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Abstract

We consider random walks on discrete state spaces,
such as general undirected graphs, where the ran-
dom walkers are designed to approximate a tar-
get quantity over the network topology via sam-
pling and neighborhood exploration in the form
of Markov chain Monte Carlo (MCMC) proce-
dures. Given any Markov chain corresponding to
a target probability distribution, we design a self-
repellent random walk (SRRW) which is less likely
to transition to nodes that were highly visited in the
past, and more likely to transition to seldom vis-
ited nodes. For a class of SRRWs parameterized by
a positive real o, we prove that the empirical dis-
tribution of the process converges almost surely to
the target (stationary) distribution of the underlying
Markov chain kernel. We then provide a central
limit theorem and derive the exact form of the aris-
ing asymptotic co-variance matrix, which allows us
to show that the SRRW with stronger repellence
(larger o)) always achieves a smaller asymptotic
covariance, in the sense of Loewner ordering of
co-variance matrices. Especially for SRRW-driven
MCMC algorithms, we show that the decrease in
the asymptotic sampling variance is of the order
O(1/«), eventually going down to zero. After gen-
eralizing these results for a class of weighted empir-
ical measures, we use them as a stepping stone to
show that a similar performance ordering can also
be obtained for distributed stochastic optimization
tasks using foken algorithms. More explicitly, by
replacing a Markovian token by a SRRW version
with the same target distribution, we show that the
asymptotic co-variance of the optimization iterates
decreases at rate O(1/a?) - the performance benefit
of using SRRW thereby amplified in the stochastic
optimization context. Empirical results support our
theoretical findings.

“This is an abridged version of [Doshi et al., 2023], recipient of
the Outstanding Paper Award at ICML 2023, along with its follow-
up research [Hu et al., 2024] that was presented orally at ICLR 2024.

1 Introduction

Random walk-based techniques are a staple in statistics and
learning theory. Markov chains such as the Metropolis Hast-
ings random walk, designed to achieve any given target prob-
ability distribution as its stationary measure, are widely used
as Markov chain Monte Carlo (MCMC) samplers and in dis-
tributed optimization via stochastic gradient descent [Sun et
al., 2018; Hu et al., 2022]. The local nature of the informa-
tion required to compute state transition probabilities means
that the algorithms scale well and are robustly implementable
over state spaces such as large graphs/networks with general
topologies. However, classic Markov chains can often be
victims of limitations set by the underlying topology of the
state space (communication matrix or adjacency matrix of the
underlying network structure) leading to correlated samples
which can negatively affect the estimator performance. It has
also been well established that the time-reversibility require-
ment for the classical MCMC samplers is one of the causes
for their slow convergence (see Section 1 [Andrieu and Liv-
ingstone, 2021]). One way in which this problem has been ap-
proached in the literature is via construction of non-reversible
versions of the base Markov chain [Diaconis et al., 2000;
Turitsyn et al., 2011; Chen and Hwang, 2013; Ma et al., 2016;
Thin et al., 2020], which is often done by inducing some form
of non-backtracking behaviour, that is, avoiding states most
recently visited by the random walker [Alon er al., 2007].
This involves the random walker interacting with some of its
own past history, and has been shown to possess better ef-
ficiency than the original base Markov chain in the sense of
the MCMC estimator achieving a smaller asymptotic variance
[Neal, 2004; Lee er al., 2012]. Since these non-backtracking
based methods only utilize the most recent history of the ran-
dom walker and are still provably more efficient, it is natural
to consider the design of protocols where the random walker
interacts with its entire past history to speed up its diffusion
and increase its sampling efficiency, especially for sampling
over discrete state spaces. This is the approach taken in our
paper.

