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Abstract

Two-timescale  stochastic approximation
(TTSA) is among the most general frame-
works for iterative stochastic algorithms.
This includes well-known stochastic opti-
mization methods such as SGD variants
and those designed for bilevel or minimax
problems, as well as reinforcement learning
like the family of gradient-based temporal
difference (GTD) algorithms. In this paper,
we conduct an in-depth asymptotic analysis
of TTSA under controlled Markovian noise
via central limit theorem (CLT), uncovering
the coupled dynamics of TTSA influenced by
the underlying Markov chain, which has not
been addressed by previous CLT results of
TTSA only with Martingale difference noise.
Building upon our CLT, we expand its appli-
cation horizon of efficient sampling strategies
from vanilla SGD to a wider TTSA context
in distributed learning, thus broadening
the scope of Hu et al. (2022). In addition,
we leverage our CLT result to deduce the
statistical properties of GTD algorithms
with nonlinear function approximation using
Markovian samples and show their identical
asymptotic performance, a perspective not
evident from current finite-time bounds.

1 INTRODUCTION

Two-timescale stochastic approximation (TTSA)
serves as a cornerstone algorithm for identifying the

root (x*,y*) of two coupled functions, i.e.,
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hi(x*,5%) 2 Egop[ln (x*, y",6)] = 0,
BQ(X*,Y*) £ Ef"’ﬂ[h’Q(x*)y*7£)] = Oa

where p is a probability vector and typically only
noisy observations hi(x,y,£),ha(Xx,y,&) are accessi-
ble (Kushner and Yin, 2003; Borkar, 2022). If ei-
ther of the two functions hip, hy is decoupled, e.g.,
h1(x,y,€) = h1(x, ), TTSA degenerates into stochas-
tic approximation (SA) as a special case, which it-
self has a wide range of applications, including, but
not limited to, stochastic optimization (Bottou et al.,
2018; Gower et al., 2019), reinforcement learning (RL)
(Srikant and Ying, 2019; Dalal et al., 2020; Patil
et al., 2023), and adaptive Markov chain Monte Carlo
(MCMC) (Benaim et al., 2012; Avrachenkov et al.,
2021; Doshi et al., 2023). In this paper, our primary fo-
cus is the analysis of the asymptotic behavior exhibited
by a general nonlinear TTSA with Markovian noise,
establishing a central limit theorem (CLT) to explore
the effect of coupled variables (x,y). By leveraging
this CLT, we address two applications: improvement
of asymptotic performance in optimization algorithms,
and the derivation of statistical property from a family
of gradient-based TD (GTD) algorithms in RL.

(1)

The recursion of the TTSA algorithm considered in
this work is described as follows:

Xn+1 = Xn + Bn+lh1 (Xn7yna§n+l)»
Ynt+1 =¥n + 77z+1h2(xn7 Yn, §n+1),

(2)

where f,,7, are decreasing step sizes at different
rates,! {£,}n>0 is a random sequence over a finite
set Z. For instance, in stochastic bilevel optimiza-
tions, Hong et al. (2023) deploys TTSA to simultane-
ously optimize both primal and dual variables. Like-
wise, the work by Lin et al. (2020) highlights the ap-
plicability of TTSA in solving minimax problems for
optimizing two competing objectives. In RL, a fam-
ily of GTD algorithms utilize the two-timescale struc-
ture (Sutton et al., 2009; Dalal et al., 2018, 2020; Li

'For example, when the step size 8, is much smaller
than vy, i.e., Bn = o(n), iterates x,, converges slower than
iterates y,, thereby x, is on the slow timescale and y,, is
on the fast timescale.



CLT for TTSA with Markovian Noise: Theory and Applications

Table 1: Overview of TTSA literature. Loc. Lipschitz: locally Lipschitz; high-prob. bound: high-probability
bound; Mart. diff.: Martingale difference noise; exo. MC: exogenous Markov chain, independent of TTSA
iterates (x,y); ctrl. MC: controlled Markov chain, where the transition kernel is determined by iterates (x,y).
Except for a.s. convergence, all other result types inherently include a.s. convergence.

Existing Works Result Type Noise Type | Loc. Lipschitz | Nonlinear
Konda and Tsitsiklis (2004) CLT Mart. diff. X X
Mokkadem and Pelletier (2006) CLT Mart. diff. v v
Dalal et al. (2018) high-prob. bound | Mart. diff. X X
Borkar and Pattathil (2018) high-prob. bound | Mart. diff. X v
Doan (2022, 2024); Hong et al. (2023) finite-time bound | Mart. diff. X v
Karmakar and Bhatnagar (2018) a.s. convergence ctrl. MC X v
Yaji and Bhatnagar (2020) a.s. convergence ctrl. MC v v
Gupta et al. (2019); Haque et al. (2023) || finite-time bound exo. MC X X
Doan (2021b) finite-time bound exo. MC X v
Khodadadian et al. (2022) finite-time bound ctrl. MC X X
Barakat et al. (2022) finite-time bound ctrl. MC X X
Zeng et al. (2021) finite-time bound ctrl. MC X v
Our Work CLT ctrl. MC v v

et al., 2023a). Specifically, in these algorithms, the
primary value function estimates update on slower
timescale, while auxiliary variables or correction terms
update on faster timescale. Furthermore, modern en-
ergy systems, such as power systems and smart grids,
use TTSA for dynamic decision making (Lopez-Ramos
et al., 2017; Yang et al., 2019). In the realm of game
theory, a noteworthy application is Generative Adver-
sarial Networks, where the game between a genera-
tor and a discriminator can be tackled using TTSA
(Prasad et al., 2015; Heusel et al., 2017).

In this paper, we focus on the Markovian sequence
{&n}, which plays an important role in the TTSA al-
gorithm and is inherent in many applications.? In dis-
tributed learning, token algorithms utilize a random
walk, enabling tokens to traverse distributed agents
over a graph, each possessing local datasets, and iter-
atively update model parameters, thus facilitating col-
laborative stochastic optimization across agents (Hu
et al., 2022; Triastcyn et al., 2022; Hendrikx, 2023;
Even, 2023). Apart from employing SGD iterates to
minimize an objective function, such token algorithms
of the form (2) can also address distributed bilevel or
minimax problems that have been recently studied in
Gao (2022); Gao et al. (2023). Meanwhile, in RL, the
environment itself is modeled as a Markov Decision
Process (MDP), which by design incorporates Marko-
vian properties. When an agent interacts with this
environment, the trajectory {&,} it follows, i.e., a se-

#While the noise sequence {&,} is common to both re-
cursions in the TTSA algorithm (2), it allows for two dis-
tinct Markov chains for each recursion. Further details can
be found in Section 2.1.

quence of states, actions, and rewards, is inherently
Markovian. Notably, this Markovian sequence can be
influenced by the agent’s adaptive policy, as seen in
actor-critic algorithms, yielding a controlled Markov
chain dependent on the iterates (x,,y,) (Karmakar
and Bhatnagar, 2018; Yaji and Bhatnagar, 2020; Zeng
et al., 2021). These examples underscore the impor-
tance of the Markovian sequence in the development of
both theoretical frameworks and practical implemen-
tations of various learning algorithms.

1.1 Related Works

Finite-time vs Asymptotic Analysis: The conver-
gence properties of SA have been studied extensively
using both asymptotic (Kushner and Yin, 2003; Fort,
2015; Borkar, 2022; Li et al., 2023b) and finite-time
(Srikant and Ying, 2019; Karimi et al., 2019; Chen
et al., 2022) analyses. While recent trends have shown
a preference for non-asymptotic analysis, discussions
in Meyn (2022, Chapter 1.2) point out the often-
underestimated significance of asymptotic statistics.
This notion is highlighted in Mou et al. (2020); Chen
et al. (2020); Srikant (2024), which demonstrate the
broader applicability of CLT beyond purely asymp-
totic contexts. Specifically, the limiting covariance
matrix, central to the CLT, finds its presence in high-
probability bounds (Mou et al., 2020), and in finite-
time bounds on mean square error (Chen et al., 2020)
as well as 1-Wasserstein distance to measure the rate
of convergence to normality (Srikant, 2024). Further
underscoring its significance, Hu et al. (2022) show-
cases its accuracy in capturing the rate of conver-
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gence compared to the mixing rate of the underlying
Markov chain, frequently employed in finite-time anal-
ysis (Karimi et al., 2019; Chen et al., 2022).

TTSA with Martingale Difference Noise: For
the TTSA algorithm (2), the stochastic sequence being
an 4.i.d. sequence {&,} allows for the decomposition of
the noisy observation h;(x,y,¢&,) into hy(x,y) and a
Martingale difference noise term hy(x,y, &,)—h1(x,y);
a similar decomposition applying to hy. In the case
of Martingale difference noise, an extensive body of
research focuses on the analysis of CLT results (Konda
and Tsitsiklis, 2004; Mokkadem and Pelletier, 2006),
high-probability bounds (Dalal et al., 2018; Borkar and
Pattathil, 2018), and finite-time bounds (Doan, 2022,
2024; Hong et al., 2023) for both linear and nonlinear
TTSA, as shown in Table 1.

TTSA with Markovian Noise — Asymptotic
Results and Suboptimal Finite-Time Bounds:
Recently, increasing attention has been shifted towards
analyzing TTSA with Markovian noise sequences {&, },
which introduces technical challenges due to inher-
ent bias in h;(x,y,&,) as an estimator of h;(x,y) for
i = 1,2. Karmakar and Bhatnagar (2018); Yaji and
Bhatnagar (2020) delve into the almost sure conver-
gence of nonlinear TTSA with Markovian noise, show-
ing that the two iterates x,,y, asymptotically esti-
mate the related differential inclusions, which are a
generalized version of ordinary differential equations
(ODEs). Yaji and Bhatnagar (2020) further relax to
the locally Lipschitz functions hi,hs, which is com-
monly seen in the machine learning literature such as
low-rank matrix recovery (Recht et al., 2010), tensor
factorization problem (Kolda and Bader, 2009), and
deep neural networks with unbounded Hessian matri-
ces (Zhang and Hong, 2020, Appendix H).

Meanwhile, the mixing rate properties of Markov
chains have been predominantly utilized for the finite-
time analysis of both linear (Gupta et al., 2019;
Kaledin et al., 2020; Doan, 2021a; Khodadadian et al.,
2022; Barakat et al., 2022; Haque et al., 2023) and
nonlinear TTSA (Doan, 2021b; Zeng et al., 2021)
with Markovian noise.? Notably, the latter two works
align closely with our TTSA settings. However, Doan
(2021b) only provided a finite-time bound for the com-
bined error of both iterations, i.e., E[||x, — x*||? +
f—:”yn — y*||?] at a suboptimal rate of O(n~2/3) with
a specific choice of step sizes 3, = (n + 1)~! and
Y = (n +1)72/3, while we show in Section 2.3 that
for large n, the combined error should approximately

3While nonlinear TTSA with Markovian noise is cur-
rently the most general framework, our emphasis is not
solely on generalization. As we will demonstrate in Sec-
tion 3, this setting has substantive implications in both
stochastic optimization and RL.

decrease to zero at the speed of O(B3,) = O(n™1).
A similar bound for E[||x, — x*||?] under the more
general controlled Markov noise setting is provided in
Zeng et al. (2021) at the suboptimal rate of O(n=2/3)
with the same choice of step sizes. Thus, even the
state-of-the-art finite-time bounds in Doan (2021b);
Zeng et al. (2021) do not preciously capture the lead-
ing term that determines the performance of each iter-
ates X,,¥,. A comprehensive non-asymptotic analysis
with rate matching the CLT scale (i.e., O(8n), O(7n))
has yet to be performed in the nonlinear TTSA with
controlled Markovian noise under general decreasing

step sizes Bn, Yn-

1.2 Owur Contributions

In this paper, we study the CLT of both iterates x,,
and y,, in nonlinear TTSA with controlled Markovian
noise, where h1, hy are only locally Lipschitz continu-
ous. Although Yaji and Bhatnagar (2020) considered
more general set-valued functions hq, ko, they only ob-
tained almost sure convergence. In contrast, we here
target single-valued functions that are more common
in the machine learning literature and extend the scope
to include CLT results. Our work further generalizes
the CLT analysis of the two-timescale framework in
Mokkadem and Pelletier (2006) - still a state-of-the-art
CLT result for Martingale difference noise - by neces-
sitating a deeper exploration into the Markovian noise
{& }n>0, given that hi(x,y,&,) — hi(x,y),i = 1,2 are
no longer Martingale difference.

Utilizing our CLT results, we demonstrate the impact
of sampling strategies on the limiting covariance across
a wide class of distributed optimization algorithms.
Extending beyond the vanilla SGD setting studied in
Hu et al. (2022), we show that improved sampling
strategies lead to better performance for general TTSA
including, but not restricted to, SGD variants and al-
gorithms tailored for stochastic bilevel and minimax
problems. Moreover, in the RL context, we introduce
first of its kind statistical characterization of GTD2
and TDC algorithms with nonlinear function approx-
imation (Maei et al., 2009) using Markovian samples.
Using both theoretical and empirical results, we show
that their asymptotic performance coincides, as ev-
idenced by identical covariance matrix in our CLT.
Such conclusions are not possible via current finite-
time bounds (Doan, 2021b; Zeng et al., 2021).

Notations. We use ||| to denote both the Euclidean
norm of vectors and the spectral norm of matrices.
Two symmetric matrices My, My follow Loewner or-
dering M; > My (resp. ‘>1’°) if My — My is posi-
tive definite (resp. positive semi-definite). A matrix
is Hurwitz if all its eigenvalues possess strictly nega-
tive real parts. The function 1.y is an indicator func-
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tion. Vxh(x,y) stands for the Jacobian matrix of the
vector-valued function h(x,y) with respect to the vari-
able x. C! function f means that function f is both

continuous and differentiable. We use ‘i>’ for the
convergence in distribution and N(0,V) is the Gaus-
sian random vector with covariance matrix V.

2 MAIN RESULTS

In this section, we analyze the asymptotic behavior of
the TTSA algorithm (2) with Markovian noise. First,
we provide assumptions and the almost sure conver-
gence result in Section 2.1. Before presenting our main
CLT result in Section 2.3, we explain how our result
is achieved by transforming the TTSA iteration into a
single-timescale SA-like recursion, and introduce some
key components related to asymptotic covariance of
the iterates. This transformation resembles that in
Konda and Tsitsiklis (2004); Mokkadem and Pelletier
(2006) but with a fresh perspective by accounting for
biased errors due to Markovian noise, as elaborated
upon in Section 2.2.

2.1 Key Assumptions and a.s. Convergence

Al. The step sizes 3, = (n+1)"? and ,, £ (n+1)77,
where 0.5 <a < b < 1.

A2. For the C' function h; : R4 x R% x 2 — R%,
there exists a positive constant L; such that
11,y )| < Li(1 + [Ix] + ly]) for every x
R% y € R% ¢ € 2. The same condition holds for
the C! function ho as well.

A3. Consider a C! function A : R — R?%. For ev-
ery x € R4, the following three properties hold:
(i) A(x) is the globally attracting point of the re-
lated ODE y = ha(x,y); (i) Vyha(x, A(x)) is
Hurwitz; (iii) [|A(x)|| < L2(1 + ||x||) for some
positive constant Ls. Additionally, let izl(x) =
h1(x, A(x)), there exists a set of disjoint roots A £
{x*: hy(x*) =0, Vxﬁl(x*)—i—@l is Hurwitz},
which is also the globally attracting set for trajec-
tories of the related ODE x = hy(x).

A4 {&.}n>0 is an iterate-dependent Markov chain
on finite state space E. For every n > 0,
P(SnJrl = j|xm7ym7€m;0 <m < n) = P(SnJrl =
J1Xn: Yn,&n = 1) = P; j[Xn, yn], where the transi-
tion kernel P[x,y] is continuous in x,y, and the
Markov chain generated by P[x,y]| is ergodic so
that it admits a stationary distribution m(x,y),
and m(x*, \(x*)) = p.

