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In transition to proof courses for undergraduates, we conducted teaching experiments
supporting students to learn logic and proofs rooted in set-based meanings. We invited students
to reason about sets using three representational systems: set notation (including symbolic
expressions and set-builder notation), mathematical statements (largely in English), and Euler
diagrams. In this report, we share evidence regarding how these three representations provided
students with tools for reasoning and communicating about set relationships to explore the logic
of statements. By analyzing student responses to tasks that asked them to translate between the
representational systems, we gain insight into the accessibility and productivity of these tools for
such instruction.
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Introduction

Using multiple representations to support student reasoning and problem solving has long
been acknowledged as a cross-cutting theme in mathematics education (e.g., NCTM, 2000).
Working within and across representations is often a productive means of supporting student
reasoning and promoting communication in the classroom. In the realm of mathematical logic,
there is a long tradition of developing various visual and symbolic representation systems (e.g.,
Venn diagrams, Euler diagrams, truth tables, logical calculus), which would suggest this is a ripe
space for using visual and symbolic representations to support student learning. However, in our
experience, the use of spatial representations such as Euler or Venn diagrams to teach
undergraduate transition to proof (TTP) students is rare (see Dawkins et al., 2022). One
explanation for this is that diagrammatic representations of logic generally rely on set
relationships (Mineshima et al., 2012), but common approaches to teaching logic in
undergraduate TTP courses generally base logical concepts on truth-values rather than sets
(Dawkins et al., 2022). This is the case despite a body of evidence supporting the power of visual
representations for student reasoning in logic (e.g., Stenning, 2002; Sato & Mineshima, 2015).

Based on a series of experiments (e.g., Dawkins & Cook, 2017; Dawkins & Roh, 2024;
Dawkins et al., 2023; Eckman et al., 2023) involving a cycle of modeling student reasoning
about logic and task design to support learning of logic, our team has developed a teaching
sequence to foster learning of logic using set relationships. We use three primary representation
systems (Goldin, 1998) to engage students in reasoning about set relationships: set theoretic
symbols including set-builder notation, mathematical statements (rendered in English), and Euler
diagrams. Figure 1 portrays how a subset relationship between two properties P and Q might be
alternatively portrayed in the three representations. As Thompson (1994) explained regarding



different representations of a function, we should not assume that students always see all of these
as different representations of the same underlying object, even if that is our goal.

Set-th ti boli tati
ci-theoretie Syl‘: Co Il?c representation Mathematical statement representation
where A = {x € S: x has property P} Given any x EhS , if x has property P, then
and B = {x € S:x has property Q} x has property Q.

Euler diagram representation

Figure 1: Expressions of a subset relationship in the three representations

As with much teaching using various representations, in our teaching experiments our
research team did not want these representations to be the focus of instruction during most of the
unit in which we taught logic. Rather, after they were introduced, we wanted them to be means
by which students could reason and communicate about set relationships and the logic of
statements. In two undergraduate TTP whole-class teaching experiments, we encouraged
students to communicate within and across the three representational systems to learn set
relationships, logic of statements, and proof techniques. We assigned a number of tasks in which
students translated between the representations or generated new objects in one or more
representations. In this report, we share our analysis of student work on such tasks to consider
whether these three representations served as accessible and mathematically productive ways for
students to reason about and communicate about set relationships. In particular, we share
whether student use of these representations was normative — meaning the claims students made
were mathematically accurate — and whether they were consistent — meaning a student’s various
claims for related tasks agreed, even if the interpretations or claims were non-normative. Our
goals in this analysis are twofold: 1) to investigate the efficacy of teaching logic using these three
representations for supporting student inquiry (as evidenced by the conditions in the previous
sentence) and 2) pending positive evidence, to portray the potential of using these representations
for instruction on logic and proof techniques (as it stands in contrast to common practice).

