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When time-reversal symmetry is broken, the low-energy description of acoustic lattice dynamics allows

for a dissipationless component of the viscosity tensor, the phonon Hall viscosity, which captures how

phonon chirality grows with the wave vector. In this work, we show that, in ionic crystals, a phonon Hall

viscosity contribution is produced by the Lorentz forces on moving ions. We calculate typical values of the

Lorentz force contribution to the Hall viscosity using a simple square lattice toy model, and we compare it

with literature estimates of the strengths of other Hall-viscosity mechanisms.
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Introduction.—Recent measurements of giant thermal

Hall signals in many insulating ionic crystals [1–5] have

ignited widespread interest in the processes underlying

chiral phonon transport. The mechanisms by which pho-

nons acquire chirality can be broadly divided in two

classes: (i) intrinsic—i.e., originating from external mag-

netic fields or magnetism that breaks time-reversal sym-

metry (TRS) in crystals [6–25], and (ii) extrinsic—i.e.,

originating from scattering on TRS-breaking crystal defects

[26–29].

In the low-energy elasticity-theory description of acous-

tic waves, intrinsic TRS-breaking is accounted for by a Hall

viscosity contribution to the response of the system’s

viscoelastic stress tensor to an applied strain uλ¿ [7,11]:

hT̂λ¿i ¼ Λλ¿ÀÁuÀÁ þ ηλ¿ÀÁu̇ÀÁ: ð1Þ

Here, T̂ is the stress tensor, uλ¿ ¼ 1

2
ð∂λu¿ þ ∂¿uλÞ is the

strain tensor, uλ is the atomic displacement field along the

λth direction, and Λ and η are, respectively, the elasticity

and viscosity tensors. The viscosity tensor η can have

dissipationless component, dubbed the Hall (or odd)

viscosity, which is associated with the part of ηλ¿ÀÁ that

is antisymmetric under exchange of the pairs of indices

ðλ¿Þ and ðÀÁÞ.
Dissipationless Hall contributions to the viscosity [7] are

allowed only in systems with broken TRS where they alters

the acoustic phonon spectrum, and mix longitudinal and

transverse modes. Previous theoretical work has addressed

phonon Hall viscosities produced by coupling of acoustic

phonons to a ferroelectric [6], electronic [7–10,12–15], or

spin environment [16–25] in which TRS is broken.

In this Letter, we consider the role of Lorentz forces in

ionic crystals, which act on the electric dipoles produced by

out-of-phase motion of cations and anions. The out-of-

phase lattice vibrations are, in turn, coupled at finite wave

vector to the in-phase modes by elastic forces. By deriving

an effective theory for the low-energy acoustic waves, we

show that Lorentz forces always lead to finite Hall

viscosities that are linear in magnetic field.

The Lorentz-force Hall effect mechanism identified in

this Letter must be present in any ionic crystal and is readily

FIG. 1. Top: Diatomic square lattice with interatomic distance

a, subjected to an out-of-plane magnetic field B. The cation and

anion masses are mþ and m−, and the ion effective charges are

q� ¼ �Z�e. We include centrosymmetric pairwise interactions

between ions characterized by spring constants γ, γ1, and γ2 for

near-neighbor interactions between cations and anions, second-

neighbor interactions cations, and second-neighbor interactions

between anions, respectively. Bottom: optical modes in an ionic

crystal. In the presence of a magnetic field B perpendicular to the

2d crystalline plane, the Lorentz forces on cations and anions

moving in opposite directions do not cancel.
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evaluated for particular materials given a set of lattice force

constants and ionic charges. In order to bring out the

mechanisms that control Hall viscosity trends across

materials, we analyze a two-dimensional model.

Specifically, we focus on the diatomic square lattice

subjected to an out-of-plane magnetic field, sketched in

Fig. 1, to estimate the typical size of contributions to the

Hall viscosity tensor η supplied by this mechanism.

