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1 Introduction 

Compartmental disease models, which track the progression of individuals between 
different disease stages and risk levels, remain at the kernel of epidemic the-
ory [1]. A simple example of a compartmental framework is the Susceptible– 
Infected–Recovered (SIR) model proposed in [2]. This model has been extended 
to include other states, such as the Susceptible–Infectious–Recovered–Deceased 
(SIRD) [3] and the Susceptible–Infectious–Recovered–Vaccinated (SIRV) models 
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[4]. Recently, generalizations of SIR models have been implemented to study the 
spread of COVID-19 with the adherence and non-adherence of social behavior 
protocols such as masking, social distancing, and the enforcement of closures and 
lockdowns [5–9]. Earlier models described the spread of the disease in uncontrolled 
systems and in the presence of different mitigation strategies such as social 
distancing and lockdown restrictions. 

Since the development and widespread distribution of vaccines, incorporation of 
vaccination into such models has been an important development [10, 11]. However, 
few models have accounted for differing disease transmission within vaccinated and 
unvaccinated individuals. Here, we propose a new compartmental model of COVID-
19 transmission that takes into consideration some of these important dynamics 
by including the vaccination status of both susceptible and infected humans. We 
also include the possibility of losing immunity and becoming reinfected within 
both vaccinated and unvaccinated populations. Thus, our new model incorporates 
important disease dynamics that have not been covered by previous COVID-19 
models. Additionally, the proposed model can easily be adjusted to other seasonal 
outbreaks. With new variants of COVID-19 and other viruses occurring regularly, 
along with fluctuations of vaccine efficacy among these variants, this new model 
will help to understand past and current disease dynamics and make predictions 
about future cases. 

Another important novel feature of our compartmental model is the use of a time-
dependent transmission rate. Oftentimes, the transmission rate of a disease is the 
most challenging parameter to estimate [12]. The emerging new variants of COVID-
19 make stable estimation of disease transmission even more complicated. To 
simplify this, many previous COVID-19 models incorporated constant transmission 
rates found in the literature. To better assess the efficiency of control and prevention 
and to account for new COVID-19 strains, in our proposed model, we introduce a 
time-dependent transmission rate for vaccinated and unvaccinated individuals. This 
rate is reconstructed from noise-contaminated data on new incidence cases and daily 
deaths by solving a parameter estimation inverse problem. 

A commonly used method for estimating parameters of ordinary differential 
equations (ODEs) from noisy data is nonlinear least squares (NLS), where model 
predictions for an invading pathogen are fitted to reported incidence cases and daily 
new deaths [13–16]. In the NLS, a numerical method, such as Runge–Kutta or 
similar, is used to approximate the solution of a given ODE system using a trial 
set of values for parameters and initial conditions. The fit value is then input into 
an optimization algorithm that updates parameter estimates. As a result, the NLS 
framework can be computationally expensive when noisy data is considered or a 
highly nonlinear model is being used to describe a complex biological process. In 
[17, 18], a two-stage approach for this method was proposed, which first fit a smooth 
curve to given noisy data and then estimated the unknown parameters in the ODE 
system. Ramsay et al. [19] expanded on this method by proposing to alternate the 
two procedures and by imposing a smoothness penalty on curve fitting. To that end, 
Ramsay et al. developed a novel profiling estimation procedure where the data fitting 
and the fidelity to the ODE were combined into a penalized log-likelihood criterion,
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which provided the statistical inference for the ODE parameters. For other prior 
work on alternating minimization, also known as (block) coordinate descent, one 
may consult [20–25] and the references therein. 

A more general nonlinear constrained minimization problem was studied in [26], 
where parameter estimation was carried out in a predictor–corrector manner. In the 
predictor–corrector algorithm of [26], one updates the epidemiological parameters 
by a regularized second-order method while freezing the state variables, and then 
the state variables are modified while the system (epidemiological) parameters 
are fixed. These updates are iterated until convergence. Here, we propose a new 
predictor–corrector algorithm that extends the earlier version in [26] to the case of 
parameter-dependent nonlinear observation operators. The new algorithm success-
fully mitigates the associated computational costs and incorporates an extra layer 
of stability in the optimization process. In what follows, the proposed version of 
the predictor–corrector algorithm is used to get stable estimates of a time-dependent 
transmission rate and effective reproduction number from our new compartmental 
model, which is applied to the study of COVID-19 dynamics in a post-vaccination 
stage. 

The chapter is organized as follows. In Sect. 2, we introduce our Susceptible– 
Vaccinated–Infectious–Recovered–Deceased (SVIRD) model. In Sect. 3, we  
describe the new computational algorithm for estimating disease parameters in the 
proposed epidemic model. In Sects. 4 and 5, the method is evaluated on synthetic 
and real data sets, respectively. Possible directions of future work are outlined in 
Sect. 6. 

2 Mathematical Model: SVIRD 

Prior studies have underscored the importance of stable parameter estimation related 
to infectious disease transmission models based on ordinary or partial differential 
equations [27–29]. Lack of stable parameter estimation, which is evident when 
parameter estimates are associated with large uncertainties, may be attributed to 
the model structure or to the lack of information in a given data set, which could be 
linked to the number of observations and to the spatial granularity of the data [28]. 

Within epidemiology, stable estimation of the effective reproduction number, 
.Re(t), and its underlying transmission rate, .β(t), is particularly important [30–32]. 
Unlike other system parameters, i.e., incubation and recovery rates, the effective 
reproduction number and the transmission rate of the disease are directly influenced 
by mitigation measures. Therefore, it is critical to develop both suitable epidemic 
models and regularized computational methods to reliably quantify disease-specific 
parameters, especially in the face of noise-contaminated data and substantial 
uncertainty in approximate solutions. 