AS. sup s o([Ixnl + [ynl]) < oo as.

In Assumption (A1), the step sizes §,, v, decay poly-
nomially at distinct rates, i.e., 8, = o(7,), which is
standard in the TTSA literature (Zeng et al., 2021;
Doan, 2021b; Hong et al., 2023). Assumption (A2)
ensures that C'! functions hq, hy are locally Lipschitz
and grow at most linearly with respect to the norms
of their parameters, as also assumed in Yaji and Bhat-
nagar (2020). This is a far less stringent condition
compared to the globally Lipschitz assumption used
in most of the recent works, as listed in Table 1.

Assumption (A3) is crucial for the analysis of iterates
(Xn,¥n), which can be seen as a stochastic discretiza-
tion of the ODEs x = hy(x) and y = hy(x,y). This
assumption guarantees the global asymptotic stabil-
ity of these two ODEs, as demonstrated in Yaji and
Bhatnagar (2020); Doan (2021b). The linear growth
of A\(x) is a milder condition than the globally Lips-
chitz assumption in Borkar and Pattathil (2018); Kar-
makar and Bhatnagar (2018); Zeng et al. (2021); Doan
(2021b).

Assumption (A4) is standard to guarantee the asymp-
totic unbiasedness of hy, ho in the existing literature
on TTSA with Markovian noise (Karmakar and Bhat-
nagar, 2018; Yaji and Bhatnagar, 2020; Khodadadian
et al., 2022; Barakat et al., 2022). It is worth noting
that {&,} naturally allows for an augmentation of the
form &, £ (X,,,Y,), with two independent Markovian
noise sequences {X,}, {Y,} corresponding to iterates
{x,} and {y,}, respectively. In this case, the func-
tions h1 and hs act only on the entries of £, related to
X, and Y,,.

Assumption (A5) assumes the a.s. boundedness of the
coupled iterates (x,,¥n), which is commonly seen in
the TTSA literature (Karmakar and Bhatnagar, 2018;
Yaji and Bhatnagar, 2020). A similar stability condi-
tion is also found in the SA literature (Delyon et al.,
1999; Borkar, 2022; Li et al., 2023b). In practice, to
stabilize the TTSA algorithm (2) under Markovian
noise, one could adopt algorithmic modifications from
the SA literature, including the projection method
onto (possibly expanding) compact sets (Chen, 2006;
Andrieu and Vihola, 2014) or the truncation method
with a restart process (Fort, 2015; Fort et al., 2016).

Lemma 2.1 (Almost Sure Convergence). Under As-
sumptions (A1) - (A5), iterates (Xn,yn) in (2) al-
most surely converge to a set of roots, i.e., (Xn,yn) —
Usxrea (X5 A(X)) a.s.

Lemma 2.1 follows from Yaji and Bhatnagar (2020,
Theorem 4) by verifying the conditions therein and we
defer the details to Appendix A.1. While they studied
broader set-valued functions hq, ho within the realm of
stochastic recursive inclusion, they did not explore the
CLT result. This is likely due to existing gaps in the
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CLT analysis even for single-timescale stochastic re-
cursive inclusion, as mentioned in Borkar (2022, Chap-
ter 5). In contrast, we focus on single-valued functions
h1, ha, as prevalent in the machine learning literature.
This paves the way for the first CLT result, Theorem
2.2, for the general TTSA with controlled Markovian
noise, as demonstrated in Table 1. In the following
section, we will conduct a more detailed analysis of
the asymptotic behavior of iterates (x,,y,) near equi-
librium (x*, A(x*)) for some x* € A.

2.2 Overview of the CLT Analysis for (x,,y.)

Assumption (A1) puts {y, }n>0 on a ‘faster timescale’
compared to {Xp}n>0, and has implications on con-
vergence rates of the two sequences. Under additional
conditions on the function hy(-,-) in Assumption (A3),
the sequence {y,} can be approximated by {A(x,)}
for large time step n, where A(x) is an implicit func-
tion solving hs(x, A(x)) = 0. Loosely speaking, when
n is large enough, the fast iterates y,, are nearly con-
vergent to the root A\(x,) of ha(X,,-). Iterates x,, on
the slower timescale then guide the roots A(x,) of the
iterates y, until they reach y* = \(x*), which also
satisfies hy(x*, A(x*)) = 0. Consequently, resembling
Konda and Tsitsiklis (2004, Section 2) and Mokka-
dem and Pelletier (2006, Section 2.3), we can show
that {x,} is now approximated by iterating a single-
timescale SA update rule, independent of {y,} but
instead driven by {A(x,)}, whose derivation we detail
in what follows. For ¢ € {1,2}, define

Qil £ vx}_ll (X, y) | (x,y)=(x* y*),
QiZ £ VyliLi (Xa y)|(x,y):(x*, ¥*),
AELZ) £ hi(xnv}’nagn—O—l) - Ei(xnvyn)a
Ag) £ hi(xm )\(Xn)agnJrl) - Bi(xm )‘(Xn))'
Adding and subtracting (X, y,) and ha(X,,yn) to
iterates x,, and y,, in (2) respectively, and taking their
Taylor expansions at (X,,y»)=(x*,y*), gives us
Xn+1= Xn +6n+1 (Qll (Xn —X*) + Q12(yn _y*))
+ ﬁn+1Ag)+ﬂn+10(Hxn7X* ||2+ ||}’n*y* H2)a

Yn4+1= Yn+'7n+1(Q21(Xn_X*) + QQQ(Yn_y*)) (4)
+ Y1 AP+ 1 O(||xn—%"|* + lyn—y" (%)

Re-arranging (4) by placing the y,, — y* on the left-
hand side yields

Yn_y*:'y;-li,-l Q55 (Y1 —¥n) — Qoa Qo1 (%, —x7) 5)
+ Qoo AP +O0(|xn=x" |1 + [lyn=y" 1)

By substituting the above into (3), and then replacing
(approximating) y, with A(x,), we get

Xn4+1 =Xn +ﬁn+1 Kx(xn_x*) +ﬁn+1 Az +5n+1 Rnu (6)
where

K ® Qu-QuQa Qi ATEA-Qua Qe A2 (7

and R, is comprised of residual errors from the earlier
Taylor expansion and approximation of y, by A(x,).
The term Aﬁ can be further decomposed using the
Poisson equation technique (Benveniste et al., 2012;
Meyn, 2022) as

A:i = [Mfl1+)1 _Q12Q2_21M7(1321]

+ [H (Xn, M(%Xn), Eny1) — H(Xn, AM(Xn), )],

where M, 7(121 and M,(jzl are Martingale difference terms
adapted to filtration F,, £ o(x0,¥0,&0, - ,&n). The
exact expressions for the Martingale difference terms
can be found in Appendix A.2.1, equations 9(a) and
9(b). The second summand including the H terms,
whose exact expression is provided in Appendix A.2.1,
involves consecutive Markovian noise terms &,41 and
&, which are responsible for biased errors in the itera-
tion for x,,. These additional terms are not present in
existing works that focus only on i.i.d. stochastic in-
puts (Konda and Tsitsiklis, 2004; Mokkadem and Pel-
letier, 2006), even though their analysis leads to equa-
tions similar to (6). In Appendix A.2.2, we show that
the H terms along with residual errors R,, at each step
are o(v/By), and thus do not influence the CLT result
for iterates x,, of the slower timescale.

Consequently, the approximation y, = A(x,), to-
gether with the aforementioned analysis leading to
o(v/Brn), now allows us to analyze (6) as essentially
a single-timescale SA with Markovian noise. We then
apply Fort (2015, Proposition 4.1) to extract a CLT
result, i.e., we prove that

B2 (%, — x*) & N (0, Vy), (8)

n

where Vy solves the Lyapunov equation Uy + (Kyx +
1¢p, — n Lig,= n
{ang(l/ )}I)Vx +Vx(Kx 4 Abn g(l/ )}I)T =0,

() ()] o

and AX" represents AX measured at x,, = x* for all n.
Through Qa2, Q21 and A, both Ky and Uy capture
the effect of deterministic field hy(-,-) on the asymp-
totic behavior of x,,. The matrix Uy incorporates the
effect of Markovian noise sequence {&,},>0 through
Aﬁ,l) and Aﬁf), which will be utilized in Proposition 3.2
to identify the effect of the underlying Markov chain
on the asymptotic behavior of iterates x,. We show
in Appendix A.2.1 that Uy can also be written as

1
U, £ lim -E

s§—00 S
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_171 |U U 11T
Ux:[I _Q12Q221} |:Ui U;j [I _Q12Q221] s
(10)
where
1 S S T
A lim = A (D) AT
Uj; = lim ~E (;An ><;Anf ) . (11)

Aﬁf” denotes Aﬁf) measured at x,, = x* for all n and
i, and Uy = UL, For an i.i.d. sequence {{,} with
marginal p, U;; = Eeoplhi(x*,y*, hj(x*, y*, &)7]
degenerates to the marginal covariance of functions
hi(x*,y*,-), hj(x*,y*,-), and (8) aligns with previ-
ously established CLT results for linear (Konda and
Tsitsiklis, 2004) and nonlinear TTSA (Mokkadem and
Pelletier, 2006), both with Martingale difference noise.

2.3 Central Limit Theorem of TTSA with
Controlled Markovian Noise

Without loss of generality, our remaining results are
stated while conditioning on the event that {x,, —
x*,y, — y*}, for some x* € A and y* = A(x*). Our
main CLT result is as follows, with its proof deferred
to Appendix A.2.

Theorem 2.2 (Central Limit Theorem). Under As-
sumptions (A1) — (A5),

—1/2 o
) o 8)). o
Tn (Yn -y ) y
where the limiting covariance
Réaxd Vo e R%%% gre given by

Ty Ty T
o0 t(KX+7{b;1}I> t<KX+7{bQ_1}I>
V= e Uge dt
0

oo
vV, = / €' Uype! 2 dt,
0

matrices Vyx €

)

(13)

with Ky, Ux and Uyy defined in (7), (9) and (11),
respectively.

Theorem 2.2 suggests that iterates (X,,yn) evolve
asymptotically independently, as evidenced by the zero
covariance of off-diagonal terms in (12). This is due
to the diminishing correlation between (x,, — x*) and
(yn —y") at a rate of O(8,/v.), a characteristic of
the two-timescale setup, aligning with existing CLT
findings for TTSA with Martingale difference noise
(Konda and Tsitsiklis, 2004; Mokkadem and Pelletier,
2006). The limiting covariance matrix Vy is solely de-

termined by the local function he and x* without an
Ta=1y
2

additional term I due to a < 1 by assumption
(A1), implying minimal effect of x,, on the asymptotic

behavior of y,. In contrast, Vy is significantly im-
pacted by iterates y, since matrices Ky, Ux are com-
prised of functions ho and hs.

As a special case, when hi(x,y,£) in the TTSA
algorithm is independent of the variable y, i.e.,
hi(x,y,&) = hi(x,§), then Vyhi(x,§) = 0 for any
y € R% implying Q2 = 0. According to Theorem
2.2, x,, is decoupled from iterates y,, and reduces to
the single-timescale SA with Markovian noise, where
Vi in (13), in view of (10) with Q2 = 0, becomes

e t(vﬁl(x*)+71“’:” I)
e 2 U

0

T
Vy= 116t<Vhl(x*)+n{bT:1}I> dt.
This Vy is in line with the existing CLT result for the
single-timescale SA with controlled Markovian noise
(Delyon, 2000; Benveniste et al., 2012; Fort, 2015) un-
der the same locally Lipschitz condition on hq(x, §), as
stated in Assumption (A2).

The limiting covariance matrices Vyx and V, are re-
lated to the mean square error (MSE) of their corre-
sponding iterative errors x,, — x* and y, —y*. For
large enough n, the diagonal entries of Vx are approx-
imated by el Vye; ~ el E[(x, —x*)(x, —x*)T]e;/Bn
for all ¢ € {1,---,d1}, where e; is the i-th canonical
vector. Then, the MSE of the iterate error x,, — x*
can be estimated as E[||x, — x*[|2] = 2%, eTE[(x,, —
x*) (xp,—x*)Te; =~ B, f;l el'Ve;. This implies that
E[||x, — x*||?] resembles the trace* of V,, and de-
creases at a rate of 3,. Similar arguments also hold
for E[|ly, — y*|*] and Vy,.

3 APPLICATIONS

3.1 Performance Ordering in TTSA

The limiting covariance matrices Vi, Vy described in
(13) for nonlinear TTSA with Markovian noise in-
herently incorporate the properties of the underlying
Markov chain completely in terms of matrices Uy and
Uy, as defined in (10) and (11). This raises an intu-
itive question: If we can control the stochastic input se-
quence {&, }n>0, how does it influence the performance
of the TTSA algorithm?

This question was originally studied by Hu et al.
(2022), which introduces the notion of efficiency or-
dering of Markov chains, a metric prevalent in the
MCMC literature, in the context of SGD algorithms,
and proves that the presence of ‘better’, more effi-
cient sampling strategy leads to improved SGD per-
formance. Broadening this concept, we show that
such performance improvements are applicable to the

4Sum of diagonal entries of a matrix.
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Figure 1: Efficiency Ordering: From SGD to TTSA.

general TTSA framework, beyond mere SGD algo-
rithms, as depicted in Figure 1. To better under-
stand this, let UZ(g) £ lim,_o 1E[A;AT] be the
sampling covariance matrix for a vector-valued func-

tion g : = — R and stochastic process {Z,}, where
A 222:1(9(Zn) - E“[g]) and E“[g] :ZieE g(i)ﬂi-
Definition 3.1 (Efficiency Ordering, (Mira, 2001; Hu
et al., 2022)). For two Markov chains {W,} and {Z,}
with identical stationary distribution p, we say {Z,} is
more sampling-efficient than {W,}, denoted as W =<
Z, if and only if UW (g) >1 UZ?(g) for any vector-
valued function g.

Examples of sampling strategies following Definition
3.1 include random and single shuffling paradigms
(Ahn et al., 2020; Safran and Shamir, 2020), which are
shown to be more sampling-efficient when compared
to i.4.d. sampling. Another example, relevant in the
context of token algorithms in distributed learning, is
the so-called non-backtracking random walk (NBRW)
(Alon et al., 2007; Lee et al., 2012; Ben-Hamou et al.,
2018), which is more sampling-efficient than simple
random walk (SRW). We point the reader to Hu et al.
(2022, Section 4) for more detailed discussions, where
more efficient sampling strategies employed in SGD
algorithms lead to reduced asymptotic covariance of
iterate errors. With two efficiency-ordered sampling
strategies, we now extend the same performance or-
dering to TTSA, the proof of which can be found in
Appendix A.3.1.

Proposition 3.2. For the TTSA algorithm (2), given
two different underlying Markov chains {W,, }n>0 and
{Z,}n>0 that are efficiency ordered, i.e., W < Z, we
have V") > VI and VvV >, viP).

Proposition 3.2 enables us to expand the scope of Hu
et al. (2022) by employing sampling-efficient strategies
to a wider class of optimization problems within the
TTSA framework. Specifically, our scope extends ex-
isting results as follows:

(i) From vanilla SGD to its variants: The TTSA struc-
ture accommodates many SGD variants for finite-sum

-~ € [Frrmarrrrrreeees
1] & = =
o 10 ~ 100 =t e eerrteretres
h N PSS |
x \ - ' N
11072 Vi Ty | X
3 V | ~ [T
x Y0 t| w
T v V?““(‘Y"w )
w1 10-3{ —=— sRw IWM”-‘,, = 90-1
0 NBRW m 3
= —e— i.i.d. sampling =
1044 —v shuffling §
-4
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Number of steps (n)
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Figure 2: Comparison of the performance among dif-
ferent sampling strategies in momentum SGD.

minimization, including the Polyak-Ruppert averag-
ing (Ruppert, 1988; Polyak and Juditsky, 1992) and
momentum SGD (Gadat et al., 2018; Li et al., 2022).
Other variants of SGD in the TTSA framework, e.g.,
signSGD and normalized SGD, are provided in Xiao
et al. (2023, Section 4.3) with detailed expressions.

