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1 Introduction

Compartmental disease models, which track the progression of individuals between
different disease stages and risk levels, remain at the kernel of epidemic the-
ory [1]. A simple example of a compartmental framework is the Susceptible—
Infected—Recovered (SIR) model proposed in [2]. This model has been extended
to include other states, such as the Susceptible-Infectious—Recovered—Deceased
(SIRD) [3] and the Susceptible—Infectious—Recovered—Vaccinated (SIRV) models
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[4]. Recently, generalizations of SIR models have been implemented to study the
spread of COVID-19 with the adherence and non-adherence of social behavior
protocols such as masking, social distancing, and the enforcement of closures and
lockdowns [5-9]. Earlier models described the spread of the disease in uncontrolled
systems and in the presence of different mitigation strategies such as social
distancing and lockdown restrictions.

Since the development and widespread distribution of vaccines, incorporation of
vaccination into such models has been an important development [10, 11]. However,
few models have accounted for differing disease transmission within vaccinated and
unvaccinated individuals. Here, we propose a new compartmental model of COVID-
19 transmission that takes into consideration some of these important dynamics
by including the vaccination status of both susceptible and infected humans. We
also include the possibility of losing immunity and becoming reinfected within
both vaccinated and unvaccinated populations. Thus, our new model incorporates
important disease dynamics that have not been covered by previous COVID-19
models. Additionally, the proposed model can easily be adjusted to other seasonal
outbreaks. With new variants of COVID-19 and other viruses occurring regularly,
along with fluctuations of vaccine efficacy among these variants, this new model
will help to understand past and current disease dynamics and make predictions
about future cases.

Another important novel feature of our compartmental model is the use of a time-
dependent transmission rate. Oftentimes, the transmission rate of a disease is the
most challenging parameter to estimate [12]. The emerging new variants of COVID-
19 make stable estimation of disease transmission even more complicated. To
simplify this, many previous COVID-19 models incorporated constant transmission
rates found in the literature. To better assess the efficiency of control and prevention
and to account for new COVID-19 strains, in our proposed model, we introduce a
time-dependent transmission rate for vaccinated and unvaccinated individuals. This
rate is reconstructed from noise-contaminated data on new incidence cases and daily
deaths by solving a parameter estimation inverse problem.

A commonly used method for estimating parameters of ordinary differential
equations (ODEs) from noisy data is nonlinear least squares (NLS), where model
predictions for an invading pathogen are fitted to reported incidence cases and daily
new deaths [13-16]. In the NLS, a numerical method, such as Runge—Kutta or
similar, is used to approximate the solution of a given ODE system using a trial
set of values for parameters and initial conditions. The fit value is then input into
an optimization algorithm that updates parameter estimates. As a result, the NLS
framework can be computationally expensive when noisy data is considered or a
highly nonlinear model is being used to describe a complex biological process. In
[17, 18], a two-stage approach for this method was proposed, which first fit a smooth
curve to given noisy data and then estimated the unknown parameters in the ODE
system. Ramsay et al. [19] expanded on this method by proposing to alternate the
two procedures and by imposing a smoothness penalty on curve fitting. To that end,
Ramsay et al. developed a novel profiling estimation procedure where the data fitting
and the fidelity to the ODE were combined into a penalized log-likelihood criterion,
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which provided the statistical inference for the ODE parameters. For other prior
work on alternating minimization, also known as (block) coordinate descent, one
may consult [20-25] and the references therein.

A more general nonlinear constrained minimization problem was studied in [26],
where parameter estimation was carried out in a predictor—corrector manner. In the
predictor—corrector algorithm of [26], one updates the epidemiological parameters
by a regularized second-order method while freezing the state variables, and then
the state variables are modified while the system (epidemiological) parameters
are fixed. These updates are iterated until convergence. Here, we propose a new
predictor—corrector algorithm that extends the earlier version in [26] to the case of
parameter-dependent nonlinear observation operators. The new algorithm success-
fully mitigates the associated computational costs and incorporates an extra layer
of stability in the optimization process. In what follows, the proposed version of
the predictor—corrector algorithm is used to get stable estimates of a time-dependent
transmission rate and effective reproduction number from our new compartmental
model, which is applied to the study of COVID-19 dynamics in a post-vaccination
stage.

The chapter is organized as follows. In Sect. 2, we introduce our Susceptible—
Vaccinated—Infectious—Recovered—Deceased (SVIRD) model. In Sect.3, we
describe the new computational algorithm for estimating disease parameters in the
proposed epidemic model. In Sects.4 and 5, the method is evaluated on synthetic
and real data sets, respectively. Possible directions of future work are outlined in
Sect. 6.

2 Mathematical Model: SVIRD

Prior studies have underscored the importance of stable parameter estimation related
to infectious disease transmission models based on ordinary or partial differential
equations [27-29]. Lack of stable parameter estimation, which is evident when
parameter estimates are associated with large uncertainties, may be attributed to
the model structure or to the lack of information in a given data set, which could be
linked to the number of observations and to the spatial granularity of the data [28].

Within epidemiology, stable estimation of the effective reproduction number,
R, (), and its underlying transmission rate, B(¢), is particularly important [30-32].
Unlike other system parameters, i.e., incubation and recovery rates, the effective
reproduction number and the transmission rate of the disease are directly influenced
by mitigation measures. Therefore, it is critical to develop both suitable epidemic
models and regularized computational methods to reliably quantify disease-specific
parameters, especially in the face of noise-contaminated data and substantial
uncertainty in approximate solutions.

