”*P and Jo2(a) € RV Following
this, all matrices written in a block form, such as matrix U in (9), will inherit the same dimensional structure.
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where Vy(a) is as in (6), and Vél) () and V(gg) () can be written in the following explicit form:
VD (a) = [2° elTon0 )+ LD U, ()elTah(@)+LFDT gy

Vég) (OZ) — fooo 6tV9h(9*)UlletV9h(9*)dt,

= 1 14+ N

where UG(OZ) - ; (a(l +)‘1) ¥ 1)2 1— )\2

For k € {1,3}, SA-SRRW in (4) is a two-timescale SA with controlled Markov noise. While a few
works study the CLT of two-timescale SA with the stochastic input being a martingale-difference
(i.i.d.) noise (Konda & Tsitsiklis, 2004; Mokkadem & Pelletier, 2006), a CLT result covering the
case of controlled Markov noise (e.g., k& € {1,3}), a far more general setting than martingale-
difference noise, is still an open problem. Thus, we here prove our CLT for & € {1, 3} from scratch
by a series of careful decompositions of the Markovian noise, ultimately into a martingale-difference
term and several non-vanishing noise terms through repeated application of the Poisson equation
(Benveniste et al., 2012; Fort, 2015). Although the form of the resulting asymptotic covariance
looks similar to that for the martingale-difference case in (Konda & Tsitsiklis, 2004; Mokkadem

& Pelletier, 2006) at first glance, they are not equivalent. Specifically, Vfgk) (a) captures both the
effect of SRRW hyper-parameter «;, as well as that of the underlying base Markov chain via eigen-
pairs (A;, u;) of its transition probability matrix P in matrix U, whereas the latter only covers the
martingale-difference noise terms as a special case.

H w,u!H. (11)

When k = 2, that is, 3,, = ~y,, algorithm (4) can be regarded as a single-timescale SA algorithm.
In this case, we utilize the CLT in Fort (2015, Theorem 2.1) to obtain the implicit form of V(?) ()
as shown in Theorem 3.3. However, J12(«) being non-zero for o > 0 restricts us from obtaining
an explicit form for the covariance term corresponding to SA iterate errors 8,, — 8*. On the other
hand, for k € {1, 3}, the nature of two-timescale structure causes 6,, and x,, to become asymptoti-
cally independent with zero correlation terms inside V(*) () in (10), and we can explicitly deduce

Vék) (). We now take a deeper dive into « and study its effect on Vék) ().

Covariance Ordering of SA-SRRW: We refer the reader to Appendix F for proofs of all remaining
results. We begin by focusing on case (i) and capturing the impact of o on V((,l) ().

Proposition 3.4. Forall as > a1 > 0, we have Vél)(()(g) <r Vél)(oq) <z Vt(,l)(O). Furthermore,
Vél) (c) decreases to zero at a rate of O(1/a?).

Proposition 3.4 proves a monotonic reduction (in terms of Loewner ordering) of Vél)(a) as « in-

creases. Moreover, the decrease rate O(1/a?) surpasses the O(1/«) rate seen in Vy(«) and the
sampling application in Doshi et al. (2023, Corollary 4.7), and is also empirically observed in our
simulation in Section 4.” Suppose we consider the same SA now driven by an i.i.d. sequence {X,, }
with the same marginal distribution g. Then, our Proposition 3.4 asserts that a token algorithm em-
ploying SRRW (walk on a graph) with large enough « on a general graph can actually produce better
SA iterates with its asymptotic covariance going down to zero, than a ‘hypothetical situation’ where
the walker is able to access any node j with probability y; from anywhere in one step (more like a
random jumper). This can be seen by noting that for large time 7, the scaled MSE E[||@,, —6*||?]/ 8.
is composed of the diagonal entries of the covariance matrix Vg, which, as we discuss in detail in
Appendix F.2, are decreasing in « as a consequence of the Loewner ordering in Proposition 3.4. For
large enough «, the scaled MSE for SA-SRRW becomes smaller than its i.i.d. counterpart, which is
always a constant. Although Doshi et al. (2023) alluded this for sampling applications with V (a),
we broaden its horizons to distributed optimization problem with Vg () using tokens on graphs.
Our subsequent result concerns the performance comparison between cases (i) and (iii).

Corollary 3.5. For any a. > 0, we have V(el)(a) <z Vé?’)(a) = Vé?’) (0).

We show that case (i) is asymptotically better than case (iii) for o > 0. In view of Proposition 3.4
and Corollary 3.5, the advantages of case (i) become prominent.

®Further insights of O(1/a?) are tied to the two-timescale structure, particularly 3, = o(y») in case (i),
which places 0,, on the slow timescale so that the correlation terms J12(cv), J22() in the Jacobian matrix
J () in (8) come into play. Technical details are referred to Appendix E.2, where we show the form of Ug(c).
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Figure 2: Simulation results under case (i): (a) and (b) show the performance of SGD-SRRW and
SHB-SRRW for various « values. (c) shows that MSE decreases at O(1/a?) speed.
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Figure 3: Comparison of the performance among cases (i) - (iii) for « € {1, 5,10}.

4 SIMULATION

In this section, we simulate our SA-SRRW algorithm on the wikiVote graph (Leskovec & Krevl,
2014), comprising 889 nodes and 2914 edges. We configure the SRRW’s base Markov chain P as
the MHRW with a uniform target distribution p = %1. For distributed optimization, we consider
the following Lo regularized binary classification problem:

minger { £(8) £ & XL, log (1+ €97 ) —y; (67s:) + 5/6]1°}, (12)

where {(s;,y;)}}V, is the ijcnnl dataset (with 22 features, i.e., s; € R?2) from LIBSVM (Chang
& Lin, 2011), and penalty parameter x = 1. Each node in the wikiVote graph is assigned one
data point, thus 889 data points in total. We perform SRRW driven SGD (SGD-SRRW) and SRRW
driven stochastic heavy ball (SHB-SRRW) algorithms (see (13) in Appendix A for its algorithm).
We fix the step size 3, = (n + 1) =% for the SA iterates and adjust ~y,, = (n + 1)~ in the SRRW
iterates to cover all three cases discussed in this paper: (i) a =0.8; (ii)) a =0.9; (iii) a = 1. We use
mean square error (MSE), i.e., E[||@,,—0*||?], to measure the error on the SA iterates.

Our results are presented in Figures 2 and 3, where each experiment is repeated 100 times. Figures
2a and 2b, based on wikiVote graph, highlight the consistent performance ordering across different
« values for both algorithms over almost all time (not just asymptotically). Notably, curves for
o > 5 outperform that of the i.i.d. sampling (in black) even under the graph constraints. Figure 2¢
on the smaller Dolphins graph (Rossi & Ahmed, 2015) - 62 nodes and 159 edges - illustrates that
the points of («, MSE) pair arising from SGD-SRRW at time n = 107 align with a curve in the form
of g(z)= et ey s to showcase O(1/a?) rates. This smaller graph allows for longer simulations
to observe the asymptotic behaviour. Additionally, among the three cases examined at identical «
values, Figures 3a - 3c confirm that case (i) performs consistently better than the rest, underscoring
its superiority in practice. Further results, including those from non-convex functions and additional
datasets, are deferred to Appendix H due to space constraints.

5 CONCLUSION

In this paper, we show both theoretically and empirically that the SRRW as a drop-in replacement
for Markov chains can provide significant performance improvements when used for token algo-
rithms, where the acceleration comes purely from the careful analysis of the stochastic input of the
algorithm, without changing the optimization iteration itself. Our paper is an instance where the
asymptotic analysis approach allows the design of better algorithms despite the usage of uncon-
ventional noise sequences such as nonlinear Markov chains like the SRRW, for which traditional
finite-time analytical approaches fall short, thus advocating their wider adoption.



Published as a conference paper at ICLR 2024

6 ACKNOWLEDGMENTS AND DISCLOSURE OF FUNDING

We thank the anonymous reviewers for their constructive comments, especially Reviewer DxLx for
raising future directions. This work was supported in part by National Science Foundation under
Grant Nos. CNS-2007423 and I1S-1910749.

REFERENCES

David Aldous and James Allen Fill. Reversible markov chains and random walks on graphs, 2002.
Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.
edu/~aldous/RWG/book.html.

Christophe Andrieu, Ajay Jasra, Arnaud Doucet, and Pierre Del Moral. Non-linear markov chain
monte carlo. In Esaim: Proceedings, volume 19, pp. 79-84. EDP Sciences, 2007.

Ghadir Ayache and Salim El Rouayheb. Private weighted random walk stochastic gradient descent.
IEEE Journal on Selected Areas in Information Theory, 2(1):452-463, 2021.

Anas Barakat and Pascal Bianchi. Convergence and dynamical behavior of the adam algorithm for
nonconvex stochastic optimization. SIAM Journal on Optimization, 31(1):244-274, 2021.

Anas Barakat, Pascal Bianchi, Walid Hachem, and Sholom Schechtman. Stochastic optimization
with momentum: convergence, fluctuations, and traps avoidance. Electronic Journal of Statistics,
15(2):3892-3947, 2021.

M Benaim and Bertrand Cloez. A stochastic approximation approach to quasi-stationary distribu-
tions on finite spaces. Electronic Communications in Probability 37 (20), 1-14.(2015), 2015.

Albert Benveniste, Michel Métivier, and Pierre Priouret. Adaptive algorithms and stochastic ap-
proximations, volume 22. Springer Science & Business Media, 2012.

V.S. Borkar. Stochastic Approximation: A Dynamical Systems Viewpoint: Second Edition. Texts
and Readings in Mathematics. Hindustan Book Agency, 2022. ISBN 9788195196111.

Léon Bottou, Frank E Curtis, and Jorge Nocedal. Optimization methods for large-scale machine
learning. SIAM review, 60(2):223-311, 2018.

Stephen Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. Randomized gossip algorithms.
IEEE transactions on information theory, 52(6):2508-2530, 2006.

Pierre Brémaud. Markov chains: Gibbs fields, Monte Carlo simulation, and queues, volume 31.
Springer Science & Business Media, 2013.

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines. ACM trans-
actions on intelligent systems and technology (TIST), 2(3):1-27, 2011.

VijaySekhar Chellaboina and Wassim M Haddad. Nonlinear dynamical systems and control: A
Lyapunov-based approach. Princeton University Press, 2008.

Vishnu Pandi Chellapandi, Antesh Upadhyay, Abolfazl Hashemi, and Stanislaw H Zak. On the con-
vergence of decentralized federated learning under imperfect information sharing. arXiv preprint
arXiv:2303.10695, 2023.

Han-Fu Chen. Stochastic approximation and its applications, volume 64. Springer Science &
Business Media, 2006.

Shuhang Chen, Adithya Devraj, Ana Busic, and Sean Meyn. Explicit mean-square error bounds
for monte-carlo and linear stochastic approximation. In International Conference on Artificial
Intelligence and Statistics, pp. 4173—4183. PMLR, 2020a.

Zaiwei Chen, Siva Theja Maguluri, Sanjay Shakkottai, and Karthikeyan Shanmugam. Finite-
sample analysis of stochastic approximation using smooth convex envelopes. arXiv preprint
arXiv:2002.00874, 2020b.

10



Published as a conference paper at ICLR 2024

Zaiwei Chen, Sheng Zhang, Thinh T Doan, John-Paul Clarke, and Siva Theja Maguluri. Finite-
sample analysis of nonlinear stochastic approximation with applications in reinforcement learn-
ing. Automatica, 146:110623, 2022.

Burgess Davis. On the intergrability of the martingale square function. Israel Journal of Mathemat-
ics, 8:187-190, 1970.

Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: a fast incremental gradient method
with support for non-strongly convex composite objectives. In Advances in neural information
processing systems, volume 1, 2014.

Pierre Del Moral and Arnaud Doucet. Interacting markov chain monte carlo methods for solving
nonlinear measure-valued equations1. The Annals of Applied Probability, 20(2):593-639, 2010.

Pierre Del Moral and Laurent Miclo. Self-interacting markov chains. Stochastic Analysis and
Applications, 24(3):615-660, 2006.

Bernard Delyon. Stochastic approximation with decreasing gain: Convergence and asymptotic the-
ory. Technical report, Université de Rennes, 2000.

Bernard Delyon, Marc Lavielle, and Eric Moulines. Convergence of a stochastic approximation
version of the em algorithm. Annals of statistics, pp. 94—128, 1999.

Adithya M Devraj and Sean P Meyn. Zap g-learning. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pp. 2232-2241, 2017.

Adithya M. Devraj and Sean P. Meyn. Q-learning with uniformly bounded variance. IEEE Trans-
actions on Automatic Control, 2021.