(ii) From finite-sum minimization to bilievel and min-
imaz problems: Many algorithms within the TTSA
framework can handle bilevel and minimax problems.
For instance, Hong et al. (2023, Algorithm 1) effec-
tively deals with both inner and outer objectives in
bilevel optimization, while the stochastic gradient de-
scent ascent algorithm (Lin et al., 2020, Algorithm 1)
seeks saddle points in the minimax problem.

From Proposition 3.2, all the above algorithms en-
joy improved asymptotic performance when driven by
more efficient samples. For instance, in the token
algorithm setting (Hu et al., 2022; Triastcyn et al.,
2022; Hendrikx, 2023; Even, 2023), a token can em-
ploy NBRW over SRW to solve various optimization
problems with these TTSA algorithms. When ran-
dom access of each data point is possible, Hu et al.
(2022, Lemma 4.2) highlights that through a state-
space augmentation, shuffling algorithms — conceptu-
alized as Markov chains — outperform 4.i.d. sampling,
achieving zero sampling covariance. Using Proposition
3.2, we can show that this leads to zero limiting covari-
ance Vy, Vy for all algorithms represented as TTSA.
The superiority of shuffling techniques over 4.i.d. sam-
pling has indeed been studied for specific stochastic
optimization settings, such as minimax optimization
(Das et al., 2022; Cho and Yun, 2022) and SGD with
momentum (Tran et al., 2021). However, Proposition
3.2 firmly establishes this at a much broader scope as
described in (i) and (ii), such as bilevel optimization
with shuffling methods, whose finite-time analysis re-
mains an open problem.

Simulations. We present numerical experiments for
different sampling strategies employed in the momen-
tum SGD algorithm to solve the Lo-regularized bi-
nary classification problem using the dataset a9a (with
123 features) from LIBSVM (Chang and Lin, 2011).
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Specifically, to simulate the token algorithm in dis-
tributed learning, we employ NBRW and SRW as the
stochastic input to the momentum SGD on the wikiV-
ote graph (Leskovec and Krevl, 2014), comprising 889
nodes and 2914 edges.® Each node on the wikiVote
graph is assigned with one data point from the dataset
a9a, thus 889 data points in total. We also assess the
momentum SGD’s performance under ¢.i.d. sampling
and single shuffling using the same dataset of size 889.
In Figure 2(a), we observe that NBRW has a smaller
MSE than SRW across all time n, with a similar trend
for single shuffling over i.i.d. sampling. Figure 2(b)
demonstrates that the rescaled MSEs of NBRW, SRW
and i.i.d. sampling approach some constants, while
the curve for single shuffling still decreases in linear
rate because eventually the limiting covariance matrix
therein will be zero. We defer the detailed simulation
settings and more simulation results to Appendix A.5.

3.2 Asymptotic Behavior of Nonlinear GTD
Algorithms

The CLT result not only allows comparison of limiting
covariance matrices of two efficiency-ordered stochas-
tic inputs in distributed learning, but also offers in-
sights into an algorithm’s asymptotic performance, as
showcased in Table 1. This is particularly relevant in
RL where the stochastic sequence {&,} is generated by
a given policy and thus uncontrollable. An important
aspect in RL is policy evaluation in MDP with the pri-
mary goal of estimating the value function of a given
policy, which is essential for further policy improve-
ment (Sutton and Barto, 2018). In this part, we focus
on a family of gradient-based TD learning (GTD) al-
gorithms, which are instances of TTSA (Maei et al.,
2009; Wang et al., 2021). We leverage Theorem 2.2 to
derive the pioneering statistical properties of these al-
gorithms when using nonlinear value function approx-
imation and Markovian samples for policy evaluation.

Tabular methods for estimating the value function,
such as SARSA, have been widely used, but can be
problematic when the state-action space is large (Sut-
ton and Barto, 2018). TD learning with linear function
approximation has been extensively studied (Srikant
and Ying, 2019; Doan et al., 2019; Wang et al., 2020;
Li et al., 2023a). In contrast to linear function approx-
imation, nonlinear approaches, e.g. neural networks,
are more practical choices known for their strong rep-
resentation capabilities and eliminating the need for
feature mapping (Wai et al., 2020; Wang et al., 2021).
However, Tsitsiklis and Van Roy (1997) notes the po-
tential divergence of TD learning with nonlinear func-
tion approximation. Addressing the divergence, Maei

5We incorporate both NBRW and SRW with impor-
tance reweighting to achieve a uniform target distribution.

et al. (2009) introduces nonlinear GTD2 and TDC
algorithms with almost sure convergence guarantees.
These methods iterate over gradients of the mean-
square projected Bellman error (MSPBE) in order to
obtain the best estimate of the nonlinear value func-
tion that minimizes MSPBE (Maei et al., 2009; Xu
and Liang, 2021; Wang et al., 2021).

While non-asymptotic analyses of GTD2 and TDC al-
gorithms have been established for both i.i.d. and
Markovian settings with linear approximations (Kar-
makar and Bhatnagar, 2018; Dalal et al., 2018, 2020;
Kaledin et al., 2020; Li et al., 2023a), results for the
nonlinear function approximation remain scarce since
MSEPBE becomes nonconvex and the two-timescale
update rule is nonlinear. For asymptotic analysis, Kar-
makar and Bhatnagar (2018) studies the almost sure
convergence of general TTSA and applies it to nonlin-
ear TDC algorithm, extending from i.7.d. (Maei et al.,
2009) to Markovian samples. This analysis can also
be applied to nonlinear GTD2 algorithm. Only a few
works (Xu and Liang, 2021; Wang et al., 2021) provide
non-asymptotic analysis specifically for nonlinear TDC
algorithm with Markovian samples and constant step
sizes while the results cannot be extrapolated to non-
linear GTD2 algorithm. Therefore, a comprehensive
analysis of these algorithms with Markovian samples
under decreasing step sizes remains lacking in RL.

We now summarize nonlinear GTD2 and TDC al-
gorithms, followed by their asymptotic results in
Proposition 3.3. An MDP is defined as a 5-tuple
(S, A, P,r,a), where S and A are the finite state and
action spaces, and P and r are transition kernel and
reward function, with « being a discount factor. A
policy 7 maps each state s €S onto an action probabil-
ity distribution 7 (+|s), with 4™ being the correspond-
ing stationary distribution. The Markovian samples
{sn} then follow the transition probability P(s,s’) =
Y acaP(s']s,a)m(als). The value function for policy 7
from initial state s is W™ (s) =Er[> o, a™ry|so = s],
where 7, 27 (s, Gp, $ny1). The GTD2 and TDC algo-
rithms estimate W7 (s) via nonlinear functions W (s)
and its feature function ¢x(s) = VxWx(s) parameter-
ized by x. For linear approximation Wy(s) = ¢(s)?x,
¢(s) is independent of x. However, with nonlinear
Wx($), ¢x(s) depends on x. Defining TD error as ¢,, =
rn + aWx, (Sn+1) — Wk, (sn), the iterates (x,,yn) of
the GTD2 and TDC algorithms admit an equilibrium
(x*,y*), with x* ensuring Es, ~ . [0n (X*)dx+ (5)] = O,
and y* = 0. Details of these algorithms and conditions
for the following CLT results are in Appendix A.4.1.

Proposition 3.3. For both nonlinear GTD2 and TDC
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Figure 3: Comparison of nonlinear GTD2 and TDC
algorithms in the 5-state random walk task.

algorithms under Markovian samples, we have

lim x, =x* a.s. and

1 d 1 d
X, —X")— N(0,Vy), —y, — N(0,V,),

where Vi, Vy are identical for both algorithms.

lim y, =0 a.s.

The proof of Proposition 3.3 and the exact forms of
Vx, Vy are in Appendix A.4.2. This proposition offers
a state-of-the-art performance analysis of nonlinear
GTD2 and TDC algorithms in RL, employing Marko-
vian samples and general decreasing step sizes. While
Doan (2021b); Zeng et al. (2021) provide finite-time
bounds within the general TTSA framework, their ap-
plicability to nonlinear GTD2 and TDC algorithms is
restricted by specific choice of the step sizes, as ex-
plained in Section 1.1. The usefulness of these finite-
time results are further limited due to the lack of
any definitive indication regarding the tightness of the
bounds associated with these two algorithms. More-
over, empirical studies (Dann et al., 2014; Ghiassian
et al., 2020) have not consistently favored either one
of the two algorithms when compared across all tasks,
leading to a lack of consensus regarding which one is
the better performing overall. Proposition 3.3 clarifies
that, in the long run, both GTD2 and TDC algorithms
exhibit identical behaviors under the CLT scaling.

Simulations. We consider a 5-state random walk task
(Dann et al., 2014; Sutton and Barto, 2018) for nonlin-
ear GTD2 and TDC algorithms. Each state can transit
to the right or left next state with probability 0.5, with
reward +0.5 if turning right or —0.5 otherwise. Let dis-
count factor a=0.9, we consider the nonlinear value
function W, (s) =a(s)(e"*—1) for a scalar parameter z,
where a = [-2,—6,—3,—4,—5],k =0.1. The ground
truth W (s) =0 for s € [5] such that z* =0 for Wx(s)
achieves the accurate approximation. Figure 3(a) illus-
trates the long-term performance of GTD2 and TDC
algorithms. Starting from n = 107, they align with the
line 3, Vyx, with V4 being a scalar from Proposition
3.3. This reaffirms the relationship between MSE and
CLT, as detailed in Section 2.3. Figure 3(b) displays

a histogram of 3, 1/ 21;”, generated from 100 indepen-
dent trials at n = 10® for both algorithms. We show
that their experimental density curves are close to the
theoretical Gaussian density with zero mean and vari-
ance Vx. We defer the detailed simulation settings,
calculations related to Figure 3, and additional simu-
lation results to Appendix A.5.

4 CONCLUSION

In this paper, we present the first CLT analysis of non-
linear TTSA in the context of controlled Markovian
noise with general forms of decreasing step sizes. Our
result greatly extends the scope of existing literature
by allowing most general settings and performance or-
dering across nonlinear TTSA algorithms, notably in
distributed optimization and RL. Our work highlights
the potential of asymptotic analysis for algorithmic
improvement and comparison, addressing areas where
conventional finite-time analysis fall short, thus sug-
gesting that more attention should be given to asymp-
totic statistics.
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Supplementary Materials

A.1 Proof of Lemma 2.1

The two-timescale SA form with iterate-dependent Markov chain we consider in this paper is as follows:
Xnt1 = Xn + Bnr1h1(Xn, Yn, Ent1), (14a)

Yo+l =¥Yn + ’Yn+1h2 (X’rL7 Yn, §n+1)7 (14b)
with the goal of finding the root (x*,y*) such that

h(x"y") = Eeaplhi (¥, )] = 0, hao(x",y") = Eeoplha(x",y", €)] = 0. (15)

For self-contained purposes, we reproduce assumptions (A1) — (A5) for the TTSA algorithm (14) below.

Al. The step sizes 3, = (n+1)7% and 7, = (n+ 1)7%, where 0.5 <a < b < 1.

A2. For the C! function h; : R4 x R% x = — R% | there exists a positive constant L; such that |hi(x,y, )| <
Li(1+ ||Ix|| + |ly]]) for every x € R% |y € R%2 ¢ € =. The same condition holds for the C! function hy as
well.

A3. Consider a C' function A : R%4 — R%. For every x € Rd_l, the following three properties hold: (i)
A(x) is the globally attracting point of the related ODE y = ha(x,y); (ii) Vyha(x, A(x)) is Hurwitz; (iii)
IA(X)|| < La(1+||x]|) for some positive constant Ly. Additionally, let ;(x) £ hi(x, A(x)), there exists a set
of disjoint roots A 2 {x* : by (x*) = 0, Vychy (x*) + ]I“’T:”I is Hurwitz}, which is also the globally attracting
set for trajectories of the related ODE % = hy (x).

Ad. {&,.}n>0 is an iterate-dependent Markov chain on finite state space Z. For every n > 0, P({11 =
I, Yms &m0 <m < n) = P(§ny1 = JXn, Yn,én = i) = P j[Xn, yn], where the transition kernel P[x,y]
is continuous in x,y, and the Markov chain generated by P[x,y] is ergodic so that it admits a stationary
distribution 7(x,y), and 7 (x*, \(x*)) = .

A5 supyso([[%n | + lynll) < oo as.

Now, we translate the assumptions in Yaji and Bhatnagar (2020) below in our notations and TTSA algorithm
(14) in order to apply the almost sure convergence result therein.

B1. The step sizes 3, 2 n~% and v, £ n=?, where 0.5 < a < b < 1.

B2. Assume the function h;(x,y, &) is continuous and differentiable with respect to x,y. There exists a positive
constant Ly such that ||hi(x,y,€)| < Li(1+ ||x|| + |lyl]) for every x € R¥|y € R ¢ € =. The same
condition holds for the function hy as well.

B3. Assume there exists a continuous function A : R% — R? such that the following two properties hold for any
x € R%: (i) IA(x)| < La(1 + ||x||) for some positive constant Lo; (i) the ODE y = ha(x,y) has a globally
asymptotically stable equilibrium A(x) such that he(x, A(x)) = 0. Additionally, let hy(x) £ hy(x, A(x)),
there exists a set of disjoint roots A £ {x* : El(x*) = 0}, which is the set of globally asymptotically stable
equilibria of the ODE x = hy (x).
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B4. {&,}n>0 is an iterate-dependent Markov process in finite state space E. For every n > 0, P(X,41 =
J1Xms Ym, &m0 <m < n) = P(Xp41 = j|Xn, ¥n,&n = 1) = P; j[Xn, yn], where the transition kernel P[x,y]
is continuous in x,y, and the Markov chain generated by P[x,y] is ergodic so that it admits a stationary
distribution 7 (x,y), and 7 (x*, \(x*)) = .

B5. sup,, 5o ([[%n]l + [[ynl]) < o0 as.

Assumption (B1) is the standard condition on step sizes corresponding to Yaji and Bhatnagar (2020, Assumption
Ab). Assumption (B2) translates Yaji and Bhatnagar (2020, Assumptions Al, A2) from functions hi, he with
set values to those with single values. Assumption (B3) is the condition on the relevant ODEs of the TTSA
algorithm (14), which is derived from Yaji and Bhatnagar (2020, Assumption A9 — A11l). Assumption (B4)
simplifies Yaji and Bhatnagar (2020, Assumptions A3, A4) by using a single Markov sequence {{,,} for both
iterations in (14). This has a wide range of applications, such as constrained convex optimization in Yaji and
Bhatnagar (2020, Section 7), performance ordering in distributed learning and reinforcement learning algorithms
using Markovian samples, which is discussed in Section 3 of our paper. Assumption (B5) corresponds to Yaji and
Bhatnagar (2020, Assumption A8). Besides, Yaji and Bhatnagar (2020, Assumptions A6, A7) are automatically
satisfied since the noise terms therein are set to zero in (14). In the following, we provide the existing almost
sure convergence result.

Theorem A.1.1 (Yaji and Bhatnagar (2020) Theorem 4). Under Assumptions (B1) — (B5), for TTSA algorithm

(14), we have
Xn a.s. X*
(yn> n— 00 QA ()\(X*)> '

Our Assumptions (A1) — (A5) correspond to Assumptions (B1) — (B5). Consequently, Lemma 2.1 is a direct
application of Yaji and Bhatnagar (2020, Theorem 4). Compared to assumption (B3), the additional conditions
in our Assumption (A3), i.e., Vyha(x, A(x)) is Hurwitz for every x € R% and hy(x*) is Hurwitz for x* € A, are
necessary for the proof of our CLT results in Theorem 2.2 and will be utilized in the following section.