In this chapter, to model the COVID-19 dynamics and estimate the effective
reproduction number, R, (¢), and its underlying transmission rate, 8(¢), we propose
the following system of ODEs:
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The system defined by Eqgs. (1)-(6) includes susceptible unvaccinated (), suscep-
tible vaccinated (V), infected vaccinated (7, ), infected unvaccinated (/;), recovered
(R), and deceased (D) compartments. With N denoting the population size at the
beginning time point of the study period, we use N — D(t) as the total population
size at time ¢. This is based on the assumption that the population increase (due to
birth or immigration) and population decrease (due to reasons other than COVID-
19) balance out, and the change in population size is just due to COVID-19 death.
The diagram of the SVIRD model in Egs. (1)—(6) is given in Fig. 1, which illustrates
the transition of individuals between various disease compartments. Susceptible
humans become vaccinated at a rate of p. Both vaccinated and unvaccinated
individuals can be infected. The disease transmission rate, B(¢), for susceptible

Sy
Y B® Vas |
S »| I w : R
'} S ' Yoo
38, e o
P /’ D\“--\\ Ys.d
Y a-oB®) [ Yee O
Y
v ———F ~__¥b

Fig. 1 Diagram of the SVIRD model used. Susceptible individuals get vaccinated at a rate p and
become infected at a time-dependent transmission rate 8(f). A constant parameter, 0 < o < 1, is
a measure of vaccine efficacy. The lower values correspond to less efficacy, and (1 — ) 8(¢) is the
rate of disease transmission for vaccinated individuals. Both infected unvaccinated and vaccinated
can recover at rates y;, and y, , and die at rates y; 4 and y, 4, respectively. Loss of immunity
is accounted for by considering movement back to the susceptible class from the vaccinated and
recovered classes at rates §, and §,
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individuals is assumed to be time-dependent. We assume that vaccinated individuals
become infected at a slower rate, which is taken into account by the incorporation of
a vaccine efficacy parameter, denoted by «; that is, vaccinated individuals become
infected at a rate of (1 — «@)B(¢), where 0 < @ < 1.

Motivated by the report that unvaccinated individuals are more likely to have
severe symptoms from COVID-19 infections leading to a higher risk of hospitaliza-
tion and death [33], we assume different death rates for vaccinated and unvaccinated
individuals, denoted by y, 4 and y; 4, respectively. The severity in symptoms also
leads to differing recovery rates for vaccinated and unvaccinated populations. The
recovery rates for vaccinated and unvaccinated individuals are denoted by y,,  and
¥s.r» Tespectively.

We further consider the case of possible reinfection due to the loss of immunity
by vaccinated individuals at a rate of §, and recovered individuals at a rate of §,.
We note from Eq. (1) that the rate of transmission depends only on the number of
contacts between the living susceptible and infected individuals (described by the
division by N — D(¢), the total living population at any instance in time).

The disease transmission rate, B(¢), is an important underlying factor for the
effective reproduction number, R, (#), which quantifies the number of secondary
cases per primary case in a completely susceptible population during the entire
course of the outbreak. Similar to the transmission rate, the effective reproduction
number is significantly impacted by environmental conditions and the behavior of
the population. A sustainable reduction of R, (¢) to a level less than 1 would indicate
that mitigation measures are successful and that the disease is contained, because
every infected person, on average, can only transmit the virus to less than one other
human.

Using the next-generation matrix [34, 35], the effective reproduction number for
compartmental model (Egs. (1)—(6)) is estimated as

B S(t) I-ap@) V@O

ﬁe(t) = .
(Vs,r + ys,d) N — D() (yv,r + Vv,d) N —D(1)

(7

From Eq. (7), we note that R, (¢) increases with increasing disease transmission
B(t), as well as increasing numbers of susceptible individuals (vaccinated and
unvaccinated). In addition, R, (#) decreases with increasing recovery rates. Next,
in Sect.3, we describe our predictor—corrector algorithm that will be used to
reconstruct the disease transmission rate, 8(t), which allows us to provide an
estimate for the effective reproduction number, R, (¢).

3 Methodology and Algorithm

Let C and 7 be incidence data on new COVID-19 confirmed cases and deaths,
respectively, and n be the number of data points in each set. Naturally, we assume
that both data sets are noise contaminated. According to our SVIRD model given
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by Eqgs. (1)—(6), the daily number of new COVID-19 cases is

S(1) Uy I, V() (U Ly
e = p > (_t);(t) D 41— wpn ™ Y)DJEI) W e

which we define as the rate of new infections into the system. On the other hand, by
Eq. (6), the daily number of new deaths is

T(@) == ys.als @) + yo.alu(1). )

Assume that in a particular region, the values a = t; and b = t, are the first and
the last days of the study period. We note that, fortunately, the number of deceased
individuals is considerably smaller than infectious ones. So, we multiply daily new
deaths, T, by a positive scaling parameter, A, to ensure that new deaths and new
cases have the same order of magnitude. Let the data, d, for new cases and deaths,
C and 7, be reported on days t1, t2, ..., t,. That is,

d = [C(11), ..., Cty), XT(t1), ..., AT ()" . (10)
Combining Egs. (8) and (9), we now introduce the observation operator as
B:=[C(n1), ..., Ctn), AT(t1), ..., AT(t)]" . (11

