Analogies and Active Engagement: Introducing Computer Science

Jennifer Parham-Mocello
parhammj@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

ABSTRACT

We describe a new introductory CS curriculum initiative that uses
analogies and active engagement to develop students’ conceptual
understanding before applying the concepts to programming. We
believe that traditional coding approaches to introducing computer
science concepts rely on students to build their own conceptual un-
derstanding, rather than grounding their understanding of concepts
in what they know from everyday experiences. Using construc-
tivism as a foundation for this curriculum initiative, our approach
builds a framework for student understanding anchored in the
physical world using simple games and stories to stimulate mental
engagement through embodied learning.

For example, we teach the concept of abstraction and represen-
tation by presenting the game of Tic-Tac-Toe as an island divided
into nine regions, but the middle one you cannot get to by boat,
which is the way two teams arrive to the island. After playing the
game once and realizing the game is really just Tic-Tac-Toe, the
students understand the example is a representation with modified
rules and game pieces. Then we talk about how the set of rules for
a simple game like Tic-Tac-Toe is an algorithm with instructions
for how to play the game, and we use playing the game to explain
computation as the execution of an algorithm.

Based on observations using analogies and active engagement
in 6th grade classrooms, we provide many examples explaining
how this curriculum initiative is an engaging, effective, and flexible
approach for introducing CS concepts.

CCS CONCEPTS

» Applied computing — Interactive learning environments;
Collaborative learning; « Social and professional topics —
K-12 education; Computational thinking.

KEYWORDS
constructivism, games, stories, unplugged, embodied learning

ACM Reference Format:

Jennifer Parham-Mocello, Martin Erwig, and Margaret Niess. 2024. Analo-
gies and Active Engagement: Introducing Computer Science. In Proceedings
of the 55th ACM Technical Symposium on Computer Science Education V. 1
(SIGCSE 2024), March 20-23, 2024, Portland, OR, USA. ACM, New York, NY,
USA, 7 pages. https://doi.org/10.1145/3626252.3630777

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0423-9/24/03...$15.00
https://doi.org/10.1145/3626252.3630777

Martin Erwig
erwig@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Margaret Niess
niessm@oregonstate.edu
Oregon State University

Corvallis, Oregon, USA

1 INTRODUCTION

We discuss a curriculum initiative for introducing computer science
(CS) centered on using analogies and active engagement to convey
basic computing concepts. We define CS as a discipline requiring
computational thinking to study the foundation of computing and
all related concepts, and we use non-programming computational
thinking activities and examples to illustrate four, fundamental CS
concepts: abstraction, representation, algorithm, and computation.

One major goal of our approach was to debunk negative per-
ceptions that CS is socially isolating, lacks creativity or fun, and is
better suited for white, male students [9, 19]. We demonstrated that
learning basic concepts of CS is as fun, social, and gender-neutral
as reading a story or playing a simple non-electronic game, and we
used constructivism as a foundation for our curriculum initiative.

We aimed to create an accessible and adoptable CS curriculum
initiative that built a framework for student understanding an-
chored in the physical world using simple games and stories to
stimulate mental engagement that was meaningful to teachers and
students in the 6th grade. Our approach was inspired by previ-
ous work of ours and others that introduced CS concepts before
programming using unplugged approaches [2, 10, 15, 16, 29, 48],
simple stories [7, 18, 26, 34, 34-36] and simple, physical games
[6, 11, 13, 17, 27, 32, 33, 37-40)].

2 MOTIVATION AND RELATED WORK

The constructivism learning theory was fundamental to our cur-
riculum initiative. We used the idea of “unplugged” computational
thinking to actively engage students in the cognitive and social
construction of computer science knowledge, and we used simple
stories and games as analogies for explaining computing concepts.

2.1 Constructivism

Constructivism is a well-known theoretical framework for learning
in K-12 education grounded in the construction of new knowledge
based on one’s prior knowledge and experiences [31]. Cognitive
constructivism was based on Piaget’s stages of cognitive develop-
ment among children [42], and Lev Vygotsky’s social constructivism
was based on development occurring when people interact within
cultures and societies [50]. Our curriculum initiative incorporated
both cognitive and social constructivism through simple, unplugged
stories and games to introduce CS concepts.

