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Abstract: Even though partial observability is prevalent in robotics, most rein-
forcement learning studies avoid it due to the difficulty of learning a policy that
can efficiently memorize past events and seek information. Fortunately, in many
cases, learning can be done in an asymmetric setting where states are available
during training but not during execution. Prior studies often leverage the state
to indirectly influence the training of a history-based actor (actor-critic methods)
or a history-based critic (value-based methods). Instead, we propose using state-
observation and state-history mutual information to improve the agent’s architec-
ture and ability to seek information and memorize efficiently through intrinsic re-
wards and an auxiliary task. Our method outperforms strong baselines through ex-
tensive experiments and achieves successful sim-to-real transfers to a real robot.

Keywords: Partial Observability, Mutual Information, Asymmetric Learning

1 Introduction

While partial observability is ubiquitous in robotics [1, 2], most reinforcement learning (RL) robotics
research avoids it due to the difficulty of training a policy that can effectively memorize past infor-
mation and perform information-gathering actions. Fortunately, full or near-full observability dur-
ing training is possible in many real-world domains using a simulator or a generative environment
model. In the literature, this is the asymmetric learning setting [3, 4, 5, 6, 7, 8], in which privileged
information such as states can be available during training. Previous work in this setting often learns
a state-based critic to indirectly influence the learning process of a) a history-based actor [3, 9] using
actor-critic RL to output actions directly, or b) a history-based critic [6] in value-based RL to extract
actions from. In contrast, using an information-theoric approach, we instead use the state to generate
intrinsic rewards and optimize an auxiliary task, shaping the agent’s behavior directly.

Specifically, this study proposes to use the mutual information between the state and the history
during training to motivate active information gathering and to improve task-relevant memorization.
Our intuition is that active information gathering mainly involves discovering actions that help the
agent reveal more about the environment’s state, gradually moving from partial to full observability.
Therefore, the amount of mutual information gained per step can be a useful intrinsic reward to
encourage informative actions. Moreover, we train the agent to predict the state features from past
histories as an auxiliary task to help the agent focus on memorizing enlightening past events, i.e.,
previous actions or observations that have gained more information about the environment state.

We propose a two-stage approach to turn intuition into a practical and efficient method. The first
stage extracts task-relevant but non-overlapping state and observation features by performing super-
vised learning using a state-contained dataset. Specifically, we predict the reward and the dynamics
in the feature space while minimizing the mutual information between state and observation features.
We perform task learning in the second stage, which involves training a transformer-based sequence
model to output a history summary with maximal mutual information with the learned state features
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as possible. The goal is to reduce the memory burden of the sequence model by encouraging it to
avoid memorizing readily available observation features. With a purposefully designed structure,
intrinsic rewards, and the auxiliary task, our approach outperforms other strong baselines in exper-
iments on six domains. Moreover, we carry out successful sim-to-real transfers to verify that the
policies learned in simulation can perform well in three robot manipulation tasks.

2 Preliminaries

We first discuss the partially observable Markov decision process [10, 11] (POMDP) framework,
methods that minimize/maximize the mutual information, and describe our problem statement.

2.1 Partially Observable Markov Decision Process

A POMDP is defined by a tuple (S,A,Ω, T, R,O), where S , A, and Ω are the state space, the action
space, and the observation space, respectively. In a POMDP, the transition function T (s, a, s′) gov-
erns state changes, and the observation function O(a, s′, o) controls how observations are emitted.
As the current observation only partly reflects the state, acting optimally in a POMDP with a high
level of partial observability often requires information gathering and a memory-based policy that
selects actions based on the entire action-observation history ht = (o0, a0, . . . , at−1, ot) [12].

2.2 Minimizing and Maximizing Mutual Information

Mutual Information (MI) measures the dependence between two random variables x and y:

I(x; y) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
, (1)

where p(x, y) is the joint distribution and p(x), p(y) are the marginals.

Minimizing MI: Cheng et al. [13] proposed to minimize I(x; y) by minimizing an upper bound
named Contrastive Log-ratio Upper Bound (CLUB), which is formulated as:

ICLUB := Ep(x,y)[log p(y|x)]− Ep(x)Ep(y)[log p(y|x)] ≥ I(x; y) (2)

In practice, p(y|x) is often unknown and approximated by a learnable variational distribution q(y|x).

Maximizing MI: Instead of maximizing I(x, y), Deep InfoMax (DIM) [14] is a method that max-
imizes the MI between x and a high-level representation zx of x. The process involves an encoder
E : X → Zx and a classifier σ : X × Zx → R to discriminate between samples from p(x, zx) and
the product of marginals p(x)p(zx). DIM uses the Jensen-Shannon MI estimator [15]:

IDIM := Ep(x,E(x))[−sp(−σ(x,E(x)))]− Ep(x)p(E(x))[sp(σ(x,E(x)))] ≤ I(x;E(x)), (3)

where sp(z) = log(1 + ez) is the softplus function. Maximizing I(x, zx) involves continuously
updating E and σ by maximizing the estimator IDIM through gradient ascent.

In practice, we optimize Eq. (2) and Eq. (3) through samples; see the Appendix for more details.

2.3 Problem Statement

We focus on the asymmetric RL setting [3, 9, 6, 8] in which, during training, both the state st and
the observation ot are available while only ot is accessible during execution. Unlike an MDP, the
goal here is to find a history-based (not reactive) policy π(at|ht) which maximizes the expected
discounted return J = E [

∑∞
t=0 γ

tR(st, at)], where γ ∈ [0, 1) is a discounting factor. We use an
information-based approach to leverage states during training for efficiently learning π(at|ht).

3 Method

Our method has two stages. First, we learn non-overlapping state and observation features from a
fixed dataset containing privileged state information. The dataset is generated using a random agent
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or a simple hard-coded planner. Next, we use the learned features to train a memory-based agent
with a two-branch architecture using information-based intrinsic rewards and an auxiliary task.