Then our goal is to recover the unknown time-dependent transmission rate, B(z),
from the nonlinear constrained minimization problem:

i 1S9V7]7[)D 12
ﬂ,S,‘r/I,]}SI,,,D fB s> 1y, D) (12)

subject to system in Egs. (1)—(6), where

f(B,S.V, I, 1I,,D): = |8 —d|>

= Y {@€w) - cun? + 22 @) - T} (13)

i=1

To solve Egs. (12) and (13) numerically, we discretize unobserved state variables, S,
V, I, and [I,, and the time-varying transmission rate, B(¢), using basis expansions.
The vector of expansion coefficients for the transmission rate, B(¢), is of primary
interest. The vector of expansion coefficients for the state variables is of less
practical importance, and it is primarily needed for the estimation of g(¢). For
this reason, in statistics literature, the expansion coefficients for state variables are
often referred to as nuisance parameters [19]. Upon discretization, we iteratively
update both sets of unknown expansion coefficients using alternating minimization
as described below.
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In order to obtain the discrete approximation of S(z), we consider a finite
subset spanned by shifted Legendre polynomials of degree O, 1, ..., m — 1, which
are orthogonal on the interval [a, b] with respect to L, inner product, defined
recursively as follows:

2t —a—D>

X =, PO(x) = 11 Pl(x) =X, r e [ayb]9
b—a

G+ DP(x) =Qj+DxPj(x) — jPi_1(x), j=1,2..,m—2.

This gives rise to the following finite-dimensional approximation of the transmission
rate:

m—1

Bill =) 0j1Pi). i=12 ..n. (14)
—o
Likewise, we express the state variables S, V, I, and I, as
-1 -1
Silul = ujri Pt Vilul =Y uryjp1 Piti),
j=0 j=0

-1 -1

Lilul =) uoryj1 Py, il =) s jn Pi(6), (15)
j=0 j=0

which generates discretized daily rates of incidence and death, @d,,-[é, u] and
’ﬂ‘d,,- [u], respectively, if one substitutes Ei [6] from Eq. (14) and Si[ul, Vilul, I_s,,- [u],
and I_U,,-[u] from Eq. (15) for B(#;), S(#;), V(;), Is(t;), and I,(¢;) in Egs. (1)—(6)
and Egs. (8) and (9). The derivatives of S, V, I, and I, get discretized by replacing
Pj(t;) with PJ’. (t;) in the identities above.

Next, we define vectors for the unknown parameters, 6 and u, from the discrete
approximation of the transmission rate, B(#;), in identity Eq. (14) and from the
discrete approximation of the state variables, S(#;), V(#;), I;(#;), and I, (), i =
1,2,...,n, in Eq. (15) as

0:=[01, ... O 1" and U 1= (U1, coos g U1 ooy UDL UDI Ly oy UL, UL ey U]
This enables us to introduce the observation operator, B:
_ _ _ _ T
B©w) i= [Caalh ul, o, Canl, ul, 2Taal0, ). o ATanl0 )] 16)

and the operator G to account for the constraints
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Silul(Is,i[ul+1y i [u])
N — D;[u]
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fori = 1,2, ...,n. Here Di [1] is the reported cumulative number of deaths on day
t; and

Rilul :== N — (Silul + Vilul + I i[ul + Iy,;[u] + D;[ul). (17)
We can now recast the constrained minimization problem as follows:
minimize ||B(6, u) —d||*> with respect to 6 and u

subjectto G(0,u) = 0. (18)

Note that the data-fitting operator, B, also depends on the input data, D, the
cumulative number of deceased individuals. However, the cumulative data, as
opposed to daily number of cases and deaths on the right-hand side, are smooth, and
the noise in cumulative data is consistent with discretization and modeling errors.
To reconstruct the transmission rate, S(¢f), we employ a predictor—corrector
algorithm, where one updates 6 while freezing u, and then u is modified while 6 is
kept unchanged. The process is repeated until a desired tolerance level is achieved.

More specifically, given ( Ok ), one transitions from 6 to 6x41 by applying one step
Uk

of the iteratively regularized Gauss—Newton (IRGN) procedure:

Okt1 = Ok — Gy Bk, u)Gly Bk, ug) + Bf O, ui) By O, ug) + Il
(G Ok, u) G Ok, ur)+BS* Ok, ur) (B Ok, ux)—d)+7 (6 — 0)}, (19)

where 7; is the regularization parameter needed to incorporate stability in the
P =, . . 6
optimization process and 6 is a prior value of 6. Then, given ( ket ), one computes
Ui

ui+1 using the classical Gauss—Newton scheme

w1 = ug — (G Oks1, up) Gl Bry 1, ug) + B™* Orir, ) B' Opgr, )] ™!

