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Abstract. Metagenomic Hi-C (metaHi-C) enables the recognition of re-
lationships between contigs in terms of their physical proximity within
the same cell, facilitating the reconstruction of high-quality metagenome-
assembled genomes (MAGs) from complex microbial communities. How-
ever, current Hi-C-based contig binning methods solely depend on Hi-C
interactions between contigs to group them, ignoring invaluable biologi-
cal information, including the presence of single-copy marker genes. Here,
we introduce ImputeCC, an integrative contig binning tool tailored for
metaHi-C datasets. ImputeCC integrates Hi-C interactions with the in-
herent discriminative power of single-copy marker genes, initially clus-
tering them as preliminary bins, and develops a new constrained ran-
dom walk with restart (CRWR) algorithm to improve Hi-C connectivity
among these contigs. Extensive evaluations on mock and real metaHi-C
datasets from diverse environments, including the human gut, wastewa-
ter, cow rumen, and sheep gut, demonstrate that ImputeCC consistently
outperforms other Hi-C-based contig binning tools. ImputeCC’s genus-
level analysis of the sheep gut microbiota further reveals its ability and
potential to recover essential species from dominant genera such as Bac-
teroides, detect previously unrecognized genera, and shed light on the
characteristics and functional roles of genera such as Alistipes within the
sheep gut ecosystem.

Availability: ImputeCC is implemented in Python and available at
https://github.com/dyxstat/ImputeCC. The Supplementary Informa-
tion is available at https://doi.org/10.5281/zenodo.10776604.
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1 Introduction

Metagenomics is revolutionizing microbial ecology by enabling the exploration
of complex microbial communities in diverse environments without the need for
traditional microbial isolation or cultivation [17,18]. The recent combination of
Hi-C sequencing with whole metagenomic shotgun sequencing leads to the de-
velopment of the metagenomic Hi-C (metaHi-C) technique, which has provided
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novel perspectives on species diversity and the interactions among microorgan-
isms within a single microbial sample [5,12,22,27]. In metaHi-C experiments,
shotgun sequencing extracts genomic fragments from a microbial sample, while
Hi-C sequencing conducted on the same microbial sample generates DNA-DNA
proximity ligations within the same cells, resulting in millions of paired-end Hi-C
short reads. These fragmented shotgun reads are assembled into longer contigs,
forming the basis for aligning paired-end Hi-C reads. MetaHi-C contacts, repre-
senting the number of Hi-C read pairs linking contig pairs, reveal contig relation-
ships based on physical proximity within the microbial community. Depending
on whether the shotgun libraries in metaHi-C experiments are constructed using
second-generation or third-generation sequencing technologies, metaHi-C exper-
iments can be classified into either short-read or long-read metaHi-C datasets,
respectively. Considering contigs originating from the same genome exhibit en-
riched Hi-C contact frequencies relative to those derived from distinct genomes,
the process of Hi-C-based binning emerges and aims at grouping fragmented
contigs into metagenome-assembled genomes (MAGs) [19] by leveraging Hi-C
contacts between contigs [2,11,14]. The resulting MAG collections serve as fun-
damental prerequisites for downstream analyses, such as the elucidation of the
metabolic potentials and functional roles of diverse microorganisms, as well as
the exploration of virus-host interactions [8,35]. Various Hi-C-based contig bin-
ning methods have been developed, including HiCBin [14], MetaTOR [2], bin3C
[11], and the MetaCC binning module (referred to as MetaCC) [15]. Compared
to conventional shotgun-based binning tools reliant on sequence composition and
contig coverage for contig clustering, Hi-C-based binning methods demonstrate
their superior ability in MAG recovery using only one single sample [14,27].

