
Latent Space Symmetry Discovery

Jianke Yang 1 Nima Dehmamy 2 Robin Walters 3 Rose Yu 1

Abstract

Equivariant neural networks require explicit

knowledge of the symmetry group. Automatic

symmetry discovery methods aim to relax this

constraint and learn invariance and equivari-

ance from data. However, existing symmetry

discovery methods are limited to simple lin-

ear symmetries and cannot handle the complex-

ity of real-world data. We propose a novel

generative model, Latent LieGAN (LaLiGAN),

which can discover symmetries of nonlinear

group actions. It learns a mapping from the

data space to a latent space where the symme-

tries become linear and simultaneously discov-

ers symmetries in the latent space. Theoreti-

cally, we show that our model can express non-

linear symmetries under some conditions about

the group action. Experimentally, we demon-

strate that our method can accurately discover

the intrinsic symmetry in high-dimensional dy-

namical systems. LaLiGAN also results in a well-

structured latent space that is useful for down-

stream tasks including equation discovery and

long-term forecasting. We make our code avail-

able at https://github.com/jiankeyang/LaLiGAN.

1. Introduction

Symmetry plays an important role in the success of deep

neural networks (Bronstein et al., 2021). Many equivariant

networks have been developed to enforce various symme-

tries in data from images to graphs (Weiler & Cesa, 2019;

Cohen et al., 2019a; Zaheer et al., 2017; Finzi et al., 2020;

Kondor & Trivedi, 2018; Cohen et al., 2019b; Finzi et al.,

2021; Bekkers, 2019). However, a critical limitation of

existing equivariant networks is that they require knowing

the symmetry a priori. For complex real-world data, the

underlying symmetries may be unknown or challenging to

1UCSD 2IBM Research 3Northeastern University. Correspon-
dence to: Rose Yu <roseyu@ucsd.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

V

Z

V

Z

π′ (g, ⋅ )

G = SO(2)

π(g)

ϕ ψ

V/G ≃ ℝ
+

Figure 1. An example of SO(2) nonlinear group action π′ on

V = R
2 and its decomposition into an encoder ϕ, a linear rep-

resentation π and a decoder ψ. Each trajectory is a group action

orbit containing a random v ∈ V .

articulate through programming. For example, dynamical

systems can evolve on a low-dimensional manifold with

simple symmetries, but the actions of the symmetries be-

come highly nonlinear on high-dimensional observations.

Similarly, the action of SO(3) rotation become complicated

on 2D images of 3D objects (Garrido et al., 2023).

Recent years have seen exciting attempts towards automatic

symmetry discovery from data (Dehmamy et al., 2021;

Moskalev et al., 2022; Zhou et al., 2021; Yang et al., 2023),

but most of them search in only a limited space of sym-

metries, such as linear actions of discrete and continuous

groups. Symmetry discovery is successful only when ob-

servations are measured in an ideal coordinate system with

linear symmetry. Unfortunately, real-world data is com-

plex and often contain nonlinear symmetries, such as high-

dimensional dynamical systems (Champion et al., 2019), or

2D images of 3D objects (Garrido et al., 2023).

Another line of study focuses on learning equivariant repre-

sentations from data (Park et al., 2022; Yu et al., 2022; Dan-

govski et al., 2021; Quessard et al., 2020). These approaches

learn a latent embedding space with a given symmetry. How-

ever, they still require prior knowledge about the symmetry

in the latent space. They also assume additional information

about group transformation associated with each data point,

which is not always available in practice.
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In this work, we propose a novel generative modeling frame-

work, LaLiGAN, for discovering symmetries of nonlinear

group actions. Our key insight is that nonlinear group trans-

formations can be decomposed into nonlinear mappings

between data space and latent space, and a linear group

representation in the latent space. Figure 1 provides such

an example. A nonlinear action of SO(2) on V = R
2 corre-

sponds to standard 2D rotation on latent vectors z = ϕ(v).
After decomposition, we can adapt an existing symmetry

discovery algorithm such as LieGAN (Yang et al., 2023) to

discover linear symmetries in the latent space. In the entire

process, LaLiGAN learns both the symmetry group and its

action on data. Additionally, when the symmetry group is

already known, LaLiGAN can also be applied to learn the

group equivariant representations, with the advantage of not

requiring the knowledge of group elements associated with

data samples.

The significance of latent space symmetry discovery is multi-

fold. From the perspective of symmetry discovery, it further

expands the search space of symmetries beyond linear group

actions. For representation learning, learning a latent space

in which symmetry becomes linear places a strong inductive

bias on the structure of latent representations. Such a simple

latent structure proves to be useful in various downstream

tasks, such as equation discovery and long-term forecasting

in temporal systems. Furthermore, compared to equivariant

representation learning, as the symmetry is no longer fixed

but learnable, our method can discover latent spaces with

previously unknown symmetries.

In summary, our main contributions include:

• We develop LaLiGAN, a novel framework for discov-

ering symmetries of nonlinear group actions.

• We provide the theoretical guarantee that LaLiGAN

can approximate any nonlinear symmetry under some

conditions about the group action.

• Our method can lead to well-structured latent spaces

with interpretable symmetries in high-dimensional and

nonlinear dynamical systems.

• The discovered symmetry can be used for equation

discovery, leading to simpler equation forms and im-

proved long-term prediction accuracy.

2. Related Works

Automatic symmetry discovery. Automatic symmetry

discovery aims to search and identify unknown symmetries

in data. Current symmetry discovery techniques vary a lot in

their search space for symmetries, such as learning discrete

finite groups (Zhou et al., 2021; Karjol et al., 2023), learning

group subsets that represent the extent of symmetry within

known groups (Benton et al., 2020; Romero & Lohit, 2022;

Chatzipantazis et al., 2021), and learning individual sym-

metry transformations on dataset distribution (Desai et al.,

2022). Attempts have been made to discover general contin-

uous symmetries based on Lie theory. For example, L-conv

(Dehmamy et al., 2021) works with Lie algebra to approx-

imate any group equivariant functions. LieGG (Moskalev

et al., 2022) extracts symmetry from a learned network from

its polarization matrix. LieGAN (Yang et al., 2023) pro-

poses a general framework for discovering the symmetries

of continuous Lie groups and discrete subgroups. These

methods address general linear group symmetry in the data,

which is the largest search space so far. Our work further

expands the search space to non-linear symmetries.