(G Ok1, uk)G Okp1, ui) + B Ops1, ur) (B(Ggg1, up) — d)}. (20)



Transmission Rate for SVIRD Model Using Predictor—Corrector Algorithm 221

A simpler version of this algorithm was introduced and analyzed in [26]. In [26],
the data-fitting operator, B, does not depend on the system parameter, 6, and is a
function of the state variable only, i.e., B = B(u). The IRGN scheme in Eq. (19)
originates from variational regularization in the form

1 1 T _
in {=1|G(®, 24 BO, up) —d||*+ =116 —0]]>}. 21
9%5@{2” @, ur)| +2|| @, ug) [I”+ 2|| II} (21)

The method in Eq. (20), on the other hand, is the classical Gauss—Newton algorithm
applied to the nonlinear minimization problem

1 1
min {5||G(ek+1,u>||2+ SLLICESND —dllz}- (22)

ueR#

The Gauss—Newton procedure in Eq. (20) does not need to be regularized, since
solving the ODE system of equations in Egs. (1)—(6), with respectto S, V, I, I, R,
and D, is a forward problem, which is not generally ill-posed. Thus, its discrete
approximation is also stable (as our numerical experiments below confirm).

The algorithm in Egs. (19) and (20) was coded in MATLAB, using the
optimization and parallel toolboxes. The code, along with figures, simulated data,
and parameter estimates, can be found in our GitHub repository: https://github.com/
donajialej/WIMB2022teamS5.git.

For all numerical simulations (with synthetic and real data), the unobserved state
variables, S, V, I, and I,,, are normalized; that is, in place of S, V, I, and I, we
reconstruct the expansion coefficients for S/N, V/N, I;/N, and I,/ N, where N is
the total population of the region.

To select the number of basis functions for 8(¢) and for the unobserved state
variables (m and n, respectively), we start with m = n = 5 and keep increasing
them until the reconstructed functions, §(t), S(t), V(¢), I;(t), and I,,(t), no longer
visibly change.

An important part of parameter estimation is the choice of A in Eqgs. (10)—(11),
which ensures that the two data sets—reported daily new cases and deaths—are
well-balanced. In all our experiments, the value of X is equal to 1000. For A = 1,
the misfit in daily new deaths is perceived as part of noise in incidence data, and the
process is less sensitive to daily new deaths as compared to new incidence cases.

4 Numerical Experiments with Synthetic Data

In this section, we test our proposed predictor—corrector algorithm (Egs. (19)—(20))
using two synthetic data sets for incidence cases and deaths. The first synthetic data
set was generated using the transmission rate 8(¢) shown in Fig. 2, which represents
a case when initial success in disease prevention is followed by some setbacks
causing the transmission rate to fluctuate. Specifically, this transmission rate was
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Fig. 2 Reconstruction of disease transmission S(¢) (along with coefficients) and the effective
reproduction number R, () for Scenario 1 (non-effective mitigation) from synthetic noisy data
on new daily cases and deaths in Fig. 3. Simulations are carried out with 10 basis functions for
the transmission rate S(r) and 40 basis functions for each unobserved state variable, S, V, I,
and I, i.e., 160 basis functions for all state variables combined. The regularization sequence is
7 = 10'9/(k+1)'3, and the iterations are stopped when k = 43. This stopping time is determined
by the goodness of fit to both data sets

chosen to model a “non-effective mitigation” scenario where R, () remains above
1 for multiple time periods showing that the disease persists and spreads quickly.
This is illustrated in the graph of R, (¢) in Fig. 2. The second synthetic data set was
generated using the transmission rate shown in Fig. 4 and represents an “effective
mitigation” scenario where the disease transmission rate is reduced during the study
period and where R, (¢) stays below 1 more consistently.

In what follows, we evaluate the performance of the proposed method in
reconstructing the unknown time-dependent transmission rate, 8(t), given synthetic
daily rates of incidence cases and new deaths over a certain period of time. Two
model transmission rates, described above, were selected (see Figs.2 and 4). Each
model transmission rate was used to solve the forward problem, i.e., the system
of ODEs (Egs. (1)—(6)), and to generate clean data on incidence cases, C(t), and
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Fig. 3 Synthetic study of Scenario 1: non-effective mitigation. Top to bottom: synthetic (Synth)
data (dots) and model fit (solid line) for daily new cases and daily new deaths; true synthetic values
(dash line) and model reconstructions (solid line) for S(¢) (blue), V(¢) (green), I;(¢) (red), and
I,,(t) (pink). There are 100 bootstrap model reconstructions, and the mean of them is a darker line
of the color corresponding to each compartment

daily new deaths, 7(¢), on a given time interval [#1, #,] according to expressions,
Egs. (8) and (9), respectively. Then, random Gaussian noise (with 0 mean and a
rather aggressive standard deviation) was added to epidemic data in order to mimic
noise-contaminated data in a real-life setting, as shown in the top panels of Figs. 3
and 5. Since real incidence cases and deaths are known to be positive, uniform noise
was added if the incidence became negative at any point.

Given “real” data for incidence cases and daily new deaths, we employed
the regularized algorithm (Egs. (19) and (20)) to simultaneously reconstruct the
unknown transmission rate, 8(¢), and the state variables, S, V, I;, and [I,, with
discrete approximation given by Egs. (14) and (15). In order to quantify uncertainty
in the extracted transmission rate, we refit the model (using parallel programming
via the parfor function in MATLAB) to M = 100 additional data sets for incidence
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cases and daily deaths assuming Poisson error structure. The resulting M best-fit
parameter sets are used to build the histogram for each Legendre coefficient, 6;,
j =1,2, ..., m, representing the frequency distribution of the reconstructed values.