Let G(N, &) be an undirected, connected graph where
N £ {1,.-- N} denotes the set of nodes and £ denotes
the set of edges, where we say (i,j) € £ if there is an edge
between nodes i,j € N. We use A = [a;;]; jen to rep-
resent the adjacency matrix of the graph, where a;; > 0 if
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(i,7) € &, and zero otherwise; N'(i) = {j € N'| (4,7) € £}
refers to the set of neighbors of node i; deg(i) = 3 JeN @ij
will refer to the degree of each node ¢ € A. Denote by
the N-dimensional probability simplex over A/, with Int(3)
denoting its interior, and let P £ [P;;]; jen be the transi-
tion probability matrix of an ergodic, time-reversible Markov
chain over V, with its stationary distribution gt 2 [11;];enr.
Without loss of generality, we assume P;; > 0 if and only
if a;; > 0. In this setup, we design Self-Repellent Random
Walks (SRRWs) on general graphs' indexed by a tunable pa-
rameter o > 0, all of which can sample from p € ¥, and
then study their sampling ‘efficiency’ as a function of « (with
o = 0 being equivalent to the baseline Markov chain with
transition kernel P).

The SRRW transition kernel: Consider the Markov chain
kernel (transition matrix) K[x] £ [K;;[x]]; jen» whose tran-
sition probabilities are mappings K;; : ¥ — [0, 1], given by

Kyl & o otlm)
> ken Pikruy (2k)

for any probability vector x £ [z;];cn € 3. Here, {r,,, }ienr
is a family of positive functions r,, : [0,1] — R, param-
eterized by p,, with 7, (z;) decreasing in z; € [0,1] and
7, (wi) = C, for all i € N2 Transition probability ker-
nels defined in this fashion, taking probability distributions
as argument, are called ‘nonlinear’ Markov kernels [Andrieu
et al., 2007; Andrieu et al., 2011], as opposed to classical
Markov chains with kernels P that are often interpreted as
linear operators — the transition probabilities at each step be-
ing independent of x (i.e., the case where 7, (-) is a constant
function).

Stochastic processes utilizing nonlinear Markov ker-
nels are called nonlinear Markov chains, and can be
simulated/generated using self-interacting Markov chains
(SIMCs) (see [Del Moral and Miclo, 2004; Del Moral and
Miclo, 2006; Moral and Doucet, 2010]. Let {X,,},,>0 be a
random walker over N\, and let x,, be its occupational mea-
sure or historical empirical distribution up to time n > 0,
written as

ey

s 1
n — o s 2
=P ®

where dx, is the delta measure whose X} ’th entry is one
and the rest are zero, thus recording the position of the ran-
dom walker at time & > 0. The process { X, },,>0 becomes
a SIMC if at each time step n > 0, the random walker
makes transitions according to some nonlinear kernel K[x,,],
not necessarily as defined in (1). We say that the process
{Xn}n>0 is a SRRW if it is a SIMC with K[x] as in (1). We

"We consider graphs because they represent a generalization of
(discrete) finite state spaces by imposing a communication (adja-
cency) matrix. The existence of an edge between two nodes (states)
represents a non-zero probability of state transitions between the two
nodes.

2As we shall see later, ; will be directly proportional to the
visit count to any node € N, since x € X will be the empirical
distribution of the self-repellent random walk.
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Figure 1: Diagram of SRRW. The green bars indicate the number of
previous visits to each node, and the red arrow indicates tendency of
moving towards neighbors visited less often in the past.

use the term self-repellent since at each time step, the transi-
tion probability to a node j € N is proportional to ., ([x,];)
where [x,]; = 137 | 1(x,_;}, and is thus a decreasing
function of the visit count to j € A. In other words, the
walker is less likely to move to a node that has been visited
more often so far (thus self-repellent), as shown in Figure 1.
When P;; o a;; in (1) for each i € N, the SRRW is a
self-repellent version of the well-known simple random walk
(SRW) procedure, with the target distribution being propor-
tional to the degree of the nodes, that is, u; o< deg(¢) for all
i € N. Like most general MCMC procedures, the SRRW
kernel can also be defined for any given sampling distribu-
tion o € Int(X), for instance, by setting P to be the transi-
tion matrix of a Metropolis Hastings Random Walk (MHRW)
with stationary distribution p. For example if 1; = 1/N, that
is = %1 — the uniform distribution over the set of nodes

. 1 1
N, then we can choose P;; = min { Toa() m} for all

(i,j) € & with P; = 1 — 3, Pjj. The matrix P de-
fined in this manner is the MHRW kernel with the uniform
distribution as its stationary measure, and is among the most
commonly used kernels for unbiased graph sampling [Lee et
al.,2012; Li et al., 2015] and distributed optimization [Sun et
al., 2018]. The elegance in the Metropolis Hastings algorithm
and the key to its widespread adaptation lies in the fact that
at each time step, the entries of p need only to be known for
the neighbouring nodes of the random walkers (that is, only
local information required), and only up to a constant multi-
ple. This property ensures a robust, scalable implementation
of the MHRW, since global constants are often unknown for
large networks a priori.