Because of the C4 rotational symmetry of our 2d model,

there is only one independent coefficient in the phonon Hall

viscosity tensor, i.e., ηH ¼ ηxxxy [30]. We find that this

coefficient is proportional to the external magnetic field,

and that its typical numerical value is comparable to those

estimated for other mechanisms. Our results show that

every ionic crystal can display a phonon Hall response,

independently of phonon coupling to external degrees of

freedom. Furthermore, our discovery sheds further light on

the mechanisms underlying the generation of phonon

chirality and angular momentum in ionic insulators, which

have been recently attracting significant attention across

different fields in condensed matter physics and nonlinear

optics [31–38].

Model.—We consider a square lattice with cations and

anions on opposite sublattices that is subjected to an out-of-

plane magnetic field B, as depicted in Fig. 1. The cation and
anion have masses mþ and m− and charges q� ¼ �Z�e,
respectively, with e > 0 being the electron charge and Z�

the effective ionic charge number. We assume centrosym-

metric forces with spring constants γ, γ1, and γ2 for

interactions between cation and anion nearest neighbors,

cation second nearest neighbors, and anion second nearest

neighbors, respectively.

At wave vector k, the lattice displacement along the ith
direction of the nth ion (with n ¼ �) in the lth cell can be

written as

un¿lðk;ωÞ ¼ m
−1=2
n un¿e

ik·RnðlÞ−iωt: ð2Þ

Here, un¿ is the lattice vibration amplitude of the nth atom

along the ¿th direction, RnðlÞ is a lattice translation vector,
and ω the normal mode frequency. In the harmonic

approximation, the equation of motion for the vibration

amplitude un¿ is

ω2un¿ ¼
X

m;À

D¿Àðmn;kÞumÀ þ
X

À

iωBqn
mn

unÀϵ¿À; ð3Þ

where ϵ¿À is the 2d Levi-Civita tensor. The element

D¿Àðmn;kÞ of the dynamical matrix reads as

D¿Àðmn;kÞ ¼ −
X

l0

γnm
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mmmn

p e¿ðmÞeÀðmÞeik·Rnmðl0Þ; ð4Þ

where êðmÞ is the unit vector along the translational vector
Rnmðl0Þ connecting the mth atom in the l0 unit cell to the

nth atom in the l ¼ 0 unit cell, while γnm > 0 is the spring

constant between nth and mth ions. Plugging Eq. (4) into

Eq. (5), we can rewrite the equations of motion as

ω2

�

uþ

u−

�

¼ Aðk;ωÞ
�

uþ

u−

�

; ð5Þ

where

Aðk;ωÞ ¼

2

6

6

6

6

6

6

6

6

6

6

6

6

4

2γþ2γ1ð1−cos kxa cos kyaÞ
mþ

iωZeB−2γ1 sin kxa sin kya

mþ
−

2γ cos kxa
ffiffiffiffiffiffiffiffiffiffi

mþm−

p 0

−
2γ1 sin kxa sin kyaþiωZeB

mþ

2γþ2γ1ð1−cos kxa cos kyaÞ
mþ

0 −
2γ cos kya
ffiffiffiffiffiffiffiffiffiffi

mþm−

p

−
2γ cos kxa
ffiffiffiffiffiffiffiffiffiffi

mþm−

p 0
2γþ2γ2ð1−cos kxa cos kyaÞ

m−
−

2γ2 sin kxa sin kyaþiωZeB

m−

0 −
2γ cos kya
ffiffiffiffiffiffiffiffiffiffi

mþm−

p iωZeB−2γ2 sin kxa sin kya

m−

2γþ2γ2ð1−cos kxa cos kyaÞ
m−

3

7

7

7

7

7

7

7

7

7

7

5

; ð6Þ

with a being the lattice constant. In the following, we set ky ¼ 0 and we focus on the long-wavelength limit of the phonon

dynamics by assuming that kxa j 1. It is convenient to work in the basis of eigenmodes of Eq. (5) for kx ¼ 0 and B ¼ 0,

which are the in-phase (ua) and out of phase (uo) ionic motions,

ua¿ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m−

m− þmþ

r
�

u−¿ þ
ffiffiffiffiffiffiffi

mþ
m−

r

uþ¿

�

; ð7Þ

uo¿ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mþ
m− þmþ

r
�

u−¿ −

ffiffiffiffiffiffiffi

m−

mþ

r

uþ¿

�

: ð8Þ
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In this basis, we can rewrite the dynamical matrix (6) as