However, existing Hi-C-based binning methods rely solely on Hi-C interac-
tions for contig grouping, overlooking valuable biological information encapsu-
lated within single-copy marker genes. These genes, present as single copies in
the vast majority of genomes [1], hold the great potential to discriminate be-
tween contigs originating from distinct species when shared among them. This
omission underscores a critical gap in current approaches, leaving ample room
for enhancement and improved analyses. In response, we introduce ImputeCC,
an integrative binning tool designed for metaHi-C datasets. ImputeCC man-
ages to harness the comprehensive insights offered by both Hi-C interactions
and single-copy marker genes to optimize the contig binning process. To thor-
oughly assess the effectiveness of ImputeCC, we conduct simulations for both
short-read and long-read metaHi-C datasets. Subsequently, we demonstrate Im-
puteCC’s performance against other publicly-available Hi-C-based binning tools
using a diverse set of real short-read and long-read metaHi-C datasets including
the human gut short-read [27], wastewater short-read [32], cow rumen long-read
[4], and sheep gut long-read [3] metaHi-C datasets. ImputeCC’s superior perfor-
mance is particularly evident in the challenging sheep gut environment, where
ImputeCC successfully retrieves an impressive total of 408 high-quality and 885
medium-quality MAGs, as assessed by the latest CheckM2 [9]. To the best of
our knowledge, this represents the largest number of reference-quality MAGs
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reported from a single microbial sample. Furthermore, ImputeCC’s genus-level
analyses of the sheep gut microbiota reveal ability of ImputeCC to recover essen-
tial species from dominant genera and showed its potential to detect previously
unrecognized genera.

2 Results

2.1 Overview of ImputeCC

ImputeCC is an integrative Hi-C-based binner that leverages the combined power
of Hi-C interactions and single-copy marker genes in the contig binning process.
Fig. 1 shows the outline of ImputeCC. The core concept of ImputeCC involves
the preclustering of marker-gene-containing contigs guided by two fundamental
principles: I) Contigs sharing the same single-copy marker gene originate from
distinct species with high probability; II) Contigs without overlapping single-
copy marker genes are likely from the same genome when connected by ro-
bust Hi-C signals. To address the challenge that marker-gene-containing contigs
from the same genome may not be effectively linked by Hi-C contacts due to
the locality characteristics of proximity ligations, we design a new constrained
random walk with restart (CRWR) algorithm to impute the metaHi-C contact
matrix before preclustering, with all random walks limited to start from marker-
gene-containing contigs. Subsequently, by leveraging the imputed Hi-C matrix
in conjunction with the aforementioned principles, ImputeCC can accurately
precluster contigs with single-copy marker genes, establishing them as prelimi-
nary bins. Finally, the tool applies Leiden clustering [33] to group all assembled
contigs, utilizing the information from preliminary bins to optimize the binning
process.

2.2 ImputeCC achieved accurate preclustering for contigs
containing single-copy marker genes

Since ImputeCC relies on the information provided by preliminary bins for final
contig clustering, the quality of these preliminary bins, as established during the
preclustering step, holds a pivotal role in affecting the final binning results of
ImputeCC. Mock metaHi-C datasets were created by combining simulated Hi-C
reads with real shotgun sequencing data from a manually curated microbial com-
munity (see Subsection 3.1). The shotgun data were obtained from the Illumina
HiSeq 3000, ONT MinION R9, and PacBio Sequel II platforms. These datasets,
named ‘mock Illumina’, ‘mock Nanopore’, and ‘mock PacBio’, each comprised a
combination of simulated Hi-C reads and real shotgun reads corresponding to the
specific sequencing platform. Since the ground truth of all contigs from the mock
metaHi-C datasets were known, we could leverage the mock datasets to assess
the quality of the preclustering of preliminary bins. Specifically, we calculated
the Adjusted Rand Index (ARI) clustering evaluation metric (Supplementary
Note 1) for preliminary bins derived from the mock Illumina, Nanopore, and



4 Y. Du et al.

Shotgun reads Assembled contigs Single copy
S — marker genes _ Rearranged Hi-C matrix
pr— - —_— 1 ;
— H . |
- — l - m i i
oo gedumiads 2o
Hi-C contact matrix I
Hi-C reads
Aligned to ——
—_— contigs Rearrange Hi-C matrix lslice

Hi-C matrix segment

. . I
ImputeCC Pipeline Workflow
Final bins of all contigs
Stepl:|. Cth\”i'
o . Imputed imputation
Preliminary bins Hi-C matrix vi\fte: imputation
Step3: j".u' Step2:
Integrative e Preclustering [
binning ' e
Contigs with single-copy marker genes == Contigs without single-copy marker genes

Fig. 1 Overview of the ImputeCC. Given an input of the metagenomic Hi-C con-
tact matrix and contigs containing single-copy marker genes, ImputeCC initiates the
imputation of the metaHi-C contact matrix using a new constrained random walk with
restart (CRWR) algorithm, specifically limiting random walks to originate from contigs
with marker genes. Subsequently, ImputeCC segregates and retains the imputed con-
tact matrix exclusively for marker-gene-containing contigs, using it in conjunction with
the characteristics of single-copy marker genes to effectively precluster these contigs as
preliminary bins. Finally, ImputeCC applies the Leiden clustering method to group all
assembled contigs, with insights from the preliminary bins guiding the optimization of
the binning process.

