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Abstract

A recent line of work on VC set systems in minor-free (undirected) graphs, starting from
Li and Parter [LP19], who constructed a new VC set system for planar graphs, has given
surprising algorithmic results [LP19, Le23, DHV20, FHMWN20]. In this work, we initialize a
more systematic study of VC set systems for minor-free graphs and their applications in both
undirected graphs and directed graphs (a.k.a digraphs). More precisely:

1. We propose a new variant of Li-Parter set system for undirected graphs. Our set system
settles two weaknesses of Li-Parter set system: the terminals can be anywhere, and the
graph can be Kh-minor-free for any fixed h. We obtain several algorithmic applications,
and notably: (i) the first exact distance oracle for unweighted and undirected Kh-minor-
free graphs that has truly subquadratic space and constant query time, and (ii) the first
truly subquadratic time algorithm for computing Wiener index of Kh-minor-free graphs,
resolving an open problem posed by Ducoffe, Habib, and Viennot [DHV20].

2. We extend our set system to Kh-minor-free digraphs and show that its VC dimension is
O(h2). We use this result to design the first subquadratic time algorithm for computing
(unweighted) diameter and all-vertices eccentricities in Kh-minor-free digraphs.

3. We show that the system of directed balls in minor-free digraphs has VC dimension at
most h− 1. We then present a new technique to exploit the VC system of balls, giving the
first exact distance oracle for unweighted minor-free digraphs that has truly subquadratic
space and logarithmic query time.

4. On the negative side, we show that VC set system constructed from shortest path trees of
planar digraphs does not have a bounded VC dimension. This leaves an intriguing open
problem: determine a necessary and sufficient condition for a set system derived from a
minor-free graph to have a bounded VC-dimension.

The highlight of our work is the results for digraphs, as we are not aware of known algorithmic
work on constructing and exploiting VC set systems for digraphs.
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1 Introduction

A pair of seminar papers by Lipton and Tarjan [LT79, LT80] in the 70s initiated a productive line
of research on planar graph algorithms. Over the past several decades, numerous algorithmic tools
have been developed for planar graphs. We can roughly classify them into two classes: one for
coping with NP-hard problems and another for designing fast algorithms for problems in P1. The
former class aims to provide (efficient) polynomial time approximation schemes or subexponential
time (parameterized or exact) algorithms for NP-hard problems. Representative examples are
Baker’s layering technique [Bak94], contraction decomposition [Kle05a], bidimensionality [DFHT05,
DH05], and sphere cut decomposition [DPBF09], to name a few. The latter class aims to design
(nearly) linear time, in many cases truly subquadratic time, algorithms for problems in P where
no algorithms of the same running time were known for general graphs. A non-exhaustive list
of examples includes the separator theorem [LT79, LT80] and r-division [Fed87], shortest path
separator [LT79, Tho04], multiple-source shortest paths [Kle05b], Voronoi diagram [Cab18], and
VC-dimension [LP19]. (The classification into two classes is not exclusive: there are techniques
that can be used for both purposes.)

On the other hand, planarity is fragile: adding a single edge or vertex could make a planar graph
become non-planar. Therefore, a major research goal is to extend the aforementioned algorithmic
tools beyond planar graphs, specifically graphs that are more robust, such as bounded genus graphs
and Kh-minor-free graphs. Bounded genus graphs are robust to edge addition—adding a new edge
increases the genus by at most 1—but not to vertex addition as adding a single vertex could increase
the genus by Ω(n). Kh-minor-free graphs are robust to both edge and vertex additions. Also, the
class ofKh-minor-free graphs is vastly broader than the classes of planar and bounded genus graphs.

Most algorithmic results mentioned above for planar graphs can be generalized to bounded
genus graphs [Epp03, DHT04, CC07, DHM10] using now-standard topological tools. For minor-free
graphs, the 20-year graph minor project by Robertson and Seymour provides a deep understanding
of their structures [RS83, RS04]. The Robertson-Seymour decomposition [RS03] has been used
successfully to transfer almost all algorithmic tools in the first class (for coping with NP-hard
problems) from planar graphs to Kh-minor-free graphs. However, the best-known algorithm for
constructing the Robertson-Seymour decomposition has quadratic time [KKR12], despite prolonged
efforts to simplify the proofs of Robertson and Seymour [KTW18, KTW20]. The quadratic time
makes the Robertson-Seymour decomposition inapplicable to transfer results from the second class
to minor-free graphs. Furthermore, the dependency on the minor size h is impractically huge
even for a very small value of h. As a result, there have been far fewer algorithmic tools for
designing truly subquadratic time algorithms in Kh-minor-free graphs. Most focus has been on
finding separators, and hence r-divisions, in minor-free graphs in truly subquadratic time [RW09,
KR10, WN11, WN14]. This deficiency motivates our work.

Research Goal. Enriching the algorithmic toolkit for designing truly subquadratic time
algorithms in Kh-minor-free graphs.

Towards realizing our goal, we propose a systematic study of VC set systems (see Section 1.1
for definitions) and their applications in designing truly subquadratic time algorithms. Our work
was directly inspired by two recent results; both led to several surprising algorithmic applications.

1We are referring to the optimization versions of decision problems in P and NP.
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The first is by Li and Parter [LP19], who constructed a VC set system from a set of terminals
lying on the outer face of a planar graph. However, it remains unclear how to extend their results to
Kh-minor-free graphs since the notion of the outer face is not well-defined, and their proof makes
heavy use of planarity. The second is by Ducoffe, Habib, and Viennot [DHV20], who designed
the first truly subquadratic time algorithms for diameter and related problems in Kh-minor-free
graphs via the VC set system of balls studied by Chepoi, Estellon, and Vaxes [CEV07]. However,
the set system of balls is very difficult to work with algorithmically; this difficulty also manifests
in the construction of Ducoffe, Habib, and Viennot [DHV20], resulting in complicated algorithms.
Consequently, the running time of their algorithms degrades exponentially in the size of the minor.

We remark that both results [LP19, DHV20] only apply to undirected graphs, while our results
extend to directed graphs as well, which are often much harder to work with. Indeed, we are not
aware of any VC set system for directed graphs, let alone using them in algorithmic applications.
The pioneering work of Chepoi, Estellon, and Vaxes [CEV07] for planar graphs and of Kranakis et
al. [KKR+97] for general graphs do not consider directed graphs.

1.1 VC Set Systems and Dimension

A set system is a pair (U,F) where U is a ground set and F is a collection of subsets of U ; we
only write F when the ground set is clear from the context. We say that Y ⊆ U is shattered by F
if {Y ∩ S ∶ S ∈ F} = 2Y . That is, the intersections of Y and the sets in F contain every subset of
Y . The VC-dimension of a set system (U,F) is the size of the largest subset Y ⊆ U shattered by
F . The notion of VC-dimension was introduced by Vapnik and Chervonenkis [VC71]. We say that
(U,F) is a VC set system if its VC-dimension is bounded by a fixed constant.

Let G be an edge-weighted and undirected graphs. For a vertex v ∈ V and a non-negative
real number r, denote by B(v, r) = {u ∶ dG(u, v) ≤ r} a ball of radius r centered at v. Let
B(G) = {B(v, r) ∶ v ∈ V, r ∈ R+} be the set of balls of all radii in G. Chepoi, Estellon and
Vaxes [CEV07] showed that B(G) has VC-dimension at most 4 if G is planar and remarked that
the same proof should extend to any Kh-minor-free graphs; the proof then was given in detail by
Bousquet and Thomassé[BT15].

Theorem 1 (Chepoi, Estellon, and Vaxes [CEV07]). If G is undirected and Kh-minor-free, then
(V,B(G)) has VC-dimension at most h − 1.

Theorem 1 had been used exclusively in graph theory and combinatorics [CEV07, BC14, BT15]
until very recently, Ducoffe, Habib, and Viennot [DHV20] exploited this result algorithmically.
Specifically, they designed the first algorithm for computing the exact diameter, and its variants,
of minor-free graphs in truly subquadratic time. They relied on a deep result of Haussler and
Welzl [HW87], who showed that any VC set system admits a spanning path with sublinear stabbing
number. They skillfully combined the low-stabbing spanning path technique with the r-division
technique, a standard tool in designing algorithms in minor-free graphs on which almost all truly
subquadratic time algorithms rely. Indeed, they had to work very hard to fit both techniques to-
gether (Lemma 5.2 in [DHV20]). However, there remain two undesirable aspects of their algorithm.

First, it is difficult to adapt their algorithms to other problems. One specific problem is com-
puting the Wiener index, i.e., the sum of all-pairs distances. They wrote, “we currently do not
see any way to extend our approach [...] to also compute their Wiener index in truly subquadratic
time.” The Wiener index problem was rooted in chemistry [Wie47] and has been studied exten-
sively, e.g. see [CK97, CK09, WN09, Cab18, GKM+21]. As we will see in Section 3.2.2, the Wiener
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index problem can be readily handled by our technique. Second, the final running time degrades
exponentially in h: O(n2−εh) where εh = 2−O(h). (The precise value of εh is not given in [DHV20].)

In a completely different context, motivated by the diameter problem in the distributed CON-
GEST model, Li and Parter [LP19] set up a different VC set system from a fixed set of terminals
S. In their paper, they only studied a special case where S contains vertices on the outer face of a
planar graph, though the definition applies to any S.

Definition 1 (Li-Parter [LP19]). Let M ⊆ R be a set of real numbers. Let S = ⟨s0, . . . , sk−1⟩ be a
sequence of k vertices in an undirected and edge-weighted graph G. For every v ∈ V , define:

Xv = {(i,∆) ∶ 1 ≤ i ≤ k − 1,∆ ∈M,dG(v, si) − dG(v, si−1) ≤∆} (1)

Let LPG,M(S) = {Xv ∶ v ∈ V } be a collection of subsets of the ground set [k − 1] ×M .

The complicated-looking set Xv intuitively encodes the (approximate) distance from v to each
vertex in S: the pair (i,∆) ∈Xv indicates that dG(v, si) ≤ dG(v, si−1)+∆. Thus, given dG(v, s0) and
all the pairs (i,∆) in Xv, we can iteratively recover an upper bound on dG(v, si) for any i ∈ [2, k].
Depending on the choice of M , we might recover the exact or approximate distance dG(v, si). Li
and Parter showed that LPG,M(S) is a VC set system for a special setting of G and S (Theorem
3.7 in [LP19]):

Theorem 2 (Li-Parter [LP19]). Let G be an edge-weighted, undirected, planar graph. Let S be a
set of k vertices ordered clockwise on the outer face of G. For any M ⊆ R, ([k−1]×M,LPG,M(S))
has VC-dimension at most 3.

As LPG,M(S) is capable of encoding the graph distances directly into the set system, it is much
easier to use than B(G) in algorithm design. Specifically, it was instrumental in solving several
problems in planar graphs: metric compression and distributed approximate diameter computa-
tion [LP19], exact distance oracles [FHMWN20], and approximate distance oracles [Le23], despite
the restriction on S and G. A natural open problem is: can we remove the restriction on S and G?