2.2 Unplugged Computational Thinking

Many approaches introducing computer science to students are
predicated on programming and require an understanding of how to
code an algorithm in a programming language. Efforts like code.org
use programming/coding to promote computer science to young
children. However, many studies showed that comfort level and

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

willingness to learn programming were the strongest predictors
of success in programming classes [45, 46, 51]. Since computer
science is not synonymous with programming, there is no inher-
ent necessity to tie the orientation to computer science to coding
activities.

Students curious about computer science should not be excluded
because they are reluctant to the idea of having to learn program-
ming as a prerequisite to understanding computer science. This
was why efforts to explain computer science without a computer,
such as csunplugged.org [3, 4], gained popularity, especially among
the K-12 community [2, 15, 16, 29, 48], and studies showed that the
unplugged approach broadened participation [10]. For these rea-
sons, we believed that 6th grade students and teachers could benefit
from a non-coding alternative using everyday understanding of the
world as a way to introduce basic fundamental CS concepts.

2.3 Stories

The use of stories to explain computing is not new. Computational
Fairy Tales described algorithms and data structures as part of a
story about a princess on a quest to save her father’s kingdom [26].
The target audience was middle school children. Lauren Ipsum
[7] employed a similar approach telling a story about a girl who
got lost in a forest and wanted to find her way back home. In her
adventure, she had to solve several problems, which served as a
hook to introduce concepts of algorithms and math on a very high
level. The target audience was also middle school children, and
the story was like Alice in Wonderland with its playful and clever
use of names. It contained an appendix that provided additional
explanations of the concepts mentioned in the story.

At the university level, one study used Computational Fairy
Tales to help the retention and academic performance of computer
science majors, mostly aimed at students with little to no program-
ming experience [30]. It found that “CS0 students without prior
programming experience got significantly higher grades in CS1
than CSO0 students who had programmed before”; the students were
split on how useful the book was to their learning. Another study
determined that Story Programming was a viable alternative to the
traditional programming-focused approach for teaching a computer
science orientation class [34, 35], and students in another study
argued that computer science or programming concepts could be
explained effectively using stories if the connection between con-
cept and story was strong [23]. Similarly, one study claimed that
using a story to learn a concept was easily accessible because sto-
ries helped many people learn in general [22], and another study
showed that “unplugged” activities involving storytelling was use-
ful for introducing teachers to computational thinking [15]. For
these many reasons, we believed stories provided a viable means
for conveying CS concepts to 6th grade students and teachers with
any background in computation.

2.4 Games

Likewise, playing games develops problem-solving skills and cre-
ativity, which are fundamental to computational thinking [20, 44,
47]. Thus, it is not surprising that games have a long tradition
as learning tools in education, especially in the form of gamifi-
cation, which is the idea of representing a learning process as

Jennifer Parham-Mocello, Martin Erwig, and Margaret Niess

playing a game [24]. While studies showed that playing board
games improved math skills in elementary school students [8] and
involved computational thinking activities [5, 6, 21, 25], simply
playing games did not increase one’s computational thinking skills,
unless guided instruction about the skills was given [28].

The idea of using simple, existing physical games to explain
computational concepts is not new [11, 13, 27], and researchers un-
derstand that playing games unsupported by an appropriate frame-
work may be ineffective at teaching the computational concepts
[28]. Researchers in the CS4FN and Teaching London Computing
projects showed that the use of games with well-developed lesson
plans were effective for teaching specific computational concepts
[12, 14], and Lee et al. showed that their educational software called
CTArcade enabled children to articulate computational thinking
patterns while playing Tic-Tac-Toe and Connect Four [27].

However, CTArcade was software, and it was not flexible with
the implementation of games. We wanted students to play games in
an unplugged environment with their peers to promote social inter-
action and communication, as well as practice concepts learned in
one game by identifying them in other games. While we recognized
that several new board and card games were invented to teach
computational thinking, such as RaBit EscAPE (ages 6-10), Cubetto
(ages 3-6), and Crabs and Turtles (ages 8-9) [1, 43, 49], these games
did not come with lesson plans for teachers or research studies
on whether students actually learned the computational concepts.
Additionally, schools, kids, and families did not have access to the
new games. Therefore, a major goal for this curriculum initiative
was to use and create simple, physical games that anyone could
access for teaching CS concepts.