PacBio datasets, resulting in values of 0.976, 0.975, and 0.988, respectively (Fig.
2a). These values indicated that ImputeCC could accomplish precise preclus-
tering for contigs with single-copy marker genes. Furthermore, we performed
preclustering directly using NormCC-normalized Hi-C contacts, omitting the
imputation step. In this context, the ARI values for preliminary bins derived
from the three mock datasets were decreased to 0.783, 0.903, and 0.775, respec-
tively (Fig. 2a), underscoring the significant enhancement in the construction of
preliminary bins achieved through our CRWR imputation.

2.3 ImputeCC retrieved the most high-quality genomes from the
mock metaHi-C datasets

We first conducted a comparative evaluation of ImputeCC binning against VAMB
[24], MetaTOR [2], bin3C [11], and the MetaCC binning module (referred to as
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Fig. 2 Benchmarking using the three mock metaHi-C datasets. (a) Assessing
the quality of preliminary bins using ARI. ImputeCC accurately grouped marker-gene-
containing contigs while the CRWR imputation markedly improved the preclustering
performance. (b) ImputeCC outperformed other binners on all the three mock metaHi-
C datasets with respect to the number of retrieved high-quality MAGs (completeness
> 90% and contamination < 5%). The evaluation criteria of completeness and con-
tamination for MAGs recovered from the mock datasets are detailed in Subsection 3.4.

MetaCC) [15] using the three mock metaHi-C datasets. In addition to VAMB,
a popular shotgun-based binning tool that utilizes sequence composition and
coverage information, three other tools in consideration are Hi-C-based. It is im-
portant to note that another publicly available Hi-C-based binner HiCBin [14]
was excluded from the benchmarking study on the mock datasets due to its
inability to converge when applied to the mock Nanopore and PacBio datasets.
As shown in Fig. 2b, ImputeCC demonstrated a remarkable ability to recon-
struct a markedly larger number of high-quality genomes (completeness > 90%
and contamination < 5%) across all the three mock datasets. Specifically, Im-
puteCC outperformed the second-highest result by 46.2%, 27.8%, and 125% in
terms of high-quality genome reconstruction for the mock Illumina, Nanopore,
and PacBio datasets, respectively. Notably, the number of mapped Hi-C read
pairs for the mock Nanopore dataset was considerably lower in comparison to
the mock Illumina and PacBio datasets (Supplementary Table 1), which can be
attributed to the relatively higher error rate associated with Nanopore R9 long
reads. This disparity in read mapping could be one of the contributing factors
for ImputeCC retrieving a comparatively lower number of high-quality genomes
from the mock Nanopore dataset. Finally, we evaluated ImputeCC’s stability
against Hi-C sequencing depth by downsampling the Hi-C read pairs from 10
million to 5 million in the mock datasets. The recovery of high-quality MAGs
slightly declined from 38 to 36 in the Illumina dataset and from 23 to 21 in
the Nanopore dataset, while the PacBio dataset consistently yielded 36 MAGs.
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These results highlighted ImputeCC’s resilience to reduced Hi-C read counts,
ensuring its reliable performance in the mock metaHi-C datasets.

2.4 ImputeCC markedly outperformed existing binners on real
metaHi-C datasets

To validate ImputeCC on real metaHi-C data, we applied it to two short-read
and two long-read metaHi-C datasets from four different environments: human
gut, wastewater, cow rumen, and sheep gut. Here, we compared ImputeCC to all
four publicly-available Hi-C-based binners, namely HiCBin, MetaTOR, bin3C,
and MetaCC, in addition to VAMB. Given the absence of reference genomes
in real-world datasets, we utilized the CheckM2 [9] to evaluate the complete-
ness and contamination of the recovered bins (see Subsection 3.4). The results
from the two long-read metaHi-C datasets are presented in Fig. 3, while those
from the two short-read metaHi-C datasets can be found in Supplementary Fig.
1. In all cases, ImputeCC recovered more high-quality (completeness > 90%
and contamination < 5%) and medium-quality (completeness > 50% and con-
tamination < 10%) bins than the alternatives considered. Notably, the sheep
gut long-read metaHi-C dataset, owing to its high complexity, posed a greater
challenge. ImputeCC binning retrieved 408 high-quality MAGs, markedly out-
performing VAMB, HiCBin, MetaTOR, bin3C, and MetaCC with an increase
of 235 (135.8%), 321 (369%), 279 (216.3%), 160 (64.5%), and 82 (25.2%), re-
spectively (Fig. 3a). ImputeCC was also able to recover 125.8%, 279.8%, 91.1%,
120.1% and 23.1% more medium-quality bins than VAMB, HiCBin, MetaTOR,
bin3C, and MetaCC, respectively (Fig. 3b).