1.2 Our Results and Techniques

We propose several set systems in Kh-minor-free graphs: variants of LPG,M(S)) in both undirected
graphs and digraphs, the set system of balls for digraphs, and a set system induced by shortest
paths in digraphs. (We refer to directed graphs as digraphs.) We obtain both negative and positive
results for these systems. We hope for a “unified” view of existing VC set systems to reconcile their
differences and guide the development of new ones. Two VC set systems BG and LPG,M(S) differ
in three aspects: (i) the ease of application, (ii) the scope of application —one for minor-free while
the other for planar graphs —and (iii) the proof techniques. In terms of proof techniques, Chepoi,
Estellon, and Vaxes [CEV07] construct a K5-minor directly assuming (for contradiction) that there
is a large set of vertices shattered by BG in a planar graph G; the end result is an elegant proof that
can be easily extended to Kh-minor-free graphs (as done by Bousquet and Thomassé [BT15])). We
call this proof technique minor-building proof. The proof of Li and Parter exhaustively considers
different crossing patterns of paths between the terminals and hence heavily relies on the assumption
that G is planar and S on the outer face to make the number of crossing patterns manageable.

The proofs of our positive results in this work are minor-building, though each VC set system
needs its own twist in the proof. Our proofs inherit the simplicity and elegance of the minor-
building technique, and are applicable to both undirected graphs and digraphs, as described in
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Section 3.1, Section 4.1 and Section 4.2. The minor-building proof technique is also instructive
in developing new set systems. Indeed, in an (unsuccessful) attempt to reprove the result by Li
and Parter (Theorem 2) using the minor-building technique, we came up with a VC set system
slightly different from LPG,M(S)), which retains all the aforementioned strengths of LPG,M(S))
while addressing its two weaknesses: G can be any Kh-minor-free graph, and S could be anywhere
in the graph.

Definition 2. Let M ⊆ R,G, and S as in Definition 1. For every v ∈ V , define:

X̂v = {(i,∆) ∶ 1 ≤ i ≤ k − 1,∆ ∈M,dG(v, si) − dG(v, s0) ≤∆} (2)

Let LP̂G,M(S) = {X̂v ∶ v ∈ V } be a collection of subsets of the ground set [k − 1] ×M .

X̂v differs Xv (Equation (1)) in the highlighted term: it uses dG(v, si) − dG(v, s0) instead of
dG(v, si) − dG(v, si−1). The difference, while superficially small, is technically important for the
minor-building proof technique; see Remark 1 for a more formal discussion of why the minor-
building proof technique fails for the set system LPG,M(S). This leads to our first main result:

Theorem 3. Let S be any set of vertices on an edge weighted, undirected Kh-minor-free graph G.
Let M ⊆ R be any set of real numbers. Then LP̂G,M(S) has VC-dimension at most h − 1.

Here we sketch key ideas of our proof. In the prior minor-building techniques for the set
system of balls, a crucial step is to choose the shattering family of sets, which is the set of balls
that shatters a set of vertices of size h. There could be many such choices, and choosing the
right tie-breaking scheme for these balls is important: Chepoi, Estellon, and Vaxes [CEV07] broke
ties by the sum of distances to be minimum, while Bousquet and Thomassé[BT15] did so by
the radii of the balls. However, LP̂G,M(S) is very different from a set system of balls, and we
have to choose a different tie-breaking scheme for the shattering family of sets. It turns out
that by defining X̂v as in Definition 2, we could choose a tie-breaking scheme using the Isolation
Lemma [VV86]. The Isolation Lemma has been used in breaking ties in different applications, e.g.
see [VV86, Eri10, MNNW18, CCE13, BP21], and we expect that this lemma will be used more in
future work involving the minor-building technique.

In all applications of the VC set system LPG,M(S) in planar graphs that we are aware of,
including those mentioned in [LP19, FHMWN20, Le23], we can use LP̂G,M(S) while obtaining the
same, or sometimes stronger, guarantees. For example, we could derive a metric compression scheme
with almost the same guarantees obtained by Li and Parter [LP19] but without the assumption that
S must be on the outer face and furthermore, G could be any minor-free graphs; see Section 3.2.4.

Beyond planar graphs, which is our Research Goal mentioned above, we construct a distance
oracle (see Section 2 for the definition) for unweighted Kh-minor-free graphs with truly subquadratic
space and constant query time. This is the first oracle in Kh-minor-free graphs achieving truly
subquadratic space-query time product, though many such oracles were known in planar graphs2

years ago [FR01, MS12, CADWN17, GMWWN18, CGMW19, LP21]. Furthermore, our oracle can
also be constructed in truly subquadratic time. (Õ notation hides a poly-logarithmic factor in n.)

Corollary 1. Let G = (V,E) be an unweighted Kh-minor-free graph. We can construct an exact

distance oracle for G with Õ(n2− 1
3h−1 ) space and O(1) query time. The construction time of our

oracle is Õ(n2− 1
3h−1 ).

2It might be possible to extend some distance oracles with truly subquadratic space-query product from planar
graphs to bounded genus graphs; however, we are not aware of any prior paper in this direction.
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Our oracle in Corollary 1 is obtained by tailoring the construction of Fredslund-Hansen, Mozes,
and Wulff-Nilsen to Kh-minor-free graphs and applying Theorem 3 to bound the number of distance
patterns; we refer readers to Section 3.2.3 for more details.

Using Theorem 3, we resolve an open problem left by Ducoffe, Habib, and Viennot [DHV20]:
computing the Wiener index in any Kh-minor-free graph in truly subquadratic time. We also
improve the truly subquadratic time algorithm for computing all-vertices eccentricities and diameter

in unweighted Kh-minor-free graphs by Ducoffe, Habib, and Viennot [DHV20] from n2−1/2O(h) to

Õ(n2− 1
3h−1 ).

Corollary 2. Let G = (V,E) be an unweighted Kh-minor-free graph. We can compute the eccen-

tricities of all vertices, the diameter, and the Wiener index of G in Õ(n2− 1
3h−1 ) time.

We remark that a truly subquadratic running time of the form 2o(h)n2−ϵ for any fixed constant
ϵ > 0 for computing diameter in unweighted Kh-minor-free graphs is unlikely due to a conditional
lower bound by Abboud, Williams, and Wang [AWW16], which holds even in a special case of
graphs of treewidth at most h.

We now describe our results for digraphs. Let dG(u → v) denotes the distance from u to v in
a digraph G. It might be that dG(u → v) /= dG(v → u). Analogous to Definition 2, we define a set

system, denoted by
Ð→LPG,M(S).

Definition 3. Let M ⊆ R and S = {s0, s2, . . . , sk−1} be in Definition 1, but G = (V,E) now is an
edge-weighted digraph. For every v ∈ V , let:

Ð→
Xv = {(i,∆) ∶ 1 ≤ i ≤ k − 1,∆ ∈M,dG(v → si) − dG(v → s0) ≤∆} (3)

We define
Ð→LPG,M(S) = {

Ð→
Xv ∶ v ∈ V }.

Our second main result is to show that
Ð→LPG,M(S) is a VC set system in Kh-minor-free digraphs.

(A digraph is Kh-minor-free if its underlying undirected graph is Kh-minor-free.)

Theorem 4. Let S be any set of vertices on an edge weighted Kh-minor-free digraph G. Let M ⊆ R
be any set of real numbers. Then

Ð→LPG,M(S) has VC-dimension at most h2.

The VC-dimension bound in Theorem 4 is quadratic instead of linear as in Theorem 3. Our
proof of Theorem 4 is also minor-building. However, the main difficulty in the directed case is that
two directed shortest paths could intersect an arbitrary number of times (in different directions).
In the undirected case, we rely on the fact that two shortest paths intersect at most once, as long
as we choose a consistent tie-breaking scheme. The fact that directed paths can intersect in a very
complicated way makes the minor construction in digraphs more difficult, and we settle on a looser
bound. To construct a minor, we group the vertices into h groups, and loosely speaking, we show
that how to choose directed paths between groups so that the paths are vertex disjoint.

We use Theorem 4 to design first truly subquadratic time algorithm for computing diameter and
eccentricity for unweighted Kh-minor-free digraphs. Previously, truly subquadratic time algorithms
for these problems were only known for planar digraphs [Cab18, GKM+21].

Corollary 3. Let G = (V,E) be an unweighted Kh-minor-free digraph. We can compute the

diameter and all-vertex eccentricities of G in Õ(n2−1/(3h2+6)) time.
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Designing the truly subquadratic time algorithm for computing diameter and all-vertex eccen-
tricities of digraphs in Corollary 3 is much more difficult than their undirected counterparts in
Corollary 2. The algorithm for undirected graphs is based on the notion of patterns: each pattern
is intuitively a vector of distances from a vertex in the graph to the boundary of a subgraph; the
formal definition is given in Equation (12). Two nice properties of patterns in undirected graphs:
(i) there is only a polynomial number of them, and (ii) the distance from a vertex u to a vertex
v in a connected subgraph of H can be defined in terms of the distance from the pattern of u to
v. (We have not defined the notion of distance between a pattern and a vertex; for now it suffices
to know that one could define such a notion.) In digraphs, property (i) breaks down completely,
and the reason is perhaps unsurprising: the triangle inequality does not hold in digraphs —the
asymmetric triangle inequality does not suffice. Instead, we introduce infinite patterns where we
allow entries with ±+∞ values. For infinite patterns, we are able to obtain property (i). However,
property (ii) fails for infinite patterns. We resolve this by looking at all the distances from the
pattern to all vertices of H at once, and we are able to extract the maximum distance from these
distances. Thus, we are still able to solve the diameter and all-vertices eccentricities problems in
truly subquadratic time. Unfortunately, we are not able to compute the Wiener index in truly
subquadratic time using infinite patterns, and we leave this as an open problem for future work.

In undirected graphs, we can use VC dimension bound on LP̂G,M(S) to construct an exact
distance oracle with truly subquadratic space and constant query time (Corollary 1). However, we

are unable to use the VC dimension bound on
Ð→LPG,M(S) to obtain an analogous result for digraphs.

This is because the notion of patterns does not work, and the infinite patterns we introduce are not
useful in decoding distances. We work around the problem in our third main result. Specifically,

let
Ð→
B (v, r) = {u ∶ dG(v → u) ≤ r}, and:

Ð→B(G) = {Ð→B (v, r) ∶ v ∈ V } (4)

Theorem 5. If G is a Kh-minor-free digraph, then
Ð→
B (G) has VC-dimension at most h − 1.