In this chapter, to model the COVID-19 dynamics and estimate the effective 
reproduction number, .Re(t), and its underlying transmission rate, .β(t), we propose 
the following system of ODEs:
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.
dS

dt
= −β(t)

S(t)

N − D(t)
(Is(t) + Iv(t)) − pS(t) + δrR(t) + δvV (t). (1) 

dV 
dt 

= pS(t) − (1 − α)β(t) 
V (t)  

N − D(t) 
(Is(t) + Iv(t)) − δvV (t). (2) 

dIs 
dt 

= β(t) 
S(t) 

N − D(t) 
(Is(t) + Iv(t)) − (γs,r + γs,d)Is(t). (3) 

dIv 
dt 

= (1 − α)β(t) 
V (t)  

N − D(t) 
(Is(t) + Iv(t)) − (γv,r + γv,d)Iv(t). (4) 

dR 
dt 

= γs,r Is(t) + γv,rIv(t) − δrR(t). (5) 

dD 
dt 

= γs,dIs(t) + γv,dIv(t). (6) 

The system defined by Eqs. (1)–(6) includes susceptible unvaccinated (S), suscep-
tible vaccinated (V ), infected vaccinated (. Iv), infected unvaccinated (. Is), recovered 
(R), and deceased (D) compartments. With N denoting the population size at the 
beginning time point of the study period, we use .N − D(t) as the total population 
size at time t . This is based on the assumption that the population increase (due to 
birth or immigration) and population decrease (due to reasons other than COVID-
19) balance out, and the change in population size is just due to COVID-19 death. 
The diagram of the SVIRD model in Eqs. (1)–(6) is given in Fig. 1, which illustrates 
the transition of individuals between various disease compartments. Susceptible 
humans become vaccinated at a rate of p. Both vaccinated and unvaccinated 
individuals can be infected. The disease transmission rate, .β(t), for susceptible 

Fig. 1 Diagram of the SVIRD model used. Susceptible individuals get vaccinated at a rate p and 
become infected at a time-dependent transmission rate .β(t). A constant parameter, .0 < α < 1, is  
a measure of vaccine efficacy. The lower values correspond to less efficacy, and .(1 − α)β(t) is the 
rate of disease transmission for vaccinated individuals. Both infected unvaccinated and vaccinated 
can recover at rates .γs,r and .γv,r and die at rates .γs,d and .γv,d , respectively. Loss of immunity 
is accounted for by considering movement back to the susceptible class from the vaccinated and 
recovered classes at rates . δv and .δr
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individuals is assumed to be time-dependent. We assume that vaccinated individuals 
become infected at a slower rate, which is taken into account by the incorporation of 
a vaccine efficacy parameter, denoted by . α; that is, vaccinated individuals become 
infected at a rate of .(1 − α)β(t), where .0 < α < 1. 

Motivated by the report that unvaccinated individuals are more likely to have 
severe symptoms from COVID-19 infections leading to a higher risk of hospitaliza-
tion and death [33], we assume different death rates for vaccinated and unvaccinated 
individuals, denoted by .γv,d and .γs,d , respectively. The severity in symptoms also 
leads to differing recovery rates for vaccinated and unvaccinated populations. The 
recovery rates for vaccinated and unvaccinated individuals are denoted by .γv,r and 
. γs,r , respectively. 

We further consider the case of possible reinfection due to the loss of immunity 
by vaccinated individuals at a rate of . δv and recovered individuals at a rate of . δr . 
We note from Eq. (1) that the rate of transmission depends only on the number of 
contacts between the living susceptible and infected individuals (described by the 
division by .N − D(t), the total living population at any instance in time). 

The disease transmission rate, .β(t), is an important underlying factor for the 
effective reproduction number, .Re(t), which quantifies the number of secondary 
cases per primary case in a completely susceptible population during the entire 
course of the outbreak. Similar to the transmission rate, the effective reproduction 
number is significantly impacted by environmental conditions and the behavior of 
the population. A sustainable reduction of .Re(t) to a level less than 1 would indicate 
that mitigation measures are successful and that the disease is contained, because 
every infected person, on average, can only transmit the virus to less than one other 
human. 

Using the next-generation matrix [34, 35], the effective reproduction number for 
compartmental model (Eqs. (1)–(6)) is estimated as 

.Re(t) = β(t)

(γs,r + γs,d)

S(t)

N − D(t)
+ (1 − α)β(t)

(γv,r + γv,d)

V (t)

N − D(t)
. (7) 

From Eq. (7), we note that .Re(t) increases with increasing disease transmission 
.β(t), as well as increasing numbers of susceptible individuals (vaccinated and 
unvaccinated). In addition, .Re(t) decreases with increasing recovery rates. Next, 
in Sect. 3, we describe our predictor–corrector algorithm that will be used to 
reconstruct the disease transmission rate, .β(t), which allows us to provide an 
estimate for the effective reproduction number, .Re(t). 

3 Methodology and Algorithm 

Let . C and . T be incidence data on new COVID-19 confirmed cases and deaths, 
respectively, and n be the number of data points in each set. Naturally, we assume 
that both data sets are noise contaminated. According to our SVIRD model given
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by Eqs. (1)–(6), the daily number of new COVID-19 cases is 

.C(t) := β(t)
S(t)(Is(t) + Iv(t))

N − D(t)
+ (1 − α)β(t)

V (t)(Is(t) + Iv(t))

N − D(t)
, (8) 

which we define as the rate of new infections into the system. On the other hand, by 
Eq. (6), the daily number of new deaths is 

.T(t) := γs,dIs(t) + γv,dIv(t). (9) 

Assume that in a particular region, the values .a = t1 and .b = tn are the first and 
the last days of the study period. We note that, fortunately, the number of deceased 
individuals is considerably smaller than infectious ones. So, we multiply daily new 
deaths, . T, by a positive scaling parameter, . λ, to ensure that new deaths and new 
cases have the same order of magnitude. Let the data, d, for new cases and deaths, 
. C and . T, be reported on days .t1, t2, ..., tn. That is, 