3.1 Learning Task-Relevant and Non-Overlapping State and Observation Features

This stage aims to learn state features zs (encoded by a state encoder ϕ) and observation features
zo (encoded by an observation encoder ψ) with two desired properties. (P1): Firstly, we want the
concatenated feature zs ⊕ zo to encode task-relevant state features. In other words, zs ⊕ zo is a
compact “state”, which is useful when the raw state is high-dimensional or contains task-irrelevant
features. (P2): Secondly, we want zs to contain unobservable task-relevant features, while zo con-
tains observable task-relevant features. With P1 and P2 satisfied, zs will encode only task-relevant
but unobservable features inferred from the history as zo already contains features extracted from
the observation. We can also view zs as the outcome of an ideal information-gathering process,
which results in task-relevant hidden information not captured by the current observation (i.e., zo).

We satisfy (P1) by training zs ⊕ zo given an action a to be predictive of zs
′
, zo

′
and the reward

r, similar to bi-simulation studies for MDPs [16, 17, 18]. For (P2), Wang et al. [8] minimized the
KL divergence between ϕ(s) and a fixed standard normal distribution by giving a penalty whenever
features are derived from the s instead of o. However, we will empirically show (in Section 5.2.1)
that this approach does not satisfy (P2). Instead, inspired by [19], we directly minimize the mutual
information I(zs; zo) using Eq. (2). However, minimizing only I(zs; zo) may result in an undesired
scenario, where I(zs; zo) is small but only ϕ(s) orψ(o) captures all good features, and the remaining
contains no useful information. Therefore, we further regularize learning with maximizing I(o; zo)
and I(s; zs) using Eq. (3). Algorithm 1 summarizes this stage (more details in the Appendix C).

Algorithm 1 Learning zs and zo (more details in Appendix C)

Require: Dataset D = {(si, oi, ai, ri, s′i, o′i)}Ni=1
1: repeat
2: Sample a batch of data {(si, oi, ai, ri, s′i, o′i)}Bi=1 ∼ D
3: Compute current features zsi = ϕ(si), zoi = ψ(oi)

4: Compute reward and next features using a dynamics model g: r̂i, ẑis
′
, ẑio

′
= g(zsi , z

o
i , ai)

5: Compute target features zs
′

i = ϕ(s′i), z
o′

i = ψ(o′i)

6: Compute Lr = (ri − r̂i)
2, Ls = ∥stop-grad(zs

′

i )− ẑi
s′∥22, Lo = ∥stop-grad(zo

′

i )− ẑo
′

i ∥22
7: Compute LCLUB using Eq. (2) to minimize I(zs; zo)
8: Compute LDIM using Eq. (3) to maximize I(o; zo) and I(s; zs)
9: Update ϕ, ψ, g to minimize λrLr + λsLs + λoLo + λCLUBLCLUB + λDIMLDIM

10: until convergence

3.2 Learning Partially Observable Tasks

After learning zs and zo, we now introduce a memory-based agent with two-branch architecture
(see Fig. 1) for task learning using RL. The memory-based top branch is responsible for encoding
the history using a GPT-v2-based sequence model [20, 21, 22]. In contrast, the memoryless bottom
branch encodes the current observation. When the agent finishes gathering information, the top
branch will ideally output features in zs, which are not captured in zo. For the bottom branch, we
directly use ψ(o) to initialize it. A two-branch architecture is not new by itself (see [23, 24, 25,
26]) and has been found to offer no performance gain over the single-branch (no bottom branch)
architecture [23]. Unlike the previous work that used this architecture, by having non-overlapping
zs and zo and using zs to bias the top branch’s learning, we alleviate the top branch’s memory
burden by training it to focus only on features not readily observed.

Because zs is the ideal outcome of the information-gathering process, we encourage information-
gathering by rewarding actions that produce ht that can maximize I(ht; zst ). Moreover, we use
maximizing I(ht; zst ) as an auxiliary task to help memorize important information from history.
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Figure 1: Our proposed agent structure with two branches (⊕ denotes vector concatenation). The
observation encoder ψ(o) is directly used for the bottom branch. An intrinsic reward calculated
based on I(ht; zs) encourages information seeking. Moreover, to better memorize useful informa-
tion, besides being trained to minimize the RL losses, the top branch (k) is trained to predict the
state feature zs from the history ht.

Encouraging Information Seeking. By maximizing I(ht; zst ), the agent is encouraged to gather
information by acting to get ht that encodes maximal information with zst . We closely follow [27]
and maximize the mutual information by maximizing the following lower bound [28]:

I(ht; z
s
t ) = H(zst )−H(zst |ht) ≥ H(zst ) + Eht∼π[log fθ(z

s
t |ht)]

= H(zst ) + log fθ(z
s
t |h0) + Eht∼π

[
t−1∑
t′=0

log
fθ(z

s
t |ht′+1)

fθ(zst |ht′)

]
, (4)

where fθ(zs|h) serves as an approximation to the true conditional distribution p(zs|h). Similar
to [27], we assume fθ(zs|h) follows a Gaussian distribution centered around a deterministic history
embedding fθ(h) with variance ρ2I . We parameterize fθ(h) using the GPT-based sequence model
and train fθ(h) to predict zs across batches of (h, zs) samples by minimizing:

Lf = E(h,zs)∼π

[
∥zs − fθ(h)∥22

]
(5)

Since only the third term of Eq. (4) depends on π, we interpret log fθ(z
s
t |ht)

fθ(zs
t |ht−1)

as an intrinsic reward
term rintrinsic

t . This intrinsic reward captures per-step incremental information gain that the current
history ht reveals about zst compared to the previous ht−1. With a weighting factor α, our final
reward therefore becomes rtotal

t := renv
t + αrintrinsic

t . In practice, we calculate the intrinsic rewards as
rintrinsic
t = dcosine(z

s
t , fθ(ht))−dcosine(z

s
t , fθ(ht−1)), with dcosine being the cosine similarity distance.