Learning equivariant representation. Instead of work-

ing in the data space where symmetry transformations can be

complicated, many works use autoencoders to learn a latent

space with pre-specified symmetries (Hinton et al., 2011;

Falorsi et al., 2018). Among recent works, Yu et al. (2022);

Park et al. (2022) learn equivariant features that can be used

for downstream prediction tasks. Shakerinava et al. (2022);

Dangovski et al. (2021) use contrastive losses to learn equiv-

ariant representations in a self-supervised manner. Caselles-

DuprÂe et al. (2019); Quessard et al. (2020); Marchetti et al.

(2023) focus on learning disentangled representations that

are highly interpretable. Winter et al. (2022); Wieser et al.

(2020) split the latent space into group-invariant and equiv-

ariant subspaces. While the emphases of these works vary,

the common assumption is that we already know the sym-

metry group a priori. Many works also assume additional

information such as group element associated with each

data point (Garrido et al., 2023) or paired samples under

transformations (Shakerinava et al., 2022). Our goal is more

ambitious: design a model to simultaneously learn symme-

tries and the corresponding equivariant representations in

latent space with minimal supervision.

Discovering governing equations. Latent space discov-

ery of governing equations is first introduced in SINDy

Autoencoder (Champion et al., 2019), which combines the

sparse regression technique for equation discovery in (Brun-

ton et al., 2016) and an autoencoder network to explore

coordinate transformations that lead to parsimonious equa-

tions. Several variants of this method have been developed

to improve accuracy and robustness to noise (Kaheman

et al., 2020; Messenger & Bortz, 2021; Fasel et al., 2022).

However, due to the absence of physical constraints, their

discovered equations may not respect some physical proper-

ties such as isotropy and energy conservation. We highlight

this field as an important application of our symmetry dis-

covery method, where enforcing symmetry can regularize

the latent space and improve the performance of equation

discovery models.
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3. Representation vs Nonlinear Group Action

Equivariant neural nets build on the notion of symmetry

groups and their transformations on data. Given a vector

space V , a group G transforms v ∈ V via a group action

π : G × V → V which maps the identity element e to

identity transformation, i.e. π(e, v) = v, and is compatible

with group composition, i.e. π(g1, π(g2, v)) = π(g1g2, v).

Many existing equivariant networks assume that the group

acts linearly on the input vector space. Examples include

E(2) symmetry acting on planar image signals (Weiler

& Cesa, 2019), and SO(3) symmetry acting on spheri-

cal signals (Cohen et al., 2018). In these cases, the lin-

ear group action is called a group representation. The

group representation is defined as a map ρ : G → GL(n)
where ρ(g) ∈ R

n×n is an invertible matrix that transforms

any vector v ∈ R
n by matrix multiplication. Given the

group representations on the input and the output spaces,

a G-equivariant network f : X → Y needs to satisfy

ρY (g)f(x) = f(ρX(g)x). A special case of equivariance

is invariance, where the group action on the output space is

trivial, i.e. ρY (g) = id.

Equivariant networks with such linear symmetry transfor-

mations have several limitations. It is not always possible to

find a linear action of the group on the data, e.g. the action

of SO(3) on 2D images of 3D objects. Also, we may not

even know the symmetry group G, so learning equivariant

representations for known groups is also not an option.

Our goal is to discover both the symmetry group and its

nonlinear group action on the data. Concretely, given the

input and output data space X ⊆ R
n, Y ⊆ R

m, and the

data samples (xi, yi) ∈ X × Y with an underlying function

y = f(x), we want to find a group G and its nonlinear

actions π′
X : G×X → X and π′

Y : G× Y → Y such that

π′
Y (g, f(x)) = f(π′

X(g, x)). We denote nonlinear group

actions as π′
· to distinguish them from group representations.

In the following sections, we will also refer to group repre-

sentations and nonlinear group actions as linear symmetries

and nonlinear symmetries.

We use the theory of Lie groups to describe the continuous

symmetry groups of data. We provide some preliminaries

about Lie groups and their representations in Appendix B.

4. LaLiGAN: Discovering Nonlinear

Symmetry Transformations

4.1. Decomposing the Nonlinear Group Action

Our major goal is to model a nonlinear action of a group

G on a data manifold M: π′ : G ×M → M. We adopt

the manifold hypothesis (Bengio et al., 2013) which states

that high-dimensional data dwell in the vicinity of a low-

dimensional manifold embedded in the high-dimensional

vector space, i.e. M ⊆ V = R
n. If we use a neural network

fθ to directly approximate this function, it cannot guarantee

the identity and compatibility conditions for proper group ac-

tion, i.e. fθ(id, x) = x and fθ(g1, fθ(g2, x)) = fθ(g1g2, x).
Instead, we propose to decompose the nonlinear group

action as nonlinear maps and a linear group representa-

tion. Concretely, we represent any nonlinear group action

π′ : G×M → M as

π′(g, ·) = ψ ◦ π(g) ◦ ϕ, (1)

where ϕ : V → Z and ψ : Z → V are functions

parametrized by neural networks, and π(g) : G → GL(k)
is a group representation acting on the latent vector space

Z = R
k, where k is a hyperparameter.

Intuitively, the decomposition (1) projects the data to a la-

tent space where the symmetry group acts linearly, and lifts

the transformed latent vector back to the input space. We

provide theoretical guarantees for the expressivity of such

a decomposition. Theorem 4.1 indicates that our proposed

decomposition and neural network parametrization can ap-

proximate nonlinear group actions under certain conditions.

Theorem 4.1 (Universal Approximation of Nonlinear Group

Action). Let G ≤ GL(k;R) be a compact Lie group that

acts smoothly, freely and properly via a continuous group

action π′ : G×M → M, where the data manifold M is

a compact subset of V = R
n. The group action, restricted

to any bounded subset of the group, can be approximated

by the decomposition π′(g, ·) ≈ ψ ◦ π(g) ◦ ϕ if it admits

a simply connected orbit space M/G, where ψ and ϕ are

fixed arbitrary-width neural networks with one hidden layer,

and π is a linear group representation.

