
STUDENT USE OF THREE REPRESENTATIONS OF SET RELATIONSHIPS TO REASON 
ABOUT LOGIC IN UNDERGRADUATE TRANSITION TO PROOF COURSES 

 
Paul Christian Dawkins 
Texas State University 
pcd27@txstate.edu 

Kyeong Hah Roh 
Arizona State University 

khroh@asu.edu 

Olivia Bruner 
Arizona State University 
ojbruner@asu.edu 

Mario Gonzalez 
Texas State University 
mag658@txstate.edu 

In transition to proof courses for undergraduates, we conducted teaching experiments 
supporting students to learn logic and proofs rooted in set-based meanings. We invited students 
to reason about sets using three representational systems: set notation (including symbolic 
expressions and set-builder notation), mathematical statements (largely in English), and Euler 
diagrams. In this report, we share evidence regarding how these three representations provided 
students with tools for reasoning and communicating about set relationships to explore the logic 
of statements. By analyzing student responses to tasks that asked them to translate between the 
representational systems, we gain insight into the accessibility and productivity of these tools for 
such instruction.  
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Introduction 
Using multiple representations to support student reasoning and problem solving has long 

been acknowledged as a cross-cutting theme in mathematics education (e.g., NCTM, 2000). 
Working within and across representations is often a productive means of supporting student 
reasoning and promoting communication in the classroom. In the realm of mathematical logic, 
there is a long tradition of developing various visual and symbolic representation systems (e.g., 
Venn diagrams, Euler diagrams, truth tables, logical calculus), which would suggest this is a ripe 
space for using visual and symbolic representations to support student learning. However, in our 
experience, the use of spatial representations such as Euler or Venn diagrams to teach 
undergraduate transition to proof (TTP) students is rare (see Dawkins et al., 2022). One 
explanation for this is that diagrammatic representations of logic generally rely on set 
relationships (Mineshima et al., 2012), but common approaches to teaching logic in 
undergraduate TTP courses generally base logical concepts on truth-values rather than sets 
(Dawkins et al., 2022). This is the case despite a body of evidence supporting the power of visual 
representations for student reasoning in logic (e.g., Stenning, 2002; Sato & Mineshima, 2015).  
Based on a series of experiments (e.g., Dawkins & Cook, 2017; Dawkins & Roh, 2024; 

Dawkins et al., 2023; Eckman et al., 2023) involving a cycle of modeling student reasoning 
about logic and task design to support learning of logic, our team has developed a teaching 
sequence to foster learning of logic using set relationships. We use three primary representation 
systems (Goldin, 1998) to engage students in reasoning about set relationships: set theoretic 
symbols including set-builder notation, mathematical statements (rendered in English), and Euler 
diagrams. Figure 1 portrays how a subset relationship between two properties 𝑃 and 𝑄 might be 
alternatively portrayed in the three representations. As Thompson (1994) explained regarding 



different representations of a function, we should not assume that students always see all of these 
as different representations of the same underlying object, even if that is our goal.  

 
Figure 1: Expressions of a subset relationship in the three representations  

As with much teaching using various representations, in our teaching experiments our 
research team did not want these representations to be the focus of instruction during most of the 
unit in which we taught logic. Rather, after they were introduced, we wanted them to be means 
by which students could reason and communicate about set relationships and the logic of 
statements. In two undergraduate TTP whole-class teaching experiments, we encouraged 
students to communicate within and across the three representational systems to learn set 
relationships, logic of statements, and proof techniques. We assigned a number of tasks in which 
students translated between the representations or generated new objects in one or more 
representations. In this report, we share our analysis of student work on such tasks to consider 
whether these three representations served as accessible and mathematically productive ways for 
students to reason about and communicate about set relationships. In particular, we share 
whether student use of these representations was normative – meaning the claims students made 
were mathematically accurate – and whether they were consistent – meaning a student’s various 
claims for related tasks agreed, even if the interpretations or claims were non-normative. Our 
goals in this analysis are twofold: 1) to investigate the efficacy of teaching logic using these three 
representations for supporting student inquiry (as evidenced by the conditions in the previous 
sentence) and 2) pending positive evidence, to portray the potential of using these representations 
for instruction on logic and proof techniques (as it stands in contrast to common practice).  
 