Encouraging Information Retention. While the intrinsic reward encourages information gather-
ing, we also want the agent to memorize important observations (or actions). For this purpose, we
train the agent’s top branch (k in Fig. 1) to predict zs over a batch of episodes as an auxiliary task
using the same Eq. (5) but replacing f with k. While f and k seem similar, the key difference is that
k is part of the agent (it is the top branch) while f is not (f is a network that approximates p(zs|h)).
Training the agent this way can be considered an indirect and “online” way to maximize I(h; zs) so
that the agent can mentally memorize important events within the history h that increased I(h; zs).

4 Related Work

Leveraging privileged information during policy learning has been successful in various settings,
most notably in the multi-agent setting. Usually, joint quantities (e.g., observations, histories [29],
or actions) from all agents, the state [30], or their combinations [31, 32, 33, 34], are used to train
a centralized critic to aid training decentralized actors. In the single-agent setting, Pinto et al. [3]
leveraged the state availability in simulation to improve an image-based policy. Under partial ob-
servability, Belief-grounded Networks [5] use an auxiliary loss to reconstruct the privileged state
distribution information from history representations. Using a value-based method, Baisero et al.
[6] uses the state access to learn a history-based critic. Using the actor-critic framework, Baisero
and Amato [9] learn a history-state-based critic to help learn a history-based actor. Concurrent with
our work is [35], which also proposes informational rewards to encourage information gathering.
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Figure 2: Domains. D/C: discrete/continuous actions. V/P: vector-based/pixel-based observations.

While these methods use the privileged information as additional input (e.g., to train a critic), we
first find a compact and task-relevant representation of the privileged information (similar to [8]).
However, we diverge from [8] by directly using privileged information for encouraging informa-
tion gathering. Our information-based approach shares similarities with a meta-learning work [27],
which uses the mutual information between the history and the training task ID to compute intrinsic
rewards to encourage information gathering. While [27] learns two policies for exploration (with the
intrinsic rewards) and exploitation (with the environment rewards), we learn a single policy using a
combined reward and add an auxiliary loss to improve memorization. Our idea of minimizing the
overlapping between zs and zo has connections with the mixed-observability framework [36], which
removed the overlapping between state and observation to reduce the computation for state distri-
bution tracking. However, the proposed method [36] requires knowing the complete dynamics (i.e.,
planning-based) and the state and observation structure, while ours assumes no such knowledge.

5 Simulation Experiments

We perform experiments on three grid-world domains with discrete action spaces and three robot
manipulation domains with continuous action spaces (see more details in Appendix B).

5.0.1 Discrete Action Space Domains

In Sphinx [8], CarFlag-2D [37], and Heaven-Hell [6] (see Fig. 2), an agent ( ) must reach a
randomly generated goal position ( ). Specifically, the goal can be one of the green corners in
Sphinx, left/right ends in Heaven-Hell, and any cell in CarFlag-2D. Normally, the observation
only contains the agent’s location. Only when entering the information region( ), the agent can
additionally observe the goal. For instance, when entering the blue cell in Heaven-Hell, the side of
the goal (left/right) is observed. Similarly, in the Sphinx and CarFlag-2D, the observation will
encode the goal cell if entering the blue region. Rewards are given sparsely: +1 when the agent
reaches the goal, −1 when it reaches the trap locations ( ) if any, and 0 otherwise. In Sphinx, an
additional penalty of −0.2 is given when entering the blue cell, making the information-gathering
process costly. In these domains, the state encodes both the current observation and the goal cell.

5.0.2 Continuous Action Space Domains

In Block-Pulling, Block-Pushing, and Drawer-Opening (modified from domains in [38]), a
robot must pull, push, or open the only movable object (a block or a drawer) among two, which
appear the same under a top-down depth camera. The challenge is that the mobility of the objects is
hidden if only relying on the current depth image (the observation). An optimal agent must perform
information-gathering actions to determine the objects’ mobility and then memorize the information
while manipulating the movable object to achieve the tasks. Here, the state is also pixel-based,
created by concatenating the observation and a 1-channel image that masks everything except the
movable object. The reward is +1 only when finishing the tasks. To overcome the reward sparsity,
we give 80 episodes of demonstrations to pre-populate the replay buffers of all agents. Moreover,
because these tasks exhibit spatial symmetry [39], we use random SO(2) rotations (see Appendix F),
applied consistently for all observations and actions within an episode, for data augmentation.
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5.1 Baselines

We use DDQN [40] (discrete action spaces) and SAC [41] (continuous action spaces) as the base RL
algorithms for our agent and all baselines. We make them memory-based using a simplified version
of GPT-v2 [20, 22] as the sequence model. All following baselines use the two-branch architecture
like ours (see Appendix A).