3 OUR CURRICULUM INITIATIVE

While the use of stories or games to teach CS is not new, our cur-
riculum initiative combining stories and games with the use of
analogies and active engagement without a machine or program-
ming to teach 6th grade students is new. We created the curriculum
grounded in constructivism to introduce four basic CS concepts:
representation, abstraction, algorithm, and computation. Our curricu-
lum went beyond just creating stories or playing games by teaching
four core CS concepts using stories of simple, physical games.

One key contribution to the development of the curriculum was
the active research to make continuous improvements based on
observations, interviews, and survey information from teachers and
students. In the following sections, we provide examples of how
we used a research practice partnership to develop our curriculum
initiative.

3.1 A Research Practice Partnership

For our curriculum initiative we used a research practice part-
nership (RPP) between researchers from education and computer
science departments, two middle school math teachers (with no
background in computer science), and the school principal to it-
eratively develop our ideas and curricular material. The RPP was
critical for creating lesson plans that were useful to the teachers
with objectives, content/subject matter, learning experiences, and
assessments and teaching material that was age-appropriate, inclu-
sive, and scaffolded for students (see Table 1).

Analogies and Active Engagement: Introducing Computer Science

Table 1: Example Lesson Plan for Representation.

Lesson Overview
Total Time:

36 minutes

Lesson Materials:
Lesson Overview (this document), PowerPoint slides, student worksheet,
Students’ homemade representations of the players for the Treasure Hunt game.
Focused Topics:

Benefits and disadvantages of representations

Summary:

Students revisit the Treasure Hunt game, this time viewing different
representations of the game’s components, such as using shapes instead of ropes
and a single line instead of a grid for a board. Students will have to analyze

the new representations to figure out how the game rules change with different
representations.

Student Learning Objectives (SLOs) (assessment provided at end of unit):
Students will work on learning how to...

e SLO 1: List advantages, disadvantages, and differences for various
representations of game objects.

® SLO 2: Understand how rules change to accommodate different representations.
Lesson Details [Teacher (T) Student (S)

T has Ss place their different team
characters on the classroom

display as they come into the

classroom (get them out of their hands!)
Time: T reminds Ss that these characters

5-10 min are representations for pieces of

the game. Then T reminds them
Purpose: SLO 1./of some of the other representations
Summarize ideas|they identified for this game, like are the Ss ideas for
learned from |ropes for in a row. representations from
Days 1and 2 [Revisit from Day 2: Can you describe |yesterday such as story,
to refresh Ss the different representations in this |island representation,
understanding. [story or game and the details that ropes, symbols for ropes.
'were omitted by the representation?
Today we are going to think about
some of these representations and

see if the game rules must change.

Ss place their team
characters on the
classroom display
On another display

For example, through the RPP we identified how to change the
language in a story we created to be more inclusive, and we learned
that we needed to use technical vocabulary in more than 10 different
ways to reinforce and scaffold student and teacher understanding.
Additionally, we learned that a teacher’s knowledge for teaching
CS needs to go beyond the material they are teaching, and a lesson
plan should contain the objectives for the students and the teach-
ers, learning activities for engaging the students, subject matter
content knowledge for the teachers and students, and assessment
information. Each lesson had a review at the beginning.

We used the same example in multiple different analogies and
activities to reinforce a concept or teach new concepts without
adding extrinsic cognitive load to the learner. For example, we
created a story of two teams looking for a treasure on an island
divided into nine regions, representing the game of Tic-Tac-Toe in
many different analogies and activities to introduce and reinforce
each of the four concepts.

3.2 Analogies and Active Engagement

The goal was to use analogies and active engagement with stories
of simple, physical games and the human as the computer to intro-
duce the CS concepts of representation, abstraction, algorithm, and
computation (see Table 2). We wanted to leverage what students
were already familiar with, eliminate the distraction of a machine,
and level the playing field between those with or without prior
programming experience or who identify with digital technology.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Table 2: Examples of Analogies and Active Engagement for
CS Concepts.