Relevant Literature 
This section reviews literature relevant to our project before briefly reviewing our own line 

of research that informed the instructional approach employed in the teaching experiments.  
Sets, diagrams, and the teaching and learning of logic 
While Venn diagrams are perhaps the most well-known visual system for representing and 

reasoning about logic, a variety of such systems were developed, primarily in the 19th century. 
Research on how people reason with and learn from such systems is much more recent. Sato et 
al. (2010) compared how people solve syllogism tasks using a few different representation 
systems (see also Bronkhorst et al., 2022). In particular, they compared verbal solution methods 
(no diagrams), Venn diagrams (in which regions always overlap and regions are shaded), and 



Euler diagrams (in which possibilities are displayed by the overlap/non-overlap of regions, as in 
Figure 1), each with a short period of training in each diagram system. They found that the 
college student participants performed better with diagrams than with only verbal representations 
and performed better with Euler diagrams than with Venn diagrams. Those authors explain the 
value of diagrams by claiming, “we may plausibly assume that the semantic primitives of 
quantificational sentences in natural language are relations between sets, and that people’s 
inferences with quantified constructions are sensitive to such a relational structure” (Sato et al., 
2011, p. 2183). They assume that treating statements as relations among sets (as is portrayed in 
Venn and Euler diagrams) rather than relations quantified over ranges of individual objects (as is 
done in most standard treatments of logic, such as truth tables) is more consistent with natural 
language. Sato et al. (2010) further claims that Euler diagrams fostered better performance since 
they are in some sense “self-guiding” (p. 20) for minimally trained learners. We do not endorse 
such an interpretation of representational transparency as though learners must not engage in 
some constructive process of making meaning of the diagrams, but the evidence suggests that 
students find Euler diagrams easier to use with minimal training nevertheless.  
Mathematics education studies of sets, diagrams, and logic 
Deloustal-Jorrand (2002, 2004) provides a strong antecedent to the present work as she 

argued that student understanding of conditional statements should be built upon three 
viewpoints: formal logic (truth table definition and quantification), sets (represented by spatial 
diagrams), and implication (the conclusion can be inferred from the hypothesis). She 
hypothesized that “it is necessary to know and establish links between these three points of view 
on the implication for a good apprehension and a correct use of it” (Deloustal-Jorrand, 2002, p. 
4). Similarly, Durand-Guerrier et al. (2012) emphasized that logic must be taught with attention 
to semantic and syntactic aspects. While they do not endorse spatial diagrams in particular, such 
diagrams are classically viewed as a representation of the semantics of statements which 
supplement the syntax of formal statements or symbolic expressions. These authors support the 
claim that students should reason about sets, likely expressed through spatial diagrams, to learn 
about the logic of statements and proofs – however, how students bridge between these 
representations has been explored less. In a forthcoming paper, Antonides et al. (in press) 
explore how students link spatial and logical structures, recognizing the challenge and 
opportunity posed by operating across these representational systems1.  
Our approach to teaching logic is consistent with these other studies, but only indirectly drew 

upon them. Our focus on sets arose from observations of productive student reasoning about 
mathematical statements (Dawkins, 2017). This led us to depart from the common truth 
conditions for statements defined by truth tables, and to adopt truth conditions based on sets. 
Specifically, the truth of a conditional corresponds to a subset relationship between the truth sets 
of the two predicates, as portrayed in Figure 1. As we explored how to use sets to support 
students to reason about the logic of statements and proofs (e.g., Dawkins et al., 2023; Dawkins 
& Roh, 2024), we saw the need to more directly teach basic set theory beforehand (Eckman et 
al., 2023, provides examples motivating this need for instruction). The three-representation 
approach investigated in this report arose as a tool for enacting this teaching sequence. Two other 

 
1 Both Sato et al. (2010) and Antonides et al. (in press) use Euler diagrams in which regions do not have existential 
significance. This means that in Figure 1, the left-hand diagram could represent both the case where 𝐴 ⊂ 𝐵 and 𝐴 =
𝐵. We do not adopt those conventions, but rather use the two diagrams in Figure 1 to separately express the two 
cases. This creates a two-to-one mapping between the diagrammatic representation and the symbolic and sentential 
representations in the way we teach, as portrayed in Figure 1.  



aspects of our approach worth mentioning are that 1) we focus on sets defined by mathematical 
properties, not arbitrary sets such as {1, 𝜋,	Ford	Taurus} and 2) we focus on mathematical 
statements rather than everyday, nonsense, or purely symbolic statements.  
 

Methods 
As part of a larger project investigating student abstraction of logic (NSF DUE #1954768 and 