DTQN, TSAC: These variants [21, 22] are based on DQN and SAC and use a transformer (a simpli-
fied version of GPT-v2 [20]) as the sequence model. ZP-DRQN, ZP-RSAC: Ni et al. [42] proposed
the next hidden state prediction as an unsupervised auxiliary task to improve learning under partial
observability. We applied their method to DRQN and RSAC and used a GRU [43] instead of a trans-
former here to satisfy the recurrent encoder property in [42] (i.e., a transformer is not a recurrent
model). BA-DTQN, BA-TSAC: The biased asymmetric version of DTQN and TSAC. For BA-
DTQN, Q(s, a) and Q(h, a) are learned during training, and argmaxaQ(h, a) is the selected action
during deployment. For BA-TSAC, only the state-based critic Q(s, a) is learned to help learn a
history-based actor. These asymmetric agents can sometimes perform well [3] but were found [6, 9]
to introduce learning bias, i.e., Q(s, a) is a biased estimate of Q(h, a). UA-DTQN, UA-TSAC:
We implement unbiased asymmetric variants of DTQN and TSAC using the framework proposed
in [6, 9] (originally applied to DRQN [44] and A2C [45]). To fix the bias issue, during training,
these methods learn Q(h, s, a) (instead of Q(s, a)) and Q(h, a) and use Q(h, a) to pick actions dur-
ing execution. B-DQN, B-SAC: Believer [8] originally trains a GRU-based history encoder, similar
to our first stage. For a fair comparison, we use the same GPT to replace the GRU and the same data
set for our agent and these agents. Because the encoders already encode the history, their outputs
are directly used for memoryless RL algorithms, i.e., DQN or SAC in our case. Furthermore, we
fine-tune the history encoders to strengthen these baselines, following the public code.
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Figure 3: Learning curves averaged over five random seeds with shaded mean and one std. Dashed
vertical lines denote when the task learning stage of our method and B-DQN/B-SAC starts.

5.2 Experimental Results

As shown in Fig. 3, our method is generally superior to all baselines in all domains. Among baselines
with state access like ours, only unbiased asymmetric methods (UA-DTQN/-TSAC) can compete
with ours in Heaven-Hell, Block-Pulling, and Drawer-Opening. Most surprisingly, Believer-
based baselines (B-DQN/-SAC) do not perform well in all domains despite our significant effort to
strengthen them (replacing GRU with GPT, hyper-parameter tuning, and online fine-tuning). When
information seeking is hard (e.g., in Sphinx with a clarifying penalty, or in Heaven-Hell with
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Figure 4: a) Overlapping test: using zs or concatenating zs and zo for task learning; b-c) Learning
curves in Heaven-Hell when using our method (Section 3.1) or Believer [8] to learn zs and zo.

a goal-avoided path for goal information), only our agent can perform well by using the intrinsic
rewards. When the information seeking is easier, our method still outperforms (e.g., in CarFlag-2D,
Block-Pulling, and Drawer-Opening) thanks to pre-trained compact features.

5.2.1 Learned High Quality and Non-overlapping Representations

To show that our method can achieve both (P1) and (P2) in Section 3.1, we perform task learning in
Heaven-Hell using a) zs ⊕ zo, b) only zs, and c) raw state s. We compare two ways to learn the
representation: our method and Believer [8]. From Fig. 4, zs⊕zo yields better performance than the
raw state. This indicates that our method can learn high-quality state features. As expected, using
zs alone fails to solve the task because zs will only contain the features of the goal’s position. The
task can only be solved with the aid of zo, which contains the agent’s position. In contrast, when
using Believer [8] to learn zs and zo, using either zs ⊕ zo or zs makes no difference: both can solve
the task, indicating that zs also contains the agent’s position, which is already contained in zo.

5.2.2 Ablation Studies

In this section, we perform ablation studies to analyze our key design choices: a) using GPT instead
of a recurrent neural network (e.g., a GRU) as the sequence model and b) using both the auxiliary
losses and the intrinsic rewards. We only report representative results in this section; see the Ap-
pendix D for more details.
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Figure 5: Comparing when using GPT or a GRU as the sequence model in our approach.
Using GPT instead of a recurrent neural network. While a GRU [43] might have trouble memo-
rizing important information in long sequences (i.e., saw important observations but forgot), a GPT
can attend to and memorize any past information. This property is crucial for our agent to maximize
I(h;ϕ(s)) effectively. From the performance gap in Fig. 5, we can see the important role of GPT.

Using both auxiliary losses and intrinsic rewards. While the auxiliary losses help information re-
tention, intrinsic rewards are needed to encourage information gathering directly. As shown in Fig. 6,
in domains when information gathering is not challenging, such as in CarFlag-2D (the information
region is quite large) and the robot domains (agents are provided with demonstration episodes), us-
ing auxiliary loss is sufficient for good performance. In Sphinx, when information is harder to seek
because of the involved cost, the intrinsic rewards are essential to improve the performance.
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Figure 6: Comparing using intrinsic rewards or auxiliary losses versus using both.

6 Sim-To-Real Transfers

Camera 1
Camera 2

Camera 3

Figure 7: Real robot setup.

Domain Ours UA-TSAC
Block-Pulling 45/50 34/50
Block-Pushing 44/50 12/50
Drawer-Opening 41/50 32/50

Table 1: Average success rates of sim-to-real transfers
between our method and UA-TSAC (best baseline).

To verify the performance of the learned policy in simulation, we perform sim-to-real transfers
using the best policies in simulation to a UR5 robot (see Fig. 7). To best obtain non-occluded top-
down depth images, we combine the point clouds from two side-view cameras and one top-down
camera and project at the gripper’s position (see Appendix E). Furthermore, during training, we
add Perlin noise [46] to the observation to reduce the gap between the simulated and the real-world
depth images. We perform 50 evaluation episodes, divided equally into two cases when the policies
first manipulate the immovable or movable objects. Results from Table 1 show that the learned
policies can be zero-shot transferred in the real world (see our supplementary video for more details),
and our method performs better than the best baseline (UA-TSAC). During sim-to-real transfers,
the main failure mode is when the robot goes down to perform actions; collisions with objects
(e.g., blocks, drawers) might happen. This can trigger the robot’s protective stop and terminate the
episode. Additionally, in Drawer-Opening, the transferred policies sometimes clumsily move one
drawer far away from the other, creating a novel scene never seen in simulation.

7 Conclusion and Limitations

Conclusion. This work proposed an information-based method that directly uses the mutual infor-
mation between the state and history to encourage information-gathering under partial observability.
We also tackle memorization by incorporating an auxiliary task to predict the state feature from the
history to alleviate the agent’s memory burden by only requiring its memory component to memo-
rize unobservable task-relevant features. Experiments show that our method is effective and scalable
to domains with high-dimensional states and observations with deployable working policies.