Proof Sketch. We construct a mapping M → M/G×G
for any v ∈ M. Based on this mapping, we define a contin-

uous function α from the data manifold to the latent vector

space. α can be continuously extended to the ambient space

V = R
n, so it can be approximated by a neural network

according to the Universal Approximation Theorem. An

inverse mapping β : Z → M and its neural network ap-

proximation ψ can be constructed similarly. Full proof is

deferred to Appendix C.1.

4.2. Training Objective for Latent Symmetry Discovery

Note that (1) alone is not a valid definition of the group

action on M. In this section, we propose our model archi-

tecture and training objective to learn proper symmetries.

The proof of Theorem 4.1 via constructing a pair of inverse

mappings provides insights into how to make (1) satisfy the

group action axioms. Concretely,

Proposition 4.2. π′(g, ·) = ψ ◦ π(g) ◦ ϕ
∣

∣

M
is a group

action on M if (1) ϕ
∣

∣

M
is the right-inverse of ψ, and (2)

the image of M under ϕ is invariant under the action π of

G, i.e. Gϕ[M] = ϕ[M].
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Figure 2. Overview of the proposed LaLiGAN framework. The encoder maps the original observations to a latent space. The latent

representation is transformed with the linear group action from the generator. The decoder reconstructs the inputs from original and

transformed representations. The discriminator is trained to recognize the difference between the original and the transformed samples.

The condition that ϕ, when restricted to the data manifold,

is the right-inverse of ψ implies that they form an autoen-

coder that maps between the input vector space and the

latent space. In practice, we train the networks ϕ and ψ with

a reconstruction loss Lrecon = Ev∼pM
∥ψ(ϕ(v)) − v∥2 to

enforce this condition. With the manifold hypothesis, even

when the ambient space V has higher dimensionality than

the latent space, it is still possible to find the bijective map-

pings between the data points and the latent embeddings.

To enforce the second condition, i.e. the invariance of the

data manifold projection onto the latent space under group

action, we apply the approach of LieGAN (Yang et al., 2023)

to our latent space. Concretely, we use a symmetry generator

to generate linear transformations π(g) on the latent vectors.

The discriminator is trained to distinguish the original data

distribution and the transformed distribution in the latent

space. Through adversarial training, the generator learns

to produce group actions that preserve the data distribution,

i.e. pM(ϕ(v)) ≈ pM(π(g)ϕ(v)). If the supports of the two

distributions agree, the second condition Gϕ[M] = ϕ[M]
is fulfilled. Thus, we use the following training objective to

discover symmetry from the data:

Ltotal = wGAN · LGAN + wrecon · Lrecon, (2)

Lrecon = Ev∥(ψ(ϕ(v))− v∥2, (3)

LGAN = Ev,g

[

logD(ϕ(v)) + log(1−D(π(g)ϕ(v))
]

(4)

where D is the discriminator, π(g) is a linear representation

sampled from the generator, and ϕ and ψ are neural net-

works that compose the nonlinear group action with π(g).
The discriminator, the generator and the autoencoder are

jointly optimized under Ltotal. The loss weighting coeffi-

cients wGAN and wrecon are selected based on specific tasks.

Figure 2 shows the overall pipeline of our framework.

To discover equivariance from data, we concatenate the

input-output pair of the function as v = (x, y) and let

the group act on the concatenated vector by π′(g, v) :=
(π′

X(g, x), π′
Y (g, y)), where π′

X(g, ·) = ψ ◦ πX(g) ◦ ϕX is

the nonlinear action on the function input space X and π′
Y

the action on the output space Y . In some tasks such as the

dynamical systems considered in Section 5, we assume the

group action is the same on X = Y = R
n. In this case, we

only need to learn a single group action for both X and Y .

We should also note that while the above objective encour-

ages our model to conform to the conditions in Proposi-

tion 4.2, it is difficult to strictly satisfy these properties. In

practice, even when these conditions do not hold perfectly,

we can still learn a mostly valid group action with reason-

ably small violations to identity and compatibility axioms.

We show an example in Appendix C.2.

4.3. The Symmetry Generator

The discriminator and the autoencoder can be instantiated

as standard neural architectures, such as MLP between

two vector spaces. Here, we discuss how to instantiate

the symmetry generator. We use the generator to model

a group G ≤ GL(k) which acts on the latent space R
k

via its standard representation G → R
k×k. Similar to

Yang et al. (2023), our generator learns a Lie algebra basis

{Li ∈ R
k×k} and generates the standard representations of

group elements by sampling the linear combination coeffi-

cients wi ∈ R for the basis:

wi ∼ γ(w), π(g) = exp
[

∑

i

wiLi

]

(5)

where γ is a distribution (e.g. Gaussian) for the coefficients

and exp denotes the matrix exponential. As the Lie algebra

basis {Li} uniquely determines the structure of the Lie
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Lpendulum =

[

0 −5.24
2.16 0

]

and LLV =

[

0 2.43
−2.74 0

]

.

These indicate rotation symmetries up to a certain scaling

in the latent dimensions.

(a) (b) (c) (d)

Figure 5. Latent symmetry discovery in nonlinear pendulum (up-

per) and Lotka-Volterra equations (lower). (a) Original trajectories

of the systems, where the color of each trajectory corresponds

to its Hamiltonian. (b) The trajectories mapped to a symmetric

latent space. (c) The trajectories transformed by LaLiGAN. (d)

The trajectories transformed by linear LieGAN.

The accuracy of the discovered symmetry can be verified by

visually inspecting the difference between the transformed

and the original samples. For the reaction-diffusion system,

Figure 4c shows some samples with random transformations

produced by our method, which are similar to the original

data displayed in Figure 4b. We also apply the original

LieGAN to this task for comparison, and the transformed

samples are shown in Figure 4d. These samples contain

obvious artifacts and are noticeably different from the origi-

nal data, which suggests the necessity of our method when

linear symmetry does not exist in observation space.

Similarly, for the pendulum and the Lotka-Volterra system,

we use the learned symmetries to transform each entire

trajectory, as shown in Figure 5c. Each trajectory is trans-

formed from the original trajectory of the same color. While

each individual data point is taken into a new position, the

entire trajectories remain similar before and after transfor-

mation, suggesting that the discovered transformations are

indeed the symmetries of these systems. In contrast, the

linear symmetries learned by LieGAN do not preserve valid

trajectories in the observation space, as shown in Figure 5d.