To ensure an unbiased choice of the initial guess for B(r), we take
[Bo.0,...,0]7 to serve as initial approximation for [6;,6:,...,6,]7 at every
bootstrap iteration, where 0.1 < fgp < 1. To find initial approximations for
u, we solve the system of ODEs (Egs. (1)—(6)) with 8(r) = pBo one time
before the start of the iterative process and then evaluate Legendre expansion
coefficients for the computed S, V, Iy, and I, to form the initial vector u :=
(1 ooy UL, UL Ty ey UL, UDL T ooy UBL, UL 1 ey Ua]T

For the non-effective mitigation scenario (Scenario 1) with transmission rate 3(z)
shown in Fig. 2, the fitting procedure is initiated with o = 0.5 and is carried out
using m = 10 basis functions for the transmission rate, §(¢), and n = 40 basis
functions for each unobserved state variable, S, V, I, and [,, giving a total of 160
basis functions for all state variables combined.

With no regularization, the iterative process to estimate the transmission rate in
Scenario 1 (Fig. 2) turns out to be divergent. However, the process can be stabilized
with a broad range of initial values, 1o, as long as they are consistent with the rate of
decay of the regularization sequence, 7. In our experiment, we selected 7p = 10'°
and the regularization sequence, 1z = 1010 /(k + 1)15, the fastest rate of decrease
that gives rise to a convergent iterative process. Iterations of Egs. (19) and (20) are
stopped when k = 43. This stopping time is determined by the goodness of fit to
both data sets C and 7.

For the effective mitigation case (Scenario 2), where the transmission rate B(z)
is presented in Fig. 4, the parameter estimation process is initiated with fyp = 0.3.
As before, the reconstruction is done with m = 10, n = 40, and 19 = 1019, and
the regularization sequence is driven to zero at the rate 10'°/(k + 1)!3. But in this
scenario, the iterative process is terminated when £ = 19.

Figures 2 and 4 illustrate the connection between exact and reconstructed
effective reproduction numbers, R, (¢), for the two scenarios with different model
transmission rates. As stated in Sect. 2, R.(¢) > 1 describes time periods for which
the disease persists and spreads quickly, and R.(#) < 1 describes time periods
for which the disease is contained (i.e., the disease is spreading slowly, eventually
dying out). In the non-effective mitigation scenario described in Fig. 2, we see two
approximately month-long windows for which the disease persists, highlighting
that after the first push to decrease transmission (R, (#) falls to less than 1 in mid-
August), mitigation strategies are not successful at keeping the transmission rate
low enough, and a second wave begins in early October. For the effective mitigation
scenario, described in Fig. 4, we see that although the effective reproduction rate
R, (t) is greater than 1 for an extended initial period of time, once it drops below 1
(close to September) it stays below 1.

The top panels of Figs.3 and 5 show how the bundles of incidence curves for
daily new cases and deaths corresponding to the reconstructed transmission rates,
B(t), are compared to the noisy synthetic data used for data fitting.
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Fig. 4 Reconstruction of disease transmission S(¢) (along with coefficients) and the effective
reproduction number R, (¢) in Scenario 2 (effective mitigation) from synthetic data on new daily
cases and deaths in Fig. 5. Simulations are carried out with 10 basis functions for the transmission
rate B(t) and 40 basis functions for each unobserved state variable, S, V, I, and [,, i.e., 160 basis
functions for all state variables combined. The regularization sequence is 7y = 10'°/(k+1)!3, and
the iterations are stopped when k = 19. This stopping time is determined by the goodness of fit to
both data sets

Reconstructed S(¢), V(t), I;(t), and I,(t) from these two scenarios can be
viewed in the lower panels of Figs. 3 and 5, respectively. While there are inevitable
errors due to noise contamination in both data sets and due to accuracy loss
stemming from regularization, Figs. 2, 3, 4, and 5 illustrate numerical experiments
for synthetic data where the uncertainty is very low and the reconstruction of all
unknown parameters is very stable. Yet, as evident from Figs. 3 and 5, it is harder to
reconstruct the dynamics of the vaccinated population compared to the susceptible
one since vaccinated individuals are less likely to contribute to new incidence cases
(and especially deaths).

When comparing the time series for the reconstructed state variables between
our two scenarios in the lower panels of Figs. 3 and 5, the progression of the disease
follows the trend of the disease transmission rates. In particular, two infection peaks
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Fig. 5 Synthetic study of Scenario 2: effective mitigation. Top to bottom: synthetic (Synth) data
(dots) and model fit (solid line) for daily new cases and daily new deaths; true synthetic values
(dash line) and model reconstructions (solid line) for S(¢) (blue), V(¢) (green), I;(¢) (red), and
I,,(¢) (pink). There are 100 bootstrap model reconstructions, and the mean of them is a darker line
of the color corresponding to each compartment

are in the lower panel of Fig. 3, which follow the peaks in the transmission rate and
effective reproduction number curves in Fig. 2. A similar trend for a single infected
peak is in the lower panel of Fig. 5, which follows the peaks in the transmission rate
and effective reproduction number curves in Fig.4. We also note that in the non-
effective mitigation scenario (Fig.3) the initial population is assumed to be N =
39, 237, 836 and for the effective mitigation scenario (Fig.5) N = 10, 799, 566.
Our simulated data and the inversion results for both experiments with synthetic
data largely depend on the values of pre-estimated parameters, p, &, Vs.r» Vo.r» Vs.d»
Yv.d> O, and &, and the initial values for S, V, I, and I,. In both scenarios, we
simulated for 140 days with the parameters as those from the real epidemic listed in
Table 2. For initial values of S, V, I;, and I,, see the lower panels of Figs. 3 and 5.
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5 Simulations with Real Data for COVID-19 Pandemic