We then develop a new technique to exploit the VC set system of directed balls. Our technique
fits naturally with the r-division of Kh-minor-free digraphs. Specifically for each cluster in the
r-division, we look at all the restrictions of balls in the cluster; the balls are centered at vertices
outside the cluster. We exploit Theorem 5 in showing that there are only a polynomial number
of different restrictions. Thus, we could keep all of them, along with side information, in a table.
Our technique gives the first exact distance oracle for digraphs with truly subquadratic space-query
product. We remark that it is unclear how to combine the low-stabbing spanning path technique
by Ducoffe, Habib, and Viennot [DHV20] with r-division to construct an exact distance with the
same guarantee (even in undirected graphs).

Corollary 4. Let G = (V,E) be an unweighted Kh-minor-free digraph. We can construct an exact

distance oracle for G with Õ(n2− 1
2(h−2) ) space and O(log(n)) query time.

We now turn to a negative result. We study set systems whose ground set is the set of edges in
digraphs. While there could be many ways to define a set system of edges [KKR+97], the system
of shortest path trees is of special interest to us: such a set system, if has bounded VC-dimension,
could be used to compute the Wiener index in truly subquadratic time—resolving the problem we
pose above—speed up exact diameter computation, construct exact distance oracles for digraphs
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with O(1) query time, and potentially has many more applications. Unfortunately, we show that
the set system does not have bounded VC dimension. More formally, given a digraph G = (V,E),
let τv be the shortest path tree rooted at v. In the construction of shortest path trees in G, ties are
broken consistently. (If ties are not broken consistently, it is fairly easy to show that the set system
of edges introduced below will not have bounded VC dimension.) We think of τv as a subset of the
E, and define: Ð→SP(G) = {τv ∶ v ∈ V } (5)

As our fourth main result, we show that the set system (E,
Ð→SP(G)) does not have bounded VC

dimension even in unweighted planar digraphs.

Theorem 6. For any constant integer r ≥ 1, there exists an unweighted planar digraph G = (V,E)
and a subset X ⊆ E of size r such that X is shattered by

Ð→SP(G).

Lastly, we briefly mention two other directions which we do not explore in this paper as they are
out of scope. The first direction is to explore the applications of our VC dimension results in solving
graph-theoretic problems. There have been several works on applying the prior VC dimension
results by Chepoi, Estellon, and Vaxes (Theorem 1), for example [BT15, BC14, BBE+21], and by
Li and Parter (Theorem 2), for example [JR23], to understand structures of planar and minor-free
graphs. We believe that our results will also be applicable in this direction. The second direction
is to consider graphs beyond minor-free, such as graphs with polynomial expansion or nowhere
dense graphs, as studied in the work by Ducoffe, Habib, and Viennot [DHV20]. As far as we can
see, our results could also be extensible to graphs with polynomial expansion and get algorithmic
applications along the line of Ducoffe, Habib, and Viennot [DHV20]. However, it seems to us that
one has to work harder to be able to extend our results to nowhere dense graphs.

2 Preliminaries

We use graphs to refer to undirected graphs, while directed graphs will be called digraphs. We
reserve V and E for the vertex set and edge set of G, respectively. For any other graph H, we
denote it vertex set by V (H) and edge set by E(H). We denote by π(u, v,G) a shortest path
between u and v in a graph G. If G is a digraph, then we denote by π(u → v,G) the directed
shortest path from u to v. If the graph is clear from the context, we simply denote the shortest
paths by π(u, v) and π(u→ v), respectively.

The eccentricity of a vertex u, denoted by ecc(u) in a graph G is ecc(u) = maxv∈V dG(u, v).
The diameter of G is the maximum eccentricity: maxu∈V ecc(u). The Wiener index of a graph
G is defined to be the sum of all pairwise distances: 1

2 ∑u∈V ∑v∈V dG(u, v). The Wiener index,
eccentricity, and diameter of digraphs are defined similarly, with dG(u → v) being used in place of
dG(u, v).

We say that a subgraph H of G is induced if every edge in G between two vertices in H also
appears in H. We will use the r-division of minor-free graphs in our algorithms. A cluster is a
connected, induced subgraph of G. Let C be a cluster of G. We say that a vertex v ∈ C is a boundary
vertex if v is adjacent to a vertex u ∈ V ∖ V (C). We use ∂C to denote the set of all boundary
vertices of C. An r-division of G is a collection R of clusters G such that every cluster R ∈ R has
at most r vertices.
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Our definition of r-division is somewhat non-standard in the sense that we do not haveO(
√
∣V (R)∣)

bound on the number of boundary vertices of each cluster R. It is called r-clustering in the paper
of Wulff-Nilsen [WN11]. Here we still call it an r-division as most of the intuition in the use of
r-clustering comes from r-division.

Wulff-Nilsen [WN11] showed that one can construct an r-division of any Kh-minor-free graphs
such that the total number of boundary vertices, counted with multiplicity, is small. We note that
in our applications, it is important that each cluster R ∈ R is a connected subgraph of G.

Lemma 1 (Wulff-Nilsen, Lemma 2 [WN11]). Let G be a Kh-minor-free graphs with n vertices, and
r ∈ [Ch2 logn,n] for a sufficiently large constant C. For any fixed constant ϵ > 0, we can construct
in time O(n1+ϵ√r) an r-division, say R, of G such that (a) ∑R∈R ∣∂R∣ = Õ(nh/

√
r), and (b) every

cluster R ∈ R has ∣V (R)∣ ≤ r and ∣∂R∣ = Õ(h√r). Furthermore, the number of clusters in R is at
most Õ(hn/√r).

One could obtain an r-division with a number of clusters being Õ(hn/r) with a larger running
time. For us, the weaker bound in Lemma 1 suffices.

In many of our results, we will use the following well-known Sauer–Shelah Lemma, which gives
a polynomial upper bound on the size of a VC set system.

Lemma 2 (Sauer–Shelah Lemma). Let F be a family of subsets of a ground set with n elements.
If VC-dimension of F is at most k, then ∣F∣ = O(nk).

A distance oracle for a graph G is a compact data structure that given any two vertices u and
v, returns dG(u, v) quickly. The query time is the maximum time it takes to answer a query over
all pairs of vertices. There is often a trade-off between the space of the oracle and the query time.

3 VC Dimension of Undirected Graphs and Applications

3.1 VC dimension of LP̂G,M

In this section, we fix G = (V,E) to be an undirected Kh-minor-free graph. We first prove Theo-
rem 3, which we restate below.

Theorem 3. Let S be any set of vertices on an edge weighted, undirected Kh-minor-free graph G.
Let M ⊆ R be any set of real numbers. Then LP̂G,M(S) has VC-dimension at most h − 1.

Our proof is by contradiction. Suppose that there is a set Y of size h that is shattered by
LP̂G,M . W.l.o.g., we assume that Y = {(s1,∆1), . . . , (sh,∆h)}. We first observe that:

Observation 1. si /= sj for any 1 ≤ i /= j ≤ h.

Proof. Suppose otherwise, that si = sj . W.l.o.g, we assume that ∆i < ∆j . This means if (si,∆i) ∈
X̂v for some vertex v ∈ V , then (si,∆j) ∈ X̂v, since dG(v, si) ≤ dG(v, s0)+∆i implies that dG(v, si) ≤
dG(v, s0)+∆j . However, since LP̂G,M shatters Y , by definition of shattering, there exists a set X̂v

containing (si,∆i) but not (si,∆j), a contradiction.

For every two elements (si,∆i) and (sj ,∆j) with i /= j in Y , let vij be a vertex such that
{(si,∆i), (sj ,∆j)} = X̂vij ∩ Y .
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Let Ĝ be a graph obtained from G by adding (tiny) perturbed weights to edges of G in such a
way that (i) shortest paths in Ĝ between vertices are unique and (ii) every shortest path in Ĝ is
also a shortest path in G. (Some shortest path in G may no longer be a shortest in Ĝ.) We can
think of Ĝ as providing a tie-breaking scheme for shortest paths in G. The perturbation exists by
the Isolation Lemma [VV86].

Definition 4. We define vertex tij to be the vertex in π(vij , si, Ĝ) ∪ π(vij , sj , Ĝ) such that:

(a) dG(vij , tij) + dG(tij , si) ≤∆i + dG(vij , s0) and dG(vij , tij) + dG(tij , sj) ≤∆j + dG(vij , s0).

(b) the sum of distance dĜ(tij , si) + dĜ(tij , sj) is minimum.

Note that the distances in Item (a) of Definition 4 are w.r.t. graph G while the distances in Item
(b) are w.r.t. Ĝ. By the definition of Ĝ, π(si, vij , Ĝ) is also a shortest path inG; sometimes we abuse
notation by using π(si, vij , Ĝ) to refer to its corresponding shortest path in G. We remark that tij
exists since vij is a possible choice for tij satisfying (a). A good, but not accurate, interpretation
of tij to keep in mind is that when the two shortest paths π(si, vij , Ĝ) and π(si, vij , Ĝ) shares the
same vertex other than vij , then tij is the common vertex furthest from vij ; this would be the
case if we restrict tij to be in π(vij , si, Ĝ) ∩ π(vij , sj , Ĝ) instead of π(vij , si, Ĝ) ∪ π(vij , sj , Ĝ) as in
Definition 4. Indeed, the role of tij in the proof is subtler than just being the furthest common
vertex.

Claim 1. π(si, tij ,G) and π(sj , tij ,G) are internally disjoint.

Proof. Suppose otherwise; there would be a vertex xij ∈ (π(vi, tij ,G) ∩ π(vj , tij ,G)) ∖ {tij}; see
Figure 1(a). Then, we have:

dG(vij , xij) + dG(xij , si) ≤ dG(vij , tij) + dG(tij , xij) + dG(xij , si)
= dG(vij , tij) + dG(tij , si)
≤∆i + dG(vij , s0) (by Item (a) in Definition 4)

By the same argument, we have:

dG(vij , xij) + dG(xij , sj) ≤∆j + dG(vij , s0).

which means xij satisfies Item (a) in Definition 4. Furthermore, as xij ∈ (π(vi, tij ,G)∩π(vj , tij ,G))∖
{tij}, we have:

dĜ(xij , si) + dĜ(xij , sj) = dĜ(tij , si) − dĜ(tij , xij) + dĜ(tij , sj) − dĜ(tij , xij)
< dĜ(tij , si) + dĜ(tij , sj)

contradicting the minimality of tij by Item (b) in Definition 4.

We define the bunch of each vertex si (see Figure 1(b)):

Bunch(si) = ∪j/=iπ(si, tij , Ĝ) (6)

We say that tij is an endpoint of Bunch(si) if it has degree 1 in the subgraph Bunch(si).
Otherwise, we say that tij is an internal vertex of Bunch(si). (One case where tij is not an endpoint
is when the path π(si, tij , Ĝ) is a subpath of π(si, tij′ , Ĝ) of another vertex tij′ .)
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Figure 1: (a) xij ∈ (π(si, tij ,G)∩π(sj , tij ,G))∖{tij}; (b) the bunch of si contains all red paths, ti(h−1)
is an internal vertex of Bunch(si) but an endpoint of Bunch(sh−1); (c) x ∈ π(s1, t1j ,G)∩π(s2, t2k,G);
(d) Illustration for the proof that t12 must be an endpoint; (e) {x} ∈ π(s1, t12,G) ∩ π(s2, t2ℓ,G);
(f) A K3 minor constructed from three bunches Bunch(s1), Bunch(s2), and Bunch(s3); t12 will be
contracted to s1, t23 is contracted to s2, and t13 is contracted to s3.