Besides the visualizations, we evaluate the learned symme-

tries quantitatively by equivariance error and discriminator

logit invariance error (Moskalev et al., 2023), defined as

EE = Ex,g∥f(gx)− gf(x)∥2 (7)

DLI = Ev,g

1

2
∥D(v)−D(gv)∥2 (8)

where we use g to denote both the group element and its

actions, f is the prediction function xt+1 = f(xt), D is the

discriminator and v = (xt, xt+1) is the input to LaLiGAN.

The results are shown in Table 1. The learned symmetries

from LaLiGAN achieve lower errors, suggesting that these

nonlinear group actions can accurately describe the symme-

tries of the above systems. A more detailed discussion on

how to calculate and interpret these errors is available in

Appendix A.8.

System Symmetry Equiv. error Logit inv. error

R-D
LaLiGAN 1.02e-4 2.79e-3
LieGAN - 3.11e-2

L-V
LaLiGAN 3.00e-2 5.21e-3
LieGAN 8.44e-2 4.05e-1

Pendulum
LaLiGAN 4.01e-3 5.33e-3
LieGAN 6.30e-3 2.11e-2

Table 1. Quantitative metrics for the learned symmetries on test

datasets. Equiv. error stands for equivariance error. Logit inv. error

stands for logit invariance error. LaLiGAN can discover nonlinear

group actions that more accurately describe the symmetries of

the considered dynamical systems. See Appendix A.8 for further

discussion.

5.3. Effect of Hyperparamemters

The latent dimension k is a key hyperparameter in our

method. However, it is not always possible to choose the

perfect latent dimension that matches the intrinsic dimen-

sion of the system and uncovers symmetry in latent space.

To study the robustness of our method under a less ideal

configuration, we set the latent dimension k = 3 for the

reaction-diffusion system and repeat the experiment. As

shown in Figure 6a, the Lie algebra representation is skew-

symmetric, indicating rotation symmetry around a particular

axis. This can be confirmed as the latent representations

roughly dwell on a circular 2D subspace. Although it is

not the simplest representation, our method still manages to

discover the rotation symmetry as in 2D latent space.

Another hyperparameter that defines the behavior of

LaLiGAN is the dimensionality of the Lie algebra c. In

the previous experiments, we have set c = 1. This means

that LaLiGAN can only learn a one-dimensional Lie algebra

at a time. Choosing a larger c allows us to discover multiple

symmetries simultaneously in the latent space. As an exam-

ple, we set the Lie algebra dimensionality to c = 2 in the

Lotka-Volterra system. The result of symmetry discovery

is shown in Figure 7. The Lie algebra basis L1 and L2 cor-

respond to a scaling symmetry and a rotational symmetry

(up to a certain scaling and a tilt angle) in the latent space.

In the input space, L1 approximately maps one trajectory

to another trajectory with a different Hamiltonian, and L2

takes one point to another within the same trajectory. This

experiment shows that our method can discover symmetry

groups of different dimensionalities. More detailed discus-

sion about this experiment can be found in Appendix A.3.
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out any knowledge of the group element associated with

each data point. We consider the example of a double-bump

world in Shakerinava et al. (2022). It consists of a rectangu-

lar and a triangular bump signal, both cyclically shifted in

a window. The signal is visualized in Figure 8. The cyclic

translation of each bump forms an SO(2) group. As each

bump is shifted independently, the symmetry group for the

composed signal is SO(2) × SO(2). Therefore, we use a

4-dimensional latent space Z = R
2 ⊕ R

2 and fix the Lie

algebra basis to L = L1 ⊕ L2, L1 = L2 =

[

0 1
−1 0

]

.

Figure 8 (right) shows the latent space learned by LaLiGAN.

We observe that rotation in the first component shifts the

rectangular bump, while rotation in the second component si-

multaneously shifts both bumps. We provide a more detailed

discussion in Appendix A.5 with additional visualizations of

transformed and reconstructed samples. This is an example

that how our method can learn equivariant representations

when we do not know the group transformation of each

data point. We also include another experiment on SO(3)
equivariant representation for a 3D object in Appendix A.6.

7. Discussion

We propose LaLiGAN, a novel generative modeling frame-

work for discovering nonlinear symmetries. LaLiGAN de-

composes the group action as a linear representation on a

latent space and a pair of nonlinear mappings between the

latent space and the observation space. By jointly optimiz-

ing the group representation and the nonlinear mappings, it

discovers both the symmetry group and its nonlinear group

action on the data. We also show that it can be applied to

downstream tasks such as equation discovery, leading to

simpler equations and better long-term prediction accuracy.

A limitation of our work lies in Theorem 4.1, which only

guarantees that our method can model actions of compact

groups, among other restrictions. However, the results in

Appendix A.3 and A.4 suggest that noncompact symmetry

groups can also be learned. Thus, an important direction

for future work is to develop the theory for modeling more

general group actions within our proposed framework. We

also plan to investigate the connection between symmetry

and other physical properties such as conservation laws.

Given the prevalence of symmetries in the natural world,

our long-term goal is to develop a general framework for

automatically discovering symmetries and other types of

governing laws from data and accelerate scientific discovery.
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intrinsically different from theirs. By symmetry, we refer to the equivariance of a function f , i.e. f(gx) = gf(x). For

example, f can be the evolution function in a dynamical system: xt+1 = f(xt). But it would be more helpful to think of f
as an arbitrary function, e.g. an image classifier or a time series forecaster, written as y = f(x). Then, our dataset {(x, y)}
consists of input-output pairs of this function. We discover the equivariance of the function from the input-output pairs. On

the other hand, Caselles-DuprÂe et al. (2019) and Quessard et al. (2020) use the group elements to describe the observational

state transitions from ot to ot+1. Their datasets are trajectories of {o0, g0, o1, g1, ...}. They learn a map f from observation

o ∈W to latent z ∈ Z that is equivariant between group actions on W and Z.