Limitations. Our method’s biggest limitation is the challenge of learning good and non-overlapping
representations at the first stage. In practice, we need to select the right dataset to train with. We
can use random interactions in the grid-world domains, but expert demonstrations are needed for
training in the robot domains so that the representations are useful. In practice, to guarantee the
learned representations can satisfy both (P1) and (P2), we need to iterate between hyper-parameter
tuning and performing the overlapping test in Section 5.2.1. We also want to note that while the
second stage works optimally with high-quality representations, our method remains effective with
less ideal features, as the agent can still refine these through reinforcement learning.
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A Details of Agents

A.1 DTQN, TSAC

These are variants of DQN and SAC, made memory-based by using a transformer as the sequence
model as shown in Fig. 8 and Fig. 9. Similar models have been explored in previous work [21, 22].

DTQN

Encoder

Encoder

Transformer

Encoder

MLP

History-based
Critic

Concat

Figure 8: Architecture of DTQN.

Encoder

Encoder

Transformer

Encoder

Encoder

Encoder

Transformer

Encoder

MLP

Encoder

MLP

MLP

History-based
Actor

TSAC

History-based
Critic

Concat

Figure 9: Architecture of TSAC.

A.2 ZP-DRQN, ZP-RSAC

These agents [42] are similar to DTQN and TSAC, except they use a recurrent sequence model in-
stead of a transformer. Importantly, using a recurrent sequence model (e.g., a GRU [43]) is required
(see [42]). Additionally, these agents are regularized with a self-predictive auxiliary task of predict-
ing the next latent state z from a history h. Specifically, given a recurrent encoder fϕ : H → Z and
a latent dynamics model gθ : Z ×A → Z , the auxiliary task is to minimize:

Laux = ∥gθ(fϕ(h), a)− fϕ̄(h
′)∥22 , (6)

where ϕ̄ is the target network of ϕ.

A.3 BA-DTQN, BA-TSAC

In BA-DTQN [6] (see Fig. 10), a state-based critic Q(s, a) and a history-based critic Q(h, a) are
learned to leverage the state availability during training but not during execution (i.e., no state is
available therefore we cannot use Q(s, a) during execution). Unfortunately, as pointed out in [6],
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Figure 10: Architecture of BA-DTQN.

State-based
Critic

Encoder

Encoder

Transformer

Encoder

Encoder

MLP

Encoder

MLP

MLP

BA-TSAC

History-based
Actor

Concat

Figure 11: Architecture of BA-TSAC.

Q(s, a) is not mathematically well-defined and is generally a biased estimate of Q(h, a), which is
used to select actions during execution.

The difference between BA-TSAC (see Fig. 11) and TSAC is that the critic is trained additionally
using state input during training. Specifically, we learn a state-based critic Q(s, a) instead of the
history-based Q(h, a). Similar to BA-DTQN, BA-TSAC also has bias. For BA-TSAC, during
execution, actions are computed using a history-based actor.

A.4 UA-DTQN, UA-TSAC

In UA-DTQN [6] (see Fig. 12), a history-state-based critic Q(h, s, a) and a history-based critic
Q(h, a) are learned. Unlike BA-DTQN with Q(s, a), Q(s, h, a) can be well-defined and has been
proven to be an unbiased estimate of Q(h, a). During execution, actions are selected using Q(h, a).

Unlike BA-TSAC, UA-TSAC [9] (see Fig. 13) combines both state and history features to train the
critic, i.e., we learn a history-state-based critic Q(s, h, a). Similar to UA-DTQN, UA-TSAC does
not introduce learning bias. During execution, actions are computed from a history-based policy.

A.5 B-DQN, B-SAC

The architectures of these agents are depicted in Fig. 14. These agents are based on Believer [8],
which leveraged the state availability to train an agent in three stages:

Stage 1. Learning compact state representations with state-labeled transitions, i.e., a batch of sam-
ples (s, o, a, r, s′, o′). This stage is similar to our first stage (see Algorithm 1) but without the
information-based regularizations. Instead, the authors proposed to regularize the KL divergence
KL[ϕ(s)∥N (0, 1)] to avoid overlapping features between ϕ(s) and ψ(o) by giving penalty when-
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Figure 12: Architecture of UA-DTQN.
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Figure 13: Architecture of UA-TSAC.

ever ϕ(s) is used to derive features. This, however, does not avoid the overlapping issue between
learned state and observation features, as shown in our experiment (see Fig. 4).

Stage 2. Learn a recurrent history model p(ϕ(s)|h) with variational autoencoders [47] (VAE) by
maximizing the joint log-likelihood p(ϕ(s), h)) averaged over (s, h) samples.

Stage 3. Use the history module p(ϕ(s)|h) for task learning. First, samples are drawn from the
VAE to derive a history summary. Then, this summary is used as the “states” for task learning using
memoryless RL algorithms. The authors optionally fine-tune p(ϕ(s)|h) with the on-policy data.

As the original paper applied their method for PPO [48], which is on-policy, we had to modify the
method to apply to DQN and SAC, resulting in B-DQN and B-SAC. In Stage 2, to fairly compare
with other baselines, we replace GRU in the history model with the GPT model used in other base-
lines. Moreover, in Stage 3, we fine-tuned the history module for every domain (as used in the
original code). Finally, the sequence model of B-SAC is shared between the actor and the critic,
following the original code.
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Figure 14: Architectures of B-DQN and B-SAC with a pre-trained history encoder from Believer [8].
We change the history encoder from GRU-based to transformer-based for a fair comparison with
other agents. For B-SAC, we use a shared history module, similar to the original code.