A.2 Proof of Theorem 2.2

Without loss of generality, the proof in this part is conditioned on the event that {x, — x*,y, — y* = A(x*)}
for some x* € A. The proof of Theorem 2.2 includes two parts: First, in Appendix A.2.1, we decompose the
functions hq (x,y, &) and ha(x,y, &) of (14) into several terms and quantify the asymptotic behavior of each term.
Second, in Appendix A.2.2, we partition those terms in each iteration into three parts (six sequences in total)
and show that there is a sequence L%x) (L%V ) resp.) in each iteration that contributes to weak convergence, while
the remaining sequences diminish to zero when multiplied by the CLT scale 1/1/3, for iterates x,, (1/ \/Yn for
iterates y, resp.) so that they do not play a role in the final CLT result. The proofs of all technical lemmas
used in Appendix A.2.1 and Appendix A.2.2 are deferred to Appendix A.2.3 — A.2.6 for better readability.

A.2.1 Decomposition of Markovian Noise in the TTSA Algorithm

Throughout Appendix A.2, we define an operator (Pm)(x,y,i) for any function m : R%t x R% x = — R as
follows:

(Pm)(anai) £ ZPi,j [Xv Y]m(x7y7j)' (16)

JEE

The ultimate goal in this subsection is to decompose (14) into

Xn+1 = Xp + Bn-‘rlﬁl (X'ru yn) + Bn-{-lM»r(L)j-)l + ﬂn-i-lrr(zx’l) + ﬂ’ﬂ-i-lrr(zxg)? (173“)
Yn+1 = ¥Yn + Yn+1 712 (Xna Yn) + 7n+1My(L§_'A,_)1 + ’Yn—&-lry(ly’l) + '7n+17ﬂ7(zy72)a (17b)
where Mflj_)l, M,ﬁ)l are two Martingale difference noise terms adapted to the filtration F, £ {%0,¥0,&1,  ,&n}-

For i = 1,2, rﬁtx’i),rfly’i) are additional noise terms derived from Markovian noise and do not exist for 4.i.d.
sequence {&,}. Therefore, these terms are absent from the previous CLT results for TTSA with Martingale
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difference noise (Konda and Tsitsiklis, 2004; Mokkadem and Pelletier, 2006), where the i.i.d. sequence {&,} is
their main focus.

We first rewrite (14) as
Xn+1 = Xp + BnJrlBl(Xn; yn) + ﬂn+1(h1 (Xna Yn, €n+1) - Bl (Xnv yn)); (183)

Ynt+1 =Y¥n + ’Yn+152(xn7Yn) + 7n+1(h2<xnayn7fn+l) - B2(Xn7yn))' (18b)

Then, given the underlying state-dependent Markov chain {&,},>¢ with transition kernel P[x,y] that satisfies
Assumption (A4), there exists a solution m;(x,y, ) : & — R% to the following Poisson equation:

hl(xv Yy, E) - }_ll (Xa y) =my (X,y7 5) - (Pml)(xvy7 f) (19)
Similarly, there exists a solution mso(x,y,-) : = — R% to the following:
ha(x,y,€) = ha(x,¥) = ma(x,y,€) — (Pm2)(x,y,£). (20)

This Poisson equation technique has been well discussed in Chen et al. (2020, Section 2) and Benveniste et al.
(2012); Meyn (2022). For [ € {1,2}, the explicit form of the solution m; to the corresponding Poisson equation
(19) or (20) is given by

oy ) =S (P —1mfxy]T) iy d) = 3 (1= Phoy] + 1nlxy)7) L v, d), (21)
JEE k=0 JjE=

where 7[x, y]| is the stationary distribution of P[x,y], and (4, j) represents the (¢, j)-th entry of the corresponding
matrix. The proof of (21) can be found in Delyon (2000, Appendix B.3.1 (B.16)) and Hu et al. (2022, Appendix
B). Now, by (19), (20) and (21), we can further rewrite (18) as

Xn+1 = Xp + ﬁn+1ﬁl(xn7yn) + ﬂnJrl (ml(xnaangnJrl) - (Pml)(xnvynvfn))

MO

n41
+ ﬁn-{-l ((Pml)(xn-i-lv Yn+1, gn-‘rl) - (Pml)(xna Yn, fn-i—l))
(22a)
et
+ Bn-i-l ((Pml)(xrm Yn, gn) - (Pml)(xn+1a Yn+1>€n+l))a
ne
and similarly,
yn+1 =¥Yn + ’Yn+1h2(xn7 yn) + ’yn+1 (mQ(Xna Yn, £n+1) - (PmQ)(Xn, Yn, gn))
M,
+ Yn41 ((PmQ)(Xn-l-lv Yn+1, §n+1) - (PmQ)(Xna Yn, €n+1)) (22b)

e

+ Yn+1 ((Pm2)<xnaYn7§n) - (Pm2)(xn+17Yn+17€n+l>)a

rslyﬂ)

which becomes (17). This kind of decomposition is well known for single-timescale SA with Markovian noise
(Delyon, 2000; Benveniste et al., 2012; Fort, 2015; Fort et al., 2016), but now we need to deal with coupled
variables (x,,y,) for each iteration in (22).

Now, we further decompose the covariance of MT(L +)1, M,(L’i)l in Lemma A.2.1 and characterize the asymptotic
behavior of each decomposed term in Lemma A.2.2, which will be used later in the proof of Lemma A.2.3 in the
next subsection and is critical in quantifying the limiting covariance matrix in our main CLT result.

Lemma A.2.1. For M(i)thi)l defined in (22), their covariance can be decomposed into the following forms:

B[ MO 7] = U+ DIV 30,
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£ {Mr(zi)l(Mr(z}q’L)l ‘ ]'—n} = Uy + D + 302
B [MEL O] 7] = U+ DEY a2,
E [ M (M| Fa] = Una + DE2 4 322

where Uy, = UL, D2 = E)T, 3012 = (3T
Lemma A.2.2. Fori,j € {1,2}, and with USJ),D%”) and Jgj) as stated in Lemma A.2.1, we have

T
U”_shﬁnolole (Zh 7y*a§n> (Zh 7y gn) )

lim D(”) =0 a.s.

n— o0
ZJ(”) ] =0 a.s.

k=1
The proof of Lemmas A.2.1 and A.2.2 are located in Appendices A.2.3 and A.2.4.

lim ~,E

n— oo

Remark A.2.1. We note that for i.4.d. sequence {&,} with marginal g, matrix I8 in Lemma A.2.1 is zero
for all time n, as indicated in the proof of Lemma A.2.2. Thus, the condition on Jgfj) in Lemma A.2.2 is
automatically satisfied. Furthermore, the matrix U;; in Lemma A.2.2 reduces to the marginal covariance
Eeoplhi(x*,y*, &)hj(x*,y*,€)T]. Thus, Lemma A.2.1 and Lemma A.2.2 analyze the general Markovian se-

quence {{,} and include the i.i.d. sequence {£,} as a special case, whose resulting terms have been mainly
analyzed in Konda and Tsitsiklis (2004); Mokkadem and Pelletier (2006).

Remark A.2.2. In Section 2.2, we originally obtain the matrix Uy in the following form:
1 S S T
oo (5 (£ ]

where

A% = h(x",y" &) = QuuQa ha(x" ", &) = [T ~Qu2Qy)] {Zlgzigj:é:ﬂ .

Then, Uy can be rewritten as
, , T
_ 1 1 - — hi(x*,y*,&n) - 1(x*,y",6n)
U = Jim (E (Z 1 Q] [h;(x*,y*,ﬁn)D (Zl t-uag] [ &)D

n=1
T
h (X*vy*agn ,y* gn) AT (23)
h;(x*,y*,ﬁn ]) <Z_: [ x*, y* 7&)}) I -Qi2Q]
Ui Upe

=1 -Q12Q5,] {Um UQJ I *leQz_zl]T,

1 S
= lim ~[I -Qu2Qy]E (Z[

n=1

where the last equality comes from the expression of U;; in Lemma A.2.2.

A.2.2 Analysis of Coupled Iterates (x,,y,)

In view of Lemma 2.1 (almost sure convergence) in Section 2.1, for large enough n, both iterates x,,,y,, are close
to the equilibrium (x*,y*). In this part, we further decompose (17) in relation to the equilibrium. To do so, we
first apply the Taylor expansion to functions hj(xy,,y,) and ho(x,,y,) in (17) at (x*,y*), which results in

h(Xn, ¥n) = Vh1 (X7, y) (%0 = X°) + Vyha (X", y") (¥ = ¥7) + Olxn = x> + llyn — y*I%),
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ha(Xn, ¥n) = Viha (X", y") (% = X7) + Vyha(x*, y)(yn =) + O(l|xn = x[I* + [lyn — y*[1?)
Denote by

Qi1 2 Vihi(x*,y"), Q2 2 Vyhi(x*,y*), Q2 = Viha(x*,y"), Qa2 2 Vyha(x*,y"),

we can rewrite (17) as

Xn+1 = Xn + Bn-&-l (Qll(xn - X*) + QlZ(Yn -y ) M(X)l + T( ) + T( ) + p(X)> 9 (24&)
Yn+1 = ¥n + Ynt1 (Qzl(xn —X") + Qaa(yn —y) + MY+ + ¥ + P%y)) ; (24D)
where pi = O(||x, — x* |12+ lyn — ¥*12), o = O(||xn — x*||> + lyn — y*||?) are the error terms coming from

Taylor expansion. Then, we rewrite iterates y, — y* in (24b) as
Yo =¥ = b QE Was1 — ¥n) — O Qarlxn — x7) = Qg (MY, 473 4732 4 o).
Substituting the above into the (y, — y*) term in (24a) yields the following;:
Xnt1 — X" = Xy — X"+ Bop1 <Q11(Xn —-x")+ 7;+11Q12Q§21(Yn+1 —¥n) — Q12Q2 Qa1 (x5, — X7)
- Q12Q5;) (M(”1 D 42 4y )) + M 4D 4G p£§‘>> 25)
= (T4 Bn1Kx) (50 = X*) + Bug1 (17 41Q12Q25 (Ynt1 — ¥n)) + Bnta ( - Q12Q;: 1M7(L§1)

+5n+1 ( (x, 1)+T(XQ)—|—p Q12Q ( y1)+r(y2)+pgy))),
where Ky = Q11 — Q12Q5, Qo1. As we observe from (25), iterates x,, naturally embed two sequences:

(i) ﬂn+1%ﬁ1Q12Q2721(Yn+1 —¥yn); (i) Bny1(M, n+1 Q12Q2 n+1)

These sequences can be expressed recursively by following similar steps as in Delyon (2000); Mokkadem and
Pelletier (2006); Fort (2015). Specifically, let

n

k=1

k=1
Then, the sequences (i) and (ii) can be used to drive the following iterations respectively:

n

R 2 5RO, 4+ 71 Q12Qiy (Yn — Yn1) = Z et Ko By 1 QuaQgy (Y — Yh-1)- (27)
k=1

n
L(x) N ﬁ,, "L _1 + ﬁn( Q12Q221M y) ) — Ze(un*uk)Kxﬁk(Mlgx) _ Q12Q2_21M,§X)), (28)
k=1

(0 _ pto

The remaining noise in the iterates x,, is defined as An+1 2 X1 — X5 — L/ il

Similarly, for iterates y, in (24b), we define the following sequences:

R(Y) — e’yanzR(y L4 Yn le(L( )1 + R(x Ze(sn—sk)ng,kazl( 1 + Rl(c )1) (29)
k=1
L’El)’) — eWnQZQleyjl + ,ynM£LY) — Z e(sn_slc)(922,}/16‘2\4}‘(:3')7 (30)
k=1
The remaining noise in iterates y,, is denoted as ASQI Ly Yy — Lle RS’H

In view of Lemmas A.2.1 and A.2.2, we have the following results characterizing the weak convergence of sequences

B LS and vn V2L, which are proved in Appendix A.2.5.
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Lemma A.2.3. For L%x) and L%y) defined in (28) and (30), we have
BT\ aist Vi 0
(1 /’y;lLSly) n—o0 N 07 0 Vy ’

Ty Ty T
o0 t<KX+7{b;1}I> t(Kx—i-i{b;l}I)
V= e Uge dt,
0

X

where

oo
vV, = / 'R Uy, e dt,
0
with Uy of the form (23) and Usg defined in Lemma A.2.2.

Lemma A.2.3 confirms that 3, 1 QL%X) and v, v 2L51y ) weakly converge to Gaussian multivariate distributions,
mirroring the weak convergence of B2 (x, —x*) and ’y{l/z(yn —y*) as described in Theorem 2.2 (Section 2.3).

Furthermore, we establish the following results that the sequences RS, RY), A%, and AY) decay to zero at
rates faster than their respective CLT scales. This is achieved by examining a bounded deterministic sequence
that iteratively refines the upper bounds of y,, —y* and ASE’ ). Detailed insights are provided in Appendix A.2.6.

Lemma A.2.4. We have

1. for some constant ¢ > b/2, ||R£LX)H =0(n"° a.s
2. IR || = O(/BuTogun) a.s

3. |AY]| = o(v/B) a.s.

4181 = o(v/Bn) s

Note that +/8,/vnlogu, = O(y/n%Ptlogn) = o(1) since a — b < 0 by Assumption (A1l). Therefore, from
Lemma A.2.4, we have ﬁﬁl/Q(R%x) + A,(mx)) — 0 and 7{1/2(R$1y) + Asly)) — 0 almost surely. By Lemma A.2.3,
we establish the weak convergence for 3, 2159 and Yn 12 Together with x,, — x* = L 4+ R 4 A
andy, —y* = LSW + R%y) + AS’), we show that

_ * dist _ * dist
Bt (x, — x¥) — N©0,Vy), 7" *(yn—y") — N(0,Vy),

which completes the proof.

A.2.3 Proof of Lemma A.2.1

x)

We decompose the covariance form of Mé 1 and Mx_)l into several terms using the Poisson equation method
(Benveniste et al., 2012; Fort, 2015; Chen et al., 2020). The detailed steps are as follows.

E [Mf:i-)l (MS-({-)I)T‘ ]:n:|

= E[ml(xnayna£n+1)m1(xn»)’n7£n+1)T|fn] + (Pml)(xn7Yn7£n) [(Pml)(xnaangn)]T (31)
— E[m1(Xn, Yn, §ns1)|Fnl [(Pml)(xna}’mgn)]T - (Pml)(xnaYnagn)E[ml(XmYnafn—&-l”-Fn]T

= E[ml (Xn7Yna§n+1)m1(xn7}’n7£n+1)T|fn] - (Pml)(xnaangn) [(Pml)(xnaynvgn)],r'

where the second equality is because (Pmy)(Xn,Yn,&n), as defined in (16), can also be written as

(Pm1)(Xn, ¥Yn,én) = E[ml(xnayn75n+l)|fn]- (32)

Similarly, we have

E M'r(z}jr)l(Mr(th)l)T‘ ‘Fn} = E[mQ(XnaYna£n+1)m2(xn7yn7£n+1)T|fn] - (PmQ)(Xnaynvfn) [(PmQ)(Xn’ynvfn)]Tv
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and

B[ M )| Fo| = Bl (5 Y €n1)m2 (s Vs §n1) 1l = (Prma) (%0, ¥ €0) [(Pm2) (%, ¥ €)1

We now focus on E {M(x) (MSI)HT

n+1 n+1
E [MT(L}J_)l(MT(I}J_)l)T }"n] and E [My(:_?l (M,g’_?l)T‘ ]-"n} , and their proofs are omitted in this part to avoid repetition

and maintain brevity. Define

]-'n} as an example. The same steps of decomposition can be extrapolated to

¢(X7 Y, Z) £ Z Pi,j [Xa y]ml (X7 Yy, J)ml (Xa Y, J)T - (Pml)(xa Y, Z) [(Pml)(xv Yy, Z)}T ) (33)

JEE

and let its expectation w.r.t the stationary distribution 7r[x,y] be ¢(x,y) E;inix,y) [@(X,y,%)]. We can construct
another Poisson equation, i.e.,

E [M£?1(MT(L)21)T‘ }—n} - Z e, [Xn, Yn]E Mr(ﬁﬂMr(ﬁﬁT‘ fn}
En€EE

= ¢(Xnayna£n+1) - ¢(Xnayn)
= @(Xm}’mfn-i-l) - P‘ﬂ)(xm}’nagn—&-l)a

with the matrix-valued function ¢ : R4 x R% x = — R% %91 ag its solution. Then, we have

¢(XnaYn7§n+1) :é(X*vy*) +¢_)(Xnayn) - J)(X*vy*) + @(Xn;yn;gnJrl) - (P(P)(Xn,yn7§n)
———

. o e (34)
+ (Pp)(%n, ¥n:6n) — (P9)(Xn, Yns §nt1),
JOLB)
where matrix J& defined in Lemma A.2.1 given by JGD 2 g 4 g(ILB) pig completes the proof.