For comparison, we consider a simple environment that is studied in these works, consisting of 84× 84 pixel observations

of a ball moving in a plane. The world is cyclic, meaning that the ball will appear at the top if it crosses the bottom boundary,

and similarly for left/right. The observations are shown in Figure 16 (left).

Unlike Quessard et al. (2020) which considers sequences of observations o and transformations g, (o0, g0, o1, g1, ...), our

goal is to discover the equivariance of a function. Thus, we consider a function o′ = f(o) that simply translates the ball

to the right and to the bottom by 15 pixels, respectively. An intuitive symmetry here is the cyclic translation equivariance

along the two planar dimensions: if the input is translated by g ∈ SO(2)× SO(2), then the output will be translated by the

same group element, i.e. go′ = f(go). In this experiment, we test whether LaLiGAN can discover a symmetry group of

this function and a latent space where the group action becomes linear.

Following the setting in Quessard et al. (2020), we set the latent dimension to 4 and the search space of symmetries to

SO(4). The discovered Lie algebra basis is

L1 =









0 1.50 −2.24 0
−1.50 0 0 0
2.24 0 0 0
0 0 0 0









, L2 =









0 0 0 0
0 0 0 −4.25
0 0 0 −2.86
0 4.25 2.86 0









(9)

It can be verified that this basis forms a valid Lie algebra that is closed under the Lie bracket. It is a commutative Lie algebra

that matches the structure of SO(2) × SO(2). Note that we do not enforce any disentanglement in the learning process,

so the latent dimensions are entangled. Disentanglement can be explicitly enforced by decomposing the latent space as

independent subspaces as described in Section 4.4, or promoted by encouraging the sparsity of the Lie algebra generators.

The toroidal structure of the latent space can be verified from Figure 16. The visualization is obtained by projecting the 4D

latent representations of equally spaced observations to 2D using Gaussian random projection. The marker colors and styles

correspond to specific vertical and horizontal positions of the ball, respectively. It can be observed that all markers of a

specific style, as well as all markers in a specific color, form a circular structure. For visual clarity, we also include two

subsets: a vertical traversal along one column and a horizontal traversal along one row. This matches the result in Figure 2

from Quessard et al. (2020).

A.8. Quantitative Evaluation of the Learned Symmetries

Task Symmetry Equivariance error Logit invariance error

Reaction-Diffusion

LaLiGAN 1.02e-4 2.79e-3

LieGAN - 3.11e-2

SO(2) standard 1.04e-4 2.84e-3

Lotka-Volterra

LaLiGAN 3.00e-2 5.21e-3

LieGAN 8.44e-2 4.05e-1

SO(2) standard 3.35e-2 5.68e-3

Pendulum

LaLiGAN 4.01e-3 5.33e-3

LieGAN 6.30e-3 2.11e-2

SO(2) standard 7.22e-3 1.57e-2

Table 6. Quantitative metrics for the learned symmetries on test datasets.

In this section, we introduce some metrics to evaluate the discovered symmetries quantitatively. Recall that the symmetries

are the equivariances of a function, i.e. f(gx) = gf(x). Thus, a straightforward metric would be the equivariance error

defined as
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EEf = Ex,g∥f(gx)− gf(x)∥2. (10)

Our symmetry discovery method is unsupervised and does not require fitting a function f . However, such a function

can be fitted after discovering the symmetries, as is done in the dynamical system experiments. Concretely, the dataset

consists of trajectories {x1:T }, and the prediction function is xt+1 = f(xt). We use SINDy to learn symbolic equations

ż = h(z) (and therefore zt+1 = H(zt) = zt + h(zt)∆t) in the latent space as shown in Table 3, 4 and 5. Then,

xt+1 = f(xt) = (ψ ◦ H ◦ ϕ)(xt), where ϕ and ψ are the learned encoder and decoder. Using this function f , we

can evaluate the equivariance error of the learned symmetries on the test datasets. For comparison, we include the

symmetry learned by linear LieGAN (Yang et al., 2023) in the input space (without autoencoder), where the function f
is the SINDy model trained in the input space (third row (SINDy) of Table 4 and 5). Note that this result is unavailable

for the high-dimensional reaction-diffusion system because we did not train SINDy on its input space. Besides, we

use the same autoencoder but replace the representation learned LaLiGAN with a standard representation of SO(2), i.e.

L = [0,−1; 1, 0] ∈ R
2×2. Table 6 shows that LaLiGAN reaches the lowest equivariance errors on all of the three dynamical

systems.

Another quantitative metric is inspired by the logit invariance introduced in Moskalev et al. (2023). For a classification task,

we define the logit invariance error to measure the change of logits under group actions:

LIf = Ex,g

1

2
∥f(x)− f(gx)∥2. (11)

Here, the function f outputs the logits for classification. In our setting, there is not necessarily such a classification function.

However, we can utilize the learned discriminator in LaLiGAN, which effectively classifies between the original data

distribution and the transformed distribution by the symmetry generator. A good symmetry should lead to a small difference

between these two distributions. Therefore, we define the discriminator logit invariance error as follows:

DLI = Ev,g

1

2
∥D(v)−D(gv)∥2 (12)

where v = (x, y) are the data points sampled from the dataset. Table 6 shows that LaLiGAN has the lowest discriminator

logit invariance error among the considered symmetries.

B. Preliminaries on Lie Group Representations

A Lie group is both a group and a differentiable manifold. We use Lie groups to describe continuous symmetry transfor-

mations. For example, the rotations in R
n form a Lie group SO(n); all rotations, translations and reflections in R

n form

the Euclidean group E(n). We also referred to general linear group GL(n;R), which is the group of all n× n invertible

matrices with real entries. As we only consider the field of real numbers in this work, we sometimes omit R and write

GL(n) instead. We may also write GL(V ), which is equivalent to GL(n;R) if V = R
n is a vector space.

The tangent vector space at the identity group element is called the Lie algebra of the Lie group G, denoted as g = TidG.

The Lie algebra of general linear group GL(n,R) consists of all real-valued matrices of size n × n. As Lie algebra is a

vector space, we can use a basis Li ∈ g to describe any of its element as A =
∑c

i=1 wiLi, where wi ∈ R and c is the

dimension of the vector space. Lie algebra can be interpreted as the space of infinitesimal transformations of the group.

Group elements infinitesimally close to the identity can be written as g = I +
∑c

i=1 wiLi.