A.6 Hyper-parameters

For DDQN [40], we use an epsilon-greedy exploration strategy with a linear schedule, starting at
ϵ = 1.0 and ending at ϵ = 1

T with T being the episode length. The schedule time is equal to 10%
of the total training timesteps. We use a batch size of 64 episodes. For continuous actions, we use
SAC [41]. We automatically tune the entropy temperature, initializing at 0.01. The chosen target
entropy is equal to the negation of the action dimension. We use the discount factor γ = 0.99. We
use a batch size of 64 episodes. Other hyper-parameters are in Table 2 with shared parameters and
ones specific for each agent.

Table 2: Hyper-parameters used for RL agents. HH: Heaven-Hell, S: Sphinx, CF: CarFlag-2D.
Agent Hyper-parameter Value
Shared among all agents Episode Length 50

Discount Factor 0.99
Replay Buffer Size 1M: grid world domains, 100k: robot domains
Target Update Rate 0.005
Actor Learning Rate 3e-4
Critic Learning Rate 3e-5: CF and S; 3e-4: other
Batch size 64

SAC Initial Entropy Temperature 0.01
Update Per Step 0.25: discrete domains, 1.0: robot domains

ZP-DRQN Loss weighting 1.0: discrete domains, 0.1: robot domains

Ours Loss Weighting 0.5 for all domains
Reward Weighting 10.0: HH, S, 0.1: robot domains, 0.0: CF

B-DQN, B-SAC Latent Dimension 32
X-Dim 16
Z-Dim 16
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A.7 Network Structures

FC(n): a fully connected layer with n outputs; Conv(f , s): a convolutional layer with filter size f×f
and stride s; R: the ReLU activation function; MaxPool(w): a max pooling layer with window size
w; T(H, N, HS, D): Transformer with H heads, N layers, hidden size HS, and the dropout rate D;
GRU(N, HS): GRU with N layers and hidden size HS.

FC(64) + RObs. Encoder Action Encoder

Top Branch

FC(64) + R

Obs. Encoder

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

Bottom Branch

FC(128) + RFC(128) + R FC(32)

Figure 15: Network structures used in Heaven-Hell.

car

FC(64) + R

Obs. Encoder

Action Encoder

Top Branch

Obs. Encoder

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

64 Conv(2,1) + R MaxPool(2) 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)

Bottom Branch

16 Conv(2,1) + R 32 Conv(2,1) + R Flatten FC(100)

Figure 16: Network structures used in CarFlag-2D.

Obs. Encoder

Bottom Branch

64 Conv(2,1) + R 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)

FC(64) + R

Obs. Encoder

Action Encoder

Top Branch

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

16 Conv(2,1) + R 32 Conv(2,1) + R Flatten FC(100)

Figure 17: Network structures used in Sphinx.

Obs. Encoder

Bottom Branch

32 Conv(8,4) + R 64 Conv(4,4) + R 64 Conv(3,1) + R Flatten FC(32)

FC(64) + R

Obs. Encoder

Action Encoder

Top Branch

Sequence Model Trans(2, 1, 128, 0.1) GRU(1, 128)or

16 Conv(2,1) + R 32 Conv(2,1) + R Flatten FC(100)

Figure 18: Network structures used in robot domains.
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B Details of Domains

B.1 Sphinx

Observation

Channel 0 Channel 1

State

Channel 0 Channel 1

Figure 19: Sphinx domain with two-channeled pixel-based observations and states. Channel 1 of
the observation reveals the goal cell (green) only when the agent enters the blue cell. In contrast, the
same channel of the state always reveals the goal cell regardless of the agent’s position.

In this domain (see Fig. 19), an agent must visit the goal cell, which can be in one of three corners
except the top-left one. The agent must visit the information cell (blue) at the top-left corner to know
the current corner of the goal. However, there is a cost when going to the information cell.

Action. Move-Right, Move-Left, Move-Up, Move-Down

Observation. A 6× 6× 2 image with the first channel encodes the agent’s position and the second
encodes the goal’s position. The second channel only contains the goal information when the agent
enters the blue cell.

State. A state has the same structure as an observation, but the second channel always contains the
goal information.

Reward. +1 when reaching the goal, −0.2 when visiting the information cell, and 0 otherwise.

B.2 CarFlag-2D

Channel 0 Channel 1Channel 0 Channel 1

StateObservation

Figure 20: CarFlag-2D domain with two-channeled pixel-based observations and states. Channel
1 of the observation reveals the goal cell only when the agent enters the blue region. In contrast, the
same channel of the state always reveals the goal cell.

In this domain (see Fig. 20), an agent must visit the goal cell (green) to finish the task. The goal cell,
however, is only present in the observation when the agent visits the information region (blue).

Action. Move-Right, Move-Left, Move-Up, Move-Down

Observation. A 11 × 11 × 2 image with the first channel encodes the agent’s position, and the
second encodes the goal’s position. The second channel only contains the goal information when
the agent enters the blue region.

State. A state has the same structure as an observation, but the second channel always contains the
goal information.

Reward. +1 when reaching the goal, and 0 otherwise.
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B.3 Heaven-Hell

In this domain, an agent must visit heaven (green cell) to finish the task. The goal cell can be either
on the left or on the right side with 50% probability. To observe the side of the goal (left or right),
the agent must visit the priest, who resides in the bottom right corner.

50% 50%
Heaven Hell

Priest

Agent

Figure 21: The Heaven-Hell domain with vector-based observations and states.

Action. Move-Right, Move-Left, Move-Up, Move-Down

Observation. A vector consists of the agent’s position and the side information. The side informa-
tion can take the value of 0 (no information), 1 (heaven on the right), or −1 (heaven on the left).

State. Like the observation, but the true side of the goal is always revealed.

Reward. +1 when reaching heaven, −1 when reaching hell, and 0 otherwise.

B.4 Robot Domains

In these domains, the agent must manipulate the only movable object among two objects, which are
exactly the same under the top-down depth image observation.