Lemma 3. For every a /= b, Bunch(ska)∩Bunch(skb) = {tab}. Furthermore, tab is either an endpoint
of Bunch(ska), or an endpoint of Bunch(skb), or both.

Proof. By the symmetry of si, we prove the lemma for a = 1, b = 2. Let π(s1, t1j , Ĝ) and π(s2, t2ℓ, Ĝ)
be paths in Bunch(s1) and Bunch(s2), respectively.
Claim 2. If {j, ℓ} ∩ {1,2} = ∅, then π(s1, t1j , Ĝ) ∩ π(s2, t2ℓ, Ĝ) = ∅.

Proof. Suppose otherwise, there exists x ∈ π(s1, t1j , Ĝ) ∩ π(s2, t2k, Ĝ); see Figure 1(c). Let:

a1 = dG(t1j , x) a2 = dG(x, s1)
a3 = dG(t2ℓ, x) a4 = dG(x, s2)

b1 = dG(v1j , t1j) b2 = dG(v2ℓ, t2ℓ)

By definition of t1j (Item (a) in Definition 4), it holds that b1 + a1 + a2 ≤ ∆1 + dG(v1j , s0). For
the same reason, we have b2 + a3 + a4 ≤∆2 + dG(v2k, s0). It follows that:

a1 + a2 + a3 + a4 + b1 + b2 ≤∆1 +∆2 + dG(v1j , s0) + dG(v2ℓ, s0) (7)
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On the other hand, (s2,∆2) /∈ X̂v1j . Thus, dG(v1j , s2) >∆2+dG(v1j , s0). By the triangle inequality,
b1 + a1 + a4 ≥ dG(v1j , s2), which implies that:

b1 + a1 + a4 >∆2 + dG(v1j , s0) (8)

By the same argument, we have that b2 + a2 + a3 >∆1 + dG(v2ℓ, s0). Combining with Equation (8),
we get:

a1 + a2 + a3 + a4 + b1 + b2 >∆1 +∆2 + dG(v1j , s0) + dG(v2ℓ, s0), (9)

which contradicts Equation (7). Thus, x does not exist.

Claim 3. If {j, ℓ} ∩ {1,2} /= ∅, then π(s1, t1j , Ĝ) ∩ π(s2, t2ℓ, Ĝ) ⊆ {t12}, and that t12 is either an
endpoint of Bunch(s1) or Bunch(s2) or both.

Proof. If t12 ∈ π(s1, t1j , Ĝ)∩π(s2, t2ℓ, Ĝ), then we claim that t12 must be an endpoint of Bunch(s1)
or Bunch(s2) or both. Suppose otherwise; that is t12 is not an endpoint of either Bunch(s1) or
Bunch(s2). It means that there are two paths π(s1, t1a, Ĝ) and π(s2, t2b, Ĝ) such that {t12} ⊆
π(s1, t1a, Ĝ) ∩ π(s2, t2b, Ĝ) and that {a, b} ∩ {1,2} = ∅; see Figure 1 (d). The existence of such two
paths contradicts Claim 2.

We are now proving that π(s1, t1j , Ĝ) ∩ π(s2, t2ℓ, Ĝ) ⊆ {t12}. Observe that if j = 2 and ℓ = 1,
then t12 = π(s1, t1j , Ĝ)∩π(s2, t2ℓ, Ĝ) by Claim 1. Thus, Claim 3 follows. It remains to consider two
other cases: (i) j = 2, ℓ /= 1 or (ii) j /= 2, ℓ = 1. Both cases are symmetric, and hence w.l.o.g, we only
consider case (i).

Suppose that there exists x /= t12 such that {x} ∈ π(s1, t12, Ĝ) ∩ π(s2, t2ℓ, Ĝ) (j = 2 now); see
Figure 1(e). We define a1, a2, a3, a4, b1, b2 as in Claim 2, specifically:

a1 = dG(t12, x) a2 = dG(x, s1)
a3 = dG(t2ℓ, x) a4 = dG(x, s2)
b1 = dG(v12, x) b2 = dG(v2ℓ, x)

By definition of t12 (Item (a) in Definition 4), b1+a1+a2 ≤∆1+dG(v12, s0). By the same argument,
b2 + a3 + a4 ≤∆2 + dG(v2ℓ, s0). Thus,

b1 + b2 + a1 + a2 + a3 + a4 ≤∆1 +∆2 + dG(v12, s0) + dG(v2ℓ, s0). (10)

Since (s1,∆1) /∈ X̂v2ℓ , dG(v2ℓ, s1) > ∆1 + dG(v2ℓ, s0). By the triangle inequality, we have that
b2 + a3 + a2 >∆2 + dG(v2k, s0). Thus, by Equation (10), b1 + a1 + a4 ≤∆2 + dG(v12, s0). In summary,
we have:

b1 + a1 + a2 ≤∆1 + dG(v12, s0)
b1 + a1 + a4 ≤∆2 + dG(v12, s0)

By the triangle inequality, we have that dG(v12, x) ≤ b1 + a1. Recall that a2 = dG(x, s1) and
a4 = dG(x, s2). It follows that:

dG(v12, x) + dG(x, s1) ≤∆1 + dG(v12, s0)
dG(v12, x) + dG(x, s2) ≤∆2 + dG(v12, s0)

(11)
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Thus, x satisfies Item (a) of Definition 4. We now show that dĜ(x, s1)+dĜ(x, s2) < dĜ(t12, s1)+
dĜ(t12, s2), which will give a contradiction by the choice of t12 in Item (b) of Definition 4.

Observe that by a triangle inequality, dG(x, s2) ≤ dG(x, t12) + dG(t12, s2). Since shortest paths
are unique in Ĝ, dĜ(x, s2) < dĜ(x, t12) + dĜ(t12, s2). (See Figure 1(e).) Since π(t12, sk1 , Ĝ)[x, s1] is
a shortest path in Ĝ , dĜ(x, s1) = dĜ(t12, s1) − dĜ(x, t12). It follows that:

dĜ(x, s1) + dĜ(x, s2) < dĜ(t12, s1) − dĜ(x, t12) + dĜ(x, t12) + dĜ(t12, s2)
= dĜ(t12, s1) + dĜ(t12, s2),

as desired.

We observe that Lemma 3 follows directly from Claim 2 and Claim 3.

We now continue the proof of Theorem 3. Consider the subgraph H = ∪1≤i≤hBunch(si). We
construct a Kh minor of H as follows (see Figure 1(f)). Let π(si, tij ,G) be a path in Bunch(si) such
that i < j. If tij is an endpoint of Bunch(sj), then we contract π(si, tij ,G) to si. Otherwise, we
contract π(si, tij ,G) ∖ {tij} to vi; Lemma 3 implies that tij will be contracted to vj . The resulting
graph is a Kh-minor of H as the paths π(si, tij ,G) and π(sj , tij ,G) for any i /= j are internally
disjoint by Claim 1. This completes the proof of Theorem 3.

Remark 1. We remark the following regarding Theorem 3:

� The proof of Theorem 3 breaks down if we apply it to the set system by Li and Parter
in Definition 1. Specifically, in Equation (7), dG(v1j , s0) + dG(v2ℓ, s0) will be replaced by
dG(v1j , s0) + dG(v2ℓ, s1) while in Equation (9), dG(v1j , s0) + dG(v2ℓ, s0) will be replaced by
dG(v1j , s1)+dG(v2ℓ, s0), and hence we could not obtain a contradiction in the proof of Claim 2.
The same happens to the proof of Claim 3.

� The VC dimension bound obtained by Li and Parter [LP19] is 3 for the setting of S on the
outer face of a planar graph G, while our Theorem 3 gives VC dimension 4. However, we can
modify the proof slightly to improve the VC dimension to 3 by only requiring that G excludes
a Kh-minor where each vertex of the clique minor must correspond to a connected subgraph
of G containing at least one vertex in S. We say that G is S-restricted Kh-minor-free. (A
Kh-minor-free graph is S-restricted Kh-minor-free graph for any subset S.) The graph and
the vertex set S considered in the setting of Li and Parter is S-restricted K4-minor-free and
hence Theorem 3 gives VC dimension bound of 3, matching the original bound of Li and
Parter.

3.2 Algorithmic Applications

In this section, we explore algorithmic applications of Theorem 3. Graphs in this section are un-
weighted and hence the distances are unweighted distances. We will use the notion of patterns, intro-
duced by Fredslund-Hansen, Mozes, and Wulff-Nilsen [FHMWN20], though our pattern is defined
slightly differently. Specifically, our definition rests on the VC set system LP̂G,M , while Fredslund-
Hansen, Mozes, and Wulff-Nilsen relied on the VC set system LPG,M by Li and Parter [LP19].

Let H be a connected, induced subgraph of G. Recall that ∂H denotes the set of all boundary
vertices of H. Fix an arbitrary sequence σH of vertices of ∂H, which is a linear order of ∂H. We
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write σH = ⟨s0, s1, . . . , s∣∂H ∣−1⟩. For each vertex v ∈ V , we define a pattern of v w.r.t σH , denoted
by pv be a ∣∂H ∣ dimensional vector where:

pv[i] = dG(v, si) − dG(v, s0) for every 0 ≤ i ≤ ∣∂H ∣ − 1 (12)

Note that pv[0] = 0 by definition. We bound the the number of all possible patterns w.r.t. σH .

Lemma 4. H be a connected, induced subgraph of a Kh-minor-free graph G, and σH be an arbitrary
sequence of vertices in ∂H. Let P = {pv ∶ v ∈ V } be the set of all patterns w.r.t. σH . Then
∣P ∣ = O((∣∂H ∣ ⋅ ∣V (H)∣)h−1).
Proof. Since H is connected, by the triangle inequality, −(∣V (H)∣ − 1) ≤ dG(v, si) − dG(v, s0) ≤
∣V (H)∣ −1. Let M = {−(∣V (H)∣ −1), . . . ,−1,0,1, . . . , (∣V (H)∣ −1)} and S be the set of all boundary
vertices of H. Let p̄v be a set obtained by flattening pv; that is, for each i ∈ [1, ∣∂H ∣ − 1], we add
to the set p̄v a pair (i,∆) for every ∆ ∈ M such that ∆ ≥ pv[i]. Observe by definition of X̂v in
Equation (2) that p̄v = X̂v. Thus, there is a bijection between the set of patterns P and LP̂G,M .

By the Sauer–Shelah Lemma (Lemma 2), we have ∣LP̂G,M ∣ = O((∣S∣∣M ∣)h−1) = O((∣∂H ∣ ⋅
∣V (H)∣)h−1) as claimed.