In this section, we apply our SVIRD model (Egs. (1)-(6)) and regularized com-
putational algorithm (Egs. (19) and (20)) to real data on incidence cases and new
daily deaths for the second wave of COVID-19 in the United States in 2021,
when the Delta variant was one of the more widely spread strains [36]. Most
states experienced this second wave during an approximately 4-month period
between July 9 and November 25, 2021, while vaccines were distributed to the
US general population starting in early 2021. So we can study the progression of
the pandemic under the effect of vaccination. For our experiments, we choose data
sets for two states, Georgia and California, as both have different population sizes
(Georgia is much smaller with approximately 11 million people versus the nearly
40 million living in California), had different proportions of vaccinated individuals
between July 9 and November 25, 2021, and had different COVID-19 protocols.
In particular, California had more vaccinated people at the onset and at the end of
this time window [36], and California had stricter masking protocols; masks were
required indoors in most places during this time period, whereas they were only
recommended in the state of Georgia. The model variables and initial conditions
corresponding to the population sizes in Georgia and California at the onset of the
second wave are given in Table 1. Initial conditions were found using Census and
CDC data [36-39]. Here, 1(0) = I;(0) + I,(0) is the number of cases within the
most recent week of the onset of the second wave, as most people with COVID-
19 are no longer contagious 5 days after they first have symptoms and have been
fever-free for at least 3 days.

Table 1 Initial conditions used in the SVIRD model for the Georgia and California data.
Population size was based on the January 7, 2021 data from https://www.census.gov/quickfacts/
GA and https://www.census.gov/quickfacts/CA

Variable Meaning

S(t) Number of susceptible unvaccinated individuals
V() Number of susceptible vaccinated individuals

I (1) Number of infectious unvaccinated individuals
L,(t) Number of infectious vaccinated individuals
R(1) Number of recovered individuals

D(t) Number of deceased individuals

Initial condition Georgia California
S(0) 10,799,566 — V(0) — 1(0) 39,237,836 — V(0) — 1(0)
V(0) 3,942,002 20,086,693
I;(0) 3,580 25,039
1,(0) 731(= 3580 % 5116/25039) 5,116
R(0) 0 0

D(0) 0 0


https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA

228 R. Luo et al.

Table 2 Parameter values recorded for California and Georgia during the second wave of the

pandemic, July 9-November 25, 2021 (approximately 4 months). The bars

«

in the last column

mean that these values were calculated using y; 4, as described in the text

Parameter Meaning Value Source
B(t) Transmission rate

)4 Vaccination rate 0.00086 day~! [37-39]

o Vaccine dose efficacy 0.8 [40, 43, 44]
Vs.r Recovery rate of unvaccinated 0.0995 day~! -

Yor Recovery rate for vaccinated 0.09996 day ™! —

Vs.d Case-fatality for unvaccinated 0.00027 day~! [45]

Yv,d Case-fatality for vaccinated 0.000021 day~! -

Sy Loss of immunity for vaccinated 0 day~! [46]

3 Loss of immunity for unvaccinated 0.011 day~!

System parameter values used for California and Georgia during the second wave

of the pandemic are presented in Table 2. The rationale for the selection of these
values is as follows:

Vaccination rate p: Based on the CDC data [39], during the selected time
window, the proportion of fully vaccinated people changed from 37.5% to 49.8%
in Georgia and from 51.1% to 63.1% in California, both of which resulted in
about 12% increase in vaccination. Dividing this by our 140-day window gives
the approximate daily vaccination rate p of 0.00086 day~!.

Vaccine effectiveness «: We choose o = 0.8 as the age-standardized crude
vaccine effectiveness for infection was reported at 80% during July—November
of 2021 [40].

Death rate y; 4: We calculate y; 4 = 0.005/18.5 = 0.00027 days’1 as the
infectious fatality ratio IFR was reported as 0.5% from [41], and the median
time from illness onset to death is 18.5 days (reported number for vaccinated vs
unvaccinated [42]).

Death rate y, 4: We take y,, 4 = (0.005/12.7)/18.5 = 0.000021 days~! because
during October—November, unvaccinated persons had 12.7 times the risks for
COVID-19—associated death compared with those that were vaccinated without
booster doses [33].

Recovery rate y; ,: Assuming that individuals infected with COVID-19 either
recover or die and using a recovery rate of 10 days, we conclude that the recovery
rate for unvaccinated individuals is y; , = (1 —0.005)/10 = 0.0995 days™!.
Recovery rate y, .: With a similar rationale as above, we estimate the recovery
rate for vaccinated individuals as y,, , = (1—-0.005/12.7)/10 = 0.09996 days™!.
Loss of immunity rate for recovered individuals §,: We set §; = 1/90 = 0.011
days™!.

Loss of immunity rate for vaccinated individuals §,: We use §, = 0 as the
Moderna and Pfizer-BioNTech vaccines offer immunity against COVID-19 for
at least 6 months, and most people in the USA were fully vaccinated by the
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end of April 2021 or later. Therefore, they still had immunity against COVID-19
during most of the study period.