#1954613), we conducted two whole-class teaching experiments (Steffe & Thompson, 2000) in 
undergraduate TTP courses. These courses occurred at two large Southwestern, public 
universities and were taught by the first and second authors. The data gathered consisted of 
videos of all class meetings in which sets, logic, and proof techniques were covered, student 
homework and exams, group interactions in target small groups, task-based interviews on logic 
with members of the target groups both before and after instruction, and pre- and post- logic 
assessments delivered online. Consistent with teaching experiment methodology, outside 
observers were present at all class meetings and the research teams at the two sites met weekly to 
discuss and conduct iterative analysis and planning.  
All students were invited to provide informed consent to participate in the study. The data 

analyzed in this report is limited to homework and exam work from students who opted into the 
study (13 students in each class), which represents 87% and 100% of the students in the two 
classes. This portion of the data was deemed most appropriate for analyzing all participating 
students’ use of the three representations. The homework and exam tasks were not the same 
across the two classes, though some tasks were shared. This creates an asymmetry in the 
available data at the two sites. While this might be a problem if we tried to make claims about 
student learning over the course of the teaching sequence, our goals in this report are more 
modest. We want to consider the extent to which the three representations provided accessible 
and mathematically productive ways for students to reason and communicate about set 
relationships. We provide an example to illustrate what we mean below.  
To answer this question, the third and fourth authors analyzed all homework and exam tasks 

from the portions of the courses on sets, logic, and proof techniques. We looked for all the tasks 
that invited students to operate between representations, often providing input in one and asking 
students to respond in one or both of the others (see Fig 2 for an example). The research team 
then selected a subset of these tasks for student response analysis, giving preference to those 
tasks used in both classes. The third and fourth authors then analyzed all consenting student 
responses to these tasks. Responses were coded for whether the response 1) made normative 
claims in the representation, 2) was internally consistent, and 3) exhibited any recurring feature 
observed in other responses and salient to translation between representations. As allowed by the 
structure of each task, we attended to whether students were internally consistent in the claims 
they made about sets across the representations. In other words, we sought to discern whether 
they used different representations as ways to express the same underlying relationship. Though 
many of the tasks in the courses were in a particular mathematical context (e.g., quadrilaterals), 
many of the tasks we analyzed dealt with arbitrary sets and properties. Such tasks were assigned 
to support student abstraction. These tasks are useful for this study to see how students related 
the three representations without underlying reference to the specifics of some underlying 
mathematical context.  
Consider the task in Figure 2 to illustrate our coding. The normative responses for the first 

question were 11a – true-true, 11b – false-true, and 11c – false-true. To us, the three statements 
in question 12 corresponded to the set relationships in question 11: 11a~12b, 11b~12c, and 



11c~12a. Since we know one of the two diagrams is the case, but we are not sure what is the 
precise state of affairs between these properties, the normative answers to question 12 are that 
statement b must be true while statements a and c may be true or may be false. Even if students 
did not give those normative answers to these questions, their answers to question 11 may be 
consistent with their answers to question 12. We interpret this to mean that they linked the 
statement and the set relationship normatively, but they might have read the diagram non-
normatively. This is an example of what we would have called consistent, though not normative 
responses. These codes were then tallied to provide descriptive summaries that allowed us to 
survey student use of the three representations, as we shall share in the following sections. Since 
it is not our goal to compare the two classes, we aggregate all of the codes across the two classes 
for tasks used at both sites.  

 
Figure 2: Translation between representations task from a midterm exam 

Results 
In this section, we present our findings from analyzing student responses to three tasks 

(though each is multi-part). The first two tasks were given in both classes. The third (in Figure 2) 
was only given at one site. While we identified other tasks relevant to our investigation, space 
does not permit us to report more in this conference paper. When possible, we share instances of 
interesting student thinking to support the claim that the three representations were productive 
for student inquiry into logic.  
Task 1: Building sets containing the given set 
Figure 3 presents Task 1 in which students were asked to build sets containing the given set. 

This was both an opportunity to use set-builder notation and to think about how properties 



influence the membership of a set. While this task did not include either statements or Euler 
diagrams, we consider the coordination of properties and sets of objects another key aspect of 
constructing set relationships. Table 1 presents the results of the coding analysis. Most students 
used set builder notation as intended. Furthermore, more than 81.7% of the responses identified a 
superset of the given set (even if equal to the given set). Set D proved to be the most challenging 
for many students because there are no familiar sets of quadrilaterals that contain all trapezoids. 
Student responses tended to lean heavily on familiar conditions (i.e., those taught in school) to 
construct their supersets. One interesting pattern in some of the non-normative responses is 
illustrated by the student whose response for set 𝐷 was the set of quadrilaterals in which all four 
sides are parallel. This produces a subset of 𝐷, but the student was likely thinking about how 
having two parallel sides is “contained in” having four parallel sides. This way of reasoning 
arises on other tasks, such as when students think the set of equilateral triangles contains the set 
of isosceles (defined inclusively) since three equal sides contains two. 