Let v be a vertex in H, and p be a pattern (of some vertex u) w.r.t. σH . We define the distance
between v in p, denoted by d(p, v), to be:

d(p, v) = min
0≤i≤∣∂H ∣−1

{dG(v, si) + p[i]} (13)

The distance between a vertex and a pattern can be used to compute the distance between
two vertices as shown by the following lemma, due to Fredslund-Hansen, Mozes, and Wulff-
Nilsen [FHMWN20]. Since our definition of a distance between a pattern and a vertex in Equa-
tion (13) is slightly different from that of [FHMWN20], we include a proof for completeness.

Lemma 5 (Fredslund-Hansen, Mozes, and Wulff-Nilsen, Lemma 7 [FHMWN20]). Let u ∈ V ∖V (H)
be a vertex not in H, and pu be the pattern of u w.r.t σH . Let v be a vertex in H. Then:

dG(u, v) = dG(u, s0) + d(pu, v) (14)

Proof. Observe that for each boundary vertex si for 0 ≤ i ≤ ∣∂H ∣, dG(u, si) = pu[i] + dG(u, s0).
Let sℓ be the boundary vertex in π(u, v,G) ∩ ∂H; sℓ exists since H is an induced subgraph, and
u /∈ V (H), v ∈ V (H). Then:

dG(u, v) = dG(u, sℓ) + dG(sℓ, v) = min
0≤i≤∣∂H ∣−1

{dG(u, si) + dG(si, v)}

= min
0≤i≤∣∂H ∣−1

{dG(u, s0) + pu[i] + dG(si, v)}

= dG(u, s0) + min
0≤i≤∣∂H ∣−1

{dG(v, si) + pu[i]}

= dG(u, s0) + d(pu, v) ,
as desired.

In Section 3.2.1 and Section 3.2.2, we present algorithms to compute the diameter, eccentricities
and the Wiener index. Our algorithm builds on an earlier algorithm by Wulff-Nilsen [WN09]. Here
we use Lemma 4 to improve the running time to truly subquadratic time. In Section 3.2.3, we
construct a distance oracle with truly subquadratic space and constant query time. The algorithm
is almost the same as the algorithm by Fredslund-Hansen, Mozes, and Wulff-Nilsen [FHMWN20],
except that we will use Lemma 4. In Section 3.2.4, we mention other algorithmic applications.
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3.2.1 Diameter and Eccentricities

In this section, we show how to compute all-vertices eccentricities in truly subquadratic time as
described in Corollary 2. Computing the diameter trivially follows by finding the maximum eccen-
tricity in O(n) time. The algorithm has three steps:

� (Step 1). Construct an r-division R of G for r = n2/(3h−1). For each cluster R ∈ R, form
a sequence of boundary vertices σR in an arbitrary way. Then compute the set of patterns

w.r.t σR: PR = {u ∈ V ∶ pu}. We store PR in a table T
(1)
R .

� (Step 2). For each cluster R ∈ R and each pattern p ∈ PR, find v = argmaxv∈V (R) d(v,p).
That is, v is the vertex that has maximum distance to p over all vertices in V (R); we say

that v is the furthest vertex from p. We then store the distance d(p, v) in a table T
(2)
R of R;

the key to access T
(2)
R is (the ID of) p.

� (Step 3). We now compute ecc(u) for each vertex u ∈ V . For each cluster R ∈ R, we
compute the distance from u to the vertex v ∈ R furthest from u, denoted by ∆(u,R), as
follows. If u ∈ R, we then simply compute ∆(u,R) by using BFS. If u /∈ R, let pu be the
pattern of u w.r.t σR computed in (Step 1). Let v be the furthest vertex from pu, computed
in (Step 2). Then we return ∆(u,R) = dG(u, s0) + d(pu, v) where s0 is the first vertex of σR.
Finally, we compute ecc(u) =maxR∈R∆(u,R).

By Lemma 5 and the computation in (Step 2), ∆(u,R) computed in (Step 3) is the distance
from u to its furthest vertex in R for every cluster R. Thus, in (Step 3) above, ecc(u) is correctly
computed.

We now implement each step of the algorithm efficiently, assuming that h is a constant. We
can assume h ≥ 4, as (connected) K3-minor-free graphs are trees and hence all problems mentioned
here can be solved in linear time. Let B be the set of boundary vertices of the r-division R:
B = ∪R∈R∂R. By Lemma 1, ∣B∣ = Õ(n/√r). Thus, we can find all BFS trees, each rooted at a
vertex of B, in Õ(n2/r) time.

Observation 2. Let D(B,V ) = {dG(b, v) ∶ (b, v) ∈ B×V }. Then D(B,V ) can be computed in time
Õ(n2/√r).

By Lemma 1, each cluster R ∈ R has at most r vertices and Õ(√r) boundary vertices. The
following is a direct corollary of Lemma 4.

Corollary 5. ∣PR∣ = Õ(r3(h−1)/2) for every R ∈ R.

Proof. By Lemma 4, the number of patterns is O((∣∂R∣ ⋅ ∣V (R)∣)h−1) = Õ(r3(h−1)/2).

Next, we bound the running time of (Step 1).

Lemma 6. Given D(B,V ), we can implement (Step 1) in Õ(n2/√r) time.

Proof. First, by Lemma 1, R can be constructed in time O(n1+ϵ√r) for any fixed constant ϵ > 0.
As h ≥ 4, n2/√r = n2−1/(3h−1) = Ω(n1.5) while n1+ϵ√r = n1+ϵ+1/(3h−1) = n1.2+ϵ. Thus, by choosing
ϵ = 0.1, we have n1+ϵ√r = O(n2/√r). That is, R can be constructed in Õ(n2/√r) time.

Next we compute PR, which is initialized to be ∅. Then for each u ∈ V , we look up the distance
from all vertices of ∂R to u in D(B,V ). Then we compute the pattern pu from u to R, in O(∣∂R∣)
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time. We then add pu to PR if pu is currently not in PR; this check can be done in O(∣∂R∣) time
using a trie data structure, say. The total running time to compute PR is O(n∣∂R∣). Thus, the
total running time of this step is O(n∑R∈R ∣∂R∣) = Õ(n2/√r) by Lemma 1.

Lemma 7. Given D(B,V ) and {PR}R∈R, we can implement (Step 2) in Õ(nr(3h−2)/2) time.

Proof. For each pattern p ∈ PR, we can compute the distance d(p, v) for each v ∈ V (R) in time
O(∣∂R∣) = Õ(√r). Thus, finding the furthest vertex from p takes Õ(√r∣V (R)∣) time. By Corol-

lary 5, the running time to compute the table T
(2)
R is Õ(r1/2∣V (R)∣r3(h−1)/2) = Õ(r(3h−2)/2)∣V (R)∣.

Thus, the total running time of (Step 2) is Õ(r(3h−2)/2)∑R∈R ∣V (R)∣) = Õ(nr(3h−2)/2), as claimed.

Lemma 8. (Step 3) can be implemented in Õ(n2/√r) time given the information computed in
(Step 1) and (Step 2).

Proof. First we bound the running time to compute ecc(u) for a given vertex u ∈ V . For the cluster
R ∈ R such that u ∈ R, computing ∆(u,R) takes O(∣V (R)∣) = O(r) time. If u /∈ R, we can look up

(the ID of) the pattern pu in T
(1)
R in O(1) time. Given pu, we can lookup d(pu, v) in O(1) time

from T
(2)
R constructed in (Step 2). Furthermore, dG(u, s0) can be found directly from D(B,V ) in

O(1) time. Thus, the running time to compute ∆(u,R) is O(1) and hence the total running time
to compute ∆(u,R) is O(r + ∣R∣). By Lemma 1,

O(r + ∣R∣) = Õ(r + n/
√
r) = Õ(n/

√
r)

as r = n2/(3h−1) ≤ n0.2 with h ≥ 4. This means that the total running time to compute all the
eccentricities is Õ(n2/√r).

By Lemmas 6 to 8, the total running time to compute all the eccentricities (and hence the
diameter) of G is:

Õ( n
2

√
r
+ nr(3h−2)/2) = Õ(n2− 1

3h−1 ) (15)

when r = n2/(3h−1).

3.2.2 Wiener Index

We show how to compute Wiener index in truly subquadratic time as described in Corollary 2. For
any two set of vertices X,Y ⊆ V , let W (X,Y ) = ∑x∈X ∑y∈Y dG(x, y). The Wiener index of G is
1
2W (V,V ), and thus our goal is to compute W (V,V ). Let R be an r-division of G computed by

Lemma 1 for r = n2/(3h−1). Let R○ = V (R)∖∂R. Recall that in Section 3.2.1, we define B = ∪R∈R∂R.
Observe that:

W (V,V ) =W (B,V ) + ∑
R∈R

W (R○, V )

=W (B,V ) + ∑
R∈R

W (R○, V (R)) + ∑
R∈R

W (R○, V ∖ V (R))
(16)

First, we focus on computing W (B,V ) and ∑R∈RW (R○, V (R)).
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Lemma 9. W (B,V ) can be computed in time Õ(n2/√r) and ∑R∈RW (R○, V (R)) can be computed
in time O(nr).

Proof. By Observation 2, all the distances from vertices in B to vertices in V (the set D(B,V ))
can be computed in time Õ(n2/√r), which also is the running time to compute W (B,V ).

By Lemma 1, each cluster has size at most r. Furthermore, computing the distance from a
vertex in R to all other vertices R can be done in O(r) time using BFS. Thus, the running time to
compute ∑R∈RW (R○,R) is ∑R∈RO(r∣R○∣) = O(nr).

Next, we bound the running time to compute ∑R∈RW (R○, V ∖ V (R)).

Lemma 10. ∑R∈RW (R○, V ∖ V (R)) can be computed in time Õ(nr(3h−2)/2 + n2/√r),

Proof. First we compute the set of patterns {PR}R∈R of all clusters in R in time Õ(n2/√r) by
Lemma 6. Next, we observe that:

∑
R∈R

W (R○, V ∖ V (R)) = ∑
R∈R

∑
u∈V ∖V (R)

W (u,R○) (17)

Furthermore, by Lemma 5,

W (u,R○) = ∑
v∈R○

dG(u, v) = ∣R○∣dG(u, s0) + ∑
v∈R○

d(pu, v)

where s0 is the first vertex in the boundary sequence σR of cluster R. The distance dG(u, s0) is
already computed, i.e, dG(u, s0) ∈D(B,V ).