A.2.4 Proof of Lemma A.2.2

Expression of matrices U;;. We first give the exact expression of #(x*,y*) defined in Appendix A.2.3 in
order to derive matrix U;; for ¢,j € {1,2}. Recall the explicit form of the solution to the Poisson equation as
studied in Delyon (2000, Appendix B.3.1 (B.16)) and Hu et al. (2022, Appendix B), with w[x*, y*| = u, we have

* ks S £k k PR
ml(x Y aZ) = Z(P[X Y ]71/1’T)(l,j) hl(x Y 7.7)
JEE k=0
=3 > [Py Iy ) — b, y)
JEZ k=0 R
00
=E Zhl(x*7y*7§k) 50 :Z] 5
k=0

where the second equality comes from (P[x*,y*] — 1u?)* = P[x*, y*]¥ — 1u” for k > 1 by induction. The last
equality is by rewriting mq (x*, y*,4) into a conditional expectation form on the Markov chain {£,} conditioned
on & = ¢. Similarly, for (Pm4)(x*,y*,4), we have

&= ] |

(Pmy)(x*,y%,i) = E

Z hl(X*ay*vgk)
k=1
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Hence, for function ¢(x,y,#) defined in (33), taking the expectation over &, ~ p, i.e., the underlying Markov
chain is in the stationary regime from the beginning, we have

G0 y7) = 3 [ Gy i G,y i) = (P (v ) [(Pro ) )1

(Zh1<x*,y*,£k><§jh1 Xy &) —E, (Zhl Xy &)(Zhl(X*,y*,&k))
k=0

k=1 k=1

0o T
:Eu[hl(X*7y*a€0)hl(X*7y*7£0)T]+]E[L h ay 50 <Zh1 7y gk)

k=1
<Zh1 7y 61@) ( *7y*a€0)T]

=D [Cov(in(x*,y", &), i (x", ¥, &)+ Cov(hn (x", ¥, &), ha (x", ", &)
k=1

+ COV(h1 (X*7 y*’ 50)7 hl(X*a y*a 50))7

where

Cov(hl(x*,y*,ﬁo),hl(x*,y*,ﬁk)) éEu[hl(X*ay*aé-O)hl(X*ay*7§k)T] E [hl( 7y*750)]Eu[hl(X*ay*,£O)]T
E hy

,u,[hl(X*ay*7§0)hl(X*ay*7€k)T] ( )B1<X*7y*)T
R/—/

= Eﬂ[hl (X*, y*7 go)hl(x*, y*7€k)T]

is the covariance between hi(x*,y*, &) and hi(x*,y*, &) for the Markov chain {£,} in the stationary regime.
By following steps similar to Brémaud (2013, Proof of Theorem 6.3.7) using hq(x*,y*,£) as the test function,
we get

T
i * *®\ . l = * * _
o(x",y") = lim ~E (kzzofu(x Y6k ) (Zhl X"y, & ) = Uy (35)

We can follow the same procedures as above to derive Uy, Us; and Uss.

Analysis of matrices ng ), To analyze Dgfj ), we first discuss the continuity of functions mq,mg in (21), and
(Pm1)(x,y,€), (Pm2)(x,y,&) defined in (16). By Assumption (A4), the transition kernel P[x,y] and its corre-
sponding stationary distribution r[x,y] are continuous in x, y, and the inverse (I—P[x, y]+ 17[x, y]T) ! is well
defined and continuous in x,y. This, together with the continuous functions hq, ho assumed in Assumption (A2),
leads to the continuity of functions m1(x,y, &), ma(x,y,€) and (Pm;)(x,y, &), (Pms)(x,y, &) inx € R4,y € R%
for any ¢ € E. Furthermore, this results in the conclusion that the function ¢(x,y, ) defined in (33) is also con-
tinuous in x € R4,y € R% for any ¢ € Z. Thus, its mean field ¢(x,y) is continuous in x € R4y € R% as well.
By the almost sure convergence x,, — x* and y,, — y*, along with the continuity of function ¢(x,y), we have

lim D( D= hm A(Xn, ¥n) — (X", y*) =0 a.s.

n—oo

Similarly, we draw the same conclusion for D(12) D(21 and D7(122).
Analysis of matrices Jgfj ). We still focus on the case where i = j =1, with other cases following the same

steps. As demonstrated in (34), we can decompose J%ll) = %II’A) + J,(lll’B), where

J’SLlLA) = @(Xn, Yn:&n+1) — (PY)(Xn, Yns &n), ngll’B) = (Pp)(Xn,¥n,&n) — (PY)(Xn, Yns Ent1)-

J%H’A) is a Martingale difference term adapted to F,, i.e.,

]E[ (11.4) |]: | = Elp(%n, Yns Ent1)|Fn] — (Pp)(Xn,¥n,&n) =0
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due to the definition of (Py)(Xn,yn,&n) as stated in (16). Using the Burkholder inequality from Lemma A.6.2
with p = 1, for some constant C; > 0 we get

E l
k=1

By Assumption (Ab), iterates x,,y, are always within some compact set {2 such that sup,,

(11,4)
k

n 2
k=1

ngll’A)H < (o <

for a set-dependent constant Cq, and thus

e (i HJ;ﬁll’A)(f) < C1Cau/n. (37)
k=1

The last term of (37) decreases to zero in n due to @ > 1/2 in Assumption (Al) and is therefore uniformly
bounded with respect to n.

(11,B)

For J,, , we use the Abel transformation in Lemma A.6.1 to obtain

n

ST = ST P (ke Yk Ei1) — (P) (k1. Vi1, Ex-1)] + (P) (X0, Y0, 0) — (P@)(Xn, Y. En)-
k=1 k=1

Following same steps to derive the continuity of function m; in the previous paragraph, we have that the matrix-
valued function (Py)(x,y,€) is continuous in x € R% |y € R9. Thus, by Assumption (A5) that (x,,y,) are
within some compact set €2, there exists a constant Lg such that

[(P)(xk, ¥Yis Ek—1) — (P@) (X1, Vi1, &e—1) | < La(llxe — xe—1ll + [[yr — yr-1l)) < CoLa(Brk + 1),

where Cly = max(y)co.cez{hi (%,y. ), ha(x,5,€)}. Also, |(P) (%0, ¥0,€0)| + [(P9)(Xn, ¥ &)l are upper-
bounded by some positive constant C¢;. From the above, we have

Zn:JECH,B)

k=1

< Cq +CQLQZ B +) < Cq WZ’W« (38)

k=1

for some set-dependent constant C¢} > 0. Note that

n
ZJSI,B)
k=1

1, 1—a

where the last inequality is from Y}, 1% < 2n'~% We observe that (39) is decreasing to zero in n due to
a > 1/2 and is thus uniformly bounded with respect to n.
n
(11,B)
>
k=1
n
J](Cll,B)

n 2
< v, CHLE <Z HJ’(cll,A) H ) + 1 E [
k=1 k=1

"

C
< 'Yncgl‘lz glél%b Z’}/k < rYnC (39)

Note that J,(:l) = J,(:LA) + ng’B), by triangular inequality we have

= (11) = (11,A)
= |[5a >
k=1 k=1

+ 1 E

] < mE

|

)

n 2 n
e (S ) o B
k=1 k=1

where the second inequality comes from (36). By (37) and (39) we know that both terms in the last line of (40)
are bounded by constants that depend on the set 2. Therefore, by dominated convergence theorem, taking the
limit over the last line of (40) gives

. (11,A)
sy (o) o |3

J(ll B) —0.

n 2 n
=E nh—{%o%cl <ZHJ§€11,A)H >+’Yn ZJECH’B)
k=1 k=1



CLT for TTSA with Markovian Noise: Theory and Applications

]:o

Therefore, we have

lim ~,E
n— o0

a1
; b

which completes the proof.

A.2.5 Proof of Lemma A.2.3

Define a Martingale Z(") = {Z,gn)}kzl such that

zm(Wf L ) (WK Z<Kﬁ () Q12Q21M,£y>>>.

/,y;lL (y) 0 7_1/2 SnQ22> = SkQQz’YkM )

Then, the Martingale difference array Z,(Cn) — Z,i@l becomes

Z(”) B Z(”) _ ﬂ;l/Qe(un—uk)Kxﬁk(Mlgx) _ Q12Q521M]5y))
k k—1 %:1/26(5,17%)(322%]\4]53')

such that

n " Sr(zll) 57(112)
SB[ - 202" - 2 1Fe | = (S(m) 5(2)
k—1 n n

(y)

where, in view of decomposition of Mﬁx) and M,”’ in Lemma A.2.1, we have

S = By " prelun ik (UH+D§J”+J M (U +D? +307)(Q12Qa )T

+ Q12Q3; (Uss + D) + 37)(Q12Q3)” (412)
~ Q12Q3 (U + DY + JJ(CQI))) el Ko,
S = /212N Byl TR (U — QaQpy Una )l )92, (41b)
k=1
S’I(L22) = f}/;l Zzy%e(sn_sk)QQZ (U22 + D](€22) + J§<:22))e(Sn—Sk)(ng7 (41C)
k=1

and SPY = ({7,
We now focus on S,(LH), whose property is given by the following lemma.

Lemma A.2.5. lim, . S(H) Vi, where Vi is of the form in Lemma A.2.5.
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Proof. We rewrite S§L11) into three parts:

Sa1)
=B," i (52 U ti) (U11+Q12Q2_21U22(Q12Q2_21)TUlg(QuQQ_Ql)TQ12Q2—21U21)6(urﬂuk)Kf)
k=1
e
+Bgli(ﬁie(unwm (D +Q12Q2 D (Q12Q2))" =Dy (Q12Qs7) " ~Q12Qy D;)e (u”ﬂk)K,T)

k

Il
-

S£L11,B)

n

— — — — Up—U r
+ﬂnlZ<ﬁl§e(u"%k)Kx(ng)JFQlQleJ;fg)((;212(;2221)TJ;(gm)(Qszzl)T(;212(;2221']1(31))6( ’ k)Kx)'

k=1

5010
(42)

We aim to demonstrate that

lim SUYA =V, lim [|SOB) =0, lim |SUE9) =0
n—oo n—oo

n—oo

From Lemma A.6.4, we have for some ¢, T > 0 such that

1SS < Bt Y

k=1

ﬁ£62672T(u"7uk) )

DM +Q1,Q5 D (Q12Q5)T - DI (Q12Q5)T — Q12Q;, DY

Applying Lemma A.6.6, together with Dgfj) — 0 a.s. in Lemma A.2.2, gives

limsup || S5 < limsup D} +Q12Q DY (Q12Q5) T D (Q12Q5) T~ Q12Q5 DY = 0,

1
C(b,p)
for some constant C'(b,p) > 0 defined in Lemma A.6.6.
We now consider S$'"). Set

n

U237 (1 Q120 1 (@129 (Q12Qa) T - Q12 QI

k=1

. 11,C
we can rewrite Sy(, 9 as

. u Unp — UL T
S’r(LlLC) — /8’;1 Zﬁ}%e(un_ k)Kx(wk _ wszl)@( n k)(Kx) .

By the Abel transformation in Lemma A.6.1, we have

n—1
S”(Lll,C) — ﬂnwn +ﬂ;1 Z {ﬂie(un7uk)Kx¢ke(un7uk)K3: _ ﬁ£+1e(un*uk+1)Kx,¢)ke(un7uk+1)Kz ) (43)

k=1
We know from Lemma A.2.2 that 3,1, — 0 a.s. because 1, = o(v,;}) such that 8,1, = o(B,/7.). Besides,

| Breltn ™ Ko — gy g elin ke V|| = || (B — Bpoyr )elin T B Kox 4 By g eltn Ko (T — ™ FriKor) |

< 0152 _(un_uk)T

for some constant C; > 0 because 3, — Bnr1 < C2B82 and ||I — e P+1Kx|| < 38541 for some Cy, C3 > 0.
Moreover, for some Cy > 0,

e B e B e B

< Cyfye (T
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Using Lemma A.6.7 on (43) gives

n—1
[5029)) < ercast 3 sem2 =gl + 16l
k=1

Applying Lemma A.6.6 again gives
tim sup |54 < C5 imsup |86l = 0,

for some constant Cs > 0.
We provide an existing lemma below for the term 57(111,,4).

Lemma A.2.6 (Mokkadem and Pelletier (2005) Lemma 4). For a sequence with decreasing step size B, =
(n+1)7° for b € (1/2,1], up, = 31—, Br, a positive semi-definite matriz U and a Hurwitz matriz Q, which is
given by

n
3 et
k=1
we have

n
lim 3" Z Bie(un*w)QUe(un*w)QT -V

n— o0
k=1

where 'V is the solution of the Lyapunov equation

T T
(Q + “’21}1) V+V (QT + “’2”I> +U=0.

Recall in (23) that Uy = U11—|—Q12Q2_21U22(Q12Q2_21)T—U12(Q12Q2_21)T—Q12Q2_21U21. Then, we rewrite 57(1117A),
defined in (42), as

SLA) — g1 Zgze(uwkmxUxe<unwk)KZ
k=1

g(11.4)

Therefore, lim,, = V is a direct application of Lemma A.2.6, where V is the solution to the following

Lyapunov equation

Ly e
(Kx + {”2*1} I) Vi + Vi <K§ + {”21}1) + U, =0.

Together with Lemma A.6.8, we show the closed form Vy in Lemma A.2.3. 0

By repeating the same process as in the demonstration of Lemma A.2.5, we conclude that lim,, 57(122) =V,.

Moreover, the property of ST(LH) is given as follows.

Lemma A.2.7. lim, ST(LH) =0.

Proof. Note that

st =0 (ﬂnl%w Zmue(""Uk>Kx||||e<wk>Q2T2||>

k=1

-0 (5{1/2%71/2 ZBk,yke—(un—uk)Te—(sn—sk)T'>

k=1

k=1
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for some T,T" > 0, where the second equality is from Lemma A.6.4 and the third equality comes from
e~ (un—ue)T <1 Then, we use Lemma A.6.6 with p = 0 to obtain

Zﬂk%e S O(Bn) (44)

k=1

where 3,/Bns1 = (14+1/n)® =1+ O(1/n) = 1 + o(y,) satisfies the condition in Lemma A.6.6. Additionally,
since B, = o(yn), we have

G121/ Zﬂk,yk—l/%yl?;/?ef(snfSk)T' = O(BY 24 71/2) = o(1).

k=1
Then, it follows that lim,,_,., S = 0. 0
Consequently, we obtain
(n) y(Z(m <n _(Vx O
T}E&ZE{ ~ 2B - 55 1 P 1} - ( 0 Vy> '

The last part of this proof is to verify the conditions of the Martingale CLT in Theorem A.6.3. For some 7 > 0,
we have

ZE [HZ/(!L) (") ||2+'r|]_— }
k=1

n n
=0 <5n(1+2) Z ﬁi*?ﬁge—@w)(un—uk)T + ,y;(lﬁ) Z%zﬂ%f6_(2”)(5"_3’“”,) (45)

k=1 k=1
=0 (ﬁé + %?)

where the last equality comes from Lemma A.6.6. Since (45) also holds for 7 = 0, we have
S E 12" - 221 Fi | = 0(1) < oc.