Relevant Literature

This section reviews literature relevant to our project before briefly reviewing our own line
of research that informed the instructional approach employed in the teaching experiments.
Sets, diagrams, and the teaching and learning of logic

While Venn diagrams are perhaps the most well-known visual system for representing and
reasoning about logic, a variety of such systems were developed, primarily in the 19" century.
Research on how people reason with and learn from such systems is much more recent. Sato et
al. (2010) compared how people solve syllogism tasks using a few different representation
systems (see also Bronkhorst et al., 2022). In particular, they compared verbal solution methods
(no diagrams), Venn diagrams (in which regions always overlap and regions are shaded), and



Euler diagrams (in which possibilities are displayed by the overlap/non-overlap of regions, as in
Figure 1), each with a short period of training in each diagram system. They found that the
college student participants performed better with diagrams than with only verbal representations
and performed better with Euler diagrams than with Venn diagrams. Those authors explain the
value of diagrams by claiming, “we may plausibly assume that the semantic primitives of
quantificational sentences in natural language are relations between sets, and that people’s
inferences with quantified constructions are sensitive to such a relational structure” (Sato et al.,
2011, p. 2183). They assume that treating statements as relations among sets (as is portrayed in
Venn and Euler diagrams) rather than relations quantified over ranges of individual objects (as is
done in most standard treatments of logic, such as truth tables) is more consistent with natural
language. Sato et al. (2010) further claims that Euler diagrams fostered better performance since
they are in some sense “self-guiding” (p. 20) for minimally trained learners. We do not endorse
such an interpretation of representational transparency as though learners must not engage in
some constructive process of making meaning of the diagrams, but the evidence suggests that
students find Euler diagrams easier to use with minimal training nevertheless.

Mathematics education studies of sets, diagrams, and logic

Deloustal-Jorrand (2002, 2004) provides a strong antecedent to the present work as she
argued that student understanding of conditional statements should be built upon three
viewpoints: formal logic (truth table definition and quantification), sets (represented by spatial
diagrams), and implication (the conclusion can be inferred from the hypothesis). She
hypothesized that “it is necessary to know and establish links between these three points of view
on the implication for a good apprehension and a correct use of it” (Deloustal-Jorrand, 2002, p.
4). Similarly, Durand-Guerrier et al. (2012) emphasized that logic must be taught with attention
to semantic and syntactic aspects. While they do not endorse spatial diagrams in particular, such
diagrams are classically viewed as a representation of the semantics of statements which
supplement the syntax of formal statements or symbolic expressions. These authors support the
claim that students should reason about sets, likely expressed through spatial diagrams, to learn
about the logic of statements and proofs — however, how students bridge between these
representations has been explored less. In a forthcoming paper, Antonides et al. (in press)
explore how students link spatial and logical structures, recognizing the challenge and
opportunity posed by operating across these representational systems'.

Our approach to teaching logic is consistent with these other studies, but only indirectly drew
upon them. Our focus on sets arose from observations of productive student reasoning about
mathematical statements (Dawkins, 2017). This led us to depart from the common truth
conditions for statements defined by truth tables, and to adopt truth conditions based on sets.
Specifically, the truth of a conditional corresponds to a subset relationship between the truth sets
of the two predicates, as portrayed in Figure 1. As we explored how to use sets to support
students to reason about the logic of statements and proofs (e.g., Dawkins et al., 2023; Dawkins
& Roh, 2024), we saw the need to more directly teach basic set theory beforehand (Eckman et
al., 2023, provides examples motivating this need for instruction). The three-representation
approach investigated in this report arose as a tool for enacting this teaching sequence. Two other

! Both Sato et al. (2010) and Antonides et al. (in press) use Euler diagrams in which regions do not have existential
significance. This means that in Figure 1, the left-hand diagram could represent both the case where A € B and 4 =
B. We do not adopt those conventions, but rather use the two diagrams in Figure 1 to separately express the two
cases. This creates a two-to-one mapping between the diagrammatic representation and the symbolic and sentential
representations in the way we teach, as portrayed in Figure 1.



aspects of our approach worth mentioning are that 1) we focus on sets defined by mathematical
properties, not arbitrary sets such as {1, 7, Ford Taurus} and 2) we focus on mathematical
statements rather than everyday, nonsense, or purely symbolic statements.