Thinh Doan, Siva Maguluri, and Justin Romberg. Finite-time analysis of distributed td (0) with linear
function approximation on multi-agent reinforcement learning. In International Conference on
Machine Learning, pp. 1626—-1635. PMLR, 2019.

Thinh T Doan. Finite-time convergence rates of nonlinear two-time-scale stochastic approximation
under markovian noise. arXiv preprint arXiv:2104.01627, 2021.

Thinh T Doan, Lam M Nguyen, Nhan H Pham, and Justin Romberg. Convergence rates of ac-
celerated markov gradient descent with applications in reinforcement learning. arXiv preprint
arXiv:2002.02873, 2020.

Vishwaraj Doshi, Jie Hu, and Do Young Eun. Self-repellent random walks on general graphs—
achieving minimal sampling variance via nonlinear markov chains. In International Conference
on Machine Learning. PMLR, 2023.

Marie Duflo. Algorithmes stochastiques, volume 23. Springer, 1996.

Mathieu Even. Stochastic gradient descent under markovian sampling schemes. In International
Conference on Machine Learning, 2023.

Gersende Fort. Central limit theorems for stochastic approximation with controlled markov chain
dynamics. ESAIM: Probability and Statistics, 19:60-80, 2015.

Sébastien Gadat, Fabien Panloup, and Sofiane Saadane. Stochastic heavy ball. Electronic Journal
of Statistics, 12:461-529, 2018.

Xin Guo, Jiequn Han, Mahan Tajrobehkar, and Wenpin Tang. Escaping saddle points efficiently
with occupation-time-adapted perturbations. arXiv preprint arXiv:2005.04507, 2020.

P. Hall, C.C. Heyde, Z.W. Birnbauam, and E. Lukacs. Martingale Limit Theory and Its Application.
Communication and Behavior. Elsevier Science, 2014.

Hadrien Hendrikx. A principled framework for the design and analysis of token algorithms. In
International Conference on Artificial Intelligence and Statistics, pp. 470-489. PMLR, 2023.

11



Published as a conference paper at ICLR 2024

Mingyi Hong, Hoi-To Wai, Zhaoran Wang, and Zhuoran Yang. A two-timescale stochastic algorithm
framework for bilevel optimization: Complexity analysis and application to actor-critic. SIAM
Journal on Optimization, 33(1):147-180, 2023.

Jie Hu, Vishwaraj Doshi, and Do Young Eun. Efficiency ordering of stochastic gradient descent. In
Advances in Neural Information Processing Systems, 2022.

Chi Jin, Rong Ge, Praneeth Netrapalli, Sham M Kakade, and Michael I Jordan. How to escape saddle
points efficiently. In International conference on machine learning, pp. 1724—-1732. PMLR, 2017.

Chi Jin, Praneeth Netrapalli, and Michael I Jordan. Accelerated gradient descent escapes saddle
points faster than gradient descent. In Conference On Learning Theory, pp. 1042-1085. PMLR,
2018.

Chi Jin, Praneeth Netrapalli, Rong Ge, Sham M Kakade, and Michael I Jordan. On nonconvex
optimization for machine learning: Gradients, stochasticity, and saddle points. Journal of the
ACM (JACM), 68(2):1-29, 2021.

Belhal Karimi, Blazej Miasojedow, Eric Moulines, and Hoi-To Wai. Non-asymptotic analysis of
biased stochastic approximation scheme. In Conference on Learning Theory, pp. 1944-1974.
PMLR, 2019.

Prasenjit Karmakar and Shalabh Bhatnagar. Two time-scale stochastic approximation with con-
trolled markov noise and off-policy temporal-difference learning. Mathematics of Operations
Research, 43(1):130-151, 2018.

Ahmed Khaled and Peter Richtarik. Better theory for SGD in the nonconvex world. Transactions
on Machine Learning Research, 2023. ISSN 2835-8856.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In ICLR, 2015.

Vijay R Konda and John N Tsitsiklis. Convergence rate of linear two-time-scale stochastic approxi-
mation. The Annals of Applied Probability, 14(2):796-819, 2004.

Harold Kushner and G George Yin. Stochastic approximation and recursive algorithms and appli-
cations, volume 35. Springer Science & Business Media, 2003.

Anusha Lalitha, Shubhanshu Shekhar, Tara Javidi, and Farinaz Koushanfar. Fully decentralized
federated learning. In Advances in neural information processing systems, 2018.

Jure Leskovec and Andrej Krevl. Snap datasets: Stanford large network dataset collection, 2014.

David A Levin and Yuval Peres. Markov chains and mixing times, volume 107. American Mathe-
matical Soc., 2017.

Qiang Li and Hoi-To Wai. State dependent performative prediction with stochastic approximation.
In International Conference on Artificial Intelligence and Statistics, pp. 3164-3186. PMLR, 2022.

Tiejun Li, Tiannan Xiao, and Guoguo Yang. Revisiting the central limit theorems for the sgd-type
methods. arXiv preprint arXiv:2207.11755, 2022.

Xiang Li, Jiadong Liang, and Zhihua Zhang. Online statistical inference for nonlinear stochastic
approximation with markovian data. arXiv preprint arXiv:2302.07690, 2023.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273—1282. PMLR, 2017.

Sean Meyn. Control systems and reinforcement learning. Cambridge University Press, 2022.

Abdelkader Mokkadem and Mariane Pelletier. The compact law of the iterated logarithm for mul-
tivariate stochastic approximation algorithms. Stochastic analysis and applications, 23(1):181-
203, 2005.

12



Published as a conference paper at ICLR 2024

Abdelkader Mokkadem and Mariane Pelletier. Convergence rate and averaging of nonlinear two-
time-scale stochastic approximation algorithms. Annals of Applied Probability, 16(3):1671-1702,
2006.

Gemma Morral, Pascal Bianchi, and Gersende Fort. Success and failure of adaptation-diffusion
algorithms with decaying step size in multiagent networks. IEEE Transactions on Signal Pro-
cessing, 65(11):2798-2813, 2017.

Wenlong Mou, Chris Junchi Li, Martin J] Wainwright, Peter L Bartlett, and Michael I Jordan. On
linear stochastic approximation: Fine-grained polyak-ruppert and non-asymptotic concentration.
In Conference on Learning Theory, pp. 2947-2997. PMLR, 2020.

Angelia Nedic. Distributed gradient methods for convex machine learning problems in networks:
Distributed optimization. IEEE Signal Processing Magazine, 37(3):92-101, 2020.

Alex Olshevsky. Asymptotic network independence and step-size for a distributed subgradient
method. Journal of Machine Learning Research, 23(69):1-32, 2022.

Mariane Pelletier. On the almost sure asymptotic behaviour of stochastic algorithms. Stochastic
processes and their applications, 78(2):217-244, 1998.

Sashank J. Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with interactive graph analytics
and visualization. In AAAI, 2015.

Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162:83-112, 2017.

Tao Sun, Yuejiao Sun, and Wotao Yin. On markov chain gradient descent. In Advances in neural
information processing systems, volume 31, 2018.

Aleksei Triastcyn, Matthias Reisser, and Christos Louizos. Decentralized learning with random
walks and communication-efficient adaptive optimization. In Workshop on Federated Learning:
Recent Advances and New Challenges (in Conjunction with NeurIPS 2022), 2022.

Thijs Vogels, Lie He, Anastasiia Koloskova, Sai Praneeth Karimireddy, Tao Lin, Sebastian U Stich,
and Martin Jaggi. Relaysum for decentralized deep learning on heterogeneous data. In Advances
in Neural Information Processing Systems, volume 34, pp. 28004-28015, 2021.

Jianyu Wang, Anit Kumar Sahu, Zhouyi Yang, Gauri Joshi, and Soummya Kar. Matcha: Speed-
ing up decentralized sgd via matching decomposition sampling. In 2019 Sixth Indian Control
Conference (ICC), pp. 299-300. IEEE, 2019.

Vinayaka G Yaji and Shalabh Bhatnagar. Stochastic recursive inclusions in two timescales with
nonadditive iterate-dependent markov noise. Mathematics of Operations Research, 45(4):1405—
1444, 2020.

Hao Ye, Le Liang, and Geoffrey Ye Li. Decentralized federated learning with unreliable communi-
cations. IEEE Journal of Selected Topics in Signal Processing, 16(3):487-500, 2022.

Sihan Zeng, Thinh T Doan, and Justin Romberg. A two-time-scale stochastic optimization frame-
work with applications in control and reinforcement learning. arXiv preprint arXiv:2109.14756,
2021.

13



Published as a conference paper at ICLR 2024

A EXAMPLES OF STOCHASTIC ALGORITHMS OF THE FORM (2).

In the literature of stochastic optimizations, many SGD variants have been proposed by introducing
an auxiliary variable to improve convergence. In what follows, we present two SGD variants with
decreasing step size that can be presented in the form of (2): SHB (Gadat et al., 2018; Li et al., 2022)
and momentum-based algorithm (Barakat et al., 2021; Barakat & Bianchi, 2021).

Vn41=Vn +Bn+1(VF(0n, Xn-&-l)zfvn)v
my, 1 =My, +Bn 1(VE(0n, Xnyp1) —my,),
0,11=0,—Fni1m,/\/V, +¢,

(a). SHB (b). Momentum-based Algorithm

{en-i-l :on_6n+lmn
my+1=mMy +/87L+1(VF(07L7 Xn-‘rl) _mn)7

13)

where ¢ > 0,60, m,,v,,VF(0,X) € R?, and the square and square root in (13) (b) are element-
wise operators.

For SHB, we introduce an augmented variable z,, and function H (z,,, X,,11) defined as follows:

—m,,

2d
VF (B, Xni1) —m,| K -

n

o
Zp £ |:mn:| € R2da H(Zn7X7L+1) =

For the general momentum-based algorithm, we define

Vi VF(0,, Xn1)? — v, ,
7z, £ |m,| €R3* H(z,,X)2 |VF(@0,,X,11)—m,| € R,
0, —m,/\/v, +¢€

Thus, we can reformulate both algorithms in (13) as z,+1 = 2, + Bn+1H (2n, Xy41). This aug-
mentation approach was previously adopted in (Gadat et al., 2018; Barakat et al., 2021; Barakat &
Bianchi, 2021; Li et al., 2022) to analyze the asymptotic performance of algorithms in (13) using an
i.i.d. sequence {X,},>o. Consequently, the general SA iteration (2) includes these SGD variants.
However, we mainly focus on the CLT for the general SA driven by SRRW in this paper. Pursuing
the explicit CLT results of these SGD variants with specific form of function H (6, X) driven by the
SRRW sequence { X, } is out of the scope of this paper.

When we numerically test the SHB algorithm in Section 4, we use the exact form of (13) (a) and
the stochastic sequence {X,,} is now driven by the SRRW. Specifically, we consider MHRW with
transition kernel P as the base Markov chain of the SRRW process, e.g.,

ij =

p._ min {d%’ %} if node j is the neighbor of node 7,
0 otherwise,

Pi=1-Y_ P

JEN
Then, at each time step n,
Draw: Xn+1 ~ KXm. [XnL
P . )T
where  Kj[x] £ i (23/ 1) Vi, jeN,

 Yoken Palan/p)—
Update: X411 = Xp + Ynt1(0x,,, — Xn),
0n+1 = gn - ﬁn-{-lmna

My = My + Bn+l(vF(0n7Xn+l) - mn)

1%For ease of expression, we simplify the original SHB and momentum-based algorithms from Gadat et al.
(2018); Li et al. (2022); Barakat et al. (2021); Barakat & Bianchi (2021), setting all tunable parameters to 1 and
resulting in (13).
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B DISCUSSION ON MEAN FIELD FUNCTION OF SRRW ITERATES (4b)

Non-asymptotic analyses have seen extensive attention recently in both single-timescale SA litera-
ture (Sun et al., 2018; Karimi et al., 2019; Chen et al., 2020b; 2022) and two-timescale SA literature
(Doan, 2021; Zeng et al., 2021). Specifically, single-timescale SA has the following form:

Xn+1 = Xp + BnJrlH(X'ru Xn+1)7

and function h(x) £ Ex.,[H(x, X)] is the mean field of function H(x, X). Similarly, for two-
timescale SA, we have the following recursions:

Xnt+1 = Xy + 6n+1Hl (Xna Yn, Xn+1)a

Yn+1 = Yn + Ynt1H2(Xn, ¥Yn, Xnt1)s
where {$,} and {7, } are on different timescales, and function h;(x,y) = Ex.[H;(x,y, X)] is
the mean field of function H;(x,y, X) for ¢ = {1,2}. All the aforementioned works require the
mean field function h(x) in the single-timescale SA (or k1 (X,y), ha(x, y) in the two-timescale SA)

to be globally Lipschitz with a Lipschitz constant L to proceed with the derivation of finite-time
bounds including the constant L.