Therefore, all the conditions in Theorem A.6.3 are satisfied and its application then gives

—17(0) .
g = (Vi In ) sty <o, <Vx 0 >) . (46)
Q/fyn Ln n—oo 0 Vy
This completes the proof.

A.2.6 Upper Bounds of RS‘), R(y) A(x , and AS’) Towards Lemma A.2.4

In this part, we aim to show that R,(l ), Rn ,A(x and A ) decrease to zero faster than the CLT scaling factor,

and are thus not present in the final CLT results. To proceed with the analysis, we provide the additional lemma
to get the tighter upper bounds of ||L51x)|| and HL,(zy)H as follows, which is useful in deriving the tight upper
bounds of R%x), R%y), A%x), and A%y) later in Lemmas A.2.10 and A.2.12.

Lemma A.2.8. For L and LY’ defined in (28) and (30), we further have
1L =0 (VB Toglun)) a5,

1Y) =0 (Vanlog(sn))  aus.
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Proof. This proof follows from Pelletier (1998, Lemma 1). We only need the special case of Pelletier (1998,
Lemma 1) that fits our scenario, i.e., we let the two types of step sizes therein be the same. For self-contained
purposes, we attach the following lemma.

Lemma A.2.9 (Pelletier (1998) Lemma 1). Consider a sequence

n
Lpj1=e€" Y e QB My,
k=1

where B, = (n+1)7%, 1/2 < b <1, u, = Y p_, B, matriz Q is Hurwitz, and {M,} is a Martingale difference
sequence adapted to the filtration F. Almost surely, limsup,, E[||M,+1||*|F.] < M? and there ezists T € (0,2),
b(2 + 7) > 2, such that sup,, E[|| M, 11||>77|F,] < co. Then, almost surely,

Ly,
lim sup _ Wl < Cu, (47)
n /Bn IOg(un)

where Cyy is a constant dependent on M.

By Assumption (A5), the iterates (60,,x,) are bounded within a compact subset Q.  Recall the

forms of Mﬁ’fl,Mg}l defined in (22), they comprise the functions mi(Xy,yn,%), me(Xn,yYn,4) and
(Pm1)(Xn,Yn, 1), (Pma)(Xn, yn, ), which in turn include the function hy (X, yn, ), ho(Xn, Yn, 7). We know that

h1(Xpn, ¥n,1), hao(Xpn,¥n, 1) are bounded for (x,,y,) within some compact set 2. Thus, M,(:gl, M (y)l are bounded

(because of finite state space Z) and we denote by C’(x) and C’(y) as their corresponding upper bounds, i.e.,

[||Mn’i)1 1% Fn] < Cé)x) and E[HM;?I 1% F.] < ) . Thus, by the application of Lemma A.2.9, we have
() 1)
lim sup BT < Céx)’ lim sup LT < C’ézy), (48)
n Bn IOg(un) n Tn IOg(sn)

such that almost surely, ||L£«Lx) Il = O(y/Bnlog(uy)) and HL;” || = O(\/ynlog(sy)), which completes the proof. [

Now, we present the following condition on any given real-valued deterministic sequence {w,} in a similar vein
as in Mokkadem and Pelletier (2006, Definition 2).

(C). Let {w,} be a positive real-valued and uniformly bounded deterministic sequence. Moreover, {w, } satisfies
=1+ O(’Yn)'

Wn41

In what follows, choices of sequences satisfying Condition C will be employed towards proving Lemma A.2.4. We
explain how to derive the upper bounds for R%x), R%Y), A%x), and A;Y), while the main difficulty in the procedure

is to derive the upper bounds of A%x), A(y) because we have to deal with the additional noise terms r(x 2) r%y’z)

therein, which arise from the decomposition of Markovian noise.

First of all, by almost sure convergence, we have ||y, — y*|| = o(1), the only upper bound of y, — y* for us.

Letting w,, = 1 is obviously one of the choices of {w, } that satisfy Condition C. Thus, setting ||y, —y*|| = O(wn)

) R

allows us to present the initial upper bounds for Ry, which involve w,,, as indicated in Lemma A.2.10.

Lemma A.2.10. Suppose there exists a nonrandom sequence {wy, } satisfying Condition C such that |y, —y*| =
O(wn) a.s. Then, with R, RY) defined in (27) and (29), for some s > 1/2, we have

RS = OBy 'wn +1n7%)  aus.
IRY|| = <3n% Wy, + V/ Bn log(un)) a.s.

For the proof of Lemma A.2.10 we refer the reader to Mokkadem and Pelletier (2006, Lemma 5), which applies
directly since both sequences RY and RY, as defined in (27) and (29), have the same form as in Mokkadem
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and Pelletier (2006) and do not include additional terms rii"”,rﬁ"?)’ r(y ’1) ( ¥:2) arising from the Markovian
noise.

Lemma A.2.10 implies that ||R£LX)H = o(1) and ||R$LY)|| = o(1) since 8,7, — 0 and w,, is uniformly bounded
in Condition C. Since ||y, —y*|| = o(1) by almost sure convergence, Lemma A.2.8 and Lemma A.2.10 indicate
that LY = o(1), RY = o(1), we thus have AY) = o(1). So, in addition to set ||y, —y*|| = O(wy), we also let
A%y; = (Ognn) for some sequence {n,} satisfying Condition C. Then, we need to characterize the exact forms of
AYY LAY

By substituting (27) and (28) in (25), along with the definition An+1 £ X1 — X* — L;’fﬁl - Rﬁl’il, we obtain
A,(l +)1 as follows.
Aiﬁl = (T4 B 1 Kx) (% = X7) + B ( S 4209 4 pl) — QuaQay (rY M + 7Y + P%y)))
- eﬁ"“K"LgLX) — eﬂ"“K"RS‘)
= (L4 B K)ot = ) B (00 4787 490 = QuaQap () 4722 49 (49)
49

— T+ B K + O n+1>>L<x> - (T+ ﬂn+1K + OB 1)) R
= (T4 Bu1 K) AP + 844 ( G 52 4 p0) — QuaQyy (rY Y + 1Y + p(y)))
+0(82,,) (26 + RYY)
where the third equality is by using the Taylor expansion efn+1¥x =T+ 3,1 Ky« + O(82,,), and the fourth
equality stems from the definition AY = x,, — x* — L% — RY.

Similarly, for AS’QD we have

A;}:‘zl £ Yn+1 — ngzl Rsﬁl

= (I+ ’Yn+1Q22)(Yn Y") + Yo ( YD 4y P(Y)) +Yn41Qa1(xn —x7)
Q@ ) _ Qe RO) Q) (L) + RY)

= T+ 74+1Q22)(yn —¥7) + 1 (7“53” b P%y)> + 1 QALY
- I+ ’Yn+1Q22 + O(’YELH))L(‘Y) — (T4 Ynr1Qa2 + O(WZH))RS')
= I+ 701 Qe)AY) + s (10D 732 4+ p0)) 45011 QuAY +0(2,,) (LY + BY).

where the third equality is from e™+1Q22 =T+ ~,, . 1 Qg + O('y,zﬂ_l) and A%x) =x, — X" — L%x) — R%x), and the
fourth equality is because the definition AY =y, —y LY _RY.

In what follows, We 1nvest1gate the asymptotic behavior of the terms r(x 1), (Ly 2) and 7"7(3' 1) r,&y 2) that are part
of the sequences An and A;”, respectively. The results of this analysis will be used in Lemma A.2.12 to show

the upper bounds of A(x) A(y).
Lemma A.2.11. For r(x D éx’Q),rgly’l)mfly’z) defined in (22), the following holds almost surely:

n
&) = O(v) = o(v/Ba),  sup | Y r?|| < o0,
" k=1

n

Ir& V) = O(y) = o(V/Ba), sup | r¥?| < oo.
k=1

(%, (x,2) (v,1)

Proof. We only prove the result for ry, and Ty, since the result for r;; and r(y ’

?) follows similar arguments.
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Observe that for any compact set  satisfying Assumption (A5), we have

oD = (Pm)(%n41, Y1, €ngr) = (Pma) (%0, ¥, Engr)

< ZLQ(HXnJrl - XnH + ||Yn+1 - ynH)
JjeE
< ElLaCa(Bny1 + Ynt1)

where the first inequality is because (Pm1)(x,y, &) is continuous in x,y for any £ € =, and the fact that any
continuous function is locally Lipschitz with a set-dependent Lipschitz constant Lg. The second inequality is
from update rule (14), Assumption (A2), and (x,,y,) € § for some compact subset Q (by Assumption (A5))
such that

max __{[|h1(x,y, &), [[h2(x,y, )|} < Ca,
(x,y)ENEEE

Then, because a > 1/2 > b/2 by Assumption (A1), we have Hr(x 1)|| = O(vyn) = o(\/Bn)-

Now, let v, 2 (Pm1) (X, Yn,&n) such that T(x D Vp — Unt1. Note that

n
E (x,2)
L = V1= Vn41,
k=1

and by Assumption (A5), ||vy|| is upper bounded by a constant dependent on the compact set €2, which leads to

- 02)
1; ;

This completes the proof. O

=sup ||v1 — Vpt1]| < o0 as.
n

sup
n

We are now ready to state the lemma for the sequences A%x), Asly ).

Lemma A.2.12. Suppose that there exist two sequences {wy,} and {n,} satisfying Condition C such that ||y, —
vl = O(wy) a.s. and |A y)H = O(n,) a.s. We have

IAS | = OB, *wy, + Bavyy 'in) + 0(V/Ba)  acs.
1A = OBarm *wpy + Bavy ) + 0(V/Ba) — acs.

Proof. The sequences in A(x) A(y) involve additional noise terms rﬁt 2) 7‘7(3" ) arising from Markovian noise,

causing the challenge of deriving their upper bounds. In this proof we separate out these terms r(x 2 7”7(, Y2 from

other noise terms, and specifically analyze their asymptotic rates, which contribute to the o(v/B,) term.

Recall from (49), (50), we have

A = (4 Bu K AT+ Bt (17D 47052+ p09 = QuaQig (D +772)4+p) ) +0(82,) (LG +REY )

ALY = T+ 7m11Qe2)AY) + 74 ( G 4 r? 4 P(y)> + Yn41Qa1 A + O(1244) (Lgby) + R%Y)) :

We observe that they include the additional terms r(x 2) 7(1 2) arising from the decomposition of the Markovian

noise, which are missing in Mokkadem and Pelletier (2006, equations (20), (21)). To deal with this issue, we can

decompose A/ n41 into two parts, i.e. Afﬁl = Ag;jrll) + Aflel), where

AT 2 (T4 B KA 4 B (1§D + 950 = QuaQ (1) +p)) + 0(82.0) (L& + RE) . (51)

AGE £ (4 51 K)AT? + B (1% — QuuQry?) (52)
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Similarly, we can decompose Agy)l into two parts, i.e., ASQI = Agﬁ) + AS{;? where
A 2 (T4 7,11Qa2) AV Y + 4,44 (Tr(Ly’l) + PSI)) + 9 1Qu AN + O0(vi 1) (Lgly) + RS’)) ;. (53)
Aﬁﬁl 2 (L4 Y41 Qa2) AV + 7, ary2). (54)

Let us first focus on the terms A( ’1 and Agll In the following, we show that

1A = o(V/Ba)s AT N = o(v/Bu). (55)
Denote by
O 2 J] @+8K), 02 <"’2>—Q12Q;;r,g%2>,
j=k+1 k=

and by convention ®,41, = I, we can rewrite AG2 +1 in (52) as

An+1 = Z Pk Brt1 (O — Ok—1)

k=1
because 0, — 0,1 = rk 2 - Q12Q% ! (y’2) By Abel transformation in Lemma A.6.1, we have
n—1
AXY = Boal + D (BkPhon — Brr1®hi1n) O
k=1

Note that 8,410n = Bni1 (Zk T (x 2) ) Q12Q22 Br1 (Zk T y 2)) By Lemma A.2.11, we have

1Bnsabnll = O(Bn) = o(/Bn)  a-s.
such that 3,416, — 0 almost surely. Furthermore,

18k®k.n — Br+1Prt1.nll < Bet1l®hn — Prtinll + (B — Brt+1) | Pr,nll
| Kx|| + CoB2 | Pkl

< Cppfe(unmun)T

for some constant T, Cs, C7 > 0, where the last inequality is from Lemma A.6.4 and || ®p41.n|| < Cs||Pk n]| for
some constant Cg > 0 that depends on e?. Then,

Z 18k Pr,n — Be+1Prt1,nlll|0k]l < Cs Zﬁkef(u"*uk)THﬂk‘I’kH = O([|Bnball),

where the last equality is the application of Lemma A.6.6. Thus, we have ||A£1x+21)|| = o(+/Bn). Repeating the
same steps, we get ||A7(f;21)|| = o(v/Bn).

We now turn to A( 1) and ASiH) As shown in Mokkadem and Pelletier (2006, p.11), there exist two matrix

norms || - ||z and || - || a such that for large enough n,
T+ Bnt1iKxllr <1 =BT, T4 1m+1Qo2llm <1 —yn1 M,

for some T, M > 0. The corresponding vector norm ||v|z £ |[[v---V]|z, where [v---v] € R4 and |lulp £
[u---u]|ar, where [u---u] € RE2xdz,

Then, we have

187l < (1= Bua DA 7+ Bur (Il 108 +1Qu2Qz3 (1D +0) 1)
+0(821) (1L +I1RS 7).
1885 1as < (1= 2st MYIAS D s 4 7msn (I8 las 410l ) + 7511 Qar A

+0(2) (ILY s + 1R e )
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We note that

105 lz + 1Qu2Qa 0¥ Il = Ol + 161
= O(llxn = x| + lyn — ¥*I*)
= O(IL 1P + IR + A NF + 1LY NP + IR + 1A I13,).

where the first and the last equalities are from the equivalence of norms. Similarly,

10113 = OIS N+ 1pY11) = OULSN + 1RSI + IAZIF + ILY 1> + IR + [AY[17)-

Also note that |AS)]2 = O(|ASY12) + 0(By) and [|AY (2, = O(IAY ™V 12,) + 0(B,) by (55). Tt then follows
that

x,1 b’ X b4 X
1AS Y 17 < (1 = B DIAE D 7 + Bag1OBaia [ + Brsa | R + [lr& D)
+ Bar OO + RS2 + AV |2 4 [LP 12 + | BD) + APV |3, + 0(Ba)), (56)
IAZ D ar < (1= s MDA Y s + Y0310zt [ZD]] + Yosa [RD ] + P& )

+ Y 1O(ILE N + IR + AS VT + AT [l + LN + IR + 1A V13, + O(V(lfn)))'
57

From Lemma A.2.11 we know that [|ri" || = o(v/Ba) and |7 || = o(v/By), thus we can omit o(8,) and o(+/B,,)
terms in (56), (57). Lemma A.2.8 suggests that lim, o Ly
A.2.10 implies that lim,, R,(zx) =0 and lim,,_,s R%y) = 0 since w,, is a bounded sequence by Condition C and
Bnynt = o(1). By almost sure convergence lim,, o X, = x* and lim, . y, = y*, we have lim,_, A =0
and lim,, oo AY) = 0. This implies that for large enough n, there exists some 0 < 77 < T,0 < M’ < M such
that

= 0 and lim,,_,oo Ly’ = 0. Moreover, Lemma

~TIAFY |z + O(IAT D7) < TIATY [r,  —MIAYVlar + O(IAY VI3,) < =M AY V7.