In the case of real data, apart from the measurement errors, which were
incorporated in our earlier experiments, we also encounter modeling errors, which
make the process considerably more unstable. Thus, apart from the penalty term,
%"ll@ — 6]|%, the iterative scheme also needs to be regularized by discretization.
For this reason, fewer basis functions are used for the state variables. Specifically,
we take 6 basis functions for each unobserved state variable, S, V, I, and I,,, for
the Georgia data, and 12 basis functions for each unobserved state variable for the
California data. To further stabilize the process, we also introduce a smaller step
size, ¢ = 0.1, as we update S(¢), V(¢), I;(¢), and I, (¢). This calls for more iterations
needed to achieve the desirable data fit. The iterative process is terminated when
k = 130 for the Georgia data with regularization sequence 7z = 1/(k + 1)'° and
k = 58 for the California data with 7z = 103/(k 4+ 1)7. Overall, the time until
convergence remains the same as for the case of synthetic data since the increase
in the number of iterations is balanced by the reduction in the number of basis
functions.

Another important aspect is the reporting rate of new cases. While it is natural to
assume that the reporting rate for deaths due to COVID-19 is high, the reporting rate
for daily new COVID-19 cases is unlikely to be anywhere close to 100% considering
the large number of mild and asymptomatic cases (“silent spreaders” [47]). Figures 6

18 Report 10%

1.6F Report 20%

1l Report 30%

Report 40%

12 Report 50%

S b NG N — Report 60%

el — Report 70%

08" — Report 80%

0.6 — Report 90%
04k — Report 100%

Aug Sep Oct Nov
Time (days) 2021

Fig. 6 Reconstructed effective reproduction numbers, R, (), for various assumed reporting rates
in the state of Georgia. Simulations are carried out with 10 basis functions for the transmission
rate, B(t), and 6 basis functions for each unobserved state variable, S, V, I, and [, i.e., 24 basis
functions for all state variables combined. The regularization sequence is 7y = 1/(k + 1)!°, and
the iterations are stopped when k = 130. This stopping time is determined by the goodness of fit
to the Georgia data set
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Fig. 7 Reconstructed effective reproduction numbers, R, (¢), for various assumed reporting rates
in the state of California. Simulations are carried out with 10 basis functions for the transmission
rate, B8(t), and 12 basis functions for each unobserved state variable, S, V, I;, and I, i.e., 48 basis
functions for all state variables combined. The regularization sequence is 7y = 10°/(k + 1)7, and
the iterations are stopped when k = 58. This stopping time is determined by the goodness of fit to
the California data set

and 7 compare reconstructed time-dependent effective reproduction numbers, R, (¢),
for various assumed reporting rates of daily new cases in Georgia and California,
respectively (for both states, we fixed the reporting rate for daily new deaths due
to COVID-19 at 90%). We know that at the onset of the Delta variant wave of the
COVID-19 pandemic, the reproduction number must have been above 1 for some
time. Thus, Fig. 6 suggests that the reporting rate of new COVID-19 incidence cases
in the state of Georgia is 10-30%. For California, we see that the reporting rate is
10-60% as illustrated in Fig. 7. This is consistent with the estimation of COVID-
19 incidence reporting rate carried out in [48]. In [48], the reporting rate was cast
as one of the unknown parameters in the model and had to be reconstructed by the
optimization algorithm. For the initial pre-vaccination stage of COVID-19 pandemic
in the state of Georgia, the reporting rate for new incidence cases was estimated to
be 0.23 (95% confidence interval (CI): [0.22,0.24]). For the reasons listed previously
and as suggested by our numerical study, in simulations presented in Figs. 8, 9, 10,
and 11, we assume a 90% reporting rate for new daily deaths due to COVID-19 and
a 20% reporting rate for new incidence cases in the states of Georgia and California.

In Figs.8 and 10, we show the transmission rate, B(¢), and the effective
reproduction number, R, (¢), reconstructed from daily data on new cases and deaths
for the states of Georgia and California, respectively, for the period from July 9 to
November 25, 2021. The top panels of Figs.9 and 11 show how incidence curves
for daily new cases and deaths in the states of Georgia and California are compared
to real data used for parameter estimation in the optimization process (Egs. (19)
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Fig. 8 Reconstruction of disease transmission S(¢) (along with coefficients) and the effective
reproduction number R, (¢) for the state of Georgia

and (20)). Reconstructed S(¢), V(¢), I;(¢), and I, (¢) for the states of Georgia and
California can be viewed in the lower panel of the same figures. One may notice
that the California incidence data (top panel of Fig. 11) are more “spread out” than
the Georgia incidence data (top panel of Fig.9). This is because, for the Georgia
data, a rolling 7-day average was recorded each week since in Georgia new cases
were often not reported on the weekends when the Delta variant was dominant. So,
the approximation of unobserved state variables for the state of California is more
uncertain as compared to Georgia and to the sets of synthetic data.