The exponential map exp : g → G gives a mapping from the Lie algebra to the Lie group. For matrix Lie groups that we are

considering, matrix exponential is such a map.

We are interested in how the data is transformed by group elements. Lie group, just like any other group, transforms the

data from a vector space via a group action α : G× V → V . If the action is linear, we call it a Lie group representation

ρ : G → GL(V ), which acts on the vector space V by matrix multiplication. Such a group representation induces a Lie

algebra representation, dρ : g → gl(V ), which satisfies exp(dρ(L)) = ρ(exp(L)), ∀L ∈ g.

Every matrix Lie group G ≤ GL(n) has a standard representation, which is just the inclusion map of G into GL(n). In our

work, as we only consider these subgroups of general linear group, we learn the Lie group as its standard representation

acting on R
n in the usual way. It is thus convenient to think of all group elements (and also Lie algebra elements) as n× n

matrices, with the group operation given by matrix multiplication.
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C. Universal Approximation of Nonlinear Group Actions

C.1. Proofs

In this section, we provide theoretical justifications for the decomposition of nonlinear group actions introduced in section

4.1. We represent any nonlinear group action π′ : G×M → M as

π′(g, ·) = ψ ◦ π(g) ◦ ϕ
∣

∣

M
, (13)

where ϕ : V → Z and ψ : Z → V are functions parametrized by neural networks, and π(g) : G → GL(k) is a group

representation acting on the latent vector space Z = R
k.

Proposition C.1. π′(g, ·) = ψ ◦ π(g) ◦ ϕ
∣

∣

M
is a group action on M if (1) ϕ

∣

∣

M
is the right-inverse of ψ, and (2) the image

of M under ϕ is invariant under the action π of G, i.e. Gϕ[M] = ϕ[M].

Proof. We prove that π′ defined this way indeed satisfies the identity and the compatibility axioms of group action. The

identity condition is obvious from the property of right-inverse:

π′(e, x) = ψ(ϕ(x)) = x (14)

As Gϕ[M] = ϕ[M], for any x ∈ M and g ∈ G, ∃x′ ∈ M s.t. π(g)ϕ(x) = ϕ(x′). Then, we can conclude that ψ is

injective when restricted to Gϕ[M] from the right inverse property: ψ(ϕ(x1)) = ψ(ϕ(x2)) ⇒ x1 = x2 ⇒ ϕ(x1) = ϕ(x2).

Then, denoting z = ϕ(x) and gz = π(g)z, we have ψ(gz) = ψ(gz) ⇒ ψ(ϕ(ψ(gz))) = ψ(gz) ⇒ ϕ(ψ(gz)) = gz for any

x ∈ M and g ∈ G, and thus

π′(g2, π
′(g1, x)) = ψ(π(g2)ϕ(g1 · x))

= ψ(π(g2)ϕ(ψ(π(g1)ϕ(x))))

= ψ(π(g2)π(g1)ϕ(x))

= ψ(π(g2g1)ϕ(x))

= π′(g2g1, x) (15)

The following theorem states that our proposed decomposition and neural network parametrization can approximate

nonlinear group actions under certain conditions.

Theorem C.2 (Universal Approximation of Nonlinear Group Action). Let G ≤ GL(k;R) be a compact Lie group that

acts smoothly, freely and properly via a continuous group action π′ : G × M → M, where the data manifold M is a

compact subset of V = R
n. The group action, restricted to any bounded subset of the group, can be approximated by

the decomposition π′(g, ·) ≈ ψ ◦ π(g) ◦ ϕ if it admits a simply connected orbit space M/G, where ψ and ϕ are fixed

arbitrary-width neural networks with one hidden layer, and π is a linear group representation.

Proof. We establish our theorem as a corollary of the Universal Approximation Theorem (UAT) (Hornik et al., 1989), which

states that any continuous function f ∈ C(Rn,Rm) can be approximated by a one-hidden-layer arbitrary-width neural

network. The intuition of this proof is to explicitly construct the mappings between input and latent space and ensure their

continuity so that we can use UAT to approximate them with neural nets.

The Quotient Manifold Theorem states that smooth, free, and proper group actions yield smooth manifolds as orbit spaces

(Lee & Lee (2012), Theorem 21.10). More precisely, the orbit space M/G has a unique smooth structure with a smooth

submersion quotient map s : M → M/G. Also, given that M/G is simply connected, we can find a global continuous

section s′ : M/G→ M s.t. s′ ◦ s is identity restricted on S = imgs′(M/G). The global section can be constructed by:

1. Fix a base point p ∈ M/G and choose a point p̃ in the pre-image of p under s, i.e. s(p̃) = p.

2. For any other point q ∈ M/G, choose a path γ in M/G from p to q.
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3. As M/G is simply connected, M is a universal cover of M/G, so that any path γ in M/G can be uniquely lifted to a

path γ̃ in M which starts at p̃ and ends at q̃.

4. Define the section as s′ : M/G→ M, q 7→ q̃.

In addition, according to Whitney Embedding Theorem, the smooth manifold M/G can be smoothly embedded in a

higher-dimensional Euclidean space. Denote t : M/G → R
p as one of the possible embeddings. We do not restrict the

exact dimensionality of such an Euclidean space, as long as it enables us to represent any orbit with part of the latent space.

Before defining the mapping from input to latent, we finally note that as G ≤ GL(k;R), we have a standard representation

ρ : G→ R
k×k.

Now we define α : M → R
k2+p, π′(g, s′(ṽ)) 7→ concat(vec(ρ(g)), t(ṽ)), ∀ṽ ∈ M/G, g ∈ G, and we verify that this

function is well defined.

First, M = {π′(g, s′(ṽ))|ṽ ∈ M/G, g ∈ G}, so that α(v) is defined for any v ∈ M.

Then, we need to make sure any v ∈ M is written uniquely in the form of v = π′(g)ṽ. ∀x̃i ̸= x̃j , gi, gj ∈ G, π′(gi)x̃i ̸=
π′(gj)x̃j , because any two orbits never overlap in M.

Also, ∀g1, g2 ∈ G, g1 ̸= g2, as π′ acts freely, we have π′(g1)ṽ ̸= π′(g2)ṽ.