Moreover, we explored the capability of different binners to capture the
species diversity in microbial samples by annotating all medium-quality and
high-quality bins generated by different binners on all real metaHi-C datasets us-
ing GTDB-TK [7] (see Subsection 3.5). As shown in Fig. 3¢ and Supplementary
Fig. 1c, medium-quality bins derived from ImputeCC represented a markedly
larger taxonomic diversity at the species level on all datasets. We further con-
ducted a detailed comparative analysis of the high-quality MAGs retrieved from
the sheep gut long-read metaHi-C dataset. We employed Mash [25] to iden-
tify cases where ImputeCC binning and three other Hi-C-based binning tools
(MetaTOR, bin3C, and MetaCC) retrieved identical high-quality MAGs on the
sheep gut long-read metaHi-C dataset (see Subsection 3.5). Notably, the ma-
jority of high-quality MAGs obtained through other Hi-C-based binning tools
were also successfully recovered by ImputeCC (Supplementary Fig. 2a). In con-
trast, ImputeCC binning went beyond by reconstructing a substantial number
of high-quality MAGs that remained inaccessible to the other binning tools.
Further annotation analyses of the high-quality MAGs demonstrated ImputeCC
recovered more distinct taxa at various taxonomic levels compared to Hi-C-based
alternatives, including bin3C, MetaTOR, and MetaCC (Supplementary Fig. 2b).

Finally, ImputeCC’s analysis at the genus level, leveraging its recovered high-
quality MAGs, has unveiled significant insights into microbial composition of
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the sheep gut microbiota (Supplementary Note 2). Within this complex ecosys-
tem, ImputeCC highlighted the dominance of the Bacteroides genus, known for
influencing intestinal immunity [31,36], and uniquely detected critical species
within it, such as Bacteroides uniformis and Bacteroides vulgatus. It was also
the only tool to uncover the Tidjanibacter genus and extensively characterized
the Alistipes genus, revealing species with potential roles in the sheep gut ecosys-
tem and suggesting a broader species diversity. These capabilities demonstrate
ImputeCC’s unparalleled contribution to elucidating the sheep gut’s microbial
composition and its functional significance.
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Fig. 3 Benchmarking using the real cow rumen and sheep gut long-read
metaHi-C datasets. (a) The number of MAGs with varying completeness (comp)
and contamination (cont) < 5%. ImputeCC consistently outperforms other binning
tools, producing a greater number of high-quality bins in both long-read metaHi-C
datasets. (b) The number of MAGs with varying completeness and contamination <
10%. ImputeCC returned more medium-quality bins when compared to alternative
methods for both datasets. (¢) Comparative analysis of the taxonomic diversity at
the species level within medium-quality bins obtained by different binning tools. Im-
puteCC’s binning approach stands out by capturing the broadest range of microbial
species in medium-quality MAGs.

2.5 Running time analysis of the ImputeCC

On an Intel Xeon Processor E5-2665 with a clock speed of 2.40 GHz and 50 GB
of allocated memory, the ImputeCC pipeline spent 64 min, 204 min, 25 min,
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and 2,115 min on the human gut short-read, wastewater short-read, cow rumen
long-read, and sheep gut long-read metaHi-C datasets, respectively.