The parameter estimation process is initiated with 8o = 0.5 for both Georgia and
California. The reconstruction is done with m = 10 in both cases (the number of
basis functions for the transmission rate). For Georgia, the number of basis functions
for each unobserved state variable is n = 6 (i.e., 24 basis functions for all state
variables, S, V, I, and I,,, combined). The iterative process started with 79 = 1.
The regularization sequence is driven to zero at the rate 1/(k + 1)'°. Like in the
case of Georgia, for the California data set the number of basis functions for S,
V, I, and I, is significantly reduced (from n = 40 to n = 12), as compared to
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Fig. 9 State of Georgia (GA) case study. Top to bottom: state data (dots) and model fit (solid line)
for daily new cases and daily new deaths; 100 bootstrap model reconstructions for S(¢) (blue),
V(t) (green), I;(t) (red), and I, (¢) (pink). The mean of the bootstraps is a darker line of the color
corresponding to each compartment

reconstructions with synthetic data in order to further stabilize predictor—corrector
algorithm (Egs. (19) and (20)) in the presence of modeling error.

By comparing Figs.8 and 10, one can see that the start of the Delta variant
wave in the state of California was more rapid as compared to Georgia, but it took
longer for Georgia to get the virus under control (as compared to California). In
California, the effective reproduction number, R, (¢), dropped under 1 around mid-
August, while in Georgia R, (¢) remained greater than 1 until early September 2021.
However, in California, the effective reproduction number almost bounced back to
1 in late October before going down again toward the end of the study period. In
Georgia, on the other hand, R, (¢) remained very low after the end of September.

In the top panels of Figs.9 and 11, we note the peak of around 9,000 new
incidence cases in the state of Georgia in early September and the peak in mid-
August of approximately 13,000 new incidence cases in the state of California.
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Fig. 10 Reconstruction of disease transmission S(¢) (along with coefficients) and the effective
reproduction number R, (¢) for the state of California

In both states the daily reported new deaths are under 150 people. The peaks in
deaths follow the peaks of incidence cases, in early October in Georgia and in
early September in California. Reconstructed curves, I(¢) and I, (¢), are consistent
with the reported percentage of vaccinated individuals in the states of Georgia and
California, respectively (Figs.9 and 11).

6 Conclusion and Future Work

In this chapter, we propose a new dynamic model of COVID-19 transmission that
takes into account the vaccination status of both susceptible and infected humans. It
also includes a possible loss of immunity and reinfection within both vaccinated and
unvaccinated populations. To estimate the unknown disease parameters, we develop
a novel computational algorithm, which employs a parameter cascade approach.
The proposed method is used to reconstruct time-dependent transition rates, B(z),
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Fig. 11 State of California (CA) case study. Top to bottom: state data (dots) and model fit (solid
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corresponding to each compartment

and effective reproduction numbers, R.(¢), from synthetic and real data for the
COVID-19 pandemic. Apart from COVID-19, the proposed compartmental model
and iteratively regularized optimization method can be applied to the study of other
infectious diseases.

In the course of our numerical study, the new optimization technique has
emerged as a reliable alternative to more traditional trust-region and gradient-
descent algorithms that are commonly used in parameter estimation. The efficiency
of these algorithms is limited when a complex biological model (which may be
a system of nonlinear ordinary or partial differential equations) constraining the
underlying minimization problem does not have a closed-form solution and has to
be solved numerically at every step of the iterative process. Our new method, on the
other hand, does not require either exact or approximate solution to the constraining
system.
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In reconstructing time-dependent transmission rates, B(¢), in order to reduce
the computational load and to improve the estimate efficiency, we pre-specified
the values of other system parameters by conducting a thorough review of the
literature. To assess the sensitivity of reconstructed transmission rates to slight
variations in pre-estimated parameters, one can build a Bayesian model to assign
priors to pre-specified parameters, and the posterior distributions of transmission
rates will incorporate the uncertainty in these parameters. This is an important
topic for future work. Note that for a simpler SIRD model corresponding to a
pre-vaccination stage of the COVID-19 pandemic, the sensitivity analysis has been
conducted in [48]. In [48], for every bootstrap iteration, the recovery rate, y, and
the fatality rate, v, have been sampled from normal distributions, N (0.20, 0.02)
and N (0.005, 0.001), respectively. The normal distribution, N (0.20, 0.02), for the
recovery rate, y, reflected an average infectious period between 3 and 20 days, while
the normal distribution N (0.005, 0.001) for the fatality rate, v, accounted for the
variation of this parameter within different risk groups. The reconstructed values of
B(t) with normally distributed y and v were almost identical to those reconstructed
with constant (mean) values of these pre-estimated parameters showing a very low
sensitivity of B(¢) to inevitable variations in COVID-19 infectious periods and
fatality rates.

With a considerable portion of mild and asymptomatic cases, the number of
reported daily new cases is much lower than the actual value. In this chapter, we
change the reporting rates of new incidence cases and investigate how different
reporting rates affect the reconstruction of effective reproduction numbers, R, (?), in
our numerical simulations. Thus, another important direction of future research will
be to modify our reconstruction process to include the estimation of the unknown
percentages of new incidence cases along with the unknown time-dependent
transmission rate, 8(¢), and other system parameters. The problem of the reporting
rate can also be addressed by extending the model to include the compartment of
asymptomatic spreaders.

We also plan to add line search routines and incorporate nonnegativity con-
straints for unobserved state variables, S, V, I, and I, in iteratively regularized
predictor—corrector algorithm (Egs. (19) and (20)). This will allow further accuracy
improvements and stability of the proposed optimization method.

Last but not least, the methodology must be extended to provide near real-
time forecasting of future incidence cases and deaths (among vaccinated and
unvaccinated individuals) from early data for an unfolding outbreak. This research
is crucial for control and prevention, in particular, for the assessment of various
vaccination strategies.
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