Stories and Games
CS Concept Order Analogies Active Engagement
Abstraction and Story Characters
Representation Game Pieces Story Representation
Stories for Games Floor Activity
Algorithm Text for Stories | Read Story/Play Game
(correctness and Rules for Games Change Story/Game
complexity) Formalize Instructions
Computation Reading a Story Classroom Poster
(execution time) Playing a Game

We used the same stories and games but with different analogies
and active engagement to introduce and reinforce all four basic
CS concepts in our curriculum initiative (see Table 2). We began
with abstraction and representation before algorithms, since al-
gorithms use abstraction and representations and are themselves
examples of abstraction and representation. Similarly, the concept
of an algorithm was discussed before computation, since computa-
tion requires executing an algorithm. The analogies were specific
to the concept being conveyed, but the same active engagement
used different analogies and concepts.

We created stories for the games of Tic-Tac-Toe, tossing a coin to
see who goes first, Nim, and a new game called Movelt! to introduce,
reinforce, and scaffold student learning of all four basic concepts in
our curriculum, and we used many analogies and active engagement
with the stories and games for students to further construct their
conceptual understanding. We found that this initiative created a
foundation for the teachers to easily incorporate other stories and
games that they and their students knew.

In the following subsections, we explain some of the analogies
and active engagement that we used to teach the four basic CS
concepts and the reasons why we used them.

3.2.1 Story Representation (of Anything). We motivated the con-
cepts of representation (an entity that stands for something else),
abstraction (the process of omitting detail), algorithm (a sequence
of instructions in a language understood by a computer (which
isn’t necessarily a machine)), and computation (when a computer
executes an algorithm) using story representations for Tic-Tac-Toe,
Tossing a Coin, and Nim (see Figures 1, 2, and 3).

For Tic-Tac-Toe, we presented the game as a story of two teams
looking for a treasure on an island divided into nine sections. The
teams arrived at the island by boat, which means they could not
start in the middle section (see Figure 1). The team members took
turns sending team members to different sections of the island, and
the winning condition for a treasure was when a team had three
team members on the same rope. This allowed us to motivate the
introduction of the concept of abstraction and representation with
little cognitive load and later use the same story representation in
other activities to convey different concepts in multiple contexts.

For the game of tossing a coin, we presented tossing a coin as a
way to win a dispute over which sibling, Rosa and Jack, would have
to do the dishes (see Figure 2). We used the story and game to mo-
tivate reinforcing abstraction and representation and to introduce

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

if-then-else control structures in algorithms.

Lesson 1 Worksheet:

Let’s suppose, there are two teams of people searching to find treasure chests buried on
multiple islands. Both teams want to be the first to find a treasure chest! Each island has its own
map and directions for retrieving the treasure chests.

This is the map of the first island the teams will encounter in their quest for treasure chests. The
map shows the island with its treasure chests buried in the ocean off the island shore.

The island is marked into
nine sections, and each
section can only be
occupied by one member of
a team at a time. Since
there is nowhere to land a
plane on the island, the
teams arrive by boat, and
each team chooses a
different section of the
island for their boat to
land.

In addition to the island
being marked into different
sections, the island is
covered with ropes
traversing different parts of the island and connected to the treasure chests buried in the ocean.

The ropes traversing the island cross different sections, and the treasure chests at the end of the
ropes are very heavy requiring 3 members on a team to pull out the treasure from the ocean. A
team must place three members in different sections for pulling on the same rope, and the
teams must take turns in claiming specific sections on the island.

Figure 1: Story Representation of Tic-Tac-Toe

Since they cannot stop arguing, they
decide to flip a coin to decide.

Figure 2: Story Representation of Tossing a Coin

For the game of Nim, which involves people taking turns se-
lecting between one and three objects from a heap of objects until
someone either takes or is left with taking the last object(s), we pre-
sented the game as siblings, Rosa and Jack, who knock over a stack
of boxes into a pile (or heap) onto the garage floor (see Figure 3).
We used the story and game to once again motivate the concepts of
abstraction and representation and introduced the looping control
structure that can impact the time it take to run (or compute) the
algorithm.

Even though this curriculum initiative created stories represent-
ing games to teach about basic CS concepts, stories about an activity,
like getting ready in the morning or moving items to homes for

Jennifer Parham-Mocello, Martin Erwig, and Margaret Niess

...they knock over a huge stack of boxes,
which fall into a big pile (or heag)

Figure 3: Story Representation of Nim

disaster relief, or a well-known fictional event/tale, like Hansel and
Gretel leaving bread crumbs to mark their trail, could also be used
to teach basic CS concepts. We correlated the categories/kinds of
things (types) and the actual things (values) that were in stories,
games, activities, events, etc. to representations and abstractions.
Students got to play with and think about different representations
in the story, game, or activity to motivate the appropriate choice of
a representation that is abstract enough to omit unnecessary detail
but remains easily distinguishable, such Xs and Os versus pictures
of team members.