Aðkx;ωÞ ¼

2

6

6

6

6

6

6

6

6

6

4

ð2γþγ1þγ2ÞðkxaÞ2
mþþm−

0
½mþðγþγ2Þ−m−ðγþγ1Þ�ðkxaÞ2

ffiffiffiffiffiffiffiffiffiffi

mþm−

p ðmþþm−Þ −
iZeBω
ffiffiffiffiffiffiffiffiffiffi

mþm−

p

0
ðγ1þγ2ÞðkxaÞ2

mþþm−

iZeBω
ffiffiffiffiffiffiffiffiffiffi

mþm−

p ðmþγ2−m−γ1ÞðkxaÞ2
ffiffiffiffiffiffiffiffiffiffi

mþm−

p ðmþþm−Þ

½mþðγþγ2Þ−m−ðγþγ1Þ�ðkxaÞ2
ffiffiffiffiffiffiffiffiffiffi

mþm−

p ðmþþm−Þ −
iZeBω
ffiffiffiffiffiffiffiffiffiffi

mþm−

p 2γðmþþm−Þ2þðγ2m2

þþγ1m
2

1
−2γmþm−ÞðkxaÞ2

mþm−ðmþþm−Þ −
iZeBðmþ−m−Þω

mþm−

iZeBω
ffiffiffiffiffiffiffiffiffiffi

mþm−

p ðmþγ2−m−γ1ÞðkxaÞ2
ffiffiffiffiffiffiffiffiffiffi

mþm−

p ðmþþm−Þ
iZeBðmþ−m−Þω

mþm−

2γðmþþm−Þ2þðm2

þγ2þm2
−γ1ÞðkxaÞ2

mþm−ðmþþm−Þ

3

7

7

7

7

7

7

7

7

7

5

:

ð9Þ

Equation (9) shows that the in-phase motion is coupled

to the out-of-phase motion when either kx or B is nonzero.

The longitudinal (transverse) in-phase motion of the cations

and anions is coupled to out-of-phase longitudinal (trans-

verse) motion via elastic forces, which vanish as kx → 0. In

contrast the Lorentz force yields a wave vector–indepen-

dent interaction between the longitudinal in-phase motion

and the out-of-phase transverse motion. When the cation

and anion have different masses, the Lorentz force also

directly couples the transverse and longitudinal out-of-

phase motions.

Phonon Hall viscosity.—When TRS is broken, the action

of a two-dimensional phonon system allows for a non-

dissipative Hall viscosity term [25], i.e.,

SH ¼
Z

d2x dt

�

−
ηH

2
ð∇2uaxu̇ay −∇2uayu̇axÞ

�

: ð10Þ

To make contact with the definition of phonon Hall

viscosity ηH introduced in Eq. (10), we derive a low-

energy theory for the in-phase modes ua by integrating

over out-of-phase modes in the imaginary-time phonon-

system action S½ua;uo� corresponding to Eq. (9). The

effective action Sa for the low-energy nearly in-phase

modes is

e−Sa½ua� ¼
Z

Du
�
oDuoe

−S½ua;uo�: ð11Þ

To leading order in the small parameters kxa and ωc=ωo,

the resulting equations of motion are

ω2

�

1þ ω2
c

ω2
o

�

uax ¼ c2l ðkxaÞ2uax

þ iωωc

ω2
o

½mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ�ðkxaÞ2
ðmþ þm−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

mþm−

p uay; ð12Þ

ω2

�

1þ ω2
c

ω2
o

�

uay ¼ c2t ðkxaÞ2uay

−
iωωc

ω2
o

½mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ�ðkxaÞ2
ðmþ þm−Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi

mþm−

p uax: ð13Þ

Here, ωo is the optical phonon frequency at the Γ ¼ ð0; 0Þ
point, ωc is the cyclotron frequency, and cl and ct are the

longitudinal and transverse phonon velocities:

ωo ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γðmþ þm−Þ
mþm−

s

; ωc ¼
Z�eB
ffiffiffiffiffiffiffiffiffiffiffiffiffi

mþm−

p ;

cl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2γ þ γ1 þ γ2

mþ þm−

s

; ct ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

γ1 þ γ2

mþ þm−

r

: ð14Þ

The phonon Hall viscosity ηH can be extracted from

Eqs. (10), (12), and (13) by identifying ρ ¼ a−2ðmþ þm−Þ
[39]. We find that

ηH ¼ ωc

ω2

0

mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi

m−mþ
p ;

¼ mþðγ þ 2γ2Þ −m−ðγ þ 2γ1Þ
2γðmþ þm−Þ

Z�eB: ð15Þ

Equation (15) shows that acoustic phonons in ionic crystals

can acquire a dissipationless Hall viscosity whose strength

is proportional to the magnetic field. This is the central

result of our work.

The strength and sign of the phonon Hall viscosity (15)

strongly depends on the ratio x ¼ m−=mþ between the mass

of cations and anions.Forx k 1, theHall viscosity is negative

and approaches the value ηH ∼ −ð1=2 þ γ1=γÞZeB. For

x ¼ ðγ þ 2γ2Þ=ðγ þ 2γ1ÞηH crosses zero, to then increase

until it reaches its saturation value ηH ∼ ð1=2þ γ2=γÞZeB
for x j 1. We therefore expect positive Hall viscosities in

oxides because their anions are light.

Since the Lorentz force couples transverse and longi-

tudinal motion only when the ion motion is out of phase,
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the denominator in Eq. (15) is proportional to ω2
o, instead of

c2l − c2t . The role of the phonon force constants is to couple

in-phase and out-of-phase motion at finite wave vectors.

Choosing Cu and O as typical cation and anion masses,

we take the optical phonon frequency of a CuO2 plane, i.e.,

ω0 ∼ 2.5 THz [40], and set γ1 ∼ γ=2 and γ2 ∼ 3γ=4. We

find that the typical numerical value of ηH at B ¼ 10 T

is ∼5 × 10−18 kg s−1.

The wave equations (12) and (13) explicitly couple

longitudinal and transverse phonon modes. We characterize

the chirality of acoustic phonon modes by the polarization

pa defined as the ratio of the transverse to the longitudinal

component in the dominantly longitudinal mode. For wave

vectors in the x̂ direction pa ≡ juay=uaxj. From Eqs. (12)

and (13),

pa ≈
clðkxaÞ

2γ
jηHj; ð16Þ

at long wavelengths. As shown by the overlapping blue

lines in Fig. 2, Eq. (16) is in excellent agreement with the

polarization obtained numerically from Eq. (9). However,

according to Eq. (16), pa is nonzero only if ηH ≠ 0, while

the polarization pa calculated from Eq. (9) vanishes at all

wave vectors only when the elastic coupling between the

in-phase motion and out-of-phase dynamics vanish entirely,

i.e., when mþ ¼ m− and γ1 ¼ γ2. The more stringent

condition for the absence of field-induced coupling

between longitudinal and transverse modes is captured

when terms of order ðkxaÞ4B are retained in the low-energy

effective model.

Figure 2 additionally displays the dependence of the

polarization po ¼ juoy=uoxj of the out-of-phase longi-

tudinal mode on the magnetic field (orange line). Since

Lorentz forces directly couple transverse and longitudinal

out-of-phase modes, the polarization of the out-of-phase

mode is several order of magnitude larger (∼104 for our

parameters) than the polarization of the in-phase mode.

When the Lorentz force coupling the transverse and longi-

tudinal out-of-phase motion vanishes, i.e., A34ð43Þ ¼ 0 in

Eq. (9), the polarization p0 is significantly reduced (green

line). We find that, however, p0 does not vanish as long as

there is a finite elastic coupling between in-phase and out-of-

phase modes (γ1 ≠ γ2).

In addition to coupling longitudinal and transverse

phonons, Lorentz forces also give rise to small changes

in acoustic phonon frequencies. To leading order in the

parameters kxa and ωc=ωo, Eqs. (12) and (13) imply that

both the longitudinal and transverse phonon frequencies are

reduced by a factor of 1 − ω2
c=2ω

2
o. With our parameters,

one finds ω2
c=ω

2
o ∼ 10−9.