.d := [C(t1), ...,C(tn), λT(t1), ..., λT(tn)]T . (10) 

Combining Eqs. (8) and (9), we now introduce the observation operator as 

.B := [C(t1), ...,C(tn), λT(t1), ..., λT(tn)]T . (11) 

Then our goal is to recover the unknown time-dependent transmission rate, .β(t), 
from the nonlinear constrained minimization problem: 

. min
β,S,V,Is ,Iv,D

f (β, S, V, Is, Iv,D) (12) 

subject to system in Eqs. (1)–(6), where 

. f (β, S, V, Is, Iv,D) : = ‖B− d‖2

=
n⎲

i=1

⎨
(C(ti) − C(ti))2 + λ2 (T(ti) − T(ti))

2
⎬

. (13) 

To solve Eqs. (12) and (13) numerically, we discretize unobserved state variables, S, 
V , . Is , and . Iv , and the time-varying transmission rate, .β(t), using basis expansions. 
The vector of expansion coefficients for the transmission rate, . β(t), is of primary  
interest. The vector of expansion coefficients for the state variables is of less 
practical importance, and it is primarily needed for the estimation of . β(t). For  
this reason, in statistics literature, the expansion coefficients for state variables are 
often referred to as nuisance parameters [19]. Upon discretization, we iteratively 
update both sets of unknown expansion coefficients using alternating minimization 
as described below.
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In order to obtain the discrete approximation of .β(t), we consider a finite 
subset spanned by shifted Legendre polynomials of degree .0, 1, ..., m − 1, which 
are orthogonal on the interval .[a, b] with respect to .L2 inner product, defined 
recursively as follows: 

. x = 2t − a − b

b − a
, P0(x) = 1, P1(x) = x, t ∈ [a, b],

. (j + 1)Pj+1(x) = (2j + 1)xPj (x) − jPj−1(x), j = 1, 2, ..., m − 2.

This gives rise to the following finite-dimensional approximation of the transmission 
rate: 

.β̄i[θ ] =
m−1⎲

j=0

θj+1Pj (ti), i = 1, 2, ..., n. (14) 

Likewise, we express the state variables .S, V, Is , and . Iv as 

. S̄i[u] =
l−1⎲

j=0

uj+1Pj (ti), V̄i[u] =
l−1⎲

j=0

ul+j+1Pj (ti),

.Īs,i[u] =
l−1⎲

j=0

u2l+j+1Pj (ti), Īv,i[u] =
l−1⎲

j=0

u3l+j+1Pj (ti), (15) 

which generates discretized daily rates of incidence and death, .C̄d,i[θ, u] and 
.T̄d,i[u], respectively, if one substitutes .β̄i[θ ] from Eq. (14) and .S̄i[u], V̄i[u], Īs,i[u], 
and .Īv,i[u] from Eq. (15) for .β(ti), .S(ti), V (ti), Is(ti), and .Iv(ti) in Eqs. (1)–(6) 
and Eqs. (8) and (9). The derivatives of .S, V, Is , and . Iv get discretized by replacing 
.Pj (ti) with .P '

j (ti) in the identities above. 
Next, we define vectors for the unknown parameters, . θ and u, from the discrete 

approximation of the transmission rate, .β(ti), in identity Eq. (14) and from the 
discrete approximation of the state variables, .S(ti), V (ti), Is(ti), and .Iv(ti), . i =
1, 2, ..., n, in Eq. (15) as 

. θ :=[θ1, ..., θm]T and u := [u1, ..., ul, ul+1, ..., u2l , u2l+1, ..., u3l , u3l+1, ..., u4l]T .

This enables us to introduce the observation operator, B: 

.B(θ, u) :=
⎾
C̄d,1[θ, u], ..., C̄d,n[θ, u], λT̄d,1[θ, u], ..., λT̄d,n[θ, u]

⏋T

(16) 

and the operator G to account for the constraints
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. Gi(θ, u) := S̄'
i[u]+β̄i[θ ] S̄i[u](Īs,i[u]+Īv,i[u])

N − D̄i[u] +pS̄i[u]−δr R̄i[u] − δvV̄i[u]

Gn+i (θ, u) := V̄ '
i [u] − pS̄i[u] + (1 − α)β̄i[θ ] V̄i[u](Īs,i[u] + Īv,i[u])

N − D̄i[u] + δvV̄i[u]

G2n+i (θ, u) := Ī '
s,i[u] − β̄i[θ ] S̄i[u](Īs,i[u] + Īv,i[u])

N − D̄i[u] + (γs,r + γs,d)Īs,i[u]

G3n+i (θ, u) := Ī '
v,i[u]−(1−α)β̄i[θ ] V̄i[u](Īs,i[u] + Īv,i[u])

N−D̄i[u] +(γv,r + γv,d)Īv,i[u]

for .i = 1, 2, ..., n. Here .D̄i[u] is the reported cumulative number of deaths on day 
. ti and 

.R̄i[u] := N − (S̄i[u] + V̄i[u] + Īs,i[u] + Īv,i[u] + D̄i[u]). (17) 

We can now recast the constrained minimization problem as follows: 

. minimize ‖B(θ, u) − d‖2 with respect to θ and u

.subject to G(θ, u) = 0. (18) 

Note that the data-fitting operator, B, also depends on the input data, . D̄, the  
cumulative number of deceased individuals. However, the cumulative data, as 
opposed to daily number of cases and deaths on the right-hand side, are smooth, and 
the noise in cumulative data is consistent with discretization and modeling errors. 

To reconstruct the transmission rate, .β(t), we employ a predictor–corrector 
algorithm, where one updates . θ while freezing u, and then u is modified while . θ is 
kept unchanged. The process is repeated until a desired tolerance level is achieved. 

More specifically, given .