3.2.2 Floor Activity. We engaged students with the concepts of
abstraction, representation, algorithm, and computation using a
floor-sized version of the treasure hunt representation of Tic-Tac-
Toe (see Figures 4). This was an excellent way to engage the entire
class, and the students did not want to quit playing as a class and
break into small groups. The students also saw the importance of
representation when they played the story version of Tic-Tac-Toe
and had to remember who was on which team (see Figure 4). The
picture in Figure 4 was taken before we changed the language from
diamonds to treasure chests to be more inclusive.

Figure 4: Floor Game of Tic-Tac-Toe

In another game we created, called Movelt! (see Section 3.2.5),
students liked watching their peers create and perform the instruc-
tions for moving a set of items from an initial configuration to a
target configuration in front of the class. The floor activity engaged
the class in acting as a compiler and debugger to find issues with
the instructions given by the student instructing another student’s

Analogies and Active Engagement: Introducing Computer Science

moves for moving the items, such as executing a move that would
require going outside the boundaries of the board.

Figure 5: Movelt! Floor Version

3.2.3 Read Story/Play Game. Concepts were introduced and rein-
forced given simple stories and games to read and play as analogies
and active engagement for learning about CS. We related the charac-
ters, scenes, pieces, and boards in stories and games to abstractions
and representations, and we related events and rules to sequential
instructions and control structures that manipulate representations
in algorithms.

3.24 Change Story/Game. We asked students to change story or
game elements to reinforce the four basic concepts. For example,
students were asked to change the Tic-Tac-Toe board to a line with
nine locations, rather than a 3 X 3 grid (see Figure 6). We asked
students if they were able to use the ropes from the treasure hunt
story to represent the same winning condition on the line.

Figure 6: Change Tic-Tac-Toe Board Representation

Then, to motivate explicitly stating what three in a row is and
the use of “and” and “or” in the condition, we asked students how
they would change the winning condition to represent all possible
locations where three team members can be on the island to win a
treasure, and if the same winning condition could be used with the
3% 3 grid. We also presented students with a line containing colored
shapes and asked students how the winning condition changed (see
Figure 6). This reinforced learning the concept of abstraction and
representation, and these activities taught students that the chosen
representations and the algorithm were closely connected.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

3.2.5 Formalizing Instructions. Beyond motivating and introducing
the concept of an algorithm through story representations and floor
activities, we reinforced the four basic CS concepts through asking
students to formalize instructions for a game, activity, etc. To help
scaffold students’ learning of formalizing instructions, we created a
new game called Movelt! that was based on moving items on a grid
from an initial to a target configuration given a limited and extended
language that provided the ability to move up, down, right, left,
pickup an item, and drop an item (see Figure 7). We created a story
about the items representing rocks from a landslide that needed to
be moved, but the items in the game could represent anything that
would need to be moved for some reason, like disaster relief boxes
that need to be delivered to homes.

Figure 7: A New Movelt! Game

We found that having students verbalize the instructions one at
a time helped motivate the need to write down instructions to share
with others or detect errors. Students liked playing the game, espe-
cially when introduced as a floor activity, and the students really
liked being given increasingly difficult tasks to solve or creating
their own tasks for other students to solve.

Additionally, since past research showed Parsons Problems to
be an effective way to teach programming [41], we created Parson
Problems for English-like algorithms with hints and blank lines
for the students (see Figure 8). However, the students did not like
filling in the blanks with all the words and would rather point out
which instructions went where.

Therefore, we created instruction pieces for students to arrange
for formally expressing their algorithms without any writing (see
Figure 9) or minimal writing (see Figure 10). Students liked the
instruction pieces to arrange, but larger, more complex algorithms,
such as Rock, Paper, Scissors, were confusing without scaffolding
from the teacher. The teacher provided the outline of the algorithm
and let the students figure out what the input, conditions, and out-
put were. However, the instruction pieces limited the students to the
construction of a pre-designed algorithm or something very similar,
unless students were provided with an overwhelming number of
pieces that they may or may not use. Even though the instruction
pieces could not be used to write any algorithm for any story or
game, students liked physically putting together the instruction
pieces better than writing instructions.