In Lemma 7, we find the furthest vertex from each pattern p ∈ PR by iterating over all
vertices of R in total time Õ(√r∣V (R)∣) time. Thus, we can compute the sum ∑v∈R○ d(p, v)
in time Õ(√r∣V (R)∣), and running time for to compute all the sums of all patterns in PR is
Õ(√r∣V (R)∣r3(h−1)/2) = Õ(r(3h−2)/2)∣V (R)∣. We can think of this as preprocessing time for com-
puting W (u,R○). Over all clusters in R, the total preprocessing time is:

∑
R∈R

Õ(r(3h−2)/2)∣V (R)∣ = Õ(nr(3h−2)/2) (18)

which is the first term in the running time.
Once the sums of distances for all patterns in PR are given, we can store them in a table keyed

by the ID of the patterns, and then we can look up ∑v∈R○ d(pu, v) in O(1) time. As a result, we can
compute W (u,R○) in O(1) time, and hence by Equation (17), W (R○, V ∖V (R)) can be computed
in time:

∑
R∈R

O(n) = O(n∣R∣) = Õ(n2/
√
r)

by Lemma 1, which is the second term in the running time.

By Lemma 9 and Lemma 10, the total running time to compute W (V,V ) is Õ( n2
√
r
+nr(3h−2)/2) =

Õ(n2− 1
3h−1 ) when r = n2/(3h−1) as claimed in Corollary 2.

3.2.3 Exact Distance Oracle

We construct the first exact distance oracle for unweighted minor-free graphs with subquadratic
space-query time trade-off, and subquadratic preprocessing time as described in Corollary 1.
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Construction. The construction has two steps:

� (Step 1). Construct an r-division R of G with r = n2/(3h−1), and for each cluster R ∈ R,
store a set of patterns PR w.r.t an (arbitrary) sequence of boundary vertices σR in a table
TR. We also store the exact distances of all pairs of vertices in R.

� (Step 2). For each vertex u and a region R ∈ R: (2a) if u ∈ R, we store d(p, u) for every
pattern p ∈ PR; (2b) if u /∈ R, we store a pointer from u to its pattern pu in table TR and the
distance from u to the first vertex in the sequence of boundary vertices σR.

Querying distances. Given two vertices u and v, if there is a region R containing both u and
v, we can simply look up their distance stored at R in O(1) time. Otherwise, let Rv be the region
containing v. First, we look up the distance from u to the first vertex in the boundary sequence
σRv , say s0, in O(1) time. Then, we look up the pattern pu ∈ PRv of u in Rv, and the distance
d(v,pu) in total O(1) time due to the construction in (Step 2). Finally, we return:

dG(u, s0) + d(pu, v) . (19)

Lemma 5 implies that the returned distance is dG(u, v). The total query time is O(1).

Space analysis. By Corollary 5, the number of patterns is Õ(r3(h−1)/2) and by Lemma 1, ∣R∣ =
Õ(n/√r). The total space of (Step 1) and (Step 2(a)) is:

Õ( ∑
R∈R
(r3(h−1)/2∣V (R)∣ + ∣V (R)∣2)) = Õ( ∑

R∈R
(r3(h−1)/2∣V (R)∣ + r∣V (R)∣)) = Õ(nr3h/2−2) (20)

as h ≥ 4. The total space of Step 2(b) is O(n∣R∣) = Õ(n2/√r) by Lemma 1. Thus, the total space
of the oracle is:

Õ(nr3h/2−2 + n2/
√
r) = Õ(n2− 1

3h−1 ) (21)

with r = n2/(3h−1).

Construction Time. We observe that the amount of information we need to construct the
distance oracle is exactly the amount of information we need to compute the diameter and the

Wiener index. Thus, the running time to compute all the information is Õ(n2− 1
3h−1 ).

Remark 2. We can further reduce the space of the oracle by increasing the construction time by
choosing r differently, or by increasing the query time using the nested r-division following the line
of reasoning in [FHMWN20].

3.2.4 Other Applications

Here we discuss other algorithmic applications of our Theorem 3.
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Metric compression. Li and Parter [LP19] showed that for any two sets of vertices S,T in an
unweighted planar graph of diameterD such that S is on the boundary of the outer face of the graph,
then one can compress all the distances from T to S using only Õ(∣S∣3D+∣T ∣∣ log(∣S∣D)∣) bits. Here
it is instructive to think of a canonical regime where D is a constant and 1 ≪ poly(∣S∣) ≪ ∣T ∣. In
this canonical regime, the compression scheme has space Õ(poly(∣S∣)+∣T ∣) bits instead of Õ(∣S∣ ⋅ ∣T ∣)
bits by simply storing all the distances from T to S. This compression scheme has an application
in computing diameter of planar graphs in the distributed CONGEST model.

Using Theorem 3, we improve the compression scheme by Li and Parter in two aspects: S is
no longer restricted, and G could be any minor-free graphs. In the canonical regime, the space of
our compression scheme is Õ(poly(∣S∣) + ∣T ∣) which is the same as Li-Parter space bound up to a
factor of poly(∣S∣) in the additive term.

Now we give a more formal description of our result. Let S = {s0, s1, . . . , sk−1} and T =
{t1, t2, . . . , tℓ} where k = ∣S∣ and ℓ = ∣T ∣. For each vertex v ∈ V , we define

Tuple(v) = ⟨dG(v, s0), . . . , dG(v, sk−1)⟩ ,

which is called a distance tuple of v w.r.t S. Li and Pater showed in their Theorem 2.2 [LP19] that
the set Tuple(V ) = {Tuple(v) ∶ v ∈ V } has size O(∣S3∣D) when S is on the outer face of a planar graph
of diameter D. Hence, to compress the distances from T to S, one only needs to store Tuple(V )
using Õ(∣S∣3D) bits and then for each t ∈ T , one stores a pointer from t to its corresponding distance
tuple Tuple(t) ∈ Tuple(V ). Here we show that in our more general setting where S has no restriction
and G is Kh-minor-free, the number of tuples is bounded by O((∣S∣ ⋅D)O(h)) = O(poly(∣S∣)) for
fixed h and D. This implies our result on the metric compression.

Lemma 11. ∣Tuple(V )∣ = O(∣S∣h−1 ⋅Dh) when G is a Kh-minor-free graph and has diameter at
most D.

Proof. The proof is the same as the proof of Lemma 4. The only difference is that now −D ≤
dG(v, si) − dG(v, s0) ≤ D by the triangle inequality. Let’s fix the distance from dG(v, s0), and
M = {−D, . . . ,−1,0,1, . . .D}. Let p̄v be a set obtain by adding pairs (i,∆) for ∆ ∈ M such that
dG(v, si)−dG(v, si−1) ≤∆ to the set p̄v for each i ∈ [1, k−1]. Then there is a bijection between the set
{p̄v}v∈V and LP̂G,M . By the Sauer–Shelah Lemma (Lemma 2), we have ∣LP̂G,M ∣ = O((∣S∣∣M ∣)h−1) =
O((∣S∣ ⋅D)h−1). As we have D choices for dG(v, s0), the number of different distance tuples is at
most O((∣S∣ ⋅D)h−1 ⋅D) = O(∣S∣h−1Dh).

Computing diameter and all-vertices eccentricities in low-treeewith minor-free graphs.
Abboud, Williams, and Wang [AWW16] studied the problem of computing diameter in unweighted
graphs of treewidth k. They showed surprisingly that, there exists a constant c > 0 such that for
any k ≤ c ⋅ logn, under the Strong Exponential Time Hypothesis (SETH), there is no algorithm
with running time n2−ϵ2Ω(k) to compute the diameter for any fixed ϵ > 0. That is, if one insists
on having an algorithm with truly subquadratic time, one has to pay an exponential dependency
on the treewidth. They also presented an algorithm for distinguishing diameter 2 vs diameter 3
graphs with running time n1+o(1)2O(k log k). Husfeldt [Hus17] designed an improved algorithm with
running time O(dO(k)n) where d is the diameter using dynamic programming. An open question
is to design in algorithm with running time O(dO(1)2O(k)n).

We show that if the input graph G has treewidth k, and in addition, is Kh-minor-free, for a fixed
constant h, then one can find the diameter of G in time O((dk)O(1)n). Notably, the dependency
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on the treewidth k is polynomial instead of exponential. We note that the class of Kh-minor-free
graphs of treewidth k includes well-studied classes of graphs, such as k-outerplanar graphs, Halin
graphs, and series-Parallel graphs.

Here we sketch our argument. The basic idea is to use Theorem 3 to optimize the running time of
the dynamic programming algorithm by Husfeldt [Hus17] (for computing all-vertices eccentricities
and hence diameter). For each bag B = {s0, s1, . . . , sk−1} of size k in the tree decomposition, the
dynamic program keeps track of all the distance tuples of vertices in the graph induced by vertices
in descendant bags of B (and including B). The maximum number of distance tuples is dO(k),
which results in running time dO(k)n. When G is Kh-minor-free, then by Lemma 11, the number
of distance tuples is poly(k ⋅ d), and hence the running time of the dynamic program becomes
poly(k ⋅ d)n.

Approximate distance oracles in planar graphs. In [Le23], Le constructed a (1 + ϵ)-
approximate distance oracle for planar graphs with Õ(n/ϵo(1)) space and Õ(1) query time. That is,
the space-query product trade-off depends sublinearly on 1/ϵ. A key ingredient of the construction
is a polynomial bound on the number of (approximate) distance tuples by Li and Parter [LP19].
Our set system LP̂G,M also gives a polynomial bound on the number of such distance tuples, and
hence could be used in the same way to derive the result in [Le23].

4 VC Dimension of Digraphs and Applications

In this section, G = (V,E) denotes a Kh-minor-free digraphs. G could be weighted or unweighted.
In bounding the VC-dimension, we allow edges of G to have arbitrary non-negative weights, while
in the algorithmic applications, G is unweighted.

4.1 VC dimension of LP⃗G,M

In this section, we prove Theorem 4, which we restate below.

Theorem 4. Let S be any set of vertices on an edge weighted Kh-minor-free digraph G. Let M ⊆ R
be any set of real numbers. Then

Ð→LPG,M(S) has VC-dimension at most h2.

Suppose that
Ð→LPG,M shatters a set X = {(s1,∆1), (s1,∆2) . . . , (sq,∆q)} of size q. Our goal is

to show that (the undirected counterpart of) G has a clique minor of size at least ⌊√q⌋, which gives

the bound on the VC dimension of
Ð→LPG,M , as ⌊√q⌋ ≤ h − 1. The major difficulty in the proof is

that, in digraphs, we do not have strong properties of Bunch(si)—we construct Bunch(si) in the
same way—as we do in the proof of Theorem 3 in Section 3.1. More precisely, Lemma 3 no longer
holds. This makes the construction of the clique minor more difficult, and as a result, we could
not show the linear bound on the VC dimension. On the other hand, we show that an analog of
Claim 1 suffices for our construction of a clique minor of size

√
q.

We now present the proof. By the same reasoning in Observation 1, we have that si /= sj for all
i /= j. For every pair (si,∆j), (sj ,∆j), let tij be such that

Ð→
X tij ∩ (V ×M) = {(si,∆j), (sj ,∆j)}.

Lemma 12. If i, j, ℓ, p ∈ [q] are pairwise different, then π(tij → si,G) ∩ π(tℓp → sℓ,G) = ∅.
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Figure 2: (a) Assume that x ∈ π(tij → si,G) ∩ π(tℓp → sℓ,G); (b) three sets Y1, Y2, Y3 when k = 9
and three paths Q12,Q23,Q13 where no two paths share the same endpoint; (c) Qab[x,x′] is added
to Ha (orange) and Qab[y, y′] is added to Hb (blue).