Action. An action a = (δx, δy, δz, δr), where δxyz ∈ [−0.05, 0.05] are the displacements of the
gripper in the XYZ axes, and δr ∈ [−π/8, π/8] is the angular rotation around the Z axis.

Observation. All robot domains share the same observation: the top-down depth image taken from
the camera centered at the gripper’s position. Two fingers of the gripper are projected on the image.

State. The state also has two channels. The first channel is the first top-down depth image of the
observation. While the second channel of the observation is non-informative, the second channel
of the state is an image that masks everything except the movable object (see Fig. 22) in which the
movable objects are colored red for visualizations).

Reward. In Block-Pulling, the agent receives a reward of 1.0 only when the two blocks are in
contact. In Block-Pushing, the agent receives a reward of 1.0 only when the movable block is
within 5 cm from the center of the goal pad. In Drawer-Opening, the agent receives a reward of
1.0 only when the unlocked drawer is opened more than 5 cm.
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Figure 22: Visualization of an observation and a state in Block-Pulling, Block-Pushing, and
Drawer-Opening. The movable object is the red one. The state and the observation have two
channels, the first being the top-down depth image. In Block-Pulling, the second channel of the
state reveals the movable object and the gripper. In Block-Pushing, the second channel reveals the
movable block, the gripper, and the goal pad. In Drawer-Opening, the second channel in the state
reveals the unlocked drawer and the gripper.
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C Representations Training Details

C.1 Training Data Generation

Heaven-Hell, CarFlag-2D, Sphinx: In these domains, we use a uniform random agent to generate
training samples, each is a transition (s, o, a, r, s′, o′). For the number of samples used in each
domain, please see Table 3.

In the robot domains, we use the same number of demonstrations (80 episodes) to learn the represen-
tations during task learning. Furthermore, we augment the training data using random rotations per
transition as used in [49] (also see Appendix F). Finally, we describe the planners used to generate
the demonstrations in these domains.

Planner in Block-Pulling: The planner randomly selects a block and attempts to pull it to the
other block direction until the task is accomplished. If, for a while, the position of the selected block
remains unchanged, the planner will move the gripper to the other block and repeat the pulling.

Planner in Block-Pushing: A block is randomly chosen and pushed toward the goal pad. If the
block’s position remains unchanged for a while, the planner will move the gripper to the other block
and resume pushing until the task is finished.

Planner in Drawer-Opening: The planner selects a drawer randomly and tries to open it. If the
chosen drawer fails to open after a while, the gripper will move to the other drawer and repeat the
opening action.

C.2 Network Architecture

The specific architecture used to learn representations is shown in Fig. 23.

Maximize MI

Minimize MI +

Reward
Predictor

Next Obs.
Feature

Predictor

Next State
Feature

Predictor

Sum

State Encoder

Obs. Encoder

Action Encoder

Dynamics
Model

Maximize MI

Figure 23: Architecture to learn representations in all domains.

Next, we describe the components for each domain from Fig. 24 to Fig. 27. To succinctly describe
the network architecture, we use the following acronyms: FC(n): a fully connected layer with
n outputs; Conv(f , s): a convolutional layer with filter size f × f and stride s, R is the ReLU
activation, and MaxPool(w): a max pooling layer with window size w.

C.3 Mutual Information Estimation

C.3.1 Minimizing I(zs; zo)

From the upper bound equation Eq. (2), we minimize its variational estimate defined below:

LCLUB =
1

B2

B∑
i=1

B∑
j=1

[log q(zoi |zsi )− log q(zoj |zsi )] (7)
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64 Conv(2,1) + R 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(256) + R FC(256) + R FC(256) + R
Dynamics 

Model

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.

Figure 24: Network architecture in Sphinx.

64 Conv(2,1) + R MaxPool(2) 128 Conv(2,1) + R MaxPool(2) 256 Conv(2,1) + R Flatten FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(256) + R FC(256) + R FC(256) + RDynamics 
Model

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.

Figure 25: Network architecture in CarFlag-2D.

FC(128) + R FC(128) + R FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(128) + R FC(128) + R FC(128) + R

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.
Dynamics 

Model

Figure 26: Network architecture in Heaven-Hell.

ro

32 Conv(8,4) + R 64 Conv(4,4) + R 64 Conv(3,1) + R Flatten FC(32)
Obs. Encoder
State Encoder

FC(16)Action Encoder

FC(256) + R FC(256) + R FC(256) + RDynamics 
Model

FC(1)Reward Pred. FC(32)Next State Feature Pred.

FC(32)Next Obs. Feature Pred.

Figure 27: Network architecture in robot domains.
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The variational distribution q(zo|zs) is updated to minimize DKL [q(z
o|zs) ∥ p(zo|zs)]. We assume

q(zo|zs) follows a Gaussian distribution and use the following network architectures:

Mean network: FC(32) → R → FC(32)

Log variance network: FC(32) → R → FC(32) → Tanh

We use the batch size B = 500 and use a learning rate of 0.001 for all tasks, except Heaven-Hell,
in which a learning rate of 0.0003 is used. We update q whenever we update ϕ(s) and ψ(o).

C.3.2 Maximizing I(o; zo) and I(s; zs)

Layer nLayer 1Layer 0

State Encoder

Layer nLayer 1

Layer nLayer 1Layer 0

Observation Encoder

Layer nLayer 1

Figure 28: Architecture to calculate σ(s, E(s)) and σ(o,E(o)) using the dot product operation.

From the lower bound equation Eq. (3), we minimize the following loss:

LDIM =
1

B2

B∑
i=1

B∑
j=1

[sp(−σ(xi, E(xi))) + sp(σ(xj , E(xi)))] (8)

As shown in Fig. 28, the discriminator σ uses the same architecture of the state encoder ϕ (when
calculating the state feature zsl of s) and the observation encoder ψ (when calculating the observation
feature zol of o). We dot product to compute σ(s, E(s)) = zsl · zs and σ(o,E(o)) = zol · zo.