Here, we show that the mean field function 7[x] — x in the SRRW iterates (4b) is not globally
Lipschitz, where [x] is the stationary distribution of the SRRW kernel K[x] defined in (3). To this
end, we show that each entry of Jacobian matrix of 7r[x] — x goes unbounded because a multivariate
function is Lipschitz if and only if it has bounded partial derivatives. Note that from Doshi et al.
(2023, Proposition 2.1), for the i-th entry of 7[x], we have

> jen biPij (i /pa) ™ (g /pg) "
Sien S jen HiPig (wi/ )~ (@5 /py) ="

Then, the Jacobian matrix of the mean field function 7[x] — x , which has been derived in Doshi
et al. (2023, Proof of Lemma 3.4 in Appendix B), is given as follows:

O(mifx] — @:)
Oz
_ 20 (Cpen Hilin (@i/pa) " (/) ") e #i Pk (5/15)"" (wx/pr) ")
o (O ien Zoken P (@ /p) ™ (zk /i)~ ")?
o piPij (@i/pi)”" (25/p5) "
Ti S en owen Pk (/)" (wr/pn) "
fori,j € N,i # j,and
Amilx] — i)
ox;
2 (X pen wiPik (@i/ps) ™" (e /pn) )3
T (Ciew Seew P (@) (@) )2 (1%
a Ypen Ml (@i/pa)”" (@n/ 1) 4 pi P (i pa) 72
z; Soten ket Pk (/)™ (2w /pu) ™

for i € N. Since the empirical distribution x € Int(X), we have z; € (0,1) for all i € N. For
fixed 4, assume z; = x; and as they approach zero, the terms (z;/p;) ™%, (x;/p;)~ dominate the
fraction in (17) and both the numerator and the denominator of the fraction have the same order in

terms of x;, x;. Thus, we have
0 i — X 1
mx ) (L)
a.CCj a:j

such that the (4, j)-th entry of the Jacobian matrix can go unbounded as z; — 0. Consequently,
7[x] — x is not globally Lipschitz for x € Int(X).

m[x] = (16)

A7)

-1
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C DISCUSSION ON ASSUMPTION A3’

When v,, = o(f,), iterates x,, has smaller step size compared to 8,,, thus converges ‘slower’ than
0,,. From Assumption A3’, 8,, will intuitively converge to some point p(x) with the current value
x from the iteration x,,, i.e., Exn[x[H (p(x), X)] = 0, while the Hurwitz condition is to ensure
the stability around p(x). We can see that Assumption A3 is less stringent than A3’ in that it only
assumes such condition when x = g such that p(p) = 0* rather than for all x € Int(X).

One special instance of Assumption A3’ is by assuming the linear SA, e.g., H(0,i) = A;0 + b;. In
this case, Ex~[x] [H (p(x), X)] = 0 is equivalent to [ _rx[Ai] p(x) + E;r[x[b:] = 0. Under the
condition that for every x € Int(), matrix ;. ~[x[A4] is invertible, we then have

p(x) = —(Binmppg[Ai]) ™+ Binmp [bi]-

However, this condition is quite strict. Loosely speaking, ;. [x[A;] being invertible for any x
is similar to saying that any convex combination of {A;} is invertible. For example, if we assume
{4;}ien are negative definite and they all share the same eigenbasis {u;}, e.g., 4; = Zle Aiu;uf
and )\;- < Oforalli € NV,j € [D]. Then, E; r[x[A;] is invertible.

Another example for Assumption A3’ is when H(0,i) = H(0, j) for all ¢, 5 € N, which implies
that each agent in the distributed learning has the same local dataset to collaboratively train the
model. In this example, p(x) = * such that

Eironpug [H(p(x), 8)] = h(8%) =0,

1y 1oy
i [VH (p(x),1)] + %I = Vh(0%) + %I being Hurwitz.

D PROOF OF LEMMA 3.1 AND LEMMA 3.2

In this section, we demonstrate the almost sure convergence of both 8,, and x,, together. This proof
naturally incorporates the almost certain convergence of the SRRW iteration in Lemma 3.1, since
X, is independent of 8,, (as indicated in (4)), allowing us to separate out its asymptotic results. The
same reason applies to the CLT analysis of SRRW iterates and we refer the reader to Section E.1 for
the CLT result of x,, in Lemma 3.1.

We will use different techniques for different settings of step sizes in Assumption A2. Specifically,
for step sizes v, = (n +1)~%, 3, = (n + 1)~°, we consider the following scenarios:

Scenario 1: We consider case(ii): 1/2 < a = b < 1, and will apply the almost sure convergence
result of the single-timescale stochastic approximation in Theorem G.8 and verify all the
conditions therein.

Scenario 2: We consider both case(i): 1/2 < a < b < 1 and case (iii): 1/2 < b < a < 1. In these
two cases, step sizes ,, 5, decrease at different rates, thereby putting iterates x,,, 8,, on
different timescales and resulting in a two-timescale structure. We will apply the existing
almost sure convergence result of the two-timescale stochastic approximation with iterate-
dependent Markov chain in Yaji & Bhatnagar (2020, Theorem 4) where our SA-SRRW
algorithm can be regarded as a special instance.'!

D.1 SCENARIO 1

In Scenario 1, we have (3,, = ~,,. First, we rewrite (4) as

|:0n+1:| = |:0n:| +’Yn+1 |:I§)((0an+1):| : (19)

Xn+1 Xn nt1 — Xn

"However, Yaji & Bhatnagar (2020) paper only analysed the almost sure convergence. The central limit
theorem analysis remains unknown in the literature for the two-timescale stochastic approximation with iterate-
dependent Markov chains. Thus, our CLT analysis in Section E for this two-timescale structure with iterate-
dependent Markov chain is still novel and recognized as our contribution.
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By augmentations, we define the variable z,, £ [}0{”] e RW+D)XL gand the function G(zn,i) A
H(6,,1) (N+d)x1 . . .
8 —x, eR . In addition, we define a new Markov chain {Y}, },,>¢ in the same state

space \/ as SRRW sequence { X, },,>0. With slight abuse of notation, the transition kernel of {Y}, }
is denoted by K'[z,,] = K[x,] and its stationary distribution 7’[z,] = 7[x,], where K[x,] and
7(x,,) are the transition kernel and its corresponding stationary distribution of SRRW, with 7r[x] of

the form
oc D P/ ps) ™ (/1) (20)
JEN
Recall that p is the fixed point, i.e., 7w[u] = p, and P is the base Markov chain inside SRRW (see
(3)). Then, the mean field
g(z) — EYN-;r’(z) [G(LY)] — |:Zi€./\/ T [X]H(e, Z)

w[x] — x ’

and z* = (0*, p) for 8* € © in Assumption A3 is the root of g(z), i.e., g(z*) = 0. The augmented
iteration (19) becomes

Zpy1 = Zp, + 7n+1G(Zna Yn+1) (21)
with the goal of solving g(z) = 0. Therefore, we can treat (21) as an SA algorithm driven by
a Markov chain {Y},},,>0 with its kernel K’[z] and stationary distribution 7r’[z], which has been
widely studied in the literature (e.g., Delyon (2000); Benveniste et al. (2012); Fort (2015); Li et al.
(2023)). In what follows, we demonstrate that for any initial point zg = (8, %) € RP x Int(%),
the SRRW iteration {x,,},,>0 will almost surely converge to the target distribution p, and the SA
iteration {0n}"20 will almost surely converge to the set O.

Now we verify conditions C1 - C4 in Theorem G.8. Our assumption A4 is equivalent to condition
C1 and assumption A2 corresponds to condition C2. For condition C3, we set Vw(z) = —g(z),
and the set S = {z*|0* € O,x* = p}, including disjoint points. For condition C4, since K'[z],
or equivalently K[x], is ergodic and time-reversible for a given z, as shown in the SRRW work
Doshi et al. (2023), it automatically ensures a solution to the Poisson equation, which has been well
discussed in Chen et al. (2020a, Section 2) and Benveniste et al. (2012); Meyn (2022). To show (97)
and (98) in condition C4, for each given z and any 7 € N, we need to give the explicit solution m (4)
to the Poisson equation m (i) — (K,m,)(i) = G(z,1) — g(z) in (96). The notation (K,m,)(i) is

defined as follows.
(K,my)( Z K’ (i,7)m(z, j).

JEN
Let G(z) £ [G(z,1),--- ,G(z,N)]T € RN*P. We use [A]. ; to denote the i-th column of matrix
A. Then, we let m, (i) such that
ma (i) =) ((G(2)(K'[2]") ] — 9(2) = D _[G( 2)" — 7@ 1] (22)
k=0 k=0
In addition,
(K,ma)(i) = ) _[G(2)(K'[2]" — #'[2]17)]p. - (23)
k=1

We can check that the m, (i) form in (22) is indeed the solution of the above Poisson equation.
Now, by induction, we get K'[z]* — 17'[z]T = (K'[z] — 17’'[z]T)* for k > 1 and for k = 0,
K'[z]° — 17'[z]T = (K'[z] — 17[2]T)° — 17’[2z]”. Then,

my (i) = Y [G(2)(K'[2]" — n'[2]17)"](. — 9(2)

(24)
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Here, (I — K'[z] + 17’'[z]7) ! is well defined because K'[z] is ergodic and time-reversible for any
given z (proved in Doshi et al. (2023, Appendix A)). Now that both functions H(6,) and §; — x
are bounded for each compact subset of RP x ¥ by our assumption Al, function G(z,17) is also
bounded within the compact subset of its domain. Thus, function m, (i) is bounded, and (97) is
verified. Moreover, for a fixed i € N,

> (I K'e] + 1'[2]") 1 (0,5)8; = (1~ K'a] + 1'[2]") ) = (I - K[x] + 1wx]") ]
JEN

and this vector-valued function is continuous in x because K[x], 7v[x] are continuous. We then
rewrite (24) as

) — [aen KB+ 17D 16 H(x)] [ mibel(0.)
2 (I—K[X]T—F?T[X]lT)[ih x| —x

With continuous functions H (6, ), K[x], v [x], we have m (i) continuous with respect to z, so does
(K. my)(4). This implies that functions m,(¢) and (K, m,)(7) are locally Lipschitz, which satisfies
(98) with ¢¢(x) = Cea for some constant Ce that depends on the compact set C. Therefore,
condition C4 is checked, and we can apply Theorem G.8 to show the almost convergence result of
(19), i.e., almost surely,

lim x, =, and limsup inf ||@,, — 60| =0.

n—oo n—oo 0*€O
Therefore, the almost sure convergence of x,, in Lemma 3.1 is also proved. This finishes the proof
in Scenario 1.

D.2 SCENARIO 2

Now in this subsection, we consider the steps sizes vy, 3, with1/2 < a < b<land1/2 < b <
a < 1. We will frequently use assumptions (B1) - (BS) in Section G.3 and Theorem G.10 to prove
the almost sure convergence.

D.2.1 CASE(1):1/2<a<b<1

In case (i), @,, is on the slow timescale and x,, is on the fast timescale because iteration 8,, has
smaller step size than x,,, making 6,, converge slower than x,,. Here, we consider the two-timescale
SA of the form:

0n+1 = 0n + ﬁnJrlH(ay Xn+1>7

Xpt+1 = Xp + '77z+1(5Xn,+1 - X)'
Now, we verify assumptions (B1) - (BS) listed in Section G.3.

* Assumptions (B1) and (B5) are satisfied by our assumptions A2 and A4.

* Our assumption A3 shows that the function H (6, X) is continuous and differentiable w.r.t
6 and grows linearly with ||@||. In addition, d x — x also satisfies this property. Therefore,
(B2) is satisfied.

« Now that the function 7[x] — x is independent of 8, we can set p(0) = p for any 8 € RP
such that 7r[p] — g = 0 from Doshi et al. (2023, Proposition 3.1), and

Vi (m(x) = X)|x=p = 20ul” — aPT — (o + 1)I

from Doshi et al. (2023, Lemma 3.4), which is Hurwitz. Furthermore, p(6) = p inherently
satisfies the condition || p(0)|| < L2(1+||@||) for any Lo > ||4||. Thus, conditions (i) - (iii)
in (B3) are satisfied. Additionally, ).\, mi[p(0)]H (0,7) = >, m:i[x] = h(0) such
that for 6% € © defined in assumption A3, >, 7;[p(0*)|H(0*,i) = h(6*) = 0, and
Veh(0*) is Hurwitz. Therefore, (B3) is checked.