Bringing the above inequalities back to (56) and (57) (and omit o(8,) and o(v/53,) terms therein) leads to

1A%V 7 < (1= Buia TALD |7 + By 1OBrsr |ILE|| + Basa |RE|| + [Ir&D])

+ Bue 1 OUILE NP + RSP + LY NP + RN + AL VII3,), (58)
1A < (1= 3ia MYIAY D [lar + 40110 [Z] + nsa [RP] + [ 21)
+Ynr1Co (1L N7 + RSN + 1AV Iz + I LY + IRY]?). (59)

for some Cy > 0. Since lim, oo AY = 0, we have O(||A,(1y’1)||?w) < Crol|AY V| as for some 0 < Chg < T”/Cy for
large enough n so that we can further modify (58) as

1Al < (1= Buit TVIAS D lr + Busr OBl L ||+ Busa [RS | + V)

2 (x)12 ¥)2 (y,1) (60)
+ Buir OULNP + RSP + L1 + 1RNP) + Bt Croll ATVl ar-

Rewriting (59) gives

1

1

1Al <
A/n+1

)1
(1A D0 = 1A ] + Ot 1L + 3 a IR + -0

+ Co(ILEN? + RSP + I AZ 1o + 1LY 1P + [ RY]1%).
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Taking it back to (60) induces

IAS D e < (1= Bua T NIALEY |17 + Bus1OBuralILE | + Busr | RS + [rED)
+ B O(ILS P + RSP + LY + |RY 1)

Bn C :
—E 2 AT D lar = AT ar | + Brs 1 OGrast [LQ N+ vsa [RY] + (17
+ Bnﬂchm(llLﬁf‘)ll2 IR+ 1A e + LY |1* + I RY(1?) (61)

< (1= Baia TMAZ Nz + Bapr OUILE | + RSN + ILY]* + 1R (1)
+ B 1 OBt ILN + Bt IR+ 1r D+ s L]+ Yo R + [17D)
BnJrlClO

1
AT D |ar — 1A | ar |+

where the last inequality is by setting 0 < T < T” — CyC'1p. Now, (59) and (61) correspond to Mokkadem and

Pelletier (2006, equations (27), (28)). Thus, we can leverage the result therein for AS; and AY:Y

ni1» which is
given below.

Lemma A.2.13 (Mokkadem and Pelletier (2006) Appendix A.4.2 and Appendix A.4.3). For AS:’_ll) and AS;’_II)

with inequalities in (61) and (59), and assume that ||y, —y*|| = O(wn), HASLy’l)H = O(n),) where {w,} and {0}
satisfy Condition C, we have

JAGD || = O(B27, w2 + Bpyy ') + 0o(v/Ba)  aus.
[AY V|| = 0827, 2w + Buryy M1l) +0(\/Br)  a.s.

Since |AY)|| = O(n,) in Lemma A.2.12, and [|AYY| < |AY| + 1AY? | = O + v/B) by (55), we set
Nl = Nn + v/Bn. With Lemma A.2.13, it follows that, almost surely,

[AGI]| < [|AZD]| + [|AZ?)|
=0( n% 2w’ +ann nn)+0(ﬁn% 'V Ba) + o(\/Bn)

where the last equality is from O(8,7,, 'v/Bn) = o(v/Bn) because 8,7, 1 = o(1). Similarly,

AP < |AYD] + |AY2)|
= OB, W} + Bt 1) + OB '/ Bn) + 0(v/Bn)
:O( n’Yn ’LU +Bn7n 7771)4_0(\/&7)'

This completes the proof of Lemma A.2.12. O

By Lemma A.2.10 and Lemma A.2.12, we can iteratively fine-tune the expression of w,, and n,, (in other words,
tightening the upper bounds of w,, and 7,,). We are now ready to prove lemma A.2.4.

Proof of lemma A.2.J. Since lim,, A%y) = 0 almost surely by Lemma A.2.12, we can set 1, = 1 such that
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According to (62), we set 1, = O(827,,%w2 + [Buy 1*) + 0(v/Bn) for integer k > 1. Then, we have

M _ Brvn “wi + [Buyn 1" + v/Bu
M+t 5g+1%+1wn+1 + [5n+1%7iﬂk + v/ B+t
n (B2, 2wp — 7%+1’77:—§2—1w’r27,+1) + (B 1 - [5n+17;+1 + (vVBn — \/m
Br%ﬂ%ﬁlwgﬂ + [5n+1%ﬁ1]k + v/ Bnt1
Barym 2wz — 12z+1’77;f1°‘1721+1 n [Bnyn 11F — [5n+1%7+1 VBn — \/Bni

+
2 -1
Bn+17n+1w72b+1 [5n+17n+1]k vV Br1

Since [B,7, ¥/ [Bni17m 1] = 14+ 0(1/n) = 1+ o(y,) for k > 1 and V/Ba/\/Bn1 = 14+ 0(1/n) = 1+ o(7n),
together with wy, /w,+1 =1+ o(7y,) in Condition C, we have

TIn
77n+ 1

<1+

=1+ o0(y).

Thus, the new expression of 7, also satisfies Condition C for all k > 1. There exists some integer kg such that
for all k > ko, we have [3,7, ]¥ = n**=** = o(\/B,,) such that

IAD | = O(mn) = OB, wi) + o(\/ Bn)-
Similarly, we have
1A = OB, *wn) + o(\/Bn)-
For ||y, —y*|| = O(wy,), we set w, = /v, 10g s, + [Bn;; t]* for integer & > 1 and check that

Wn — vV In 10g Sp + [Bn")/;l]k <1+ vV In IOg Sn =/ In+1 IOg Sn+1 + [ﬁn’ygl]k - [Bn-ﬁ-l’y';il]k

Wn+1 Yn+1log spp1 + [ﬁn+177:-§1—1]k B V Tn+1 log sp41 [5n+17;i1]k

After algebraic calculation, we have v/, 10g 5,/ \/Yn+110g Snt1 < \/n//Fnt1 = 1+ O0(1/n) = 14 0(v,). Along
with [8,7, 1%/ [Bat17mia]® = 1 + 0(7n), it then follows that

w.
—— =1 + O(’Y’!L)'
Wn+1

Therefore, w, = /7, logs, + [Bny,; 1] satisfies Condition C for all & > 1. There exists some integer k;
such that for all k > ki, [Bn7, ¥ = o(\/7n), which in turn implies that [3,7,']* = o(v/nlogs,). Thus,
wp, = O(V/yn logsy,) and ||y, — y*|| = O(v/n log s,) almost surely.

Consequently, with w,, = O(y/7, log s,,), we have
1AL ]| = OB, og su) +0(v/Ba) = o(v/Ba), A | = O(Biry " og sn) + 0(/Ba) = 0(v/Ba)-
For ||R(x) Il ||R£Ly) || of the forms in Lemma A.2.10, we have the following:
B = (8,972 log s, + %) = O(n™*~ log s, +n ™) = O(n™).

where ¢ £ min{b — a/2 + ¢, s} > b/2 for some small enough ¢ > 0. In addition, we have

||R’I(’Ly)|| = 0(Bnvy 1/2 log sy, + v/ Bnloguy,) = O(y/Bnloguy),
which completes the proof. O
A.3 Performance Ordering in TTSA

A.3.1 Proof of Proposition 3.2

By definition of efficiency ordering in Definition 3.1 (in Section 3.1), we recall that two efficiency-ordered Markov
chains {W,,} and {Z,} with W < Z and same stationary distribution g obey the following Loewner ordering:

UMW) >, U@ (g)
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for any vector-valued function g : = — R%, where

and E[g] = Ewpn[g(W)].

Now, we turn to the explicit form of Vx and Vy in our Theorem 2.2 in Section 2.3 and give them below for
completeness.

Loy Trp T
oo t(K,;I»#I) t(Kx+%I)
V= e Uxe dt

X )
0

o0
Vy=[ Q2 Uye! 2t
0

where the expression of Uy and Uy can be found in Remark A.2.2 in Appendix A.2.1. The only components
in Vy,Vy that are associated with the underlying Markov chain are Uy and Ugy. Let the function g(W,) =
ho(x*,y*,W,,) for the TTSA algorithm (14) driven by the Markov chain {W,}, then replacing {W,} with a
more efficient chain {Z,} leads to UMW) (g) > U#)(g), or equivalently, UggV) > Ug), where the superscript
(W) indicates that the TTSA algorithm (14) is driven by the Markov chain {W,,}.

hl(X*v y*7 Wn)
hQ(X*7 y*v Wn)

W) (W) s s ]
Ull U12 — 1 1
[U(W) um| = slggo ;E E g(Wh) 9g(Wh)

21 22
-
(e N (s v
>r SIEEO;E <Zg<zn)> (n 19(Zn)> :[ (2) Ug) )

Similarly, let g(W,,) = [ } then we have

21

We then focus on the matrix Uy in the form of (23). From the definition of Loewner ordering, for any matrix
C with suitable dimension, A > B leads to CACT >;, CBC”. Let C = [I — Q12Q,,'] such that U, =

c|Un Uil or Then with (63), we have UV >, U,
Uz Uz

Then, for V,(CW) and V,(cZ)7 by the fact that A; >, By and Ay > By leads to A; + Ay > By + Bo, i.e., Loewner

ordering is closed under addition, together with CACT >; CBCT, we have V,(<W) > V,((Z) since US(W) > U,((Z).

Following similar steps above gives V;W) > V§,Z) because U(ng) > Uég). This completes the proof.

A.4 Asymptotic Behavior of Nonlinear GTD Algorithms

A.4.1 Introduction to GTD2 and TDC Algorithms with Nonlinear Function Approximation

Before starting the proof, for self-contained purposes, we here present the GTD2 and TDC algorithm with
nonlinear function approximation, first proposed by Maei et al. (2009). In particular, both algorithms can be
represented as TTSA in (14), where

hQ(X'rny'ru £n+1) = 5n(xn)¢xn (Sn) - ben (Sn)¢xn (Sn)Tyna
and

(i) For TDC algorithm:

hi(Xn, Yn,ént1) = 5n(xn)¢xn (8n) = fu(Xn,¥n) — apx, (5n+1)¢xn,(3n)Tan
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(ii) For GTD2 algorithm:
hl (xn7 Yn, £n+1) = (¢xn (sn) - a¢xn (sn+1))¢xn (Sn)TYn - fn(xna Yn)7

where £,41 2 (5, $n41), the feature vector ¢y (s) £ Vi Vi(s) € R? and the TD error d,,(x) £ 7(sp, Gn, Snp1) +
Vi (8n11) — V(sn) € R. Lastly, we introduce f,,(X,y) 2 (5,(X) — ¢x(50)Ty) Vxtx(5,)y € R? for x,y € R%. The
conditions on step sizes §,, and ~, are in Assumption (A1) in Section 2.1. For both algorithms, the iterates x,,
evolve the parameter for Vi to accurately estimate the value function V™, and iterates y, aim to approximate
E,u7 [0n (%) ¢x(5n)] for each x value from iterates x,. As demonstrated in Maei et al. (2009, Corollary 1), iterates
(Xn,¥n) admit a root (x*,y*), where x* satisfies E,,x[d,,(x*)¢x-(s,)] = 0, and y* = 0.

In the following, we list the conditions (C1) - (C4) commonly assumed in RL.

C1. For any s€ S and x,x’ € R, |Vi(s)| < Cy, [|6x(s)|| < Cy, and ||Vxox(s)|| <D, for some positive constants
Cy,Cy, Dy,. Besides, we assume f,(x,y) is Lipschitz continuous in y for any x € R%;

C2. The point (x*,y*), where x* satisfies E, = [0, (x*)@x+ (sn)] = 0 and y* = 0, is the globally asymptotically
stable equilibrium of the related ODE x = Ay (x, C(x) 'E 4= [0,,(X)¢x(51)]), where C(x) £ E ;1= [ (5) px (5)T];

)

C3. Matrix C(x) > (I > 0,Vx € R? for some ¢ > 0, and we use the shorthand notation for C, £ C(x*). We
also assume that A, is full rank, where A, ZE = [ (5n) (¢ (Sn) — @@xx (8511))T 405 (X*) Vs (8]

C4. The Markov chain with transition kernel P(s,11=5|s,=s)2Y, ., m(a|s)P(s|s,a) is ergodic;

C5. supp,>o([[%nll + [lynl]) < o0 as.

The boundedness assumption imposed on ¢x(s), Vx¢dx(s) and Vi(s) in Condition (C1), as well as the Lipschitz
condition on f,(x,y), are in line with the assumptions made in the state-of-the-art work for nonlinear TDC
algorithm (Xu and Liang, 2021; Wang et al., 2021). Condition (C2) is to ensure the globally asymptotically
stability of the related ODE % = hy(x, C(x) 'Eyn[6,(X)dx(sn)]). A similar assumption has been made in
Maei et al. (2009, Section 5) where they consider the asymptotically stable equilibrium for any trajectory of the
aforementioned ODE in a compact set because their algorithms project iterates (x,,,y,) onto that set. Condition
(C3) aligns with current work on the nonlinear function approximation Maei et al. (2009); Wang et al. (2021).
In the special case of linear function approximation, Condition (C3) is also widely used in the literature (Sutton
et al., 2009; Dalal et al., 2018, 2020; Li et al., 2023a). Condition (C4) is typical for Markovian samples (Ma et al.,
2020; Xu and Liang, 2021; Wang et al., 2021). Condition (C5) ensures the stability of (x,,¥yn), which serves the
same purpose as the projection operator for the iterates (x,,y,) in the original GTD2 and TDC algorithms in
Maei et al. (2009), where ||x,||, [|¥,|| remain constrained by an upper bound.

A.4.2 Proof of Proposition 3.3

We now explain how conditions (C1) — (C5) correspond to assumptions (A2) — (A5) in order to apply our main
CLT result in Theorem 2.2. By Condition (C1), we have that

1h2(x, 3, )| < (rmax + (L +@)Cy)Cy + Cllyll = O + Iy |)),
where rpayx = Max (s q,s)esx.Axs (8, a,s") < 0o. Moreover, for GTD2 algorithm,
1h1(x, 5, )l < (1 + a)CEly |l + I fn(x, 3) | = O + Iy ).
For TDC algorithm,
171,y Ol < (rmax + (1 + a)Co)Cy + || fu(x,¥)[| + aCFlly [ = O + lly])-

Therefore, Assumption (A2) is satisfied.

50nly when we consider the CLT result and the fastest decaying step size 8, = 1/(n+1), we need an extra assumption,
ie, —ATC'A. + %I be to Hurwitz. This condition is not needed for almost sure convergence even when 8, = 1/(n+1).
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Then, we turn to verifying Assumption (A3). For any x € R? to ensure ho(x,A(x)) = 0, we can set
A(x) = C(x) 'Eyur [0, (x)dx(sn)], where C(x)~! is well defined by Condition (C3). Clearly, A(x) is the globally
asymptotically stable equilibrium of y = ha(x,y) = E.[6,(%), ¢x(s,)] — C(x)y because this ODE is linear in y,
and Vyha(x,A\(x)) = —C(x) is Hurwitz for any x € R?, as stated in Condition (C3). By Condition (C1), we
have
NGO < N1CE) ™ [ (rmax + (1 + @)Co)Co < ¢ (rmax + (1 + )Co)Co

When x = x*, y* = A(x*) = 0 such that f,(x*,y*) = 0 and hy(x*) = hy(x*, A(x*)) = 0 for both GTD2
and TDC algorithms. Finally, we deal with V,h;(x*). By chain rule, we have Vyh;(x) = Vihi(x, A(x)) +
Vyha(x,A\(x))VxA(x). Although A(x) is an implicit function, after taking the derivative on both sides of
ha(x, A\(x)) = 0 with respective to x, we have

Vxha (%, M(%)) + Vyha(x, A(x)) Vi A(x) = 0.