3 Materials and Methods

3.1 Datasets

Mock metaHi-C datasets. The mock community sequencing data were down-
loaded from the European Nucleotide Archive under project ID PRJEB52977
[23]. The mock community comprises 71 strains representing 69 distinct species
and underwent comprehensive sequencing using the Illumina HiSeq 3000, ONT
MinION R9, and PacBio Sequel II platforms, generating three different shot-
gun libraries. The specific accession numbers and sizes of these three shotgun
libraries are shown in Supplementary Table 2. After filtering the incomplete ref-
erence genomes (Supplementary Note 3), we obtained reference genomes of 66
distinct species for the following experiments. The abundances of all species were
available from the supplementary data of [23]. Since the original dataset lacked
Hi-C sequencing reads, we employed sim3C (v0.2) [10] to simulate metagenomic
Hi-C reads based on the 66 reference genomes and their known abundances in the
mock community, utilizing parameters ‘-n 10000000 -1 150 -e MIuCI -e Sau3AI -m
hic —insert-sd 20 —insert-mean 350 —insert-min 150 —linear —simple-reads’. Sub-
sequently, we combined the same simulated Hi-C library with the three shot-
gun libraries, respectively, to construct three mock metaHi-C datasets. These
mock Hi-C datasets were named according to the shotgun library incorporated
in the mock dataset, resulting in the ‘mock Illumina,” ‘mock PacBio,” and ‘mock
Nanopore’ metaHi-C datasets. Each mock dataset comprised real shotgun reads
sequenced from a known mock community, along with simulated Hi-C reads.

Real metaHi-C datasets. Four publicly-available real metaHi-C datasets were
utilized in this study, comprising two short-read metaHi-C datasets and two long-
read metaHi-C datasets. The specific sizes of the raw datasets are detailed in
Supplementary Table 3.

The two short-read metaHi-C datasets were derived from the human gut (Bio-
Project: PRINA413092) [27] and wastewater (BioProject: PRINA506462) [32]
samples, respectively. Each short-read metaHi-C dataset consisted of both shot-
gun and Hi-C libraries originating from the same sample source. The construc-
tion of Hi-C sequencing libraries involved the use of restriction endonucleases
Sau3Al and MluCI. Sequencing of both the shotgun and Hi-C libraries was car-
ried out on Illumina platforms, producing 150-base pair reads. The two long-read
metaHi-C datasets were obtained from cow rumen (BioProject: PRJNA507739)
[4] and sheep gut (BioProject: PRINA595610) [3] samples, respectively. The cow
rumen long-read metaHi-C dataset comprised uncorrected PacBio long-read li-
braries and Hi-C libraries. The error-prone PacBio long reads were generated
using both the PacBio RSII and PacBio Sequel platforms. Hi-C libraries for
this dataset were prepared using the Sau3Al and MIuCI restriction enzymes
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and subsequently sequenced on an Illumina HiSeq 2000, producing 80-base pair
reads. The sheep gut long-read metaHi-C dataset consisted of PacBio circular
consensus sequencing (CCS) long-read libraries and Hi-C sequencing libraries.
The PacBio CCS long reads, characterized by high accuracy with average Q
scores exceeding 20, were referred to as HiFi reads. Distinct Hi-C libraries for
the sheep gut long-read metaHi-C dataset were generated using the Sau3Al and
MIuClI restriction enzymes and sequenced at a length of 150 base pairs.

3.2 Data preprocessing

We first conduct essential read cleaning procedures using ‘bbduk’ from the
BBTools suite (v37.25) [6] to address issues such as adaptor sequences, low-
quality reads, and PCR duplication (Supplementary Note 4). For each metaHi-C
dataset, reads from the shotgun library are assembled into longer contigs (Sup-
plementary Note 5). After assembly, processed paired-end Hi-C reads are aligned
to these contigs using BWA-MEM (v0.7.17) [21] with the ‘-5SP’ parameter to
prioritize the alignment with the lowest read coordinate as the primary align-
ment. Subsequent alignment filtering steps include the removal of unmapped
reads, secondary and supplementary alignments, and alignments with low qual-
ity (nucleotide match length < 30 or mapping score < 30). We count Hi-C read
pairs aligned to two contigs as raw Hi-C contacts between contigs and those
contigs with fewer than two Hi-C contacts are excluded. Raw Hi-C contacts are
normalized by NormCC [15] with default parameters to eliminate the systematic
biases derived from the number of restriction sites, contig length, and coverage.

3.3 The framework of ImputeCC binning

Detect assembled contigs with single-copy marker genes. Similar to
[34], we identify single-copy marker genes, which are genes typically found as
single copies in the majority of genomes [1] within the assembled contigs. We
accomplish this by employing FragGeneScan [30] and HMMER (v3.3.2) [16]
(Supplementary Note 6).