* Assumption (B4) is verified by the nature of SRRW, i.e., its transition kernel K[x] and the
corresponding stationary distribution 7r[x] with 7] = p.
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Consequently, assumptions (B1) - (B5) are satisfied by our assumptoins Al - A4 and by Theorem
G.10, we have lim,,_, o, x,, = p and 8,, — O almost surely.

Next, we consider 1/2 < b < a < 1. As discussed before, (B1), (B2), (B4) and (B5) are satisfied by
our assumptions Al - A4 and the properties of SRRW. The only difference for this step size setting,
compared to the previous one 1/2 < a < b < 1, is that the roles of 6,,,x,, are now flipped, that is,
0,, is now on the fast timescale while x,, is on the slow timescale. By a much stronger Assumption
A3, for any x € Int(X), (i) Ex [« [H (p(x), X)] = 0; (i) Exnx [VH(p(x), X)] is Hurwitz;
(iii) ||p(x)|] < L2(1 + ||x||). Hence, conditions (i) - (iii) in (B3) are satisfied. Moreover, we have
7[p] — p = 0, V(7 [x] — X)|x—,, being Hurwitz, as mentioned in the previous part. Therefore, (B3)
is verified. Accordingly, (B1) - (B5) are checked by our assumptions A1, A2, A3’, A4. By Theorem
G.10, we have lim,,_, o, x, = p and 8,, — © almost surely.

E PROOF OF THEOREM 3.3

This section is devoted to the proof of Theorem 3.3, which also includes the proof of the CLT results
for the SRRW iteration x,, in Lemma 3.1. We will use different techniques depending on the step
sizes in Assumption A2. Specifically, for step sizes v, = (n + 1)7%, 3, = (n + 1)7°, we will
consider three cases: case (i): 5, = o(7,); case (ii): 8, = 7n; and case (iii): v, = o(8,). For case
(ii), we will use the existing CLT result for single-timescale SA in Theorem G.9. For cases (i) and
(iii), we will construct our own CLT analysis for the two-timescale structure. We start with case (ii).

E.1 CASE (1): B, = Vn

In this part, we stick to the notations for single-timescale SA studied in Section D.1. To utilize
Theorem G.9, apart from Conditions C1 - C4 that have been checked in Section D.1, we still need
to check conditions C5 and C6 listed in Section G.2.

Assumption A3 corresponds to condition C5. For condition C6, we need to obtain the explicit form
of function @), to the Poisson equation defined in (96), that is,

Qz(l) - (K/ZQZ)(Y’) = 1/)(2’ Z) - ijﬂ'[z] W(ZJ)]
where

P(z,1) 2K (6 ))ma()ma (i) — (Kymy) (1) (Kym,) (0).
JEN

Following the similar steps in the derivation of m () from (22) to (24), we have

QZ(Z) = Z (I - KI[Z] + 1W/[Z}T)_l(i7j)mz(j) - ﬂ—;[z]mz(J)

JEN

We also know that Q,(z) and (K. Q,) (i) are continuous in z for any ¢ € /. For any z in a compact
set , Q,(i) and (K. Q,)(i) are bounded because function m,(i) is bounded. Therefore, C6 is

n

checked. By Theorem G.9, assume z,, = {X ] converges to a point z* = BJ for * € ©, we

n
have

—1/2

* dist.
n z ?

(zp, — - N(0,V), (26)

where V is the solution of the following Lyapunov equation
Lip=1y T Lp=1 *
Vv TI+Vg(z) + TI+Vg(z) V+U=0, (27)
and U =37, i (mz* (1)mg (1) — (Kgemge ) (i) (Kprmy- ) (Z)T)
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By algebraic calculations of derivative of 7r[x] with respect to x in (20),'? we can rewrite Vg(z*) in
terms of x, 0, i.e.,

N . azieN ;[ x| H(0,7) azieN ;[ x| H(60,7)
J(a) = Vy(z") = o(=hd—x) o —x
00 ox -
_ | Vh(6%) —aHT(PT 4+ 1) a [Ju1 Jiz(e)
- 0 20pu1T — aPT — (a+ DI| — [Ja1 Ja2(a)

where matrix H = [H(0*,1),--- , H(6, N)]. Then, we further clarify the matrix U. Note that

oo

E|>_[G(

k=0

mge (i) = Y _[G(z")(P*)" —p1T)]p = D [G(E")(P") 1y =

k=0 k=0

XO = Z]

(28)
where the first equality holds because K’'[p] = P from the definition of SRRW kernel (3), the
second equality stems from G(z*)p = g(z*) = 0, and the last term is a conditional expectation

over the base Markov chain { X}, } > (with transition kernel P) conditioned on X, = ¢. Similarly,
with (K, m,)(4) in the form of (23), we have
| x0 - ] .

From the form ), _ \- p1;” inside the matrix U, the Markov chain { X}, } > is in its stationary regime
from the beginning, i.e., X; ~ u for any k& > 0. Hence,

U=E <Z[G(Z*7Xk)}> (Z[G(Z*an)]>

k=0 k=0
_E (

=K [G(Z*, XQ)G(Z*, X())T:I +E G(Z*, Xo) (

oo

Z ZXk

k=

(K.my)(

[G(Z*vXk)]> (Z[G(Z*an)]>
k=1

T
G(Z*,Xk)> (29)

(i G(z", Xk)> G(z", XO)T}
k=1

+ Z [Cov(G(z*, Xo), G(z", Xk)) + Cov(G(z*, Xk), G(z", X0))] ,

e L[]

b
Il
—

= Cov(G(z", Xo),G(z", Xo))

where the covariance between G(z*, X)) and G(z*, X},) for the Markov chain { X, } in the station-
ary regime is Cov(G(z*, Xy), G(z*, X})). By Brémaud (2013, Theorem 6.3.7), it is demonstrated
that U is the sampling covariance of the base Markov chain P for the test function G(z*, -). More-
over, Brémaud (2013, equation (6.34)) states that this sampling covariance U can be rewritten in the
following form:

N-1 -1
B . B 1+ [H'wyyu/H HTwu!l] o [U;; Uy
U= Z G(z") uu,G = -~ N\ [ wulH uul ] B {Um Us |’ 30)

>

—_

where {(\;, u;)};cn is the eigenpair of the transition kernel P of the ergodic and time-reversible
base Markov chain. This completes the proof of case 1.

20One may refer to Doshi et al. (2023, Appendix B, Proof of Lemma 3.4) for the computation of %
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Remark E.1. For the CLT result (26), we can look further into the asymptotic covariance matrix V

as in (27). For convenience, we denote V = {X;l x;z] and U in the form of (30) such that
1

Vi Vi (=1 T =1y Vii Vi _
[Vm Vﬂ}( 5 I+J()" |+ 5 I+J(a) Vo Voo +U=0. @31)

For the SRRW iteration x,,, from (26) we know that ~y,, 1/2 (xp, — ) dist N (0, V). Thus, in this
n— oo

remark, we want to obtain the closed form of V5. By algebraic computations of the bottom-right
sub-block matrix, we have

Ty,
(QaulT—aPT— <a + 1—{21}> I) Voo

T T
Vo <2au1T—aPT— (a T 1—{21}> I)

+ Uy, =0.

By using result of the closed form solution to the Lyapunov equation (e.g., Lemma G.1) and the
eigendecomposition of P, we have
N-1

1 14+ N\ T
A\ . ;. 32
22 Z 20&(1+/\i)+2*]1{a:1} 1*>\¢uul (32)

i=1

E.2 CASE (1): B, = o(7n)

In this part, we mainly focus on the CLT of the SA iteration 8,, because the SRRW iteration x,, is
independent of 6,, and its CLT result has been shown in Remark E.1.

E.2.1 DECOMPOSITION OF SA-SRRW ITERATION (4)
We slightly abuse the math notation and define the function

h(0,x) £ Bionp H(0,0) = Y m[x|H(6,1)

ieN
such that h(0, i) = h(0). Then, we reformulate (25) as
0n+1 = en + ﬁn-{-lh(en, Xn) + 6n+1(H(0n7 Xn+1) - h(e'ru Xn)) (333-)
Xn+1 = Xp + Yot 1 (T[Xn] — Xx5) + 'Yn—&-l(‘anH) — 7[x,]). (33b)

There exist functions ¢, : V' — RY, f{gyx : N — RP satisfying the following Poisson equations
6; — m(x) = (i) — (Kxax)(2) (34a)
H(0,i) —h(6,%) = Hox(i) — (KxHex)(i), (34b)
forany @ € RP x € Int(X) and i € N, where (Kyqx)(i) £ Zje/\/ K;;[x]gx(7), (Kng,x)(j) £

> jeN K;j[x] ﬁg’x( 7). The existence and explicit form of the solutions gx, ﬁg}x, which are contin-

uous w.r.t x, 8, follow the similar steps that can be found in Section D.1 from (22) to (24). Thus, we
can further decompose (33) into

0n+1 :0n + 5n+1h(0n7 Xn) + 6n+1 (ﬁen,xn (XnJrl) - (Kxnﬁen,xn)(X’ﬂ))

7(©)
MYy

+ Bn+1 ((Kxn+1HBW,+1,xn+1)(Xn+l) - (KanBn,xn)(XnJrl))

6,1
ot

+ ﬁn+1 ((Kxn'ggnyxn)(Xn) - (Kxn+lﬁ9n,+laxn+l)(Xn+1))7

(35a)

6,2
r2?
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Xnt1 =Xn + Yt 1 (T(Xn) = Xn) + Y1 (@, (Xny1) — (Kx, Gx, ) (Xn))

M),
+ Y1 ( KanXn (Xn 1) - Kanxn (Xn 1))
+ [ ] + [ +1} + (35b)
rGob
+ Y1 (K, 0x,) (Xn) = (K1 x,i0) (Xnt1)) -
P2
such that
Oni1 = On + B 1h(0n, %) + Bt M, + By @D + Biar®?), (362)
X7L+1 = Xn + 'Y7L+1(7T(Xn) - Xn) + 7n+1M75)i)1 + ’Yn+17'£Lx’1) + ’Yn+17'£Lx’2)- (36b)

We can observe that (36) differs from the expression in Konda & Tsitsiklis (2004); Mokkadem &
Pelletier (2006), which studied the two-timescale SA with Martingale difference noise. Here, due to
the presence of the iterate-dependent Markovian noise and the application of the Poisson equation
technique, we have additional non-vanishing terms réo’Q), 7’55“2), which will be further examined in
Lemma E.2. Additionally, when we apply the Poisson equation to the Martingale difference terms
M,(fi)l, Mr(:-?p we find that there are some covariances that are also non-vanishing as in Lemma E.1.
We will mention this again when we obtain those covariances. These extra non-zero noise terms
make our analysis distinct from the previous ones since the key assumption (A4) in Mokkadem &
Pelletier (2006) is not satisfied. We demonstrate that the long-term average performance of these
terms can be managed so that they do not affect the final CLT result.

Analysis of Terms )M T(LZ_)D M,(L)i)l

Consider the filtration F,, £ 0(0y,%0, X0, ,0n,Xn, X,,), it is evident that Mffi)l, Mf:_?l are
Martingale difference sequences adapted to F,,. Then, we have

E [ M 02T 7]
= Elg, (Xnt1)t, (Xns1)T 1] + (K, ) (Xn) (Ko, 0, ) (X)) 37)
— Elgx, (Xn41)[Fn] (Kanxn)(Xn))T — (K, 4x,) (Xn)Egx,, (X 11) " | Fl)

= IE:[qxn (Xn+1)ax, (XnJrl)T‘}—n} — (Kx, 4x,, ) (Xn) ((Kanxn)(Xn))T .
Similarly, we have

E [ M, (27| 7]

(38)
- - - - T
— E[o, x, (Xns1) o, x, (X 11)1F0] = (K, o, x, ) (Xn) (K, o, ,)(Xn))
and
E [ MO (M%) 7]
~ - T

= Elgx, (X 1) Ho, x, (Xns 1) 1Fu] = (Ko, ) (X0) (Ko, o, x,) (X))

We now focus on E [Mfli)l (Mf;i)l)T‘ .Fn] . Denote by
Vi(x,1) 2 ) K X a () g ()T — (Kaes) (1) (Kae) (i) (39)

JEN
and let its expectation w.r.t the stationary distribution 7 (x) be v (x) £ E;om(x) [V1(x,1)], we can
construct another Poisson equation, i.e.,

E[MELME)T| Fa] = 3w (xa)E [ MEL (D)7 F]
XneN
= ‘/l(xna Xn—i—l) — U1 (Xn)

= o (Xnt1) — (Ko, @) (Xpt1),
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for some matrix-valued function <px : N = RV*N_ Since gx and K[x] are continuous in x,
functions V7, vy are also continuous in x. Then, we can decompose (39) into

Vi Xn) =1 () + 01(6) — 01y )+ o (K1) — (K, o) (X0n)

Usz D Jta
W W (40)
+ (Kx, Px,. )(Xn) — (Kx, 99x,,,)(Xn+1) .
ngl,b)
Thus, we have
E[MS) (ME))T|F,] = Uy + DY + 30, (41)

where IV = g{b@) 4 g(Lb),

Following the similar steps above, we can decompose E Mé’fl(Mﬁi)l) ‘]—'n} and

E M'r(Li)l( 'r(zi)l ‘}-}35

E[ M ()| Fo] = U + DR + 32, (“22)
E[ M (MO)T| 7] = Ui + D + 39, (42b)

where J2 = 329 132 and 3@ = 339 133 Here, we note that matrices Ji fori=1,2,3
are in presence of the current CLT analysis of the two-timescale SA with Martingale difference noise.
In addition, U;1, U;5 and Uy, inherently include the information of the underlying Markov chain
(with its eigenpair (\;, u;)), which is an extension of the previous works (Konda & Tsitsiklis, 2004;
Mokkadem & Pelletier, 2006).