This further leads to

VaA(x) = =(Vyha(x, M%) ™' Vicha (x, A(x)),
where the matrix inverse exists because Vyha(x, A(x)) is Hurwitz for any x € R?. Thus, we obtain the following
form for Vyhi (x*):

Vichi (x*) = Viehy (x", M(x")) = Vyh (x7, M(x"))(Vy ho (x*, A(x*))) 7! Vicha (x", A(x7)). (64)
After algebraic calculation, for both GTD2 and TDC algorithms, Vxﬁl(x*) = —AEEC*_lA*. Now that A, is
full rank, for any non-zero vector v € R% we have vV hi(x*)v = —vIA,C;'A,v = —u?'C,u < 0 by letting

u=A,v # 0. Thus, Vyhi(x*) is negative definite and thus Hurwitz. Additionally, Condition (C2) indicates
that (x*, A(x*)) is the globally asymptotically stable equilibrium of the related ODE % = h; (x, A(x)). Therefore,
Assumption (A3) is verified.

Regarding {&,} with &,11 = (Sn, Sn+1), it can seen as the Markov chain {s,} on the augmented state space.
Then, we have the following result.

Theorem A.4.1 (Neal (2004) Theorem 2). Suppose that {sn} is an irreducible, reversible Markov chain on the
finite state space V with transition matriz P = {P(i,7)} and stationary distribution . Construct a Markov
chain {&,} on the augmented state space € = {(i,7) :i,j €V s.t. P(i,j) > 0} CV x V with transition matriz
P’ = {P'(e;j,eix)} in which e;j £ (s =1,s' = j) and the transition probabilities P'(ej,er) satisfy the following
two conditions: for all e;j,e;;, € E,

Pl(eijv ejk) = P(]7 k) (65)
Then, the Markov chain {&,}n>0 is irreducible with a unique stationary distribution = in which
(i) = miP(i,j) = 7 P(j,i), e €E. (66)

By Theorem A.4.1, {&,} is an ergodic Markov chain and thus satisfies Assumption (A4). Condition (C4) matches
Assumption (A5). Therefore, we can apply Lemma 2.1 (almost sure convergence) and Theorem 2.2 (CLT result)
to GTD2 and TDC algorithms. The results are given as follows.

lim x, =x" as. and limy,=0 as.
n— o0 n— oo

1 d 1 d
—(x, —x")—> N(0,Vy), —y, — N(0,Vy),
\/5—”( ) ( ) N (0,Vy)

where Vy, Vy, are identical for both algorithms, and

o0 o0
7 T T
Vx:/ K ULt ) Vy:/ e tC U e 0
0 0

where
Lo
K, = -ATC'A, + “72*1} I, (67)
1 S S T
Uy = slggo EE <7; On (X*)¢x* (Sn)> (7; On (X*)¢x* (Sn)> , (68)

U, = ATC'U,C'A.. (69)
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A.5 Simulation Setups and Additional Numerical Results

In this appendix, we provide a more detailed illustration of the numerical results. The simulations are conducted
on a PC with AMD Ryzen R9 5950X, 128GB RAM and RTX 3080.

A.5.1 Distributed Learning in Section 3.1
A.5.1.1 Simulation Setup for L2-regularized Binary Classification

In Section 3.1, we perform the L2-regularized binary classification problem using the momentum SGD algorithm
on the wikiVote graph (Leskovec and Krevl, 2014). Specifically, the problem has the following objective function:

N N
. 1 N A 1 xT's; T K 2
xers {f(X) =% ;F@c,z) £ 5 ;log (1+e") == (x"s) + Sl } : (70)
where {(s;, z;)} Y, is the a9a dataset (with 123 features, i.e., s; € R'?3) from LIBSVM (Chang and Lin, 2011),
and penalty parameter £ = 1. The momentum SGD algorithm (Gadat et al., 2018; Li et al., 2022) employed in
this simulation is given below.

Algorithm 1: Momentum SGD

Initial parameters xg,yo = 0, data point &y, step sizes 3, = (n +1)~! and ~,, = (n + 1)7%%%L number of
iterations T
forn=0to T do
Sample new data point: £, 1 < Sampling Strategy
Compute gradient: g, + VF(x,,&.+1)
Update momentum: y, 11 < ¥n — Ynt1(8n + ¥n)
Update parameter: X,11 < Xn + Bnt1¥n
end

For i.i.d. sampling and single shuffling in the simulation, where the whole dataset is available in each iteration,
we have the following schemes: at n-th iteration,

e i.i.d. sampling: &, is sampled from [N] uniformly at random;

e single shuffling: At the beginning of the simulation, we shuffle the sequence {1,2,--- , N} by the permu-
tation operator o : [N] — [N] and then sample the data point according to &,+1 = o(n + 1 mod N).

When dataset is distributed over the wikiVote graph, i.e., each node on the graph is assigned a data point, we
use simple random walk (SRW) and its sampling-efficient counterpart non-backtracking random walk (NBRW)
(Alon et al., 2007; Lee et al., 2012; Ben-Hamou et al., 2018) in the simulation. Specifically, denote by &, the
index of the node in the n-th iteration and N (&,) the list of neighboring nodes of node &,,, we have

e SRW: &, is sampled from N (,) uniformly at random;
e NBRW: ¢, 1 is sampled from N (&,)\{£,—1} uniformly at random. If N (£,)\{én—1} = 0, then &, 11 = &,-1.

Note that SRW and NBRW both have a stationary distribution proportional to degree distribution, while the
objective function indicates that each node is treated equally, which results in the bias from SRW and NBRW.
To overcome this problem, we employ importance reweighting, e.g., by modifying the momentum update step in
Algorithm 1 in the following form:

1
Yn+1 — Yn — Vn+1 gn 5 —Y¥Yn >
de.

En

where d; is defined as the degree of node 4.
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A.5.1.2 Additional Simulation on Distributed Minimax Problem

In this part, we consider the following minimax problem

, 1 & N N _ . K
min max {f(& Y) =% ; Flxy,i) £ ; - [2||y2 —b(i)Ty + yTA(Z)X] + 2IIXIIZ} , (1)
and follow the same setup as in Tarzanagh et al. (2022) to generate the dataset. In particular, we let x = 10,
d = 10, b(i) = b'(i) — %Zfil b’(i) and A(i) = ;I, where b’(i) ~ N(0,I) and ¢; are drawn from (0,0.1)
uniformly at random. We test the distributed minimax problem over the WikiVote graph (Leskovec and Krevl,
2014), where each node is assigned a data point, thus 889 data points in total. To solve the minimax problem
(71), we leverage the stochastic gradient descent ascent (SGDA) algorithm as follows, which is regarded as a
special case of TTSA (Lin et al., 2020).

Algorithm 2: SGDA

Initial parameters xg,yo = 0, data point &, step sizes 3, = (n +1)~! and ~,, = (n + 1)~%8, number of
iterations T
forn=0to T do
Sample new data point: £, 1 < Sampling Strategy
Compute gradient w.r.t x: g, + Vi F(Xn,Yn,Ent1)
Compute gradient w.r.t y: hy, < VyF(Xn, ¥n,&nt1)
Update inner parameter: y,+1 < yn + Yn+1hn
Update outer parameter: X,4+1 < X, — Bn+18n
end

In this simulation, we compare two pairs of sampling strategies for the performance ordering, i.e., SRW versus
NBRW, i.i.d. sampling versus single shuffling, which have been introduced in Appendix A.5.1.1. Especially, for
SRW and NBRW, we reweight the gradient in the update of both inner and outer parameters, i.e.,

1
Yn+1 < Yn + ’Yn—&-lhn : ra
Ent1
1
Xn+1 — Xy — Bn—&-lgn T
d§n+1

In both Figure 4(a) and Figure 5(a), we observe that NBRW has a smaller MSE than SRW across all time n
in iterates x, and iterates y,, with a similar trend for single shuffling over i.i.d. sampling. Figure 4(b) and
Figure 5(b) demonstrate that for both iterates x,, and iterates y,, the rescaled MSEs of NBRW, SRW and
i.7.d. sampling approach some constants, while the curve for single shuffling still decreases in linear rate because
eventually the limiting covariance matrix therein will be zero. This simulation result, along with the one in
Section 3.1, demonstrates the effectiveness of Proposition 3.2 in Section 3.1, even under the finite-time regime.

A.5.2 Random Walk Task for GTD2 and TDC algorithms in Section 3.2
A.5.2.1 Simulation Setups and Computation of Vy

For the 5-state random walk task, the problem setting is given in Figure 6. Using the value iteration algorithm,
we obtain the true value function W(s) = 0 for s = {1,2,3,4,5}. In the simulation in Section 3.2, we consider
the discount factor a = 0.9, and the nonlinear function approximation W, (s) = a(s)(e®1% — 1), where a =
[-2,—6,—3,—4, 5], and the optimal parameter z* = 0. Then, ¢,(s) = 0.1 -a(s)e®* and V,¢.(s) = 0.01 -
a(s)e’1®. In both GTD2 and TDC algorithms, we set the step sizes 3, = (n +1)7%6 ~,, = (n + 1)70-50L,

Now, we leverage the expression in Appendix A.4.2 to calculate the theoretical value of V,” which is used for

“In this task, all matrices, e.g., Vi, Ky, Cy, A, Uy, Uy, degenerate to scalars.
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Figure 4: Comparison of the performance ordering in SGDA in terms of iterates x,,.
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Figure 5: Comparison of the performance ordering in SGDA in terms of iterates y,,.

Figure 3 in Section 3.2. In particular, y; = 0.2 for ¢ € {1,2,---,5}, and

5

Note that V4 now becomes V4 = 2K;1 Uy = %C;lUy = 2—95Uy. Then, we run the simulation to estimate Uy,
of the form in (67), which gives Uy, ~ 0.0174 with 100 independent trials. Thus, we have Vy ~ 0.0484.

-0.01 - a(i)* = 0.18.

Cﬂlr—t

A.5.2.2 Additional Choice of Nonlinear Function Approximation

In this part, we conduct the 5-state random walk task for GTD2 and TDC algorithms with step sizes 8, =
(n4+1)7%6 5, = (n +1)7%%%1 and another choice of the nonlinear function approximation, i.e., W,(s) =
0.1 (z + sin(z)), which becomes the ground truth W(s) = 0 by setting #* = 0. Then, we have

5
(ba: Sn :Z

such that Vx = %C*Uy = %Uy. Similarly, we run the simulation to compute Uy, ~ 0.1384 so that V4 ~ 0.0961.

£0.04 - a(i)? = 0.72,

01|,_.

Figure 7 shows the long-term performance of both the GTD2 and TDC algorithms, as well as the deviation from
the optimal value z* at time n = 10%. This is in agreement with our Proposition 3.3 in Section 3.2. Specifically,
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PG,i+1)=057(Gi+1) =05, € {1,2,3,4}

P(1,1) = 0.5 ' ’ P(5,5) = 0.5
EaNofofofofcX =

P(i+1,i)=057r@{+1,i)=-05,i €{1,2,3,4}

Figure 6: 5-state random walk problem.

we show in 7(a) that for this choice of nonlinear function approximation, the GTD2 and TDC algorithms achieve
almost the same performance starting from n = 10%. This is because W,(s) = 0.1 - (z + sin(x)) acts more
like a linear function in x than the selection W, (s) = a(s)(e’1* — 1) in Section 3.2, which means the effect of
fn(x,y) introduced by the nonlinear approximation is reduced in the iterates x,, for GTD2 and TDC algorithms,
thus diminishing the performance gap between these two algorithms. Figure 7(b) represents the histogram of

- 1 2xn for both algorithms from 100 independent experiments. Their experimental density curves approach
the theoretical Gaussian curve with zero mean and variance V, = 0.0961.

_Bmm Histogram for GTD2 Histogram for TDC _
1.61—— GTD2Fit —— TDC Fit
=== Theory
1.4

1.21
1.0
0.8+
0.6
0.4+

: : . . . | ! 0.2
102 10 10* 10° 105 107 108 0.0
Number of steps (n) " -0.8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 0.8

(a) MSE (b) Histograms of 8, "'z, at n = 108

=
o
L

MSE E|x, — x|
=
9

=
o
o

Figure 7: Comparison of nonlinear GTD2 and TDC algorithms in the 5-state random walk task with the nonlinear
function approximation W, (s) = 0.1 (z + sin(x)).

A.6 Useful Theoretical Results

Lemma A.6.1 (Abel Transformation). Suppose {fi} and {gi} are two sequences. Then,

n

Z fk(gk+l—gk) = fo9n+1 — frmGm — Z 9k (fr — fr—1)-
k=m

k=m+1

Lemma A.6.2 (Burkholder Inequality, Davis (1970), Hall et al. (2014) Theorem 2.10). Given a Martingale
difference sequence {M; n}7—q, for p > 1 and some positive constant Cp, we have

P/2

] <G,E <Z ||Mi,n||2> (72)
=1

Theorem A.6.3 (Martingale CLT, Delyon (2000) Theorem 30). If a Martingale difference array {X, ;} satisfies
the following condition: for some T > 0,

n

Z Mi,n

i=1

E

STEIXurPTIFioa] 20, sup Y E [ Xk P Fiot] <oor DB [Xuw XD Fia] BV, (73)
k=1 " k=1 k=1



CLT for TTSA with Markovian Noise: Theory and Applications

then .
3" X 5 N(O,V). (74)

i=1
Lemma A.6.4 (Duflo (1996) Proposition 3.1.2). For a Hurwitz matriz H, there exist some positive constants
C,b such that for any n,
e < Ce™. (75)

Lemma A.6.5 (Fort (2015) Lemma 5.8). For a Hurwitz matriz A, denote by —r, r > 0, the largest real part
of its eigenvalues. Let a positive sequence {y,} such that lim, v, = 0. Then for any 0 < v’ < r, there exists a
positive constant C such that for any k < n,

[1a+7A)| < e =, (76)
j=k

Lemma A.6.6 (Fort (2015) Lemma 5.9, Mokkadem and Pelletier (2006) Lemma 10). Let {v,} be a positive
sequence such that lim, v, = 0 and ), v, = 00. Let {€,,n > 0} be a nonnegative sequence. Then, for b > 0,
p =0,
n n ].
lim sup ~,,? fypHe_bZi:Hl'y-%k < ——limsupe, 77

for some constant C(b,p) > 0.

When p = 0 and define a positive sequence {w,} satisfying wy,_1/w, =1+ o(y,), we have

Z,ykeszy’:kﬂ "/jek — {O(wn)’ Zf €n = O(wn)’ (78)

— o(wy,), if €n = o(wy,).
Lemma A.6.7 (Fort (2015) Lemma 5.10). For any matrices A, B, C,
[ABAT — CBCT|| < [|A=C|lIBII(All + [C1))- (79)

Lemma A.6.8. Suppose K is a Hurwitz matrix. Then, for any positive semi-definite matriz U, there exists a
unique positive semi-definite matriz V such that KV + VK” + U = 0 (Lyapunov equation), where the closed
form of V is given by

V= / KUK g, (80)
0

Lemma A.6.8 come from Theorem 3.16 Chellaboina and Haddad (2008). Nevertheless, they necessitate a positive
definite matrix U so that the solution V is also positive definite. Throughout this paper, we do not require the
solution V to be positive definite so that the matrix U can be relaxed to be positive semi-definite. This relaxation
does not change any steps as in the proof of Theorem 3.16 Chellaboina and Haddad (2008), and is thus omitted
here.
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