Methods

As part of a larger project investigating student abstraction of logic (NSF DUE #1954768 and
#1954613), we conducted two whole-class teaching experiments (Steffe & Thompson, 2000) in
undergraduate TTP courses. These courses occurred at two large Southwestern, public
universities and were taught by the first and second authors. The data gathered consisted of
videos of all class meetings in which sets, logic, and proof techniques were covered, student
homework and exams, group interactions in target small groups, task-based interviews on logic
with members of the target groups both before and after instruction, and pre- and post- logic
assessments delivered online. Consistent with teaching experiment methodology, outside
observers were present at all class meetings and the research teams at the two sites met weekly to
discuss and conduct iterative analysis and planning.

All students were invited to provide informed consent to participate in the study. The data
analyzed in this report is limited to homework and exam work from students who opted into the
study (13 students in each class), which represents 87% and 100% of the students in the two
classes. This portion of the data was deemed most appropriate for analyzing all participating
students’ use of the three representations. The homework and exam tasks were not the same
across the two classes, though some tasks were shared. This creates an asymmetry in the
available data at the two sites. While this might be a problem if we tried to make claims about
student learning over the course of the teaching sequence, our goals in this report are more
modest. We want to consider the extent to which the three representations provided accessible
and mathematically productive ways for students to reason and communicate about set
relationships. We provide an example to illustrate what we mean below.

To answer this question, the third and fourth authors analyzed all homework and exam tasks
from the portions of the courses on sets, logic, and proof techniques. We looked for all the tasks
that invited students to operate between representations, often providing input in one and asking
students to respond in one or both of the others (see Fig 2 for an example). The research team
then selected a subset of these tasks for student response analysis, giving preference to those
tasks used in both classes. The third and fourth authors then analyzed all consenting student
responses to these tasks. Responses were coded for whether the response 1) made normative
claims in the representation, 2) was internally consistent, and 3) exhibited any recurring feature
observed in other responses and salient to translation between representations. As allowed by the
structure of each task, we attended to whether students were internally consistent in the claims
they made about sets across the representations. In other words, we sought to discern whether
they used different representations as ways to express the same underlying relationship. Though
many of the tasks in the courses were in a particular mathematical context (e.g., quadrilaterals),
many of the tasks we analyzed dealt with arbitrary sets and properties. Such tasks were assigned
to support student abstraction. These tasks are useful for this study to see how students related
the three representations without underlying reference to the specifics of some underlying
mathematical context.

Consider the task in Figure 2 to illustrate our coding. The normative responses for the first
question were 11a — true-true, 11b — false-true, and 11c — false-true. To us, the three statements
in question 12 corresponded to the set relationships in question 11: 11a~12b, 11b~12c, and



11c~12a. Since we know one of the two diagrams is the case, but we are not sure what is the
precise state of affairs between these properties, the normative answers to question 12 are that
statement b must be true while statements a and ¢ may be true or may be false. Even if students
did not give those normative answers to these questions, their answers to question 11 may be
consistent with their answers to question 12. We interpret this to mean that they linked the
statement and the set relationship normatively, but they might have read the diagram non-
normatively. This is an example of what we would have called consistent, though not normative
responses. These codes were then tallied to provide descriptive summaries that allowed us to
survey student use of the three representations, as we shall share in the following sections. Since
it is not our goal to compare the two classes, we aggregate all of the codes across the two classes
for tasks used at both sites.

Assume that for the sets M and N, we know that one of the following two set diagrams is the case, but we are
not sure which.

Diagram 1 Diagram 2

@@ S -

11) Determine whether the following set relationships is true or false in each of the two diagrams (in other
words, give two answers, one for Diagram 1 and one for Diagram 2).
a. MCC N
b. M°=N
c. NnM=¢

12) For each of the following statements, circle the best explanation of its truth value based on the diagrams
above.
a. There exists some x € S such that x isin M and x isin N.

i. Must be true. ii. May be true or may be false. iii. Must be false.
b. Givenany x € S, if x is in M€, then x is in N.

1. Must be true. ii. May be true or may be false. iii. Must be false.
c. Givenanyx € S, x is in M€ if and only if x is in N.

i. Must be true. ii. May be true or may be false. iii. Must be false.