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

Below are pieces of the algorithm for playing the coin toss game.
e Rosa tosses the coin
e Rosa does the dishes
e Jack calls Heads or Tails
e the coin toss is equal to the call

e Jack does the dishes

Write each phrase in the space where it belongs in the algorithm.

IF THEN

ELSE

Figure 8: Worksheet with Algorithm as Parsons Problem

Figure 9: Basic Puzzle Solution for Coin Toss

Figure 10: Basic Puzzle Solution for Coin Toss

3.26 Classroom Poster. We reinforced the concepts of abstraction,
representation, algorithm, and computation using a large classroom-
sized poster hung on the wall. After learning about the concepts in
the curriculum, students were supposed to place a label for where
concepts appeared on the poster. For example, on the poster in
Figure 11, students were expected to put a label for algorithm on
the game instructions and a label for computation at the bottom

Jennifer Parham-Mocello, Martin Erwig, and Margaret Niess

with the people playing the game. The poster served as a way to
reinforce concepts by continuously being viewed and discussed in
the class, and students outside the CS class could view the poster
to help broaden participation.

1€-

N

Figure 11: Computing explained through games.

4 CONCLUSIONS

This curriculum initiative provided a foundation for combining
stories and games to teach about four fundamental CS concepts.
We used stories and games for analogies and active engagement,
and we provided stories and games to motivate, introduce, and
reinforce the basic CS concepts of abstraction, representation, algo-
rithm, and computation. We found that the 6th grade teachers liked
teaching the curriculum, and the 6th grade students liked using the
curriculum to learn about CS. Using the ideas from this initiative,
teachers and researchers can think about new stories and games
to teach basic CS concepts, and students can alter or create new
stories and games to illustrate their understanding of the concepts.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
the grant DRL-1923628.

Analogies and Active Engagement: Introducing Computer Science

REFERENCES

(1]

(2]

(3]

[10]
[11]
[12]

[14]

[15]

[16

[17]

[18]

[19]

[20]

[21]

[24]

[25]

[26]

P. Apostolellis, M. Stewart, C. Frisina, and D. Kafura. 2014. RaBit EscAPE: A
Board Game for Computational Thinking. In Conference on Interaction Design
and Children. 349-352.

T. Bell, P. Curzon, Q. L. Cutts, V. Dagiene, and B. Haberman. 2011. Overcoming
Obstacles to CS Education by Using Non-Programming Outreach Programmes.
In Int. Conf. on Informatics in Schools (LNCS 7013). 71-81.

T. Bell, I. H. Witten, and M. Fellows. 2015. CS Unplugged. An Enrichment and
Extension Programme for Primary-Aged Students.

T. C. Bell, I. H. Witten, and M. Fellows. 1998. Computer Science Unplugged: Off-line
Activities and Games for All Ages. Computer Science Unplugged.

M. Berland and S. Duncan. 2016. Computational Thinking in the Wild: Uncover-
ing Complex Collaborative Thinking through Gameplay. Educational Technology
56, 3 (2016), 29-35

M. Berland and V. R. Lee. 2011. Collaborative Strategic Board Games as a Site for
Distributed Computational Thinking. Int. Journal of Game-Based Learning 1, 2
(2011), 65-81.

C. Bueno. 2014. Loren Ipsum. No Starch Press.

S. Cavanagh. 2008. Playing Games in Class Helps Students Grasp Math. Education
Digest: Essential Readings Condensed for Quick Review 3 (2008), 43-46.

B.J. Cheryan, Drury and M Vichayapai. 2013. Enduring Influence of Stereotypi-
cal Computer Science Role Models on Women’s Academic Aspirations. (2013).
https://doi.org/10.1177/0361684312459328

T. J. Cortina. 2015. Reaching a Broader Population of Students Through “Un-
plugged” Activities. Commun. ACM 58, 3 (2015), 25-27.