Lemma E.1. For M’ Jr)l, Mf:H defined in (35) and their decomposition in (41) and (42), we have

N-—1
14+ N\ T 14+ X T T
U = 7 7 iHy U = 7 iH7
! ;1_)" i—1 i ! ! ;1_/\i o
(43a)
lim DY) =0 as. for i=1,2,3, (43b)
n— oo
lim %El ) 1 =0, for i=1,23. (43c)
n— oo

Proof. We now provide the properties of the four terms inside (41) as an example. Note that

Ui =B Vil )] = Y i | D P )au()an()” — (Pau) (@) (Pgu) (i)
ieN JEN
= > 1u(au()" — (Pgu) () (Pgu) ()"
jen

We can see that it has exactly the same structure as matrix U in (27). Following the similar steps in
deducing the explicit form of U from (28) to (30), we get

N-1

14+ X\
Un =Y 1wl (44)

i=1

By the almost sure convergence result x,, — g in Lemma 3.1, v1(x,) — vi(p) a.s. such that
lim,, o0 D(l) =0a.s.

We next prove that lim,, o 7, E {HZ (1 “

| —omttn2[55, -o
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Since {J Ell’a)} is a Martingale difference sequence adapted to F,,, with the Burkholder inequality in

Lemma G.2 and p = 1, we show that
n 2
<CE (Z Hng ) . (45)
k=1

n

>a
k=1

By assumption A4, x,, is always within some compact set € such that sup,, ||J (b | <Cq < 0

and for a given trajectory w of x,, (w),

o
([

and the last term decreases to zero in n since @ > 1/2.

E

2
) < CpCaynv/n, (46)

For J §,“’), we use Abel transformation and obtain

ZJ(I V= Z Xk(pgclk))(Xk?—l) - (ka 1(px1k) 1)(Xk_1))

k=1
+ (Koo 04)) (X0) — (K, 00)) (Xin)-

Since (Kxgag( ))( X) is continuous in x, for x,, within a compact set {2 (assumption A4), it is local
Lipschitz with a constant L, such that

(K 08 (Xk—1) = Koy 08 ) (Xi1)|| < Lalbr — xi-1]| < 2Ly
where the last inequality arises from (4b) e, xg—Xp—1 = Ve(0x, —Xk—1) and || 0x, —Xp—1] < 2

because x,, € Int(X). Also, ||[(K xngxO )(X0)|| + (K xngon)(Xn)H are upper-bounded by some
positive constant C¢,. This implies that

300
; :

< Cg +2LQZ’)%-

Note that

- 2L
T < WCh +2Lava Y < 1Ch + =l 7, (47)

n
Z Jg,b)
k=1 k=1
where the last inequality is from Y ;' _, v < %nl_a. We observe that the last term in (47) is

decreasing to zero in n because a > 1/2.

ZJSLB)
k=1

Note that J ,(:) =J ,(:’a) +J él’b) , by triangular inequality we have

k=1 k=1

n

ZJ](CILA)

k=1

+ Y E

] <mE

n 2
< nCiE (ZHJ;(CH’A)H ) +%1El
k=1

1 (48)

i

n 2 n
=2 ey (3ot ) e[St
k=1 k=1

where the second inequality comes from (45). By (46) and (47) we know that both terms in the last
line of (48) are uniformly bounded by constants over time n that depend on the set 2. Therefore, by
dominated convergence theorem, taking the limit over the last line of (48) gives

n 2 n
lim E |7,Cy (ZHng,A)H >+% ZJECH,B)
k=1 k=1

=0.

iJ](:LB)

k=1

) " 11,4) |2
—= || (3o o

k=1
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Therefore, we have

n

> a

k=1

lim ~,E [ ] =0,
n—oo

In sum, in terms of E[Mr(;?l (Mr(:k)l)T |Fr] in (41), we have Uy in (44), lim,, s oo D%l) = 0a.s. and
Lty o0 7 E [HZZ:1 JMH —0.

We can apply the same steps as above for the other two terms ¢ = 2,3 in (42) and obtain the
results. O
Analysis of Terms rég’l), rﬁf’z), réx’1)7 r2)

(01) ,(02)  (x1)

Lemma E.2. Forr, , r,(lx’z) defined in (35), we have the following results:

IV = 0Ga) = o(V/B). vam | 3ori??| = O(vAm) =o(1).  (“9)
k=1

Ir& D = O(vn) = o(V/Ba): v || D7 || = O(v/Am) = 0(1). (49b)
k=1

Proof. For rno’l) , note that
rD = (Ko Hop yyoen ) (X)) = (K, Ho, ) (Xng1)
= Z <KXn,j [Xn+1]ﬁ9n+1,xn+1 (]) - KXn,j [Xn]ﬂbn,xn (])>
JEN
Z LC(Hen-i-l - 0n|| + ||Xn+1 - Xn“)
JEN
<NLc(CePnt1 + 29n+1)

where the second last inequality is because K; ;[x]Hg (j) is continuous in @,x K([x], which
stems from continuous functions K [x] and Hg x. The last inequality is from update rules (4) and

(50)

IA

(0, %,) € Q for some compact subset 2 by assumption A4. Then, we have Hrﬁf’l) I =O(vn) =
o(v/Br) because of a > 1/2 > b/2 by assumption A2.

We let v, £ (K, ﬁgmxn)(Xn) such that r$f’2) =V, —Vpy1. Note that Y7, r,(cg’Q) = V1 —Vnil,

and by assumption A4, ||, || is upper bounded by a constant dependent on the compact set, which

leads to
>
k=1

Similarly, we can also obtain ||7’7(1x’1) | = o(v/Br) and /7

Vi =Vl = vl = O(vm) = o(1).

Yot = otvam = o). T

E.2.2 EFFECT OF SRRW ITERATION ON SA ITERATION

In view of the almost sure convergence results in Lemma 3.1 and Lemma 3.2, for large enough n so
that both iterations 6,,, x,, are close to the equilibrium (8*, 1), we can apply the Taylor expansion
to functions h(0, x) and 7[x] — x in (36) at the point (8*, ), which results in

h(6,x) = h(0", 1)+ Veh(8", u)(0—60")+Vxh(8", p) (x—p) +O([|0—60"|*+|[x—p]?), (51a)
x| —x = w[p] — g+ Vi ((%) = %) lx=pa (x — ) + Ol — pu|*). (51b)
With matrix J(«), we have the following:
J11 = Voh(0", ) = Vh(6%),
Jiz(a) = Vih(6*, p) = —aH" (PT +1), (52)
Joo(@) = Vi (m(x) — X)|x=p = 20p1” — aPT — (a + 1)L
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Then, (36) becomes
Or1 = On + Bu1 (T11(8 — 0) + 1) — ) + 7 702 £ M%), +0?), (S3w)
Xnt1 = X + Yna1 (J22(0) (= pr) + 7550 + 73D 1+ MO, + ), (53b)
where 75” = O([[xa > + 10 *) and 1 = O([[xa ).
Then, inspired by Mokkadem & Pelletier (2006), we decompose iterates {x,, } and {0,,} into x,, =
L(m) + A%m) and 0,, = L%e) + RS’) + AS,G). Rewriting (53b) gives
X = = 132 ()7 (g = %) = () TR 2 4 MY, 4 9),

and substituting the above equation back in (53a) gives

01— 0" = 0, — 0"+ B, <Ju(9n —0") + 71 J12() I a2 (@) T (xng1 — x0)
) 41+ M+ 1)+ £ 99+ 02 ()

= (T4 Bnr1311)(0n — 0") + [Brr1vn 1T 12(0)T22 (@) ™ (Xng1 — %)
+ Bt (M) — J1a(0) I () MY, )

+ B (rP 102 4+ — Tia(@)Taa(@) T GO + 159 +039)),
(54

From (54) we can see the iteration {0,,} implicitly embeds the recursions of three sequences

* Bt di2(@)Ja2(a) T (Xng1 — X,);
* Busr (M) = Tia(@)Toz (@) MY));
* Braa (4 = T1a(0) 30 (@)Y 2 4 ).
Letu, =Y ,_, Brand s, = Y_}_, 7. Below we define two iterations:

LEO = Inp® 5 (MO — Jip(@)Taz() M)

n B B x (553)
= > elwmmud T g (M) — Jip()Taa(0) " M)

k=1
R;@) — eBnJll R’I(’Lg—)l + Bn’yglJlQ(Oz)JQQ(OZ)_l(Xn - anl)

n

B B B (55b)

= el T gy 3 () I () T (xk — Xp1)
k=1
and a remaining term Ag’) £0,-6"— L%e) — R,(f)).
Similarly, for iteration x,,, define the sequence LSL") such that
LG = 2@ LR, 4 ME) =7 elon oIy ), (56)
k=1

and a remaining term
AP L x5 —p—L©® (57)

n
The decomposition of 8,, — 8* and x,, — p in the above form is also standard in the single-timescale
SA literature (Delyon, 2000; Fort, 2015).

Characterization of Sequences {Lﬁf’ )} and {LSLX)}

we set a Martingale Z(™ = {Z\™},~; such that
N (A oty )
k 0 n —1/2 s,,-]zg(oé skJ22(a),ykM]£X)
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)

Then, the Martingale difference array Z\™ — Z{"| becomes

20 g _ (B “”’"”"“B (MO~ J12(0)Toa(a) M)
k k— 1/2 (Sﬂ_sk)J22(a)'}/kM(X)

and
n n n Al,n A2,n
Z]E [ Z( ) Zy, )1)(2( - zi_)l)T\}-kq} = (AQTn A4,n> ,
where, in view of decomposition of M,(f) and MT(LX) in (41) and (42), respectively,

Arn =61 Z Brelun=u)dn <U22+D§§1)+J,(:) —(Ua JrD,(f)+J;(€2))(J12(@)J22(04)71)T

+ J12(@)Ja2(a) " H(Uqy + D(3) + J(g))(J12(a)J22(04)71)T

— Ji2(a@)J22(a) " H(Uy +D(2)+J( )) > (TL"'_1L'“)(J11)T7
(58a)

n
Aoy = 5;1/27;1/2 Z Brypeltn (U, — J12(oz)ng(a)_1U11)€(S"_S’“)J22(a)T7 (58b)
k=1

Asn =1, Zﬁ (sn=s)J22(0) () 4 D) 4 I )elon—sm)Iz2(e)” (58¢)

We further decompose Alyn mto three parts:

n

A =81 (5136(“"_““‘]“ (Uzz — Uz (J12(c) T2z ()™ )"

k=1

—J12(a)Ja2(0) " U + le(a)JQQ(a)1U11(J12(oz)J22(04)1)T)e(“"“k)(J11)T>

+60y (5<> (D + J12(a)T22(a) " DY (J12(0) a2 (@)~ H)T
k=1

— Dl(f) (Jr2(a)Ja2(a)™ )" — J12(04)J22(a)_1(DJ?))T)G("”_“’“)(J“)T)

n
+,8,:1 Z (/Bie(unuk)‘lll(']](cl) —|—J12(0¢)J22(a)71J,(c3) (Jlg(a)Jgg(a)fl)T

k=1
~ 3P (F12(a) I (@)™ - J12<a>J22<a>1<J,22>>T>e<unuk><~'nf)

24 + AP+ AP
(59)
Here, we define Ug(a) £ U22 — U21(J12( )JQQ( ) )T - J12( )ng( )71U12 +
J12(a)Jaa(a) " U1 (J12(a) T2z () =) T, By (52) and (43a) in Lemma E.1, we have

N-1

T+ X 1
: H u;ul H.
z; 1+)\ T (60)

Then, we have the following lemma.