C.4 Hyper-parameters

We provide the hyper-parameters used for training representations in Table 3.

Table 3: Hyper-parameters used in learning representation. HH: Heaven-Hell, S: Sphinx, CF:
CarFlag-2D, BP: Block-Pulling, BPs: Block-Pushing, and DO: Drawer-Opening.

Domain HH CF S BP BPs DO

# of samples 21785 45406 13682 1226 1240 1234
# of episodes 500 1000 500 80 80 80
# of augmentations per sample - - - 4 12 6
# of training epochs 1000 1000 1000 1000 1000 1000
Batch size B 500 500 500 500 500 500
Learning rate 0.003 0.001 0.001 0.001 0.001 0.001
Reward loss coeff. λr 10.0 1.0 10.0 10.0 100.0 100.0
State loss coeff. λs 1.0 1.0 0.5 0.1 1.0 1.0
Observation loss coeff. λo 0.5 5.0 0.03 1.0 1.0 1.0
↓ I(zs; zo) loss coeff. λCLUB 1.0 10.0 0.3 10.0 0.001 1.0
↑ I(s; zs) loss coeff. λDIM 0.0 0.0 0.0 0.1 0.01 0.001
↑ I(o; zo) loss coeff. λDIM 1.0 1.0 0.5 1.0 1.0 1.0
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D Additional Experiments

D.1 Using zs ⊕ zo versus zs for Task Learning

Continuing the experiment from Section 5.2.1, we report the performance using zs and zs ⊕ zo for
task learning in all domains.
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Figure 29: Task learning performance when using zs and zs ⊕ zo as the “state”.

D.2 Using Only Auxiliary Task/Intrinsic Rewards

Here, we show the learning performance when using intrinsic rewards and/or the auxiliary task.
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(c) Heaven-Hell
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0 20k 40k 60k 80k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

Intrinsic-Only
Auxiliary-Only
Auxiliary+Intrinsic

(e) Block-Pushing
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Figure 30: Comparing using intrinsic rewards or the auxiliary task versus using both.
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D.3 Using GRU v.s. GPT

Here, we report the performance in all domains when using a GRU versus GPT as the sequence
model in our proposed agent.

0 100k 200k 300k 400k 500k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

GPT
GRU

(a) Sphinx

0 200k 400k 600k 800k 1.0M
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn GPT
GRU

(b) CarFlag-2D

0 100k 200k 300k 400k 500k
Environment Step

−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0
1.2

Re
tu

rn

GPT
GRU

(c) Heaven-Hell

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

GPT
GRU

(d) Block-Pulling

0 20k 40k 60k 80k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0
Re

tu
rn

GPT
GRU

(e) Block-Pushing

0 10k 20k 30k 40k
Environment Step

0.0

0.2

0.4

0.6

0.8

1.0

Re
tu

rn

GPT
GRU

(f) Drawer-Opening

Figure 31: Task learning performance when using a GRU v.s. GPT.

D.4 Visualization of Intrinsic Rewards

We visualize the intrinsic rewards of trained agents in three grid-world domains in Fig. 32. The
intrinsic rewards peak when the agents perform the information-gathering actions.
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Figure 32: Intrinsic rewards within an episode of trained agents in three grid-world domains. Red
circles denote when the intrinsic rewards peak, e.g., when they perform informative actions.

E Details of Hardware Experiments

E.1 Obtaining Depth Images

We fuse the point clouds from two RealSense D455 cameras (Cam 1 and Cam 2) and one Azure
Kinect camera (Cam 3) to create an integrated point cloud (see Fig. 33). We then orthographically
project the point cloud at the gripper’s position to create a depth image observation. Examples of
observations in the three robot domains can be seen in Fig. 34.
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Figure 33: We fuse the point clouds from three cameras (to avoid occlusions) and performed an
orthographic projection at the gripper’s position to create a depth image observation.

(a) Block-Pulling (b) Block-Pushing (c) Drawer-Opening

Figure 34: Examples of observations in real robot experiments.

E.2 Added Perlin Noise for Better Sim-To-Real Transfers

Following [39], we found it useful for better sim-to-real transfers by adding the Perlin [46] noise to
the depth images during training for more robust policies by being closer to real-world depth images.
For all robot domains, we applied the noise with a magnitude of 7mm (see Fig. 35).

Block-Pulling before. Block-Pushing before. Drawer-Opening before.

Block-Pulling after. Block-Pushing after. Drawer-Opening after.

Figure 35: Depth images before and after adding Perlin [46] noise for better sim-to-real transfers.

F Details of SO(2) Rotational Data Augmentation

We perform SO(2) rotational augmentation by choosing a random angle and rotating the depth im-
ages around its center. We perform this augmentation in two cases:

When learning the representations to utilize the data better. For each transition (s, o, a, r, s′, o′),
we sample a random angle and rotate s, o, s′, o′ at the same angle. Each transition has its own
random angle, see Fig. 36 for examples.
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When performing task learning robot domains. Given an episode, we first sample a random angle
and apply the rotation with this angle for every s, o, s′, o′ within the episode. Because we are trying
to learn a history-based policy, this is to ensure the augmented history is valid (see Fig. 37).

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

Figure 36: Examples of rotation data augmentation applied for transitions in an episode in
Block-Pushing to augment the data for learning the representation: a different random rotation
is applied independently for s, o, s′, o′ in each timestep in an episode.

t = 0 t = 1 t = 2 t = 3

t = 0 t = 1 t = 2 t = 3

Figure 37: Examples of rotation data augmentation applied for an episode in Block-Pushing: the
same random rotation is consistently applied to every tuple s, o, s′, o′ within an episode.
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