Our SRRW construction begins with ,, (-) taking a poly-
nomial form for all 7 € A/, given by

—
T (i) = (xl) ; Vaz0, 3)
Hi
where the parameter o« > 0 can be perceived as the strength
of the self-repellence mechanism designed into the SRRW
transition kernel. Similar to the MHRW transition kernel,
only the local information regarding entries of p needs to be
known at any given time step, and up to only a constant mul-
tiple. For convenience, we formalize this property as scale-
invariance (S.1.): an SRRW kernel possesses S.I. if for all
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Figure 2: Visualization of token algorithms using SRRW versus traditional MC in distributed learning. The SRRW has a smaller tendency to
get trapped within sub-regions of the graph, leading to smaller asymptotic covariance.

,jEN
(i) Computing K;[x] only requires knowing py, for k €
N (i), and only up to a constant multiple for any i € N
Indeed, we show in [Doshi et al., 2023, Appendix D] that out
of all possible forms for the functions 7, (-), only the poly-

nomial form as in (3) possesses the S.I. property. Henceforth,
we restrict ourselves to the polynomial form of r,, (-).

K ;[x] for any constant C’ > 0.

2 Our Contributions

2.1 Almost Sure Convergence and CLT

We show that given any MCMC kernel P which samples
from a target distribution p, the corresponding SRRW is
asymptotically more efficient as a random walk-based sam-
pler. We do this by first showing that

as.
Xn 2
n—o0o

Va>0. )

We then provide second-order convergence results in the form
of a central limit theorem (CLT); that is, we show that there
exists an asymptotic co-variance matrix V(o) € RV XN pa-
rameterized by v > 0, such that

Vixn, = p) —=5 N(0,V(a)). 5)
We obtain these results by first viewing the SRRW as
a stochastic approximation (SA) algorithm with state-
dependent noise [Harold J. Kushner, 1997; Fort, 20151, al-
lowing us to form a connection between the stochastic pro-
cess and a deterministic system of ordinary differential equa-
tions (ODEs). We establish global convergence results for
this ODE system, which lay the foundations for proving the
almost sure convergence of the stochastic SRRW process.

2.2 Co-Variance Ordering in Parameter «

For any o > 0 we derive the exact form of V(«) in terms of
« and the spectrum (eigenvalues and eigenvectors) of P. This
allows us to show that kernels parameterized by larger « are
asymptotically more efficient samplers; that is, they achieve
smaller sampling variance. This is done by showing that the
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asymptotic covariance matrices follow a Loewner ordering:
V(Oq) <r V(OQ), Vag >ay > 0. (6)

In other words, as long as the numerical/computational stabil-
ity of the random walk implementation can be ensured, larger
values of « are always more favourable in terms of achiev-
ing a smaller (asymptotic) sampling variance. In [Doshi et
al., 2023, Corollary 4.7], we also derive an upper bound
on the ratio of its sampling variance to that of the baseline
Markov chain, and show that this upper bound goes down to
zero as o — oo with speed O(1/«). This is surprising be-
cause asymptotically for large enough «, the SRRW, which
is a stochastic process whose trajectories are constrained by
‘walking’ on the underlying communication matrix of the
network, achieves smaller sampling variance than an i.i.d.
sampler* whose variance is always a constant positive value.

2.3 Application to Distributed Stochastic
Optimization

We study a family of distributed stochastic optimization
algorithms, known as token algorithms, where gradients
are sampled by a token traversing a network of agents in
random-walk fashion [Sun et al., 2018; Hu et al., 2022;
Even, 2023]. Typically, these random-walks are chosen to
be Markov chains that asymptotically sample from the de-
sired target distribution g, and play a critical role in the con-
vergence of the optimization iterates. Our paper [Hu er al.,
2024], as illustrated in Figure 2, takes a novel approach by
replacing the standard linear Markovian token by SRRW - a
nonlinear Markov chain. The SRRW-driven token algorithm
is described as follows.