Proof. Suppose otherwise, there exists x ∈ π(tij → si,G) ∩ π(tℓp → sℓ,G); see Figure 2(a). Let:

a1 = dG(tij → x) a2 = dG(x→ si)
a3 = dG(tℓp → x) a4 = dG(x→ sℓ)

Then a1 + a2 ≤ dG(tij → s0) +∆i and a3 + a4 ≤ dG(tℓp → s0) +∆ℓ. Thus, we have:

a1 + a2 + a3 + a4 ≤ dG(tij → s0) + dG(tℓp → s0) +∆i +∆ℓ

Furthermore, since (sℓ,∆ℓ) /∈ Xtij , we have dG(tij → sℓ) > dG(tij → s0) +∆ℓ. This implies that
a1+a4 > dG(tij → s0)+∆ℓ. By the same argument, a2+a3 > dG(tℓp → s0)+∆i. Thus, a1+a2+a3+a4 >
dG(tij → s0) + dG(tℓp → s0) +∆i +∆ℓ, a contradiction.

We now ignore the direction of G and focus on constructing a clique minor of size ⌊√q⌋. Let
π(tij /→ si,G) be the undirected path obtained by ignoring the direction of edges in π(tij → si,G).
For every i /= j we denote by Pij the path from si to sj obtained by simplifying the (undirected)
walk from si to sj obtained by gluing two paths π(tij /→ si,G) and π(tij /→ sj ,G) at tij . Lemma 12
implies:
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Corollary 6. Pij ∩ Pℓp = ∅ when i, j, ℓ, p are pairwise different.

That is the two paths between two pairs of vertices in X can intersect if and only if they share
one endpoint. In this case, they could intersect in an arbitrarily complicated way.

We partition X into
√
q subsets Y1, . . . , Y√q each contains

√
q vertices in X; for ease of notation,

we assume that
√
q is an integer. For every pair (Ya, Yb) for a, b ∈ [√q], a /= b, let Pab = {Pij ∶ si ∈

Ya, sj ∈ Yb} be the set of paths between Ya and Yb. We then choose a path Qab ∈ Pab such that
the set of chosen paths, denoted by Q = {Qab}(a,b)∈[√q]×[√q],a<b, has no two paths sharing the same
endpoint; we can pick Q in a greedy manner. Q exists since each Ya has

√
q vertices while we only

need
√
q − 1 paths in Q to connect Ya to other sets. See Figure 2(b).

We now construct a K√q-minor as follows. For each Ya, a ∈ [
√
q], let Ha = ∪si,sj∈YaPij . Clearly,

Ha is connected and furthermore, by Corollary 6, V (Ha) ∩ V (Hb) = ∅. Between Ha and Hb, we
have a path Qab ∈ Q that is vertex disjoint from all other paths in Q. (Ha and Hb could contain
vertices of Qab other than its endpoints.) Since V (Ha) ∩ V (Hb) = ∅, there must be a subpath
Qab[x, y] from a vertex x to a vertex y such that x ∈ Ha and y ∈ Hb and no other vertex in
Qab[x, y] ∖ {x, y} belongs to Ha ∪Hb. (It could be that Qab[xy] is an edge.) Pick an arbitrary
edge eab = (x′, y′) ∈ Q[x, y]; we assume w.l.o.g that x′ ∈ Qab[x, y′]. Then we add Qab[x,x′] to Ha

and Qab[y′, y] to Hb. See Figure 2(c). Let H ′a be the graph Ha after applying this process to all
pairs (a, b) ∈ [√q] × [√q], a < b. Then {H ′a}a∈[√q] are pairwise vertex-disjoint, and there is an edge
connecting every pair of graphs. These graphs induce a K√q of G, as desired.

4.2 VC dimension of B⃗(G)
We show Theorem 5, which states that the set system of balls

Ð→
B (G) defined in Equation (4) is a

VC set system. We tailor the proof by Bousquet and Thomassé [BT15] for the undirected case to
the directed case.

Theorem 5. If G is a Kh-minor-free digraph, then
Ð→
B (G) has VC-dimension at most h − 1.

The proof follows the presentation of the proof of Theorem 3 though several details are different.

Specifically, we assume for contradiction that
Ð→
B (G) shatters a set X = {v1, v2, . . . , vh} ⊆ V of size

h. Then for every i /= j, there is a ball
Ð→
B (tij , rij) such that

Ð→
B (tij , rij) ∩X = {vi, vj}. We choose tij

and rij such that
rij is minimum. (22)

We then can assume that rij = max{dG(tij → vi), dG(tij → vj)} as otherwise, rij > max{dG(tij →
vi), dG(tij → vj)} and we can always set rij to be max{dG(tij → vi), dG(tij → vj)}. Our goal is to
construct a Kh-minor of G as we did in the proof of Theorem 3. We observe that Claim 1 remains
true in this setting of digraphs.

Observation 3. π(tij → vi,G) and π(tij → vj ,G) are internally disjoint.

Proof. Suppose otherwise; there would be a vertex xij ∈ (π(tij → vi,G)∩π(tij → vj ,G))∖{tij}. Ob-

serve that
Ð→
B (xij , rij −dG(tij → xij))∩X = {vi, vj}, contradicting the choice of rij in Equation (22);

see Figure 3(a).

For each vi, we define Bunch(vi) as in Equation (6), ignoring the directions of the paths.

Bunch(vi) = ∪j/=iπ(tij /→ vi,G) (23)
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Figure 3: Illustration for the proof of Theorem 5.

Here π(tij /→ vi,G) is an undirected path obtained by ignoring the directions of edges in π(tij →
vi,G). The proof of Theorem 3 in Section 3.1 implies that the existence of a Kh-minor is reduced
to showing the following lemma.

Lemma 13. For every a /= b, Bunch(va)∩Bunch(vb) = {tab}. Furthermore, tab is either an endpoint
of Bunch(va), or an endpoint of Bunch(vb), or both.

Proof. We follow the same proof strategy of Lemma 3: considering a = 1 and b = 2. Let π(t1j →
v1,G) and π(t2k → v2,G) be paths whose undirected counterparts are in Bunch(v1) and Bunch(v2),
respectively. The following claim is analogous to Claim 2.

Claim 4. If {j, k} ∩ {1,2} = ∅, then π(t1j → v1,G) ∩ π(t2k → v2,G) = ∅.

Proof. Suppose otherwise, there exists x ∈ π(t1j → v1,G) ∩ π(t2k → v2,G); see Figure 3(b). Let:

a1 = dG(t1j → x) a2 = dG(x→ v1)
a3 = dG(t2k → x) a4 = dG(x→ v2)

Since v1 ∈
Ð→
B (t1j , r1j) and v2 ∈

Ð→
B (t2k, r2k), a1 + a2 ≤ r1j and a3 + a4 ≤ r2k. This implies that

a1 + a2 + a3 + a4 ≤ r1j + r2k (24)

On the other hand, v2 /∈
Ð→
B (t1j , r1j) and v1 /∈

Ð→
B (t2k, r2k), which gives a1 + a4 > r1j and a2 + a3 > r2k.

This implies that a1+a2+a3+a4 > r1j+r2k, contradicting Equation (24). Thus, x does not exist.

The proof of the lemma follows directly from the following claim.

Claim 5. If {j, k} ∩ {1,2} /= ∅, then π(t1j → v1,G) ∩ π(t2k → v2,G) ⊆ {t12}, and that t12 is either
an endpoint of Bunch(v1) or Bunch(v2) or both.

Proof. W.l.o.g., we assume that j = 2 and k /= 1. Suppose that there exists x ∈ π(t12 → v1,G) ∩
π(t2k → v2,G) such that x /= t12. Let a = dG(x → v2). Then dG(x → v1) > a as otherwise,

v1 ∈
Ð→
B (t2k, r2k), a contradiction. Let rx = dG(x → v1). Then {v2, v1} ⊆

Ð→
B (x, rx) ∩X. We claim

that
Ð→
B (x, rx) ∩X contains no other vertex other than v1, v2; see Figure 3(c).
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Suppose otherwise, there exists vi ∈
Ð→
B (x, rx) ∩X for vi /= v1, v2. Then vi ∈

Ð→
B (x, rx) and hence

dG(x → vi) ≤ rx = dG(x → v1). This implies that dG(t12, vi) ≤ dG(t12 → v1) ≤ r12; that is, vi also

belongs to the ball
Ð→
B (t12, r12) contradicting the fact that

Ð→
B (t12, r12) only shatters {v1, v2}.

Since
Ð→
B (x, rx) ∩X contains no other vertex other than v1, v2 and rx < r12, we obtain a con-

tradiction to the choice of t12 in Equation (22), as max{dG(x → v1), dG(x → v2)} < max{dG(t12 →
v1), dG(t12 → v2)}.

The lemma then follows directly from Claim 4 and Claim 5.

4.3 Algorithmic Applications

In this section, we explore algorithmic applications of two VC set systems
Ð→LPG,M and

Ð→
B (G).

Digraphs in this section are unweighted and hence the distances are unweighted directed distances.
A central concept in the algorithmic applications of LP̂G,M in undirected graphs in Section 3.2 is
the notion of patterns and polynomial bounds on the number of patterns in a connected subgraph
in Lemma 4. The same bound on the number of patterns completely breaks down in digraphs, as
the triangle inequality no longer holds. Only an asymmetric version fo the triangle inequality holds
in digraphs, but this is not enough for deriving Lemma 4 in digraphs. Indeed, we believe that
Lemma 4 does not hold in digraphs. The implication of not having a polynomial bound on the
number of patterns is clear: we could not easily derive analogous algorithmic results presented in

Section 3.2 for digraphs. Instead, obtain similar results using
Ð→LPG,M and

Ð→
B (G).

First, we devise a new way to exploit the set system of balls
Ð→
B (G) to design a distance oracle

for digraphs with truly subquadratic space and logarithmic query time. The VC set system of balls
is very hard to manipulate, as evidenced in the work of Ducoffe, Habib, and Viennot [DHV20] since
it does not encode distances directly into the system. Thus, we believe that our technique is of
independent interest; the details are in Section 4.3.1.

Second, we modify the notion of patterns to include ±∞, called infinite patterns, as a marker
for the failure of triangle inequality. We then are able to bound the number of infinite patterns,
obtaining a lemma analogous to Lemma 4. We note that we still do not know how to exploit infinite
patterns in constructing distance oracles in digraphs, as they do not enjoy the same properties
as their (finite) counterpart. However, we are able to exploit infinite patterns to design truly
subquadratic time algorithms for computing all-vertices eccentricities and the diameter of digraphs.
The technical details are in Section 4.3.1.