⎧
θk

uk

⎫
, one transitions from . θk to .θk+1 by applying one step 

of the iteratively regularized Gauss–Newton (IRGN) procedure: 

. θk+1 = θk − [G'∗
θ (θk, uk)G

'
θ (θk, uk) + B '∗

θ (θk, uk)B
'
θ (θk, uk) + τkI ]−1

{G'∗
θ (θk, uk)G(θk, uk)+B '∗

θ (θk, uk)(B(θk, uk)−d)+τk(θk − θ̄ )}, (19) 

where . τk is the regularization parameter needed to incorporate stability in the 

optimization process and . θ̄ is a prior value of . θ . Then, given .

⎧
θk+1

uk

⎫
, one computes 

.uk+1 using the classical Gauss–Newton scheme 

. uk+1 = uk − [G'∗
u (θk+1, uk)G

'
u(θk+1, uk) + B '∗(θk+1, uk)B

'(θk+1, uk)]−1

{G'∗
u (θk+1, uk)G(θk+1, uk) + B '∗(θk+1, uk)(B(θk+1, uk) − d)}. (20)
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A simpler version of this algorithm was introduced and analyzed in [26]. In [26], 
the data-fitting operator, B, does not depend on the system parameter, . θ , and is a 
function of the state variable only, i.e., .B = B(u). The IRGN scheme in Eq. (19) 
originates from variational regularization in the form 

. min
θ∈Rm

⌠
1

2
||G(θ, uk)||2 + 1

2
||B(θ, uk) − d||2 + τk

2
||θ − θ̄ ||2

⎫
. (21) 

The method in Eq. (20), on the other hand, is the classical Gauss–Newton algorithm 
applied to the nonlinear minimization problem 

. min
u∈R4l

⌠
1

2
||G(θk+1, u)||2 + 1

2
||B(θk+1, u) − d||2

⎫
. (22) 

The Gauss–Newton procedure in Eq. (20) does not need to be regularized, since 
solving the ODE system of equations in Eqs. (1)–(6), with respect to .S, V, Is, Iv, R, 
and D, is a forward problem, which is not generally ill-posed. Thus, its discrete 
approximation is also stable (as our numerical experiments below confirm). 

The algorithm in Eqs. (19) and (20) was coded in MATLAB, using the 
optimization and parallel toolboxes. The code, along with figures, simulated data, 
and parameter estimates, can be found in our GitHub repository: https://github.com/ 
donajialej/WIMB2022team5.git. 

For all numerical simulations (with synthetic and real data), the unobserved state 
variables, .S, V, Is , and . Iv , are normalized; that is, in place of .S, V, Is , and . Iv , we  
reconstruct the expansion coefficients for .S/N, .V/N, .Is/N , and .Iv/N , where N is 
the total population of the region. 

To select the number of basis functions for .β(t) and for the unobserved state 
variables (m and n, respectively), we start with .m = n = 5 and keep increasing 
them until the reconstructed functions, .β(t), .S(t), .V (t), .Is(t), and .Iv(t), no longer 
visibly change. 

An important part of parameter estimation is the choice of . λ in Eqs. (10)–(11), 
which ensures that the two data sets—reported daily new cases and deaths—are 
well-balanced. In all our experiments, the value of . λ is equal to 1000. For .λ = 1, 
the misfit in daily new deaths is perceived as part of noise in incidence data, and the 
process is less sensitive to daily new deaths as compared to new incidence cases. 

4 Numerical Experiments with Synthetic Data 

In this section, we test our proposed predictor–corrector algorithm (Eqs. (19)–(20)) 
using two synthetic data sets for incidence cases and deaths. The first synthetic data 
set was generated using the transmission rate .β(t) shown in Fig. 2, which represents 
a case when initial success in disease prevention is followed by some setbacks 
causing the transmission rate to fluctuate. Specifically, this transmission rate was

https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
https://github.com/donajialej/WIMB2022team5.git
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Fig. 2 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number .Re(t) for Scenario 1 (non-effective mitigation) from synthetic noisy data 
on new daily cases and deaths in Fig. 3. Simulations are carried out with 10 basis functions for 
the transmission rate .β(t) and 40 basis functions for each unobserved state variable, .S, V, Is , 
and . Iv , i.e., 160 basis functions for all state variables combined. The regularization sequence is 
.τk = 1010/(k+1)15, and the iterations are stopped when .k = 43. This stopping time is determined 
by the goodness of fit to both data sets 

chosen to model a “non-effective mitigation” scenario where .Re(t) remains above 
1 for multiple time periods showing that the disease persists and spreads quickly. 
This is illustrated in the graph of .Re(t) in Fig. 2. The second synthetic data set was 
generated using the transmission rate shown in Fig. 4 and represents an “effective 
mitigation” scenario where the disease transmission rate is reduced during the study 
period and where .Re(t) stays below 1 more consistently. 

In what follows, we evaluate the performance of the proposed method in 
reconstructing the unknown time-dependent transmission rate, .β(t), given synthetic 
daily rates of incidence cases and new deaths over a certain period of time. Two 
model transmission rates, described above, were selected (see Figs. 2 and 4). Each 
model transmission rate was used to solve the forward problem, i.e., the system 
of ODEs (Eqs. (1)–(6)), and to generate clean data on incidence cases, .C(t), and
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Fig. 3 Synthetic study of Scenario 1: non-effective mitigation. Top to bottom: synthetic (Synth) 
data (dots) and model fit (solid line) for daily new cases and daily new deaths; true synthetic values 
(dash line) and model reconstructions (solid line) for .S(t) (blue), .V (t) (green), .Is(t) (red), and 
.Iv(t) (pink). There are 100 bootstrap model reconstructions, and the mean of them is a darker line 
of the color corresponding to each compartment 

daily new deaths, .T(t), on a given time interval .[t1, tn] according to expressions, 
Eqs. (8) and (9), respectively. Then, random Gaussian noise (with 0 mean and a 
rather aggressive standard deviation) was added to epidemic data in order to mimic 
noise-contaminated data in a real-life setting, as shown in the top panels of Figs. 3 
and 5. Since real incidence cases and deaths are known to be positive, uniform noise 
was added if the incidence became negative at any point. 