X7z+1 ~ KXn,~[Xn] (73)
Xn+1 = Xn + 7n+1(6X,L+1 - Xn); (7b)
0n+1 = en + BnJrlH(eru Xn+1); (7C)

*Matrices A, B follow the Loewner ordering A <, B if A #
B and B — A is positive semi-definite.

“This corresponds to a sampler that can visit any node i with
probability x; independent of its previous position at any given time.
Clearly, in the graph setting, this requires the sampler to ’jump’ to
any other node by ignoring the underlying network structure alto-
gether - something which random walkers on general graphs are not
permitted to do.

Draw:
Update:
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Figure 3: Simulations of SRRW: (a) shows convergence of the empirical measure x,, to a Uniform distribution target (Unif.), (b) is SA-
SRRW, where (7c) follows an SGD iteration, applied to La-regularized binary classification problem. Both (a) and (b) show the expected
performance ordering for various o values, while (c) shows MSE in (b) decreasing at O(1/a?) speed.

where {3, } and {~,} are step size sequences decreasing to
zero, and K[x] is the SRRW kernel (1) with r,,, as in (3).
Iterations (7a) and (7b) (i.e. without considering (7c)) cor-
respond to a generalized SRRW process, with now x,, be-
ing a weighted empirical measure. Setting v, = 1/(n + 1)
coincides with the unweighted case discussed earlier. The
H(6,,X,) terms in the update rule (7c) driving the opti-
mization iterates {6,,} embeds gradient information such that
solving Ex .., [H (0%, X)] = 01is equivalent to obtaining a lo-
cal minimizer for the distributed optimization problem. This
is because (7c) corresponds to the more general stochastic
approximation (SA) iteration, and numerous stochastic opti-
mization algorithms which can be expressed as token algo-
rithms, such as stochastic gradient descent (SGD) [Hu er al.,
2022] and stochastic heavy ball (SHB) [Gadat et al., 2018;
Li et al., 2022], can be expressed as a special case of SA.
Thus, since the update rule (7) is essentially a SA algorithm
with SRRW driven noise sequence, we call it SA-SRRW. The
detailed algorithmic setup and model assumptions on SA-
SRRW can be found in [Hu et al., 2024, Sections 1 and 2].

The update rule (7) is in fact an example of a two-timescale
stochastic approximation with state dependent (controlled)
Markov noise. For any a« > 0, we prove almost sure con-
vergence of the optimization iterates 6,,, as well as a CLT.
That is, we show that

dist.

60— 67, and (6, — 0°)/v/Bu 2255 Vo(a), (®)

n—oo
where Vg(a) is the asymprotic co-variance matrix for the
iterates {6, }.

Our key result involves the case when 3, = o(v,), for
which we say that 6,, is on a slower timescale compared to
X,,. In this case, in addition to proving a co-variance ordering
as in Section 2.2, i.e.,

Vg(al) <L Vg(ag),

we also prove that Vg(a) decreases to zero at a rate of
O(1/a?) [Hu et al., 2024, Proposition 3.4]. This is espe-
cially surprising, since we achieve an amplification in perfor-
mance gain when using the SRRW for distributed stochastic
optimization, as compared to the Monte Carlo sampling ap-
plication where the performance gain in «v is in O(1/a).

Yar >ay >0, ©)]
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3 Conclusion

Our work [Doshi et al., 2023] introduces the SRRW as a drop-
in replacement for any Markov chain with stationary distri-
bution p, and shows that it achieves better asymptotic per-
formance for Monte Carlo sampling tasks as the degree of
repellency « increases. Our follow-up work [Hu et al., 2024]
extends the scope from sampling to distributed stochastic op-
timization (and stochastic approximations in general), show-
ing that certain combinations of step-sizes also achieve ac-
celerated performance in cv. Numerically tests show that the
asymptotic performance guarantee is also realized for finite
time steps, as can be seen in Figure 3. Our work is an in-
stance where the asymptotic analysis approach allows the de-
sign of better algorithms despite the usage of unconventional
noise sequences such as nonlinear Markov chains like the
SRRW, for which traditional finite-time analytical approaches
fall short, thus advocating their wider adoption.
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