Figure 2: Translation between representations task from a midterm exam

Results

In this section, we present our findings from analyzing student responses to three tasks
(though each is multi-part). The first two tasks were given in both classes. The third (in Figure 2)
was only given at one site. While we identified other tasks relevant to our investigation, space
does not permit us to report more in this conference paper. When possible, we share instances of
interesting student thinking to support the claim that the three representations were productive
for student inquiry into logic.
Task 1: Building sets containing the given set

Figure 3 presents Task 1 in which students were asked to build sets containing the given set.
This was both an opportunity to use set-builder notation and to think about how properties



influence the membership of a set. While this task did not include either statements or Euler
diagrams, we consider the coordination of properties and sets of objects another key aspect of
constructing set relationships. Table 1 presents the results of the coding analysis. Most students
used set builder notation as intended. Furthermore, more than 81.7% of the responses identified a
superset of the given set (even if equal to the given set). Set D proved to be the most challenging
for many students because there are no familiar sets of quadrilaterals that contain all trapezoids.
Student responses tended to lean heavily on familiar conditions (i.e., those taught in school) to
construct their supersets. One interesting pattern in some of the non-normative responses is
illustrated by the student whose response for set D was the set of quadrilaterals in which all four
sides are parallel. This produces a subset of D, but the student was likely thinking about how
having two parallel sides is “contained in” having four parallel sides. This way of reasoning
arises on other tasks, such as when students think the set of equilateral triangles contains the set
of isosceles (defined inclusively) since three equal sides contains two.

Let T denote the set of all triangles. Qu is the set of all quadrilaterals.
Z is the set of integers. N is the set of natural numbers, whichis {1, 2, 3,4, ... }.
For each of the following sets, use set-builder notation to construct another set that contains the given

set. In other words, the set given should be a subset of the set you define. (My answers are that A,B C Z,
C € T, and D € Qu, so you may not use those answers.) Each task is worth % point.

A ={x € Z:x is amultiple of 2 and a multiple of 11}.
B = {x € Z:when x is divided by 4,it has a remainder of 2}.

C ={AXYZ € T:AXYZ is obtuse}.
D = {LMNO € Qu: at least two sides of LMNO are parallel}.

Figure 3: Task 1, which invites students to use set-builder notation

Table 1: Features of student responses to Task 1 (n=26)

Response Feature Set A Set B Set C Set D Total
[Used set builder notation 73% 81% 88% 85% 81.7%
IDid not use set builder notation 27% 19% 12% 12% 17.3%
Superset 62% 81% 70% 23% 58.7%
Equivalent Set 31% 8% 27% 27% 23.1%
Subset or Incorrect Set 8% 12% 4% 50% 18.3%

Task 2: Constructing diagrams and new set relationships from them

Task 2 (see Figure 4) invited students to translate a set expression into Euler diagrams and
then to use those diagrams to produce new set expressions. We had noted in our previous
experiments that students often struggled to think about complement sets as the inside of regions
in Euler diagrams. For this reason, we purposefully asked them to draw diagrams where the
given information contained a complement and chose to provide them a diagram where the
complement was inside of an oval region. There are two normative diagrams for this
arrangement similar to those in Figure 1, but a range of other diagrams may be drawn if students
represent S as the inside of a region or if they imagine any sets to be empty or universal.
Accordingly, as displayed in Table 2, some students produced three diagrams. About one quarter

of students could only produce one normative diagram.



Task 2 (2 pts): Assume for the sets S, T, which are in the universal
set {), that we know S € T Q
a) Draw as many different diagrams as you can portraying
the possible relationships between S and T.
b) Identify 2 other set relationships that must also be true T
among the sets S, T, 5S¢, T¢.
¢) Suppose another student drew their diagram as shown to
the right. Are your answers to part b still true in this
diagram? How could you shade the diagram to show how
your set relationships are true in this diagram?