Given “real” data for incidence cases and daily new deaths, we employed 
the regularized algorithm (Eqs. (19) and (20)) to simultaneously reconstruct the 
unknown transmission rate, .β(t), and the state variables, .S, V, Is, and . Iv , with 
discrete approximation given by Eqs. (14) and (15). In order to quantify uncertainty 
in the extracted transmission rate, we refit the model (using parallel programming 
via the parfor function in MATLAB) to .M = 100 additional data sets for incidence
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cases and daily deaths assuming Poisson error structure. The resulting M best-fit 
parameter sets are used to build the histogram for each Legendre coefficient, . θj , 
.j = 1, 2, ..., m, representing the frequency distribution of the reconstructed values. 

To ensure an unbiased choice of the initial guess for . β(t), we take  
.[β0, 0, ..., 0]T to serve as initial approximation for .[θ1, θ2, ..., θm]T at every 
bootstrap iteration, where .0.1 < β0 < 1. To find initial approximations for 
u, we solve the system of ODEs (Eqs.  (1)–(6)) with .β(t) = β0 one time 
before the start of the iterative process and then evaluate Legendre expansion 
coefficients for the computed .S, V, Is, and . Iv to form the initial vector . u :=
[u1, ..., ul, ul+1, ..., u2l , u2l+1, ..., u3l , u3l+1, ..., u4l]T .

For the non-effective mitigation scenario (Scenario 1) with transmission rate . β(t)

shown in Fig. 2, the fitting procedure is initiated with .β0 = 0.5 and is carried out 
using .m = 10 basis functions for the transmission rate, .β(t), and .n = 40 basis 
functions for each unobserved state variable, . S, V , . Is , and . Iv , giving a total of 160 
basis functions for all state variables combined. 

With no regularization, the iterative process to estimate the transmission rate in 
Scenario 1 (Fig. 2) turns out to be divergent. However, the process can be stabilized 
with a broad range of initial values, . τ0, as long as they are consistent with the rate of 
decay of the regularization sequence, . τk . In our experiment, we selected . τ0 = 1010

and the regularization sequence, .τk = 1010/(k + 1)15, the fastest rate of decrease 
that gives rise to a convergent iterative process. Iterations of Eqs. (19) and (20) are 
stopped when .k = 43. This stopping time is determined by the goodness of fit to 
both data sets . C and . T. 

For the effective mitigation case (Scenario 2), where the transmission rate . β(t)

is presented in Fig. 4, the parameter estimation process is initiated with .β0 = 0.3. 
As before, the reconstruction is done with .m = 10, .n = 40, and .τ0 = 1010, and 
the regularization sequence is driven to zero at the rate .1010/(k + 1)15. But in this 
scenario, the iterative process is terminated when .k = 19. 

Figures 2 and 4 illustrate the connection between exact and reconstructed 
effective reproduction numbers, .Re(t), for the two scenarios with different model 
transmission rates. As stated in Sect. 2, .Re(t) > 1 describes time periods for which 
the disease persists and spreads quickly, and .Re(t) < 1 describes time periods 
for which the disease is contained (i.e., the disease is spreading slowly, eventually 
dying out). In the non-effective mitigation scenario described in Fig. 2, we see two  
approximately month-long windows for which the disease persists, highlighting 
that after the first push to decrease transmission (.Re(t) falls to less than 1 in mid-
August), mitigation strategies are not successful at keeping the transmission rate 
low enough, and a second wave begins in early October. For the effective mitigation 
scenario, described in Fig. 4, we see that although the effective reproduction rate 
.Re(t) is greater than 1 for an extended initial period of time, once it drops below 1 
(close to September) it stays below 1. 

The top panels of Figs. 3 and 5 show how the bundles of incidence curves for 
daily new cases and deaths corresponding to the reconstructed transmission rates, 
.β(t), are compared to the noisy synthetic data used for data fitting.
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Fig. 4 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number .Re(t) in Scenario 2 (effective mitigation) from synthetic data on new daily 
cases and deaths in Fig. 5. Simulations are carried out with 10 basis functions for the transmission 
rate .β(t) and 40 basis functions for each unobserved state variable, .S, V, Is , and . Iv , i.e., 160 basis 
functions for all state variables combined. The regularization sequence is .τk = 1010/(k+1)15, and  
the iterations are stopped when .k = 19. This stopping time is determined by the goodness of fit to 
both data sets 

Reconstructed .S(t), V (t), Is(t), and .Iv(t) from these two scenarios can be 
viewed in the lower panels of Figs. 3 and 5, respectively. While there are inevitable 
errors due to noise contamination in both data sets and due to accuracy loss 
stemming from regularization, Figs. 2, 3, 4, and 5 illustrate numerical experiments 
for synthetic data where the uncertainty is very low and the reconstruction of all 
unknown parameters is very stable. Yet, as evident from Figs. 3 and 5, it is harder to 
reconstruct the dynamics of the vaccinated population compared to the susceptible 
one since vaccinated individuals are less likely to contribute to new incidence cases 
(and especially deaths). 

When comparing the time series for the reconstructed state variables between 
our two scenarios in the lower panels of Figs. 3 and 5, the progression of the disease 
follows the trend of the disease transmission rates. In particular, two infection peaks
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Fig. 5 Synthetic study of Scenario 2: effective mitigation. Top to bottom: synthetic (Synth) data 
(dots) and model fit (solid line) for daily new cases and daily new deaths; true synthetic values 
(dash line) and model reconstructions (solid line) for .S(t) (blue), .V (t) (green), .Is(t) (red), and 
.Iv(t) (pink). There are 100 bootstrap model reconstructions, and the mean of them is a darker line 
of the color corresponding to each compartment 

are in the lower panel of Fig. 3, which follow the peaks in the transmission rate and 
effective reproduction number curves in Fig. 2. A similar trend for a single infected 
peak is in the lower panel of Fig. 5, which follows the peaks in the transmission rate 
and effective reproduction number curves in Fig. 4. We also note that in the non-
effective mitigation scenario (Fig. 3) the initial population is assumed to be . N =
39, 237, 836 and for the effective mitigation scenario (Fig. 5) .N = 10, 799, 566. 