CS For Fun: Queen Mary, University of London. 2011. Noughts & Crosses.
http://www.cs4fn.org/programming/noughts-crosses. Accessed: 2021-01-07.
CS For Fun: Queen Mary, University of London. 2011. Welcome to cs4fn : the
fun side of Computer Science. http://www.cs4fn.org/. Accessed: 2021-01-07.
CS For Fun: Queen Mary, University of London. 2011. Winning at Nim: comput-
ers outwitting humans. http://www.cs4fn.org/binary/nim/nim.php. Accessed:
2021-01-07.

CS For Fun: Queen Mary, University of London. 2015. Teaching Lon-
don Computing: A Resource Hub from CAS London & CS4FN. https://
teachinglondoncomputing.org/. Accessed: 2021-01-07.

Paul Curzon, Peter W. McOwan, Nicola Plant, and Laura R. Meagher. 2014. In-
troducing teachers to computational thinking using unplugged storytelling. In
Proceedings of the 9th Workshop in Primary and Secondary Computing Education
(WiPSCE ’14), 89-92.

Q. L Cutts, M. I. Brown, L. Kemp, and C. Matheson. 2007. Enthusing and inform-
ing potential computer science students and their teachers. In SIGCSE Conf. on
Innovation and Technology in Computer Science. 196—200.

G. Dietz, J. Le, N. Tamer, J. Han, H. Gweon, E. Murnane, and J. Landay. 2021.
StoryCoder: Teaching Computational Thinking Concepts Through Storytelling in
a Voice-Guided App for Children. In ACM Conf. on Human Factors in Computing
Systems. 1-15.

M. Erwig. 2017. Once Upon an Algorithm — How Stories Explain Computing. MIT
Press, Cambridge, MA.

A. Gokhale and K Machina. 2010. Online Learning Communities to Recruit
and Retain Students in Information Technology Programs. (2010). https:
//doi.org/10.1109/ITNG.2010.259

C. Harris. 2009. Meet the New School Board: Board Games Are Back-And They’re
Exactly What Your Curriculum Needs. School Library Journal 5 (2009), 24-26.
N. R. Holbert and U. Wilensky. 2011. Racing games for exploring kinematics: a
computational thinking approach. 7th Int.I Conf. on Games + Learning + Society,
109-118.

W. Joel. 2013. A story paradigm for computer science education.. In ACM confer-
ence on Innovation and technology in computer science education (ITiCSE). 362-362.
D. Kafura and D. Tatar. 2011. Initial experience with a computational thinking
course for computer science students. In ACM SIGCSE Symp. on Computer Science
Education. 251-256.

K. M. Kapp. 2012. The Gamification of Learning and Instruction: Game-Based
Methods and Strategies for Training and Education. Pfeiffer.

C. Kazimoglu, M. Kiernan, L. Bacon, and L. MacKinnon. 2012. Learning pro-
gramming at the computational thinking level via digital game-play. Procedia
Computer Science 9 (2012), 522-531.

J. Kubica. 2012. Computational Fairy Tales. CreateSpace Independent Publishing
Platform.

[27

(28]

[29]

(38]

[39

SIGCSE 2024, March 20-23, 2024, Portland, OR, USA

T. Y. Lee, M. L. Mauriello, J. Ahn, and B. B. Bederson. 2014. CTArcade: Com-
putational Thinking with Games in School Age Children. Int. Journal of Child-
Computer Interaction 2, 1 (2014), 26-33.

T.Y. Lee, M. L. Mauriello, J. Ingraham, A. Sopan, J. Ahn, and B. B. Bederson. 2012.
CTArcade: Learning Computational Thinking Thile Training Virtual Characters
Through Game Play. In Human Factors in Computing Systems. 2309-2314.

C. Mano, V. Allan, and D. Cooley. 2010. Effective In-Class Activities for Middle
School Outreach Programs. In Annual Conf. on Frontiers in Education. F2E—1-
F2E-6.

Cindy Marling and David Juedes. 2016. CSO for Computer Science Majors at Ohio
University. In Proceedings of the 47th ACM Technical Symposium on Computing
Science Education (2016), 138—143.

M. F. Mascolo and K. W. Fischer. 2005. Constructivist theories. Cambridge, England:
Cambridge University Press. 49-63 pages.