 
Figure 3: Task 1, which invites students to use set-builder notation  

Table 1: Features of student responses to Task 1 (n=26) 

 

Task 2: Constructing diagrams and new set relationships from them 
Task 2 (see Figure 4) invited students to translate a set expression into Euler diagrams and 

then to use those diagrams to produce new set expressions. We had noted in our previous 
experiments that students often struggled to think about complement sets as the inside of regions 
in Euler diagrams. For this reason, we purposefully asked them to draw diagrams where the 
given information contained a complement and chose to provide them a diagram where the 
complement was inside of an oval region. There are two normative diagrams for this 
arrangement similar to those in Figure 1, but a range of other diagrams may be drawn if students 
represent 𝑆 as the inside of a region or if they imagine any sets to be empty or universal. 
Accordingly, as displayed in Table 2, some students produced three diagrams. About one quarter 
of students could only produce one normative diagram.  



 
Figure 4: Task 2, which asks students to connect set notation and Euler diagrams  

Table 2: Features of student responses to Task 2 

 

The intended answers to part b (based on what was discussed in the classes) were that 𝑇! ⊆ 𝑆 
and that 𝑆! ∩ 𝑇! = ∅ since these are both logically equivalent to the given condition, though 
other statements were possible. As the third column of Table 2 displays, 88.5% of students 
generated a set relation that was consistent with at least one of their diagrams. We interpret this 
as evidence of some fluency between the representations. The lower performance indicated in 
other cells points to the challenge of this task caused both by the presence of the complement and 
the many-to-one pairing between diagrams and set relationships. Less than 60% of student 
responses presented a set relation that matched all of their diagrams (according to our 
interpretation thereof). Since student diagrams were either non-normative or did not capture all 
of the possibilities, this meant that almost half of their given set relationships were non-
normative (not necessarily true given 𝑆! ⊆ 𝑇).  
We want to highlight two types of responses reflected in this data. One student only drew a 

diagram in which 𝑆 and 𝑇 are complements of one another. This is consistent with the given 
information but does not show all possibilities. As a result, her first set relation, 𝑆 ∩ 𝑇 = ∅, is 
consistent with her diagram, but is not normative since it is untrue when 𝑆! ⊂ 𝑇. Her other set 
relation, 𝑆 ∪ 𝑆! = Ω, is a tautology. It is consistent with the given information, her diagram, and 
is normative, but it would be true of any set and does not depend upon the given information. A 
second type of response we noticed was when students generated other types of equivalent 
conditions, such as 𝑆! ∩ 𝑇 = 𝑆!. We had not taught these other conditions equivalent to a subset 
relation, so we infer that the Euler diagrams supported students in noticing new, normative 
relationships. Both these equivalent conditions and the tautologies suggest that the Euler 
diagrams were productive for students’ ability to identify new set relationships.  
Task 3: Evaluating set relationships and statements from given Euler diagrams 
Task 3 appeared in Figure 2. As with Task 2, we purposefully introduced complement sets 

into this task to see if students could reason about them as sets much like any other set. Table 3 
below presents how frequently student responses were normative and consistent with 
corresponding other responses. The codes group the parts of question 11 and question 12 that 
correspond according to normative logic. The data show that students frequently gave normative 
answers to most tasks, though responses to 12c were often neither normative nor consistent. We 



interpret this to suggest that the language of “if and only if” was still not being coordinated with 
the other representations in the manner intended. On the other tasks, students were consistent 
with their diagrams on nearly 4 out of 5 responses, suggesting relatively strong fluency between 
the representations.  

Table 3: Student responses to Task 3 

 

Discussion 
This paper analyzed how students in two undergraduate TTP courses, which were designed 

to foster set-based meanings for logic and proof, used the three representations of set 
relationships to reason about and communicate about logic. This was done by analyzing student 
responses to tasks that particularly asked them to operate within and across the representations. 
Student responses were coded both in terms of whether they were, first, normatively correct and, 
second, internally consistent with students’ responses to other parts of the task. Third, we also 
noted when students gave responses that were mathematically accurate even if logically less 
interesting, such as tautologies. While we are pleased by normative responses, we take consistent 
and tautological responses as supporting evidence that the three representations were productive 
for student reasoning and communicating.  
Much of the data shows that a majority, but not all, student responses were normative and/or 

consistent. We draw two implications from this. We claim that operating in the representations 
was accessible and productive for students since most of them were able to demonstrate 
productive reasoning about set relationships on these tasks. By reasoning within and across the 
representations, we hoped students could construct and abstract set relationships both between 
particular properties and arbitrary properties. The second implication we draw is that reasoning 
between representations is non-trivial. By contrast, Sato et al. (2010) claim that Euler diagrams 
are self-guiding and certain inferences can be read directly from diagrams. We agree that they 
are facilitating, but we claim learning to operate in these representations is a meaningful 
accomplishment. Further, our tasks reveal how task features such as complement sets, 
coordinating different cases, and needing to generate non-familiar sets all increase the challenge 
of student reasoning about logic. We hope that future work will continue to explore student 
learning in this arena and future instruction will seek to make use of these three representations 
to support student progress.  
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