Figure 4: Task 2, which asks students to connect set notation and Euler diagrams

Table 2: Features of student responses to Task 2

Number of Normative Diagrams Produced Set Relation Normativity Internal Consistency
Three 11.5% Normative set relations 53.8% Fully internally consistent 57.7%
Two 57.7% Non-normative set 46.2% At least one consistent 88.5%
One 26.9% relations

The intended answers to part b (based on what was discussed in the classes) were that T¢ C S
and that S¢ N T¢ = @ since these are both logically equivalent to the given condition, though
other statements were possible. As the third column of Table 2 displays, 88.5% of students
generated a set relation that was consistent with at least one of their diagrams. We interpret this
as evidence of some fluency between the representations. The lower performance indicated in
other cells points to the challenge of this task caused both by the presence of the complement and
the many-to-one pairing between diagrams and set relationships. Less than 60% of student
responses presented a set relation that matched all of their diagrams (according to our
interpretation thereof). Since student diagrams were either non-normative or did not capture all
of the possibilities, this meant that almost half of their given set relationships were non-
normative (not necessarily true given S¢ € T).

We want to highlight two types of responses reflected in this data. One student only drew a
diagram in which S and T are complements of one another. This is consistent with the given
information but does not show all possibilities. As a result, her first set relation, SNT = @, is
consistent with her diagram, but is not normative since it is untrue when S¢ < T. Her other set
relation, S U S¢ = (), is a tautology. It is consistent with the given information, her diagram, and
is normative, but it would be true of any set and does not depend upon the given information. A
second type of response we noticed was when students generated other types of equivalent
conditions, such as S N T = S¢. We had not taught these other conditions equivalent to a subset
relation, so we infer that the Euler diagrams supported students in noticing new, normative
relationships. Both these equivalent conditions and the tautologies suggest that the Euler
diagrams were productive for students’ ability to identify new set relationships.

Task 3: Evaluating set relationships and statements from given Euler diagrams

Task 3 appeared in Figure 2. As with Task 2, we purposefully introduced complement sets
into this task to see if students could reason about them as sets much like any other set. Table 3
below presents how frequently student responses were normative and consistent with
corresponding other responses. The codes group the parts of question 11 and question 12 that
correspond according to normative logic. The data show that students frequently gave normative
answers to most tasks, though responses to 12¢ were often neither normative nor consistent. We



interpret this to suggest that the language of “if and only if” was still not being coordinated with
the other representations in the manner intended. On the other tasks, students were consistent
with their diagrams on nearly 4 out of 5 responses, suggesting relatively strong fluency between
the representations.

Table 3: Student responses to Task 3

Problem Pair 1 Problem Pair 2 Problem Pair 3
D1 [ D2 |Claim D1 | D2 |Claim D1 | D2 | Claim
Normative 100%|[ 79% | 86% |Normative 93% [93% | 50% | Normative 71%| 93% | 79%
Non-Normative | 0% [21% | 14% |Non-Normative| 7% | 7% | 50% |Non-Normative |29%| 7% | 21%
Internally Consistent 79% Internally Consistent 36% Internally Consistent 79%
Discussion

This paper analyzed how students in two undergraduate TTP courses, which were designed
to foster set-based meanings for logic and proof, used the three representations of set
relationships to reason about and communicate about logic. This was done by analyzing student
responses to tasks that particularly asked them to operate within and across the representations.
Student responses were coded both in terms of whether they were, first, normatively correct and,
second, internally consistent with students’ responses to other parts of the task. Third, we also
noted when students gave responses that were mathematically accurate even if logically less
interesting, such as tautologies. While we are pleased by normative responses, we take consistent
and tautological responses as supporting evidence that the three representations were productive
for student reasoning and communicating.

Much of the data shows that a majority, but not all, student responses were normative and/or
consistent. We draw two implications from this. We claim that operating in the representations
was accessible and productive for students since most of them were able to demonstrate
productive reasoning about set relationships on these tasks. By reasoning within and across the
representations, we hoped students could construct and abstract set relationships both between
particular properties and arbitrary properties. The second implication we draw is that reasoning
between representations is non-trivial. By contrast, Sato et al. (2010) claim that Euler diagrams
are self-guiding and certain inferences can be read directly from diagrams. We agree that they
are facilitating, but we claim learning to operate in these representations is a meaningful
accomplishment. Further, our tasks reveal how task features such as complement sets,
coordinating different cases, and needing to generate non-familiar sets all increase the challenge
of student reasoning about logic. We hope that future work will continue to explore student
learning in this arena and future instruction will seek to make use of these three representations
to support student progress.
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