Impute the metagenomic Hi-C contact matrix for contigs containing
marker genes. According to the second principle of preclustering outlined in
Subsection 2.1, the effective preclustering of contigs with single-copy marker
genes partially depends on the expectation that marker-gene-containing con-
tigs can be reliably linked through robust Hi-C interactions if they come from
the same genome. However, this expectation encounters a practical limitation at-
tributed to the localized characteristics of proximity ligations, which implies that
even when two contigs share the same genomic origin, they may fail to establish
Hi-C contacts if they are not in close spatial proximity within the cell, thereby
contributing to the sparsity of the metagenomic Hi-C contact matrix [13]. To
facilitate improved connections among marker-gene-containing contigs originat-
ing from the same genome through Hi-C interactions, we design a metagenomic
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Hi-C contact matrix imputation method. This involves employing a constrained
random walk with restart (CRWR) technique to amplify the within-cell Hi-C sig-
nals specially for marker-gene-containing contigs. Specifically, we define m and
n as the number of contigs containing single-copy marker genes and the total
number of assembled contigs, respectively. Let H denote the NormCC-normlized
Hi-C contact matrix, where the entry H;; represents the normalized Hi-C con-
tacts between contig 7 and j. We first set all diagonal entries of H as zero and
reorganize the matrix H by moving the contigs containing marker genes to the
first m rows and m columns consistently and denote the reorganized matrix as
H'. Then, the reorganized matrix H’ is further normalized by its row sum and
let M denote the matrix after the row-sum normalization, i.e.,

Hj;
> Hi,
We use N to represent the matrix after the t-th iteration of random walk

with restart and limit that all random walks can only start from the contigs with
marker genes. Mathematically, the random walk starts from the initial matrix

M;; = (1)

777777777 = - ., and N® is computed recursively by the

O(nfm) Xm}o(n*m) x(n—m) I pnxn
following:

NO =1 —-p)- NV . M4p-T, 2)

where T'= N(© denotes the restarting matrix, and p (default, 0.5) serves as the
restarting probability used to maintain a balance between the influence of global
and local network structures. Notably, since the last n — m rows of all iteration
matrices N are kept to be zero, the formula (2) can be simplified by omitting
the last n — m rows of N and T'. As a result, the new RWR can be represented
as

NO =7 = [Imxm|0m><(n—m)]m><"’
NO =1 —p)- NCD. M4p-T. (3)

To avoid the imputed matrix becoming too dense, we only retain the largest
7 percent (default, 20) of non-zero entries in N*) after each iteration, i.e.,

N® — NO® 4 1{N<t>>c;}a (4)

where C7 is a (100 — 7)-th percentile of all non-zero entries in N®: 1 represents

an indicator matrix and 1;; = 1 only if Nl(]t ) > C7; o denotes the mathematical
operator of element-wise matrix multiplication.

Let 6, = |[N® — N(t=1||,. The iteration ends if either of the following two
conditions is satisfied:

e 0;<0.01,
e Farly stop if 0; — d;—1 < 0.001 for a consecutive five times.
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Let N denote the final matrix output from the imputation. Then the first m
columns of N , denoted by Py, xm, can exactly represent the imputed Hi-C matrix
for contigs with marker genes. Finally, we transform the matrix P to a symmetric
matrix P’ and further normalize P’ to eliminate the contigs’ coverage biases
derived from the imputation using the Square Root Vanilla Coverage (sqrtVC)
method [28], i.e.,

P'=P+P7,
Q=D:P'Dz, ()

where D is a diagonal matrix where each elements D;; is the sum of the i-th row
of P'.

Precluster contigs with marker genes as preliminary bins. Leveraging
the imputed Hi-C matrix @ as well as the characteristics of single-copy marker
genes, we would like to accurately precluster contigs with marker genes as pre-
liminary bins following the two principles outlined in Subsection 2.1. Specifically,
we first sort all categories of detected marker genes by the number of contigs
containing the marker genes. If several marker genes correspond to the same
number of contigs, they are further sorted by the gene length. Then, we use a
greedy strategy to iteratively construct the preliminary bins as follows:

o Initialization: choose all contigs from the first marker gene and initialize
preliminary bin set, denoted by B, with each bin containing one contig.