Lemma E.3. For A(la)l, Agbgl, A(°) defined in (59), we have
lim A" =Vg(a), lim [A”[=0, lim A1) =0, 61)
n— 00 ’ n—o00 n—00 ’

1,n

where Vg(a) is the solution to the Lyapunov equation

Ty T T
<J11 + {”2—1} I) Vo(a) + Ve(a) (Ju 4 =u I) + Ug(a) = 0.

2
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Proof. First, from Lemma G.4, we have for some ¢, T' > 0 such that

b _
1A < Bt S0

k=1

D" + J12(a)T22(c) "D (J12()T22() )T — DY (J12(a) Iz ()~ H)T

— J15(a)Taz(a) T (D)7 - BRePe 2T i),

Applying Lemma G.6, together with Dgf ) - 0 a.s. in Lemma E.1, gives

. b
lim sup HA%}LH

§c<; g tim sup [(D) + Jrz(@)Jz2(e) ™ DL (Trz(@)za(a) ™)
» P n
— D (Jra(@)Iaa(@) )T = Jia(@)I22() ' DY)
=0.

We now consider ||A§CZL [l Set

n

2023 (3D + J19(0)Taa(a) 1P (T12(a)Taa (@)~ HT

~ 3P (312(0)T22(0) ™ = Tiz(a)T22(a) L IP)T),

. c
we can rewrite A(1 7)1 as

c — - Up—U —_ — Up — Uk 1 B
A = Bt Brelun T (5 — By )eln ) ()T,
k=1
By the Abel transformation, we have

n—1
AE) = B+ Bt 3 [BReltn g el i) O
k=1 (62)

T
_ 6£+1e(unfuk+1)~]11:ke(un*uk+1)(~]11) :|

We know from Lemma E.1 that 3,,=,, — 0 a.s. because Z,, = o(7;,!). Besides,
||Bke(un—uk)~]11 _ ﬁk+1€(un—uk+1)[]u ||
= ||(Bk — ﬁk+1)e(un—uk)J11 4 5k+1e(uﬂ—uk)-]11(]: _ 6—5k+1J11)”
< Clﬂgef(u"ﬂ“c)T
for some constant C; > 0 because 3, — Bn11 < Co82 and ||T — e~ Pr+1911|| < O38,41. Moreover,
||5Ic‘9(un_uk)‘]11 | + ||Bk+1€(“"—“"'+1)‘]11 I
SﬂkHe(un_uk)Jll” + Bk”e(un_uk)-]ll | - He—5k+1J11 [
<Cyfye(n 7T,

Using Lemma G.7 on (62) gives

n—1

AL < C10upt > BRe 2 =T B E | + (| BnEnll-
k=1

Applying Lemma G.6 again gives
limsup [| A1) < Cs limsup ||, E, || = 0

for some constant C5 > 0.

Finally, we provide an existing lemma below.
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Lemma E.4 (Mokkadem & Pelletier (2005) Lemma 4). For a sequence with decreasing step size
B = (n+1)"forb e (1/2,1), up = >, _, Br, a positive semi-definite matrix T' and a Hurwitz
matrix Q, which is given by

Byt Z 2 e(un—uk) Qg (un—ur) Q"

we have

n
; -1 2, (un—ur) QP (Un—ur) QT _
nl;rrgo B ,;1 Bre Te Vv
where V is the solution of the Lyapunov equation

(Q+ =ty >V+V(Q 1 o= 1}I>+F=0.

Then, lim,,_; o A — V() is a direct application of Lemma E.4. O

1,n

We can follow the similar steps in Lemma E.3 to obtain

hm A4,n = \[X(Oé)7
n—o0o

where V(«) is in the form of (32).

The last step is to show lim,, o, A2, = 0. Note that
— — = Uy, — Uk 11 < —Sk 22 T
0 (m VBT Bl T ol e) |>
k=1
=0 (551/2%?1/2 Z ﬂk%e_(“"_“’“)Te_(S”_S’“)T/>
k=1
¢ <5n1/2%1/2 ) Bmke(snsz) ;
k=1
where the second equality is from Lemma G.4. Then, we use Lemma G.6 with p = 0 to obtain
3 BreCn T = 0(8,,) 63)
k=1

Additionally, since /3,, = o(7,,), we have

B 1/2 71/2ZB 7—1/2 3/2 —(sn—si)T (ﬂ1/27;1/2) o(1).
k=1

Then, it follows that lim,,_, o, A 5, = 0. Therefore, we obtain
R () _ () 3 7 _ pln) 7 _(Vela) 0
Jim SRR (A" - 2 - 20 7] = (V5 v w)-

Now, we turn to verifying the conditions in Theorem G.3. For some 7 > 0, we have

n
S E[IZ - 20 2| P
k=1

_ T n r oz - _ _ T n . _ s —s , 64
ZO(ﬂvL(1+2)ZB,3+25,§€ (2+7) (un uk)T+,yn(1+2)Z,yi+2,kae (247) (sn k)T) (64)

k=1 k=1

:O<B§+7§)
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where the last equality comes from Lemma G.6. Since (64) also holds for 7 = 0, we have
STE[12" ~ 2021 Fea] = 01) < .
k=1

Therefore, all the conditions in Theorem G.3 are satisfied and its application then gives

(ﬁﬁ;) =N <07 (Voo(a) on(a))> . (65)

Furthermore, we have the following lemma about the strong convergence rate of {Lﬁf”} and {LS‘) 1.
Lemma E.S5.

[P2Sgdl =0( 5nlog(un)) a.s. (66a)
(P25l :0( vnlog(sn)) a.s. (66b)

Proof. This proof follows Pelletier (1998, Lemma 1). We only need the special case of Pelletier
(1998, Lemma 1) that fits our scenario; e.g., we let the two types of step sizes therein to be the same.
Specifically, we attach the following lemma.

Lemma E.6 (Pelletier (1998) Lemma 1). Consider a sequence

n
H —upH
Ly =e" E e R B Myt 1,
k=1

where B, = n7% 1/2 < b < 1, and {M,,} is a Martingale difference sequence adapted to the
filtration F such that, almost surely, lim sup,, E[|| M, 11 ||%|F.] < M? and there exists T € (0,2),
b(2 + 7) > 2, such that sup,, E[|| M, 11 ||*"7|F,.] < oc. Then, almost surely,

_ Ml <Cwm, (67)

lim sup
B log(us)

where C)y is a constant dependent on M.

By assumption A4, the iterates (0,,,x,,) are bounded within a compact subset ). Recall the form

of Méi)l, MT(L 1 defined in (35), it comprises the functions Hgn x, (1) and (K, He, «, )(i), which
in turn include the function H(6,7). We know that H (6, 1) is bounded for € in some compact set
C. Thus, for any (0,,,%,) € Q for some compact set §2, Mfi)l, M, (x )1 are bounded and we denote
by cg and cx as their upper bounds, i.e., [||M(9)1H | Fn] < cg)) and E[HMn’i)lH | Fn] < c(x) We
only need to replace the upper bound ¢ in Lemma E.6 by CQ %) for the sequence {L( )} (resp. c( x)

for the sequence {Ln )}), ie.,

LY
lim sup B 12 <c¥, (68a)
n B log(uy,)
L(x) x
lim sup 12" < 05(2 )7 (68b)

n Tn IOg(Sn)

such that ”ng) || = O(+/Br log(uy)) a.s. and ||L$Lx) || = O(y/7vn log(sy)) a.s. which completes the
proof. O

Note that we have x,, — ¢t and L%x) weakly converge to the same Gaussian distribution from Remark
E.1 and (65). Then, vn 1 2A5§‘ ) weakly converges to zero, implying that vy, Y 2A£Lx)

zero with probability 1. Therefore, together with {~,, } being strictly positive, we have

A =o(ym) a.s. (69)

converges to
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Characterization of Sequences {Rﬁf’)} and {Agf )}

We first consider the sequence {Rg’) }. We assume a positive real-valued bounded sequence {w;, }
under the same conditions as in Mokkadem & Pelletier (2006, Definition 1) i e.,

Definition E.1. In the case b < 1 = 1+ o(Bn), which also implies —*2— = 1 + o(v,).

 wy, +1
In the case b = 1, there exist € > 0 and a nondecreasing slowly varying function /(n) such that
wy, = n~¢l(n). When e = 0, we require function /(n) to be bounded. O

Since ||x,, — p|| = o(1) by a.s. convergence result, we can assume that there exists {w,, } such that
||xn — p|]| = O(w,,). Then, from (55b), we can use the Abel transformation and obtain

©) = By T 12 (@) Jaz (@) " (xn — p) — e I By P T o (@) T oo (@) T (x4 — )

n—1

nd —upJ -1 - J -1 —1
eI N (eI Gyt — eI gy ) 3 (0)02(0) T (k1 — ),
k=1
where the last term on the RHS can be rewritten as

n—1
W, = Z e(unfuk+1)-]116k+l,yk—il (eﬁkﬂ.}nﬂkﬂk_if}/k_l’)’k—&-l i I) J12(Q)J22(a)71(xk+1 . H)'
k=1

Using Lemma G.6 on W, gives |W,|| = O(y;, eI — I||||x, — p]]) = O(y;,* Bnwn). Then,
it follows that for some 7" > 0,

IR = O (Buv 'wn + e [) = OBy 'wn + 7 T) (70)
with the application of Lemma G.4 to the second equality.

Then, we shift our focus on {Asle)}. Specifically, we take (54), (55a), and (56) back to Aﬁf’) =
0, —0* — L(e) — R;o), and obtain
AL =T+ Bird10)(8, - 67)
+ Bt (8D + 082 4 ) — J1(a) T (@) (WD + 1092 4+ 909))
_ P [0) _ nsidu pO)
=T+ Bny1J11)(0, — 0%)
+ B (rO + 702 ) — T15()Taa () T (TN 400 4 (9))
= (@4 Buprdu + OB ) LY = (L Buadun + OB 1) R
=(T+ Bnt1J1)AY +0(82 ) (LY + RE))
+ Bt (2D + 002 1) — Jia(@) T (@) 7 (T + r59% +09)),
where the second equality is by taking the Taylor expansion e’n+1911 =T+ 8, 1311 + O(B2, ;).

(71)

Define @y, ,, £ H?_,H_l(l + 8;J11) and by convention ®,, ,, = I. Then, we rewrite (71) as
A = Z‘I)k nBr+1 ( (B LY + O(Brin)R 9)>
Z ®p 1 (0 + 10D 4 0 — Tia(a) Tz () 1Y + 1 4 009))

= Z D nBrt1 ( ﬂk+1) o 4 O(BkJrl)Rl(cs))

+Z<I>k B (&) + 0l = J12(0) T2 () 1 + )

k=1
+Z@kn5k+1 —Ju(a )322(04)717";(:’2))-
k=1

(72)
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From (72), we can indeed decompose Agf)l into two parts A( 1= Anill) + An9+21), where

n9+11) 2 Z P n B+ ( 5k+1)L( ) 4 O(Br+ )Rée))
(73a)
£ B (0 4 2 — Tra(@)3an(0) (0 + ),

n0+21) = Z ®p B 1 (10 — J1a()Taa () 1)), (73b)

This term A® il Y shares the same recursive form as in the sequence defined in Mokkadem & Pelletier
(2006, Lemma 6), which is given below.

Lemma E.7 (Mokkadem & Pelletier (2006) Lemma 6). For AELB 411) in the form of (73a), assume
Ixn — p|l = O(wy) and ||A£lx)|\ = O(dy,) for the sequences w,, 6, defined in (E.1). Then, we have

1AL = O824 2w2 + By '6n) + 0(v/Ba)  a.s.

Since we already have A%x) = 0(y/7n) in (69), together with Lemma E.7, we have
o, - - -
1A% = OB ?wn) + 0B /2) + 0(v/Ba) = O(B2r"wh) + o/ Ba)

where the second equahty comes from o(,vn 1/2) (ﬁ1/2(ﬁn7_1)1/2) (671/2).

We now focus on A . Define a sequence
n
\I/n £ Z (6,2) Jlg( )J22 (04)717‘](:(72)7 (74)
k=1
and we have

B’ Z BB (1107 — Tra(@) T2z ) 1r?)