Our simulated data and the inversion results for both experiments with synthetic 
data largely depend on the values of pre-estimated parameters, p, . α, . γs,r , .γv,r , .γs,d , 
.γv,d , . δv , and . δr , and the initial values for .S, V, Is , and . Iv . In both scenarios, we 
simulated for 140 days with the parameters as those from the real epidemic listed in 
Table 2. For initial values of .S, V, Is, and . Iv , see the lower panels of Figs. 3 and 5.
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5 Simulations with Real Data for COVID-19 Pandemic 

In this section, we apply our SVIRD model (Eqs. (1)–(6)) and regularized com-
putational algorithm (Eqs. (19) and (20)) to real data on incidence cases and new 
daily deaths for the second wave of COVID-19 in the United States in 2021, 
when the Delta variant was one of the more widely spread strains [36]. Most 
states experienced this second wave during an approximately 4-month period 
between July 9 and November 25, 2021, while vaccines were distributed to the 
US general population starting in early 2021. So we can study the progression of 
the pandemic under the effect of vaccination. For our experiments, we choose data 
sets for two states, Georgia and California, as both have different population sizes 
(Georgia is much smaller with approximately 11 million people versus the nearly 
40 million living in California), had different proportions of vaccinated individuals 
between July 9 and November 25, 2021, and had different COVID-19 protocols. 
In particular, California had more vaccinated people at the onset and at the end of 
this time window [36], and California had stricter masking protocols; masks were 
required indoors in most places during this time period, whereas they were only 
recommended in the state of Georgia. The model variables and initial conditions 
corresponding to the population sizes in Georgia and California at the onset of the 
second wave are given in Table 1. Initial conditions were found using Census and 
CDC data [36–39]. Here, .I (0) = Is(0) + Iv(0) is the number of cases within the 
most recent week of the onset of the second wave, as most people with COVID-
19 are no longer contagious 5 days after they first have symptoms and have been 
fever-free for at least 3 days. 

Table 1 Initial conditions used in the SVIRD model for the Georgia and California data. 
Population size was based on the January 7, 2021 data from https://www.census.gov/quickfacts/ 
GA and https://www.census.gov/quickfacts/CA 

Variable Meaning 

.S(t) Number of susceptible unvaccinated individuals 

.V (t) Number of susceptible vaccinated individuals 

.Is(t) Number of infectious unvaccinated individuals 

.Iv(t) Number of infectious vaccinated individuals 

.R(t) Number of recovered individuals 

.D(t) Number of deceased individuals 

Initial condition Georgia California 

.S(0) .10,799,566 − V (0) − I (0) . 39,237,836 − V (0) − I (0)

.V (0) .3,942,002 . 20,086,693

.Is(0) .3,580 . 25,039

.Iv(0) .731(= 3580 ∗ 5116/25039) . 5,116

.R(0) 0 0 

.D(0) 0 0

https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/GA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
https://www.census.gov/quickfacts/CA
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Table 2 Parameter values recorded for California and Georgia during the second wave of the 
pandemic, July 9–November 25, 2021 (approximately 4 months). The bars “–” in the last column 
mean that these values were calculated using .γs,d , as described in the text 

Parameter Meaning Value Source 

.β(t) Transmission rate 

p Vaccination rate 0.00086 day.−1 [37–39] 

.α Vaccine dose efficacy 0.8 [40, 43, 44] 

.γs,r Recovery rate of unvaccinated 0.0995 day.−1 – 

.γv,r Recovery rate for vaccinated 0.09996 day.−1 – 

.γs,d Case-fatality for unvaccinated 0.00027 day.−1 [45] 

.γv,d Case-fatality for vaccinated 0.000021 day.−1 – 

.δv Loss of immunity for vaccinated 0 day.−1 [46] 

.δs Loss of immunity for unvaccinated 0.011 day. −1

System parameter values used for California and Georgia during the second wave 
of the pandemic are presented in Table 2. The rationale for the selection of these 
values is as follows:

• Vaccination rate p: Based on the CDC data [39], during the selected time 
window, the proportion of fully vaccinated people changed from 37.5% to 49.8% 
in Georgia and from 51.1% to 63.1% in California, both of which resulted in 
about 12% increase in vaccination. Dividing this by our 140-day window gives 
the approximate daily vaccination rate p of 0.00086 day. −1.

• Vaccine effectiveness . α: We choose .α = 0.8 as the age-standardized crude 
vaccine effectiveness for infection was reported at .80% during July–November 
of 2021 [40].

• Death rate .γs,d : We calculate .γs,d = 0.005/18.5 = 0.00027 days. −1 as the 
infectious fatality ratio IFR was reported as .0.5% from [41], and the median 
time from illness onset to death is 18.5 days (reported number for vaccinated vs 
unvaccinated [42]).

• Death rate . γv,d : We take .γv,d = (0.005/12.7)/18.5 = 0.000021 days. −1 because 
during October–November, unvaccinated persons had 12.7 times the risks for 
COVID-19—associated death compared with those that were vaccinated without 
booster doses [33].

• Recovery rate . γs,r : Assuming that individuals infected with COVID-19 either 
recover or die and using a recovery rate of 10 days, we conclude that the recovery 
rate for unvaccinated individuals is .γs,r = (1 − 0.005)/10 = 0.0995 days. −1.