e Iteration: in the k-th iteration, we select all contigs containing the k-th
marker gene and only handle contigs that have not been assigned to any
preliminary bins in B. Let C denote the set of contigs to be processed in the
iteration. We then define the contig-to-bin Hi-C similarity between a contig
c€C and a bin B € B as:

ch €B QC,Cl

where ¢; denotes the contigs in the preliminary bin B, Q. ., is the imputed
Hi-C contacts between contigs ¢ and ¢; and #B represents the number of
contigs in B. In this way, we can construct a undirected bipartite graph,
where the top nodes are contigs from the set C and the bottom nodes are
preliminary bins from the set B. The weighted edges between top nodes
and bottom nodes represent the contig-to-bin Hi-C similarity. To assign the
contigs to preliminary bins, we leverage the Karp’s algorithm [20] to find a
maximum-weight matching between contigs and preliminary bins. For each
contig in the set C with a matching preliminary bin, if the contig-to-bin Hi-
C similarity is above the median of non-zero entries in the imputed matrix
@, we attribute the contig to its matching preliminary bin; otherwise, the
contig will be discarded. Finally, we add all unmatched contigs to B as new
preliminary bins, with each new bin containing one unmatched contig.
e Repeat the iteration step until all marker genes are processed.

SC7B =
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Leiden clustering for all contigs using the information of preliminary
bins. We apply the Leiden community detection algorithm [33] to the NormCC-
normalized Hi-C contact matrix H to cluster all assembled contigs, using the pre-
liminary bin set as an initial framework. The Leiden algorithm iteratively merges
and refines communities to maximize modularity, a metric that quantifies the
partitioning quality. To incorporate preliminary bin information, we initialize
contig memberships based on preliminary bins, ensuring that contigs from the
same preliminary bin are placed within the same community, while contigs not
associated with any preliminary bins are initially assigned to individual com-
munities. Throughout the Leiden iterations, these assignments for contigs from
preliminary bins remain fixed. Consequently, contigs from the same preliminary
bin coalesce into the same cluster, while those from different preliminary bins
form distinct clusters after the Leiden clustering.

Moreover, since the Leiden algorithm is modularity-based, we select a flexible
modularity function based on the Reichardt and Bornholdt’s Potts model [29].
Notably, the resolution parameter r in the modularity function (Supplementary
Note 7) is a hyper-parameter that determines the relative importance assigned
to the configuration null part compared to the links within the communities.
To ascertain the optimal resolution parameter, we conduct parallel executions of
the Leiden algorithm using various resolution values and automatically select the
most favorable outcome. Specifically, we identify lineage-specific genes, which act
as indicators of genome quality, through the application of the CheckM (v1.1.3)
[26] function ‘checkm analyze’. Consequently, for any given contig bin, we em-
ploy the same evaluation strategy as CheckM to efficiently estimate its precision
and recall (Supplementary Note 8). Subsequently, for each resolution parameter
value, we count the number of genomic bins with precision exceeding 95% and
recall surpassing 90%, 70%, and 50%, respectively. Finally, we automatically se-
lect the resolution value that maximizes the sum of three count numbers as the
optimal choice.

Integrative strategy to obtain the final bins. It is essential to acknowl-
edge that the preliminary bins may not be entirely accurate. This can occur,
for instance, in cases where genome coverage is insufficient or marker genes are
fragmented into several pieces. Furthermore, our clustering strategy in previous
steps may exacerbate these mis-binnings arising from the preliminary bin as-
signments. Consequently, it is still meaningful to apply the Leiden algorithm to
cluster contigs independently, without relying on the preliminary bin informa-
tion. The selection of the resolution parameter follows the same methodology as
previously described. We denote the resulting bin sets as Fpre and Fnun for the
Leiden clustering with and without preliminary bin information, respectively.
We then implement an iterative greedy strategy to integrate these two bin sets.
Specifically, in each iteration of this integrative procedure, we assess the quality
of all existing MAGs from Fpye and Fpun using the metric:

Recall — 2 x (100 — Precision). (7)
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The MAG displaying the highest estimated quality across both bin sets is selected
for further consideration. In situations where two or more MAGs exhibit identical
estimated quality scores, ties are resolved by selecting the MAG with the greatest
N50 statistic and bin size. Following the selection of a MAG, it is moved from
the corresponding bin set to the final bin set, and any contigs belonging to the
selected MAG are also removed from the other bin set, if present. This iterative
procedure continues until the highest quality MAG identified falls below 10.
Finally, we can obtain the final bin set through the integration.