Next, we prove that α defined this way is also continuous. As the value of α is concatenated from two parts, it suffices to

check the continuity for each component, i.e. α1(π
′(g, s′(ṽ))) = vec(ρ(g)) and α2(π

′(g, s′(ṽ))) = t(ṽ).

For any open set t(Ṽ ) ⊂ R
p, where Ṽ ⊂ M/G, the continuity of t and s guarantees that the inverse image, (t◦s)−1t(Ṽ ) =

s−1(Ṽ ), is an open set. As (s|S)
−1 = s′, s′(Ṽ ) is an open set. The α2 inverse image of t(Ṽ ) is

⋃

g∈G π
′(g, s′(Ṽ )). Note

that ∀g ∈ G, π′(g−1, ·) : M → M is continuous, so that π′(g, s′(Ṽ )) is open. Therefore, the α2 inverse image of any open

set t(Ṽ ) is a union of open sets, which is also open, so that α2 is continuous.

Similarly, for any open set vec(ρ(U)) ∈ R
k, U is an open set given the continuity of the standard representation ρ and the

vectorization operation. The α1 inverse image of vec(ρ(U)) is
⋃

s′(ṽ) π
′(U, s′(ṽ)). As the action of G on M is free, i.e. the

stabilizer subgroup is trivial for all v ∈ M, we have π′(·, v) : G→ M is an injective continuous map, so that its image of

an open set is still open. Thus, we conclude that α1 is also continuous.

Given that the data manifold M is a closed subset of the ambient space V = R
n, the Tietze extension theorem (Dugundji,

1951) ensures that α : M → R
k2+p can be continuously extended to a function on V . According to the Universal

Approximation Theorem, there exists a one-hidden-layer arbitrary-width neural network ϕ that approximates the continuous

extension of α.

Then, we define π(g) = (Ik ⊗ ρ(g))⊕ Ip. For some z0 = (vec(ρ(g0)), t(ṽ0)) in the image of α, we have

π(g)z0 =((Ik ⊗ ρ(g))vec(ρ(g0)), t(ṽ0))

=(vec(ρ(g)ρ(g0)), t(ṽ0))

=(vec(ρ(gg0)), t(ṽ0))

Finally, we define another mapping β on GZ =
⋃

g∈G,z∈Z π(g)z, where Z is the image of α, as β : (vec(ρ(g)), t(ṽ)) 7→
π′(g, s′(ṽ)), ∀ṽ ∈ M/G, g ∈ G. It is well-defined because vec ◦ ρ is injective on G, and also continuous because it is the

inverse of α. Similarly, we need to extend the function on GZ to the entire vector space. Because M is a compact set, its

image Z under the continuous function α is also compact (and therefore closed) in R
k2+p. Then, the proper action of the

compact group G ensures that the image of the group action, i.e. GZ is also compact. Thus, we can continuously extend

β from GZ to R
k2+p. According to the Universal Approximation Theorem, there exists another neural network ψ that

approximates β.
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Finally, defining α, π, β as above, for any v = π′(g′, s′(ṽ)) ∈ M and g in any bounded subset of G, we have

π′(g, v) =π′(g, π′(g′, s′(ṽ)))

=π′(gg′, s′(ṽ))

=β(vec(ρ(gg′)), t(ṽ))

=(β ◦ π(g))(vec(ρ(g′)), t(ṽ))

=(β ◦ π(g) ◦ α)(π′(g′, s′(ṽ))

=(β ◦ π(g) ◦ α)(v)

≈(ψ ◦ π(g) ◦ ϕ)(v)

The final step relies on the fact that the neural network approximator ψ and the group representation π(g) are Lipschitz

continuous. Concretely, it requires ∥ψ(z1)− ψ(z2)∥ ≤ K∥z1 − z2∥, ∀z1, z2, for some positive constant K and similarly

for π(g) as a function over Z = img(α). This is true for a one-layer neural network with ReLU activation, and also for π(g)
for any g in a bounded subset of the group, because π(g) is a bounded linear transformation.

Then, according to the UAT, for any ϵ > 0, there exist neural networks ψ and ϕ and positive constant K s.t.

sup
v∈M

∥(ψ ◦ π(g) ◦ ϕ)(v)− (β ◦ π(g) ◦ α)(v)∥

≤ sup
v∈M

∥(ψ ◦ π(g) ◦ ϕ)(v)− (ψ ◦ π(g) ◦ α)(v)∥+ ∥(ψ ◦ π(g) ◦ α)(v)− (β ◦ π(g) ◦ α)(v)∥

≤ sup
v∈M

K∥(π(g) ◦ ϕ)(v)− (π(g) ◦ α)(v)∥+ ϵ

≤ sup
v∈M

K2∥ϕ(v)− α(v)∥+ ϵ

≤(K2 + 1)ϵ

which translates to

(β ◦ π(g) ◦ α)(v) ≈ (ψ ◦ π(g) ◦ ϕ)(v)

C.2. Group Action Under Approximate Inverse

In practice, the networks ϕ and ψ are trained with a reconstruction loss. As the loss is not strictly zero, they are only

approximate but not perfect inverses of each other. As a result, the condition in Proposition 4.2 cannot be strictly true.

However, we can show empirically that when the reconstruction loss is reasonably close to zero, the decomposition in

Proposition 4.2 leads to an approximate group action. We use the reaction-diffusion system for demonstration.

A group action needs to satisfy the identity and compatibility axioms. We evaluate the error in terms of these axioms caused

by the imperfect encoder and decoder networks. First, the error with respect to the identity axiom can be directly described

by the reconstruction loss:

errid = Ex∥π
′(e, x)− x∥2 = Ex∥ψ(ϕ(x))− x∥2 = lrecon. (16)

In the reaction-diffusion experiment, the test reconstruction loss is 2.58× 10−3, which indicates the autoencoder networks

approximately satisfy the identity axiom.