• Recovery rate .γv,r : With a similar rationale as above, we estimate the recovery 
rate for vaccinated individuals as .γv,r = (1−0.005/12.7)/10 = 0.09996 days. −1.

• Loss of immunity rate for recovered individuals . δr : We set . δs = 1/90 = 0.011 
days. −1.

• Loss of immunity rate for vaccinated individuals . δv: We use .δv = 0 as the 
Moderna and Pfizer-BioNTech vaccines offer immunity against COVID-19 for 
at least 6 months, and most people in the USA were fully vaccinated by the
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end of April 2021 or later. Therefore, they still had immunity against COVID-19 
during most of the study period. 

In the case of real data, apart from the measurement errors, which were 
incorporated in our earlier experiments, we also encounter modeling errors, which 
make the process considerably more unstable. Thus, apart from the penalty term, 
.
τk

2 ||θ − θ̄ ||2, the iterative scheme also needs to be regularized by discretization. 
For this reason, fewer basis functions are used for the state variables. Specifically, 
we take 6 basis functions for each unobserved state variable, .S, V, Is , and . Iv , for  
the Georgia data, and 12 basis functions for each unobserved state variable for the 
California data. To further stabilize the process, we also introduce a smaller step 
size, .ζ = 0.1, as we update .S(t), V (t), Is(t), and .Iv(t). This calls for more iterations 
needed to achieve the desirable data fit. The iterative process is terminated when 
.k = 130 for the Georgia data with regularization sequence .τk = 1/(k + 1)10 and 
.k = 58 for the California data with .τk = 103/(k + 1)7. Overall, the time until 
convergence remains the same as for the case of synthetic data since the increase 
in the number of iterations is balanced by the reduction in the number of basis 
functions. 

Another important aspect is the reporting rate of new cases. While it is natural to 
assume that the reporting rate for deaths due to COVID-19 is high, the reporting rate 
for daily new COVID-19 cases is unlikely to be anywhere close to 100% considering 
the large number of mild and asymptomatic cases (“silent spreaders” [47]). Figures 6 
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Fig. 6 Reconstructed effective reproduction numbers, .Re(t), for various assumed reporting rates 
in the state of Georgia. Simulations are carried out with 10 basis functions for the transmission 
rate, .β(t), and 6 basis functions for each unobserved state variable, . S, V, Is , and . Iv , i.e., 24 basis 
functions for all state variables combined. The regularization sequence is .τk = 1/(k + 1)10, and  
the iterations are stopped when .k = 130. This stopping time is determined by the goodness of fit 
to the Georgia data set
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Fig. 7 Reconstructed effective reproduction numbers, .Re(t), for various assumed reporting rates 
in the state of California. Simulations are carried out with 10 basis functions for the transmission 
rate, .β(t), and 12 basis functions for each unobserved state variable, .S, V, Is , and . Iv , i.e., 48 basis 
functions for all state variables combined. The regularization sequence is .τk = 103/(k + 1)7, and  
the iterations are stopped when .k = 58. This stopping time is determined by the goodness of fit to 
the California data set  

and 7 compare reconstructed time-dependent effective reproduction numbers, .Re(t), 
for various assumed reporting rates of daily new cases in Georgia and California, 
respectively (for both states, we fixed the reporting rate for daily new deaths due 
to COVID-19 at 90%). We know that at the onset of the Delta variant wave of the 
COVID-19 pandemic, the reproduction number must have been above 1 for some 
time. Thus, Fig. 6 suggests that the reporting rate of new COVID-19 incidence cases 
in the state of Georgia is 10–30%. For California, we see that the reporting rate is 
10–60% as illustrated in Fig. 7. This is consistent with the estimation of COVID-
19 incidence reporting rate carried out in [48]. In [48], the reporting rate was cast 
as one of the unknown parameters in the model and had to be reconstructed by the 
optimization algorithm. For the initial pre-vaccination stage of COVID-19 pandemic 
in the state of Georgia, the reporting rate for new incidence cases was estimated to 
be 0.23 (95% confidence interval (CI): [0.22,0.24]). For the reasons listed previously 
and as suggested by our numerical study, in simulations presented in Figs. 8, 9, 10, 
and 11, we assume a 90% reporting rate for new daily deaths due to COVID-19 and 
a 20% reporting rate for new incidence cases in the states of Georgia and California. 

In Figs. 8 and 10, we show the transmission rate, .β(t), and the effective 
reproduction number, .Re(t), reconstructed from daily data on new cases and deaths 
for the states of Georgia and California, respectively, for the period from July 9 to 
November 25, 2021. The top panels of Figs. 9 and 11 show how incidence curves 
for daily new cases and deaths in the states of Georgia and California are compared 
to real data used for parameter estimation in the optimization process (Eqs. (19)
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Fig. 8 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number . Re(t) for the state of Georgia  

and (20)). Reconstructed .S(t), V (t), Is(t), and .Iv(t) for the states of Georgia and 
California can be viewed in the lower panel of the same figures. One may notice 
that the California incidence data (top panel of Fig. 11) are more “spread out” than 
the Georgia incidence data (top panel of Fig. 9). This is because, for the Georgia 
data, a rolling 7-day average was recorded each week since in Georgia new cases 
were often not reported on the weekends when the Delta variant was dominant. So, 
the approximation of unobserved state variables for the state of California is more 
uncertain as compared to Georgia and to the sets of synthetic data. 