M. L. Niess, J. Parham-Mocello, and M. Erwig. 2021. Reframing Middle School
Mathematics Teachers’ TPACK for Teaching A New Computer Science Curricu-
lum: Researcher-Practitioner Partnership, Board Games, and Virtual Teaching
Experiences. In Int. Conf. of the Society for Information Technology & Teacher
Education. 1623-1631.

J. Parham-Mocello, G. Barrett, and A. Gupta. 2023. Manipulatives for Teaching
Computer Science Concepts. In IEEE Conf. on Frontiers in Education.

J. Parham-Mocello, S. Ernst, M. Erwig, E. Dominguez, and L. Shellhammer.
2019. Story Programming: Explaining Computer Science Before Coding. In
ACM SIGCSE Symp. on Computer Science Education. 379-385.

J. Parham-Mocello and M. Erwig. 2020. Does Story Programming Prepare for
Coding?. In ACM SIGCSE Symp. on Computer Science Education. 100-106.

J. Parham-Mocello, M. Erwig, and E. Dominguez. 2019. To Code or Not to Code?
Programming in Introductory CS Courses. In IEEE Int. Symp. on Visual Languages
and Human-Centric Computing. 187-191.

J. Parham-Mocello, M. Erwig, and M. Nies. 2022. Using a Text-Based, Functional
Board Game Language to Teach Middle School Programming. In IEEE Conf. on
Frontiers in Education.

J. Parham-Mocello, M. Erwig, and M. Niess. 2021. Teaching CS Middle School
Camps in a Virtual World. In IEEE Int. Symp. on Visual Languages and Human-
Centric Computing. 1-4.

J. Parham-Mocello, M. Erwig, M. Niess,]. Weber, M. Smith, and G. Berliner. 2023.
Putting Computing on the Table: Using Physical Games to Teach Computer
Science. In ACM SIGCSE Symp. on Computer Science Education. 444-450.

J. Parham-Mocello, A. Nelson, and M. Erwig. 2022. Exploring the Use of Games
and a Domain-Specific Teaching Language in CS0. In ACM Conf. on Innovation
and Technology in Computer Science Education. 351—-357.

D. Parsons and P. Haden. 2006. Parson’s Programming Puzzles: A Fun and Ef-
fective Learning Tool for First Programming Courses. Proceedings of the 8th
Australasian Conference on Computing Education 52, 157-163.

Jean Piaget. 1968. Six Psychological Studies. New York: Vintage Books.

Primo. 2018. Cubetto: Screenless Coding Toy for Girls and Boys Aged 3-6.
https://www.primotoys.com.

C. Ragatz and Z. Ragatz. 2018. Tabletop Games in a Digital World. Parenting for
High Potential 7 (2018), 16-19.

Nathan Rountree, Janet Rountree, and Anthony Robins. 2002. Predictors of
success and failure in a CS 1 course.. In SIGCSE Bull., Vol. 34. 121-124.

Nathan Rountree, Janet Rountree, Anthony Robins, and Robert Hannah. 2004.
Interacting factors that predict success and failure in a CS 1 course.. In SIGCSE
Bull., Vol. 36. 101-104.

L. A. Sharp. 2012. Stealth Learning: Unexpected Learning Opportunities Through
Games. Journal of Instructional Research 1 (2012), 42—48.

R. Taub, M. Ben-Ari, and M. Armoni. 2009. The Effect of CS Unplugged on Middle-
School Students’ Views of CS. In SIGCSE Conf. on Innovation and Technology in
Computer Science. 99-103.

K. Tsarava, K. Moeller, and M. Ninaus. 2018. Training Computational Thinking
Through Board Games: The case of Crabs and Turtles. Int. Journal of Serious
Games 5, 2 (2018), 25-44.

L. S. Vygotsky. 1978. Mind in society: The development of higher psychological
processes. Cambridge, MA: Harvard University Press.

B. C. Wilson and S. Shrock. 2001. Contributing to Success in an Introductory
Computer Science Course: A Study of Twelve Factors. In ACM SIGCSE Symp. on
Computer Science Education. 184-188.

	Abstract
	1 Introduction
	2 Motivation and Related Work
	2.1 Constructivism
	2.2 Unplugged Computational Thinking
	2.3 Stories
	2.4 Games

	3 Our Curriculum Initiative
	3.1 A Research Practice Partnership
	3.2 Analogies and Active Engagement

	4 Conclusions
	Acknowledgments
	References