Then, we consider the compatibility error. We sample a random group element g from the generator and calculate gN . Then,

we apply π′(g)N = (ψ ◦π(g) ◦ϕ)N and π′(gN ) = ψ ◦π(gN ) ◦ϕ to the test dataset. The compatibility error is computed as

errcomp = Ex∥π
′(g)N (x)− π′(gN )(x)∥2. (17)

Figure 17a shows a sample from test set transformed by π′(g)20, that is, passed through the encoder, the linear representation

π(g) and the decoder for 20 times, and by π′(g20), that is, passed through the autoencoder and the linear representation

π(g20) once. The two transformations have the same effect visually, which indicates that the autoencoder networks

approximately satisfy the compatibility axiom. Further evidence is provided in Figure 17b, where we use the number

of compositions N ∈ [2, 40] and plot the growth of compatibility error with the increase of N . The error remains low

(≈ 1× 10−2) up to 40 times of group element composition.
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We use MLPs with 5 hidden layers and 512 hidden units as the encoder, the decoder and the discriminator. We also use

orthogonal parametrization for the final linear layer of the encoder, which is discussed in Section 4.4. The dimension of the

Lie algebra in the LieGAN generator is set to one. We use a standard Gaussian as the distribution of the coefficient w in the

LieGAN generator.

For the 2D latent space symmetry discovery, we train for 150 epochs with batch size 64. The learning rates for the

autoencoder, the generator and the discriminator are 0.0003, 0.001, 0.001, respectively. The weights of the reconstruction

loss and the GAN loss are set to wrecon = 1 and wGAN = 0.01. As in LieGAN, we also include a regularization loss term lreg

for LieGAN generator, which pushes the Lie algebra basis away from zero, and the weight for the regularization is set to

wreg = 0.1. We also apply sequential thresholding to the LieGAN generator parameters. Every 5 epochs, matrix entries

with absolute values less than 0.01 times the max absolute values across all entries are set to 0. For the 3D latent space, the

settings are the same as above except that we train for 300 epochs.

D.2. Nonlinear Pendulum

We simulate the movement of nonlinear pendulum according to the governing equation, q̇ = p, ṗ == − sin(q). For training,

we simulate 200 trajectories up to T = 500 timesteps with ∆t = 0.02 with random initial conditions. For testing, we

simulate another 20 trajectories. The initial conditions are sampled uniformly from q0 ∈ [−π, π] and p0 ∈ [−2.1, 2.1]. Also,

we ensure that H = 1
2p

2 − cos(q) < 0.99, so that it does not lead to a circular movement.

We use MLPs with 5 hidden layers and 512 hidden units as the encoder, the decoder and the discriminator. We also use

orthogonal parametrization for the final linear layer of the encoder and batch normalization before the transformation of the

symmetry generator, as discussed in Section 4.4. The dimension of the Lie algebra in the LieGAN generator is set to one.

We use a standard Gaussian as the distribution of the coefficient w in the LieGAN generator.

We train for 70 epochs with batch size 256. The learning rate for the autoencoder, the generator and the discriminator are all

0.001. The weights of the reconstruction loss and the GAN loss are set to wrecon = 1 and wGAN = 0.01. The weight for the

LieGAN regularization is set to wreg = 0.02. We also apply sequential thresholding to the LieGAN generator parameters.

Every 5 epochs, matrix entries with absolute values less than 0.3 times the max absolute values across all entries are set to 0.

D.3. Lotka-Volterra Equations

We simulate the Lotka-Volterra equations in its canonical form, ṗ = a−beq, q̇ = cep−d, with a = 2/3, b = 4/3, c = d = 1.

For training, we simulate 200 trajectories up to T = 10000 timesteps with ∆t = 0.002 with random initial conditions. For

testing, we simulate another 20 trajectories. The initial conditions are sampled by first sampling x0 = ep0 and y = eq0

uniformly from [0, 1] and then computing p0 = log x0 and q0 = log y0. Also, we ensure that the Hamiltonian of the system

given by H = cep − dp+ beq − aq falls in the range of [3, 4.5].

For all the experiments, we use MLPs with 5 hidden layers and 512 hidden units as the encoder, the decoder and the

discriminator. We also use orthogonal parametrization for the final linear layer of the encoder and batch normalization

before the transformation of the symmetry generator, as discussed in Section 4.4. The dimension of the Lie algebra in the

LieGAN generator is set to one. We use a standard Gaussian as the distribution of the coefficient w in the LieGAN generator.

We train for 30 epochs with batch size 8192. The learning rate for the autoencoder, the generator and the discriminator are

all 0.001. The weights of the reconstruction loss and the GAN loss are set to wrecon = 1 and wGAN = 0.01. The weight for

the LieGAN regularization is set to wreg = 0.01. We also apply sequential thresholding to the LieGAN generator parameters.

Every 5 epochs, matrix entries with absolute values less than 0.3 times the max absolute values across all entries are set to 0.

D.4. Double Bump

The signal length is set to 64, so that we have observations x ∈ R
64. The rectangular and the triangular bump signals both

have the length 16. For each sample, we randomly sample a shift (∆1,∆2), where ∆i is an integer in [0, 64). The two bump

signals are then cyclically shifted and superimposed. We sample 10000 signals for training and another 1000 for test.

We use a 1D convolution architecture for autoencoder. The encoder consists of three 1D convolution layers, with the

numbers of input channels 1, 16, 32 and the final number of output channels 64, kernel size 3, stride 1 and padding 1, each

followed by ReLU activation and a 1D max pooling layer with kernel size 2 and stride 2. The output of the final convolution

is flattened and fed into an MLP with 2 hidden layers with 128 and 32 hidden units, and 4 output dimensions. The decoder
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structure is the reverse of the encoder structure, It consists of a 2-layer MLP with 32 and 128 hidden units, and 512 output

dimensions. The MLP output is reshaped into 64 channels with size 8. Then three transposed convolution layers with output

channels 32, 16, 1, kernel size 3, stride 2, input padding 1 and output padding 1 are applied. The final output passes through

a sigmoid activation to ensure the output range is in (0, 1). We use MLPs with 4 hidden layers and 128 hidden units as the

discriminator. We also use orthogonal parametrization for the final linear layer of the encoder, as discussed in Section 4.4.

The Lie algebra basis in the LieGAN generator is fixed to the standard representation of SO(2)× SO(2).

We train for 2000 epochs with batch size 64. The learning rate for the autoencoder and the discriminator are both 0.001.

The weights of the reconstruction loss and the GAN loss are set to wrecon = 1 and wGAN = 0.01.
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