The parameter estimation process is initiated with .β0 = 0.5 for both Georgia and 
California. The reconstruction is done with .m = 10 in both cases (the number of 
basis functions for the transmission rate). For Georgia, the number of basis functions 
for each unobserved state variable is .n = 6 (i.e., 24 basis functions for all state 
variables, S, V , . Is , and . Iv , combined). The iterative process started with .τ0 = 1. 
The regularization sequence is driven to zero at the rate .1/(k + 1)10. Like in the  
case of Georgia, for the California data set the number of basis functions for . S,

V , . Is , and . Iv is significantly reduced (from .n = 40 to .n = 12), as compared to
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Fig. 9 State of Georgia (GA) case study. Top to bottom: state data (dots) and model fit (solid line) 
for daily new cases and daily new deaths; 100 bootstrap model reconstructions for .S(t) (blue), 
.V (t) (green), .Is(t) (red), and .Iv(t) (pink). The mean of the bootstraps is a darker line of the color 
corresponding to each compartment 

reconstructions with synthetic data in order to further stabilize predictor–corrector 
algorithm (Eqs. (19) and (20)) in the presence of modeling error. 

By comparing Figs. 8 and 10, one can see that the start of the Delta variant 
wave in the state of California was more rapid as compared to Georgia, but it took 
longer for Georgia to get the virus under control (as compared to California). In 
California, the effective reproduction number, .Re(t), dropped under 1 around mid-
August, while in Georgia .Re(t) remained greater than 1 until early September 2021. 
However, in California, the effective reproduction number almost bounced back to 
1 in late October before going down again toward the end of the study period. In 
Georgia, on the other hand, .Re(t) remained very low after the end of September. 

In the top panels of Figs. 9 and 11, we note the peak of around .9,000 new 
incidence cases in the state of Georgia in early September and the peak in mid-
August of approximately .13,000 new incidence cases in the state of California.
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Fig. 10 Reconstruction of disease transmission .β(t) (along with coefficients) and the effective 
reproduction number .Re(t) for the state of California 

In both states the daily reported new deaths are under 150 people. The peaks in 
deaths follow the peaks of incidence cases, in early October in Georgia and in 
early September in California. Reconstructed curves, .Is(t) and .Iv(t), are consistent 
with the reported percentage of vaccinated individuals in the states of Georgia and 
California, respectively (Figs. 9 and 11). 

6 Conclusion and Future Work 

In this chapter, we propose a new dynamic model of COVID-19 transmission that 
takes into account the vaccination status of both susceptible and infected humans. It 
also includes a possible loss of immunity and reinfection within both vaccinated and 
unvaccinated populations. To estimate the unknown disease parameters, we develop 
a novel computational algorithm, which employs a parameter cascade approach. 
The proposed method is used to reconstruct time-dependent transition rates, .β(t),
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Fig. 11 State of California (CA) case study. Top to bottom: state data (dots) and model fit (solid 
line) for daily new cases and daily new deaths; 100 bootstrap model reconstructions for .S(t) (blue), 
.V (t) (green), .Is(t) (red), and .Iv(t) (pink). The mean of the bootstraps is a darker line of the color 
corresponding to each compartment 

and effective reproduction numbers, .Re(t), from synthetic and real data for the 
COVID-19 pandemic. Apart from COVID-19, the proposed compartmental model 
and iteratively regularized optimization method can be applied to the study of other 
infectious diseases. 

In the course of our numerical study, the new optimization technique has 
emerged as a reliable alternative to more traditional trust-region and gradient-
descent algorithms that are commonly used in parameter estimation. The efficiency 
of these algorithms is limited when a complex biological model (which may be 
a system of nonlinear ordinary or partial differential equations) constraining the 
underlying minimization problem does not have a closed-form solution and has to 
be solved numerically at every step of the iterative process. Our new method, on the 
other hand, does not require either exact or approximate solution to the constraining 
system.
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In reconstructing time-dependent transmission rates, .β(t), in order to reduce 
the computational load and to improve the estimate efficiency, we pre-specified 
the values of other system parameters by conducting a thorough review of the 
literature. To assess the sensitivity of reconstructed transmission rates to slight 
variations in pre-estimated parameters, one can build a Bayesian model to assign 
priors to pre-specified parameters, and the posterior distributions of transmission 
rates will incorporate the uncertainty in these parameters. This is an important 
topic for future work. Note that for a simpler SIRD model corresponding to a 
pre-vaccination stage of the COVID-19 pandemic, the sensitivity analysis has been 
conducted in [48]. In [48], for every bootstrap iteration, the recovery rate, . γ , and 
the fatality rate, . ν, have been sampled from normal distributions, . N(0.20, 0.02)

and .N(0.005, 0.001), respectively. The normal distribution, .N(0.20, 0.02), for the  
recovery rate, . γ , reflected an average infectious period between 3 and 20 days, while 
the normal distribution .N(0.005, 0.001) for the fatality rate, . ν, accounted for the 
variation of this parameter within different risk groups. The reconstructed values of 
.β(t) with normally distributed . γ and . ν were almost identical to those reconstructed 
with constant (mean) values of these pre-estimated parameters showing a very low 
sensitivity of .β(t) to inevitable variations in COVID-19 infectious periods and 
fatality rates. 

With a considerable portion of mild and asymptomatic cases, the number of 
reported daily new cases is much lower than the actual value. In this chapter, we 
change the reporting rates of new incidence cases and investigate how different 
reporting rates affect the reconstruction of effective reproduction numbers, . Re(t), in  
our numerical simulations. Thus, another important direction of future research will 
be to modify our reconstruction process to include the estimation of the unknown 
percentages of new incidence cases along with the unknown time-dependent 
transmission rate, .β(t), and other system parameters. The problem of the reporting 
rate can also be addressed by extending the model to include the compartment of 
asymptomatic spreaders. 

We also plan to add line search routines and incorporate nonnegativity con-
straints for unobserved state variables, .S, V, Is , and . Iv , in iteratively regularized 
predictor–corrector algorithm (Eqs. (19) and (20)). This will allow further accuracy 
improvements and stability of the proposed optimization method. 

Last but not least, the methodology must be extended to provide near real-
time forecasting of future incidence cases and deaths (among vaccinated and 
unvaccinated individuals) from early data for an unfolding outbreak. This research 
is crucial for control and prevention, in particular, for the assessment of various 
vaccination strategies. 
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