3.4 Evaluating the quality of recovered MAGs from the mock and
real metaHi-C datasets

For the mock metaHi-C datasets, where all species within the mock microbial
community were known, the species identity of the assembled contigs could be
determined (Supplementary Note 9). Then, we can define the the completeness
and contamination of each MAG recovered from the mock datasets. Specifically,
for each MAG, we segregated the lengths of contigs according to their respec-
tive reference genomes and attributed the MAG to the reference genome with
the largest cumulative contig length, denoted as L(g). The length of the cor-
responding reference genome was denoted as L(r), and the total length of the
MAG was referred to as L(v). The completeness of a MAG was quantified as
égzg, while the contamination of a MAG was defined as % Finally, we
classified high-quality genomes obtained from the mock datasets as those MAGs
with completeness > 90% and contamination < 5%.

For the real metaHi-C datasets, since the actual genomes are unknown in real
samples, we applied CheckM2 [9] to evaluate the completeness and contamina-
tion of retrieved MAGs. CheckM2 is an advanced machine learning-based method
for assessing the quality of draft genomic bins, offering improved accuracy and
computational speed compared to existing tools [9]. Based on the CheckM2 as-
sessments of completeness and contamination, we categorized the resolved MAGs
from real metaHi-C datasets as high-quality if their completeness > 90% and
contamination < 5%, while MAGs were designated as medium-quality if their
completeness > 50% and contamination < 10%.

3.5 MAG analyses on real metaHi-C datasets

To assess the capacity of various binning methods in capturing taxonomic diver-
sity within real metaHi-C datasets, we performed taxonomic annotation on all
high-quality and medium-quality bins using GTDB-TK (v2.1.0, Release: R207
v2) [7] with the function ‘classify_wf’ to extract the taxonomic information of
the MAGs recovered by different binning methods.

Furthermore, to identify overlapping high-quality bins retrieved from the
sheep gut long-read metaHi-C dataset between ImputeCC binning and other Hi-
C-based binning approaches, we utilized Mash (v2.2) [25] with 10,000 sketches
per bin to calculate the Mash distance between high-quality bins from different
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bin sets. Bins with a Mash distance below 0.01 were considered MAGs originating
from the same genome.

3.6 Other binners used in benchmarking

All binners used for comparison, i.e., VAMB (v3.0.3) [24], HiCBin (v1.1.0) [14],
MetaTOR (v1.1.4) [2], bin3C (v0.1.1) [11], and MetaCC (v1.1.0) [15] were exe-
cuted with default parameters on all mock and real metaHi-C datasets.

4 Discussions

In this work, we developed ImputeCC, an integrative Hi-C-based contig binning
methods. ImputeCC combines Hi-C interactions with the intrinsic discriminative
potential of single-copy marker genes by preclustering marker-gene-containing
contigs as preliminary bins. To enhance the Hi-C connectivity of marker-gene-
containing contigs, ImputeCC introduces a constrained random walk with restart
(CRWR) approach to impute the metaHi-C contact matrix. Finally, ImputeCC
employs Leiden clustering to group all assembled contigs, optimizing the bin-
ning process by leveraging information from the preliminary bins. Evaluations
of ImputeCC using a wide range of diverse mock/real metaHi-C datasets have
demonstrated its effectiveness for retrieving reference-quality MAGs and shown
its potential to unravel the structure of microbial ecosystems and their resident
microorganisms. Notably, we utilized CheckM?2 in assessing the binning perfor-
mance for the four real metaHi-C datasets. Although CheckM2 represents the
most advanced software for evaluating bin quality in real metagenomic samples,
it is essential to delve further into the accuracy of this machine-learning-based
validation method in reflecting the true completeness and contamination levels
of the recovered MAGs. Moreover, previous research has established the effi-
cacy of Hi-C-based binning over shotgun-based approaches [11,14]. Accordingly,
our benchmarking analyses focus on Hi-C-based methods, comparing ImputeCC
with similar tools and including VAMB as a reference shotgun-based method.

ImputeCC offers several promising avenues for expansion. For instance, when
dealing with large MAGs characterized by high abundances, there is potential in
imputing normalized Hi-C contacts for contigs within these MAGs to facilitate
the scaffolding process. Moreover, exploring imputation methods that consider
additional information, such as the sequence composition of contigs, could yield
improved imputation results.
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