:5;1{2 Z Ppon Brr1 (Vg — ¥p1)

k=1
n—1
=B/ + B 1 > (Br®rn = Bra1Prir.n) Vi
P

where the last equality comes from the Abel transformation. Note that
1Bk®hn = Bra1Phirnll < Brsa1Phn — Prganll + Bk — Brr )| Prnl
< Bt Prr1n|BellT1a ]| + C7 B[ @l
< C862 —(un—ug)T

for some constant C7,Cs > 0, where the last inequality is from Lemma G.4 and || g1 .| <
Co||®p. || for some constant Cy > 0 that depends on e Then,

—1/2
n+l

Z‘I)k B (r®? 7']12(&)-]22(01)717',2’"2))

Bn 1/2 - n
< 18,50l + < ﬁH B2 1Bk®hm — Brr1®rprn| Wkl
" k=1

1
1/2 Br+1 3/2 ,—(u—ux)T | g1/2
< Al + s (25 ) 1/22/3’ e (un=un)| 512, |
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By Lemma E.1, we have B}/ Z\I!n — 0 a.s. such that by Lemma G.6, it follows that

. 1/2
0.2) 1 (x,2) limsup,, ||6n" " Wnl
lim sup 5n+1 ; Dy, nﬁkﬂ( — Jia(@)T (@) )| < o, 172) =0.
Therefore, we have
AYY = Z BB (rf = J15(0)I22(@) T 77%) = 0(v/B): (75)

Consequently, Afl le = O(B2v,2w?) + o(v/Br) almost surely.
Now we are dealing with x,, — p and its related sequence w,,. Note that by Lemma E.5 and (69),
we have almost surely,
1% — ll = OUILEI | + 1 A1)
= O(Vnlog(sn) + o(v/7n)) (76)
= O(V/yn log(sn))-

Thus, we can set w,, = O(1/7y, 10g(sy)) such that ||R£Le) |l in (70) can be written as

IRO| = 0> log(s,) + ),

and
1AL | = O(n*Plog(s,)) + o(v/Bn)-

In view of assumption A2 and §,, = o(y,), a/2—b < —b/2 and a —2b < —b, there exists a ¢ > b/2
such that almost surely,

IRO || =0m=*), A% =o(v/Bn).

Therefore, 3, Y Q(Rgf ) + Aﬁfjl) — 0 almost surely. This completes the proof of Scenario 2.

E.3 CASE (11): v, = o(f8,)

For v, = o(8,), we can see that the roles of 8,, and x,, are flipped, i.e., 8,, is now on fast timescale
while x,, is on slow timescale.

We still decompose x,, as X, — 4t = L%x) + A%x), where LS‘), A%x) are defined in (56) and (57),
respectively. Since x,, is independent of 8,,, the results of Lgf) and A%x) remain the same, i.e.,
almost surely, LY = O(\/7Yn log(sy)) from Lemma E.5 and A = o(y/7n) from (69). Then, we

(6)

define sequences L( ) and Ry as follows.

L(e) A ﬁ'nJllL ﬁ M(g) = Ze(un_u‘k)JllﬁkM]gg)a (773.)
k=1

n

D & IR, 4 Budia(@) (L + R = 3 el T T a) (L) + ).
k=1
(77b)

Moreover, the remaining term A;O) £ 0, — 6% — IAJ%O) — }Aﬁ(le).
The proof outline is the same as in the previous scenario:
. —1/2 3 (6) bt (3) .
We first show 3, /“A;’’ weakly converges to the distribution N (0, Vg")(a);

* We analyse ﬁ(s) and R( ) to ensure that these two terms decrease faster than the CLT scale
ﬂgl/ ie., lim, oo /Bn 12 (L(e) égle)) =0;
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» With above two steps, we can show that 3,, 1/2 (6,, — %) weakly converges to the distribu-
tion N'(0, V§?)(a).

Analysis of Ji;")

We first focus on IA/,(f) and follow similar steps as we did when we analysed L$f’) in the previous
scenario. We set a Martingale Z(") = {Z ,g")} k>1 such that

n
(6)
Z(") _ 671/2 E elun—ur)Ju B M
k n
k=1

Then,

12 3R [ - 20 - 20| £
k=1

Following the similar steps in (59) to decompose M ,59) with (42b), we have
A, = B;l Zﬁze(un—wﬂu (Uu + D](€3) + Jl(€3)) e(un—uk)JlTl
k=1

n n
_ /3771 Z /Blﬁe(umfuk).]uIj'lle(un7uk).]f1 + ﬁ;l Z ﬁlze(un*uk)JnDl(:’)e(un*uk)Jfl
k=1 k=1

(78)
Agla,) A(nb)

+ 6;1 Z Bie(un—uk)JuJ](;’)e(un—uk)*]i
k=1

ALY

Since Agfl), A,(lb), Agf) share similar forms as in Lemma E.3, we follow the same steps as the proof
therein, with the application of Lemma E.1. To avoid repetition, we omit the proof and directly give
the following lemma.

Lemma E.8. For A, AV, A\ defined in (78), we have
lim AW =V(a), lim [|[AP] =0, lm AP =0, (79)

n—oo
where Vég) (@) is the solution to the Lyapunov equation
JuVv+VvIf +uU,; =0
Note that here we don’t have the term @I in above lemma, compared to Lemma E.3, because

in the case of v, = 0(3,), b < 1 such that 1 ,—;; = 0. Then, applying Lemma G.1 to derive the

closed form of Vés) () gives

Vé3)(a) — fooo etVeh(0 )y, etVeh(0™) gy
Thus, it follows that

n
. n n) n n 3
lim Y E [<z,g ) zW (2t - Z,gjl)Tw_l] = V().
k=1

Again, we use the Martingale CLT result in Theorem G.3 and have the following result.

Zn =P LP = N (o,vg‘)(a)) .

Moreover, similar to the tighter upper bound of LS‘) proved in Lemma E.5, we utilize the tighter
upper bound Lemma E.6 in the proof thereof, and obtain £O = O(\/Br log(uy)).

34



Published as a conference paper at ICLR 2024

Analysis of R%e)

Next, we turn to the term R,(f)) in (77b). Taking the norm gives the following inequality for some
constant C,T" > 0 by applying Lemma G.4,

IR < €3 e T (1L, || + |RY, ).
k=1

Using Lemma G.6 gives

n

S e m I T (LYY |+ |RE 1) = OUILED, | + RS, ).
k=1

Thus, n /*| RS = o(v/ 4B T) + O < Bt log(sn>>. Since v, = 0(Bn). 1Byt = (n+
l)b’“, where b — a < 0. Then, there exists some s > 0 such that b — a < —s < 0. Together with
log(syn) = O(log(n)), we have O < YnBrt log(sn)> = O(y/n%log(n)) = o(1). Therefore, we
have

lim g;Y2R® =0

n— 00

Analysis of Aff)
Lastly, let’s focus on the term Aﬁf”. We have

0 * ] o
A® —6,,,—0 -1 — R,

=06, — 0"+ B, <J11(9n —0%) + Jia(a)(x, — ) + M

© 4O 4 02) 4 n("’)
—Prdu @ g M, - Bﬁ”“J“R(G) — Bog1diz(@) (LY + REY)
= (T4 Bn1J11)(0n — 07) + By T 12 ()AL + By (riPH + 702 4+ 9()
— (T4 Bu1Ju + O(Br )L + Rgle))
= (T+ B3 1) A + B 1 T12() AT + B (rY + 792 +0®)
+ 0B ) (LY + RY).

where the second equality is from (53a), the third equality stems from the approximation of efr+1J11

Then, we again use the definition @y ,, £ H;LZ k1 (I+ B;J11) and reiterate the above equation as

AL, —Z‘Pk nﬂk+1( O(Brs1) Ly + O(Br11)RY ))

+ Z D Brr1J12(a) AL + Z Bpn B (r” + )
k=1

+Z‘I)k nﬂk+17” 02
6,1 0.2
N A< )+A51H)’

where Afﬁ) =0 ®k7n5k+1r,§9’2) and

A% = > kB (O(ﬁkﬂ)lfz(ca) + O(ﬁkH)R,(f))

= (80)
+ 3 0B (2 + 0 + Tia(@)ALD).
k=1
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For A; /1 » we follow the same steps from (74) to (75), and obtain A;ﬁ) = o(v/Bn)-

Next, we consider AEL +1) and want to show that Asﬁrll) = o(v/Br). Again, we utilize Mokkadem &

Pelletier (2006, Lemma 6) for Al +1) and adapt the notation here for the case v, = o(5,).

Lemma E.9. For Aghil in the form of (80), assume ||0,, — 6*|| = O(w.,) and ||A$19’1)|| = O(n)
for the sequences w.,,, 0,, defined in (E.1). Then, we have
1AL = 0287w + 1B 00) + o(\Am)  as. (81)

Now we need to further analyse d,, and tighten its big O form, starting from d,, = 1, so that we

can finally obtain the big O form of ||A516+11 |l. The following steps are borrowed from the ideas in

Mokkadem & Pelletier (2006, Section 2.3.2).

By almost sure convergence result lim,,_, ., 6,, = 8*, we have lim,,_, A%e) = 0 a.s. such that we
can first set §,, = 1, and ||Affjr11) | = O(2B,2w2 + By t) + o(y/7n)- Then, we redefine

Op = 0(735;2“}721 + 'Ynﬂ;l) + O(\/’%)a

and notice that it still satisfies definition E.1. Then, reapplying this d,, form to (81) gives

A (0,1 _ _
AT = 0(2872w% + 1B '1?) + o(y/m)
and by induction we have for all integers k£ > 1,
A (0, _ _
1AL ]| = O(v2 87202 + [y B 11%) + o(y/Am)-
Since [, 3, 1]F = n(b=)* there exists ko > a/2(a — b) such that [y, 3, ] = o(,/7,), and
A (0,1
IAZY 1 = 00287 2w2) + o(y/Am). (82)

Then, as suggested in Mokkadem & Pelletier (2006, Section 2.3.2), we can choose w, =
O(/Bnlog(un) + [ynB;1]¥), which also satisfies definition E.1. Then,

16, —6°1| = I + B + AP

=0 (VB Toatun) /108 g+ (B 14,67 TG )
o(V/Br + /)
=0(\/Bn log(un) + ['Ynﬂrzl]k—i_l)-

By induction, this holds for all & > 1 such that there exists ko, [v,5; ] = o(v/B,) and ||0,, —
0*|| = O(+/Bn log(uy)). Equivalently, w, = /[y log(u, ). Therefore, from (82) we have

N
I 1 = 0028, og(un)) + 0(v/An) = 0(v/7n).
Together with HA(H 2)H = o(v/Bn), we have 3, 1/2||An+1 | = o(v/vnBn ") + 1) such that
1/2 A (9) _
Jim 5724

Thus, we have finished the proof according to the proof outline mentioned at the beginning of this
part.

F DISCUSSION OF COVARIANCE ORDERING OF SA-SRRW

F.1 PROOF OF PROPOSITION 3.4

For any o > 0 and any vector x € R?, we have

XV ()x = / T T TR LD g () HToRO LRy gy
0
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Typ—
where the first equality is from the form of V" (a) in Theorem 3.3. Let y £ et(Voh(07)+-L7 )
with the dependence on variable ¢ left implicit. The matrix Ug(«), given explicitly in (11) positive
semi definite, since A; € (—1,1) foralli € {1,--- , N — 1}. Thus, the terms y? Ug(a)y inside the
integral are non-negative, and it is enough to provide an ordering on y? Ug(a)y with respect to a.

For any ag > a7 > 0,

=z
L

1 14+ )\
4 v TyrT T
U _ . HTwuTH
y Ug(az)y ; (st A) 12 1 7>\iy u;u; Hy
N-1
1 L+ A poer 1 T
< : H'uwu Hy=y'U
o an(T+a) + 12 Ty 7 WY o(ar)y
N-1
14+ N
S22 - Y H wuHy =y Up(0)y,
i=1 i
where the inequality'? is because a(1 + ;) > 0 forall i € {1,---, N} and any a > 0. In fact,

the ordering is monotone in «, and y7 Ug(a2)y decreases at rate 1/a? as seen form its form in the
equation above. This completes the proof.