Discussion and conclusions.—In this Letter, we have

derived a low-energy effective model for the lattice vibra-

tions of an ionic crystal subjected to a static magnetic field

which accounts for the influence of Lorentz forces. We find

that the long-wavelength in-phase lattice dynamics is

characterized by a finite phonon Hall viscosity, which

implies chiral phonon transport. The Lorentz force con-

tribution to the Hall viscosity is rooted in the coupling

between the in-phase motion and out-of-phase motion of

cations and anions at finite wave vectors. This mechanism

leads to typical values of the phonon Hall viscosity ηH ∼

5 × 10−18 kg s−1 at magnetic field B ¼ 10 T. In comparison

Barkeshli et al. investigated phonon coupling to a variety of

TRS-broken electronic states, and estimated [7] resulting

Hall viscosities in the range ηH ∼ 10−19–10−15 kg s−1.

Our results apply to layered 3d crystals as well when

considering phonons with wave-vector oriented parallel to

the 2d layers. In the limit of vanishing interlayer coupling,

one could obtain the 3d phonon Hall viscosity simply by

redefining ηH → ηH=a. We use a diatomic square lattice toy

model to estimate typical viscosity values. However, our

conclusions are not particular to the system analyzed as

they rely on two key ingredients that are present in every

ionic crystal: (i) a wave vector–dependent coupling

between the in-phase and out-of-phase motion of the

cations and anions (7), (8), i.e., the eigenvectors of the

dynamical matrix (6) at the Γ point; (ii) a wave vector–

independent coupling between the magnetic field and the

out-of-phase modes. Thus, we anticipate any ionic crystal

subjected to an out-of-plane magnetic field to be charac-

terized by a finite phonon Hall viscosity. Our model can be

easily generalized to more complex crystalline structures,

for which first-principles methodologies can be used to

estimate the parameters entering the phonon Hall viscos-

ity (15).

The emergence of the phonon Hall effect in ionic crystals

subjected to a static magnetic field has been investigated

within a quantum treatment by Agarwalla et al. [41].

FIG. 2. Blue line: dependence of the polarization pa of the

longitudinal in-phase mode on the magnetic field, calculated from

Eqs. (16) and (9). The two sets of data overlap. Orange and green

line: dependence of the polarization po of the longitudinal out-of-

phase mode on the magnetic field when choosing Cu and O as

cation and anion masses and when setting mþ ¼ m−, respec-

tively. If not otherwise specified, the figures are plotted using the

parameters listed in the main text.
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Our classical approach yields an analytical expression for

the Hall viscosity, is more transparent, and provides better

insight into the parameters that control its strength,

allowing comparisons with other phonon Hall viscosity

mechanisms.

Experimentally probing the phonon Hall viscosity has

proven to be a challenging task. The renormalization of the

long-wavelength acoustic phonon spectrum is far below the

resolution limits of conventional spectroscopic probes.

Moreover, such measurement would not carry any infor-

mation about the sign of the Hall viscosity. However, it has

been recently shown that a finite phonon Hall viscosity is

responsible for circular birefringence of transverse acoustic

waves [11]. Thus, it yields an acoustic Faraday rotation that

can be probed via acoustic cavity interferometry [42,43].

Another candidate probe is time-dependent x-ray diffrac-

tion, which allows us to directly image acoustic phonon

modes [44].

Naturally, the phonon Hall viscosity yields chiral phonon

transport. In an ionic crystal with no magnetic order or

symmetry-broken electronic states one might expect our

reported phonon Hall viscosity to be the source of phonon

Hall signals. Recently, though, it was shown that scattering

on charged defects, which are common in ionic crystals,

can also lead to skew scattering [26]. However, the

resulting phonon Hall effect is predicted to display a

temperature dependence ∝ T−1, in contrast to the ∝ T5

dependence of the signal ascribed to impurity scattering of

acoustic phonons with finite Hall viscosity [8], which

should make the two signals easily distinguishable.

Finally, future work should address the role of phonon

anharmonicity.
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