F.2 DISCUSSION REGARDING PROPOSITION 3.4 AND MSE ORDERING

We can use Proposition 3.4 to show that the MSE of SA iterates of (4c) driven by SRRW eventually
becomes smaller than that SA iterates when the stochastic noise is driven by an i.i.d. sequence of ran-
dom variables. The diagonal entries of Vl(,l) () are obtained by evaluating eiTVél) («)e;, where e; is
the i’th standard basis vector.'* These diagonal entries are the asymptotic variance corresponding to
the element-wise iterate errors, and for large enough n, we have eZTVél) (a)e; ~ E[(0,, —0%)?]/Bn
forall i € {1,---,D}. Thus, the trace of matrix Vél)(a) approximates the scaled MSE, that is
Tr(Vy (a) = 3, €7 Vi (a)ei ~ 3, E[(0,, — 67)2]/B, = E[||6,, — 8%]|%]/B,, for large n. Since
all entries of Vél) () go to zero as « increases, they get smaller than the corresponding term for the
SA algorithm with i.i.d. input for large enough o, which achieves a constant MSE in the similarly
scaled limit, since the asymptotic covariance is not a function of . Moreover, the value of « only
needs to be moderately large, since the asymptotic covariance terms decrease at rate O(1/a?) as
shown in Proposition 3.4.

F.3 PROOF OF COROLLARY 3.5

We see that V(QB)(a) = VE,S)(O) for all @ > 0, because the form of VS’) (o) in Theorem 3.3 is
independent of «. To prove that V((,l) (o) < Vg’) (0), it is enough to show that Vél) (0) = Vég) (0),
since Vél) (o) <p V((,l) (0) from Proposition 3.4. This is easily checked by substituting o« = 0in 11,

for which Ug(0) = Uj;. Substituting in the respective forms of Vél) (0) and V((f) (0) in Theorem
3.3, we get equivalence. This completes the proof.

G BACKGROUND THEORY

G.1 TECHNICAL LEMMAS

Lemma G.1 (Solution to the Lyapunov Equation). If all the eigenvalues of matrix M have negative
real part, then for every positive semi-definite matrix U there exists a unique positive semi-definite

3The inequality may not be strict when H is low rank, however it will always be true for some choice of x,
since H is not a zero matrix. Thus, the ordering derived still follows our definition of <, in Section 1, footnote
6.

14 D-dimensional vector of all zeros except at the 7’th position which is 1.
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matrix V satisfying the Lyapunov equation U +MV +VMT = 0. The explicit solution V is given
as

V= / MMt gt (83)
0

Chellaboina & Haddad (2008, Theorem 3.16) states that for a positive definite matrix U, there exists
a positive definite matrix V. The reason they focus on the positive definite matrix U is that they
require the related autonomous ODE system to be asymptotically stable. However, in this paper we
don’t need this requirement. The same steps therein can be used to prove Lemma G.1 and show that
if U is positive semi-definite, then V in the form of (83) is unique and also positive semi-definite.
Lemma G.2 (Burkholder Inequality, Davis (1970), Hall et al. (2014) Theorem 2.10). Given a Mar-
tingale difference sequence {M; ,,}7—,, for p > 1 and some positive constant Cy,, we have

n P n p/2
> M, ]<O,,E (ZleF) (84)
i=1 i=1

Theorem G.3 (Martingale CLT, Delyon (2000) Theorem 30). If a Martingale difference array
{X.i} satisfies the following condition: for some T > 0,

E

n

STE (X sl Fe1] =0, (85)
k=1
SUPZ]E (11X 0,k 1% Froe1] < o0, (86)
=1
and .
SR [Xop XTI Fea] SV, (87)
k=1
then .
3 Xoi 255 N(O, V). (88)
=1

O

Lemma G.4 (Duflo (1996) Proposition 3.1.2). For a Hurwitz matrix H, there exist some positive
constants C, b such that for any n,

HeH"H < Ce b, (89)
Lemma G.5 (Fort (2015) Lemma 5.8). For a Hurwitz matrix A, denote by —r, r > 0, the largest
real part of its eigenvalues. Let a positive sequence {~y,} such that lim,, vy, = 0. Then for any
0 < 7’ < 1, there exists a positive constant C such that for any k < n,

[LT +7;4)| < Cem Zi=e. (90)
j=k
Lemma G.6 (Fort (2015) Lemma 5.9, Mokkadem & Pelletier (2006) Lemma 10). Let {,} be a

positive sequence such that lim,, v, = 0 and ), v, = oo. Let {€,,n > 0} be a nonnegative
sequence. Then, forb > 0, p > 0,

limsupe, ©n

n
n 1
limsup~,, P P02 jni1 Vg, < ———
n ern ZW}C — C(b,p) ”

k=1

for some constant C (b, p) > 0.

When p = 0 and define a positive sequence {wy, } satisfying wy,_1/w, = 1 + o(yn), we have

Z,ykeszyzlwrl ’Yjek — O(wn)7 l.fEn = O(wn)7 (92)
pot o(wy,), if €, = o(wy,).
Lemma G.7 (Fort (2015) Lemma 5.10). For any matrices A, B, C,
|ABAT — CBCT|| < A~ ClIBI(1A] + [CI). ©3)
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G.2 ASYMPTOTIC RESULTS OF SINGLE-TIMESCALE SA

Consider the stochastic approximation in the form of
Zn+1 = Zn + 7n+1G(zn7 Xn-‘rl)- (94)
Let K, be the transition kernel of the underlying Markov chain { X, },,>o with stationary distribu-
tion 7(z) such that g(z) £ Ex (s [G(z, X)] with domain O C R*. Define an operator K. f for
any function f : A" — R such that
(K=£)(i) =Y f()K=(,5)- (95)
JEN
Assume that
C1. W.p.1, the closure of {z, },>¢ is a compact subset of O.
C2. v =0/n% a € (1/2,1].

C3. Function g is continuous on O and there exists a non-negative C'* function w and a compact
set I C O such that

s Vw(z)Tg(z) <0forall z € O and Vw(z)Tg(z) < 0if z ¢ K;
s the set S 2 {2 | Vw(z)Tg(z) = 0} is such that w(S) has an empty interior;
C4. For every z, there exists a solution m : " — R for the following Poisson equation

mz(i) — (Kamz)(i) = G(z,i) — g(2) (96)
for any ¢ € N; for any compact set C C O,
sup [|(Kzmz ) (@)|| + [[m= (i) < oo 97
zeCieN

and there exist a continuous function ¢¢, ¢¢(0) = 0, such that for any z, 2’ € C,
sup [(Kzmz) (i) — (Kzrmz) (@) < de(llz — 2'[]). (98)
i€

C5. Denote by —r the largest real part of the eigenvalues of the Jacobian matrix Vg(z*) and

Ty,
assume r > —4=tk,

C6. For every z, there exists a solution Q@ : ' — R%*< for the following Poisson equation
Q=(i) — (K:Qz)(i) = F(2,1) = Ejr(z)[F(2,])] ©9)
for any i € N, where
F(z,1) £ Z mz(j)mz(j>TKz<i»j) - (szz)(i)(szZ)(i)T- (100)
JEN
For any compact set C C O,
sup Q=) + [(K=Q=) ()] < o (101)

zelC,ie

and there exist p, Cc > 0, such that for any z, 2’ € C,
sup [|(K=Q) (1) — (K Q)| < Cellz = /| (102)
1€

Theorem G.8 (Delyon et al. (1999) Theorem 2). Consider (94) and assume CI - C4. Then, w.p.1,
limsup,, d(z,,S) = 0.

Theorem G.9 (Fort (2015) Theorem 2.1 & Proposition 4.1). Consider (94) and assume CI - C6.
Then, given the condition that z,, converges to one point z* € S, we have

32 ) L N (O, V), (103
n— o0
where 1 1
A ( ‘”’2:1} I+ Vg(z*)T) + ( “’2:1} I+ Vg(z*)) V+U=0, (104)
and
U2 i (g (imge ()T — (Kgemg) () (Kgemg ) ()7) (105)
iEN
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G.3 ASYMPTOTIC RESULTS OF TWO-TIMESCALE SA

For the two-timescale SA with iterate-dependent Markov chain, we have the following iterations:
Zp4+1 = Znp +ﬁn+1G1(zn7Yan+1)7 (1063)

Yn+1 = ¥Yn + Tnt+1G2 (Zna Yn, Xn-i—l)a (106b)
with the goal of finding the root (z*, y*) such that

gl(Z*ay*) = EXNH[Gl(Z*ﬂy*vX” = 0> QQ(Z*,y*) = EXNH[GQ(Z*ay*aX)] = 0. (107)

We present here a simplified version of the assumptions for single-valued functions G, G4 that
are necessary for the almost sure convergence result in Yaji & Bhatnagar (2020, Theorem 4). The
original assumptions are intended for more general set-valued functions G, G.

(B1) The step sizes 3, £ n=band Yn £ 9 where 0.5 < a < b < 1.

(B2) Assume the function G;(z,y, X) is continuous and differentiable with respect to z,y.
There exists a positive constant L; such that |G1(z,y, X)|| < Li(1 + ||z]| + ||y]|) for
every z € R% y € R% X € N. The same condition holds for the function G5 as well.

(B3) Assume there exists a function p : R% — R such that the following three properties hold:
@) ||p(z)]] < La(1 + ||z]|) for some positive constant Lo; (ii) the ODE y = g¢2(2z,y) has
a globally asymptotically stable equilibrium A(z) such that g(z, p(z)) = 0. Additionally,
let §1(2z) £ g1(z, p(z)), there exists a set of disjoint roots A = {z* : §;(z*) = 0}, which
is the set of globally asymptotically stable equilibria of the ODE z = g, (z).

(B4) {X,,}n>0 is an iterate-dependent Markov process in finite state space N. For every
n >0, P(Xnt1 = J|Zm, Yms Xm,0 < m < n) = P(Xpq1 = j|Zn, Yn, Xn = 1) =
P, [z, yn], where the transition kernel P[z,y] is continuous in z,y, and the Markov
chain generated by Pz, y] is ergodic so that it admits a stationary distribution 7r(z,y), and
w(z*, p(z*)) = w.

(B5) sup,,>o([[znll + [lynl)) < ooas.

Yaji & Bhatnagar (2020) included assumptions Al - A9 and A11 for the following Theorem G.10.
We briefly show the correspondence of our assumptions (B1) - (BS) and theirs: (B1) with AS, (B2)
with Al and A2, (B3) with A9 and A1l1, (B4) with A3 and A4, and (B5) with A8. Given that our
two-timescale SA framework (106) excludes additional noises (setting them to zero), A6 and A7
therein are inherently met.

Theorem G.10 (Yaji & Bhatnagar (2020) Theorem 4). Under Assumptions (BI) - (B5), iterations
(Zn, Yn) in (106) almost surely converge to a set of roots, i.e., (Zn, yn) — U,-ca (2", p(2¥)) a.s.

H ADDITIONAL SIMULATION RESULTS

H.1 BINARY CLASSIFICATION ON ADDITIONAL DATASETS

In this part, we perform the binary classification task as in Section 4 on additional datasets, i.e.,
a9a (with 123 features) and splice (with 60 features) from LIBSVM (Chang & Lin, 2011). Figure
4 provides the performance ordering of different v values, and we empirically demonstrate that the
curves with a > 5 still outperform the i.i.d. counterpart. Additionally, Figure 5 compare cases (i) -
(iii) under both a9a and splice datasets, and case (i) consistently perform the best.

H.2 NON-CONVEX LINEAR REGRESSION

We further test SGD-SRRW and SHB-SRRW algorithms with a non-convex function to demonstrate
the efficiency of our SA-SRRW algorithm beyond the convex setting. In this task, we simulate the
following linear regression problem in Khaled & Richtarik (2023) with non-convex regularization

min { f(0) £ ~ SO+ o2 i : (108)
j=1 "7

OcRd
€ i=1
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Figure 4: Simulation results with various « values in a9a and splice datasets.
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Figure 5: Performance comparison among cases (i) - (iii) for « € {5,10,20} in a9a and splice
datasets.

where the loss function [;(0) = ||s?'8 — y;||? and k = 1, with the data points {(s;, y;) }icn from the
ijennl dataset of LIBVIM (Chang & Lin, 2011). We still perform the optimization over the wikiVote
graph, as done in Section 4.

The numerical results for the non-convex linear regression taks are presented in Figures 6 and 7,
where each experiment is repeated 100 times. Figures 6a and 6b show that the performance ordering
across different «v values is still preserved for both algorithms over almost all time, and curves
for o > 5 outperform that of the i.i.d. sampling (in black) under the graph topological constraints.
Additionally, among the three cases examined at identical « values, Figures 7a - 7c confirm that case
(1) performs consistently better than the other two cases, implying that case (i) can even become the
best choice for non-convex distributed optimization tasks.
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Figure 6: Simulation results for non-convex linear regression under case (i) with various « values.
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Figure 7: Performance comparison among cases (i) - (iii) for non-convex regression.
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