4.3.1 Distance oracle in digraphs.

In this section, we construct an exact distance oracle for unweighted minor-free digraphs with

Õ(n2− 1
2(h−2) ) space and O(log(n)) query time as described in Corollary 4. We will use a well-

known property of VC set system restricted to a subset, as described in the following lemma.

Lemma 14. Let F be a set system of a ground set U of VC-dimension d ≥ 1. Let X be any subset
of U . Then FX = {Y ∩X ∶ Y ∈ F} has VC dimension at most d. We call FX the X-restriction of
F .
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Figure 4: (a) A region R with 4 boundary vertices; the set Y1 = B⃗(u, r1) ∩ R only contains the
boundary vertex closest to u. We ignore the directions of edges in R in this figure for a better
visualization. (b) Querying distance from u to v.

Construction. The construction has three steps.

� (Step 1). Construct an r-division R of G with r = n2/(2h−1), and for each cluster R ∈ R,
we store the exact distances of all pairs of vertices in R. Let

Ð→BR be the V (R)-restriction of
Ð→B(G). We store (the IDs of) the sets of

Ð→BR in a table.

� (Step 2). For each cluster R ∈ R and each vertex v ∈ R, we store: (2a) the distance dG(s→ v)
from each vertex s ∈ ∂R to v; (2b) for each set Y ∈ Ð→BR, store dG(Y → v) def.= miny∈Y dG(y → v).

� (Step 3). For each clusterR ∈ R and each vertex u /∈ R, let kR = ∣∂R∣. Let
Ð→
B (u, r1), . . . ,

Ð→
B (u, rkR)

be a sequence of nest balls centered at u where r1 ≤ r2 ≤ . . . ≤ rkR such that
Ð→
B (u, r1) is the

smallest ball containing at least one vertex of ∂R, and
Ð→
B (u, ri) is the smallest ball containing

at least one vertex of ∂R∖Ð→B (u, ri−1); see Figure 4(a). (The number of balls could be smaller
than kR; for simplicity, we assume that there are exactly kR balls.) Then we store at u the

radius ri and (the IDs of) the restriction Yi =
Ð→
B (u, ri)∩V (R) for all i ∈ [kR] in a list L(u,R).

Note that Yi ∈
Ð→BR by the construction in (Step 1). We also store the distance dG(u → s)

from u to every boundary vertex s ∈ ∂R.

Querying distances. Given two vertices u and v, if there is a cluster R containing both u and
v, we can simply look up their distance stored at R in O(1) time. Otherwise, let R be the cluster

containing v. Let Yi =
Ð→
B (u, ri) ∩ V (R). We then do a binary search on the list L(u,R) to find the

first radius ri such that v /∈ Yi and v ∈ Yi+1; see Figure 4(b). Note that we can check whether v is
in Yi or not in O(1) time by the construction in (Step 2), in particular (2b) since v ∈ Yi if and only
if dG(Yi → v) = 0. We then return:

ri + dG(Yi → v) (25)

as the distance from u to v. We note that dG(Yi → v) is stored in (2b) of (Step 2), so we can look
up this distance in O(1) time.

The query time is dominated by the time to do binary search on L(u,R), which isO(log ∣L(u,R)∣) =
O(log ∣∂R∣) = O(log r) = O(logn).
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Correctness. By the definition of Yi and Yi+1, the shortest path from u to v must go through a
vertex in ∂R ∩ Yi. Let x be the last vertex on π(u→ v,G) that is contained in Yi; see Figure 4(b).
Then dG(u → v) = dG(u → x) + dG(x → v). Since G is unweighted, it must be that dG(u → x) = ri.
Furthermore, dG(x → v) = dG(Yi → v) since otherwise, dG(x → v) > dG(Yi, v) which means there is
a path from u to v of length less than dG(u→ v), a contradiction. Thus, dG(u→ v) = ri+dG(Yi → v)
as desired.

Space analysis. By Theorem 5 and Lemma 14,
Ð→BR has VC-dimension at most h − 1. By

Lemma 2, ∣Ð→BR∣ = O(rh−1) and hence the total space of Step 1 is Õ((n/√r)(rh−1+r2) = Õ(nrh−3/2)).
The total space of Step 2 is Õ((n/√r)(r ⋅ rh−1)) = Õ(nrh−3/2). For each vertex u and cluster R in
Step 3, the total space is O(∣∂R∣). Thus, the total space of Step 3 is n times the total number of
boundary vertices, which is Õ(n2/√r) by Lemma 1. In summary, the total space of the oracle is:

Õ(nrh−3/2 + n2/
√
r) = Õ(n2− 1

2(h−2) ) (26)

when r = n1/(h−2).

4.3.2 Computing all-vertices eccentricities and diameter.

Infinite patterns. Let H be an induced sub-digraph of G; H might or might not be (even
weakly) connected. Recall that ∂H is the set of all boundary vertices of H. Let r = ∣V (H)∣ and
b = ∣∂H ∣. Fix an arbitrary sequence σH of vertices of ∂H, which is a linear order of ∂H. We write
σH = ⟨s0, s1, . . . , sb−1⟩. For each vertex v ∈ V , we define an infinite pattern of v w.r.t σH , denoted
by pv be a b-dimensional vector where for each i ∈ [0, b − 1]

pv[i] =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−∞ if dG(v → si) − dG(v → s0) ≤ −r
dG(v → si) − dG(v → s0) if −(r − 1) ≤ dG(v → si) − dG(v → s0) ≤ r − 1
+∞ if dG(v → si) − dG(v → s0) ≥ r

(27)

In particular, two values −∞ and +∞ are used to mark that the distance dG(v → si) is far
smaller or larger than dG(v → s0). We have the following lemma analogous to Lemma 4.

Lemma 15. H be an induced sub-digraph of a Kh-minor-free digraph G, and σH be an arbitrary
sequence of vertices in ∂H. Let P = {pv ∶ v ∈ V } be the set of all infinite patterns w.r.t. σH . Then

∣P ∣ = O((∣∂H ∣ ⋅ ∣V (H)∣)h2).

Proof. The proof follows the same line of the proof of Lemma 4: we show that there is a bijection
between the set of patterns P and LP̂G,M(∂H) for an appropriate choice if M . Let M = {−r,−(r−
1), . . . , (r − 1),+r}. Observe that ∣M ∣ ≤ 2r + 1. Consider the VC set system LP̂G,M(∂H), which
has VC dimension at most h2 by Theorem 4. By the Sauer–Shelah Lemma (Lemma 2), we have

∣LP̂G,M(∂H)∣ = O((br)h2). To see that there is a bijection between the set of patterns P and
LP̂G,M(∂H), we simply flatten each pattern pv to obtain a set X̂v ∈ LP̂G,M(∂H) in exactly the
same way we did in Lemma 4.

We now define the distance from an infinite pattern to a vertex. Let v be a vertex in H, and p
be a pattern (of some vertex u) w.r.t. σH . Let reach(v, ∂H) be the set of boundary vertices of H
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that can reach v (via directed paths) in H. (We do not count boundary vertices that can reach v
in G.) We define the distance from p to v, denoted by d(p→ v), to be:

d(p→ v) =
⎧⎪⎪⎨⎪⎪⎩

undefined if p[i] = +∞ for some i

minsi∈reach(v,∂H){dG(si → v) + p[i]} otherwise
(28)

In undirected graphs, we show in Lemma 5 that if u /∈ V (H) and v ∈ V (H), then dG(u, s0) +
dG(pu, v) = dG(u, v) where pu is the pattern of u. This no longer holds in digraphs. In particular,
dG(u → s0) + dG(pu → v) now may be undefined or larger than dG(u → v). However, we are still
able to extract information by looking at all distances {dG(pu → v)}v∈V (H). In particular, we show
in the following lemma that we can recover the maximum distance from u to a vertex in H, via
{dG(pu → v)}v∈V (H), provided that dG(u→ s0) is the maximum among all boundary vertices.

Lemma 16. Let u ∈ V ∖ V (H) be a vertex not in H, and pu be the pattern of u w.r.t σH . Define:

∆(u→H) = dG(u→ s0) + max
v∈V (H)

{d(pu → v)} (29)

If dG(u→ s0) =max0≤i≤∣∂H ∣−1{dG(u→ si)}, then ∆(u→H) =maxv∈V (H) dG(u→ v).

Proof. As dG(u→ s0) is maximum, dG(u, si)−dG(u→ s0) ≤ 0 for every i ∈ [0, b−1]. Thus, no entry
of pu is +∞. Therefore, d(pu → v) is defined (but could still be −∞).

Claim 6. If there exists a boundary vertex si ∈ reach(v, ∂H) such that pu[i] = −∞, then dG(u →
v) < dG(u→ s0).

Proof. pu[i] = −∞ implies that dG(u, si) ≤ dG(u→ s0) − r. As v is reachable from si in H, there is
a path of length at most ∣V (H)∣ − 1 = r − 1 from si to v, meaning that dG(si → v) ≤ r − 1. Thus,
dG(u→ v) ≤ dG(u→ si) + dG(si → v) ≤ dG(u→ s0) − r + (r − 1) < dG(u→ s0) as claimed.

By definition of the distance in Equation (28), if there exists a boundary vertex si ∈ reach(v, ∂H)
such that pu[i] = −∞, then d(pu → v) = −∞ and hence would have no effect in the computation
of ∆(u → H). And by Claim 6, such a vertex v also do not contribute to maxv∈V (H) dG(u → v).
Thus, we only need to consider vertices v such that for every boundary vertex si ∈ reach(v, ∂H),
pu[i] /= −∞. We claim that for such vertices, dG(u→ s0) + d(pu → v) is the distance from u to v.

Claim 7. If for every boundary vertex si ∈ reach(v, ∂H), pu[i] /= −∞, then dG(u → v) = dG(u →
s0) + d(pu → v).

Proof. The assumption of the claim implies that dG(u→ si) = dG(u→ s0)+pu[i] for every boundary
vertex si ∈ reach(v, ∂H). Let sℓ for some ℓ ∈ [0, b−1] be the boundary vertex on the path π(u→ v,G)
furthest from u. That is, the subpath from sℓ to v of π(u → v,G) lies entirely in H. Thus,
sℓ ∈ reach(v, ∂H) and dG(sℓ → v) = dH(sℓ → v). Then:

dG(u→ v) = dG(u→ sℓ) + dG(sℓ → v)
= min

si∈reach(v,∂H)
{dG(u→ si) + dG(si → v)}

= min
si∈reach(v,∂H)

{dG(u→ s0) + pu[i] + dG(si → v)}

= dG(u→ s0) + min
si∈reach(v,∂H)

{dG(v → si) + pu[i]}

= dG(u→ s0) + dG(pu → v) ,
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as desired.

Let δ = maxv∈V (H) dG(u → v) and v∗ ∈ V (H) be such that dG(u → v∗) = δ. Observe that
δ ≥ dG(u → s0) since s0 is an eligible choice for v∗. We now show that for every boundary vertex
sj such that sj ∈ reach(v∗, ∂H), pu[j] /= −∞. If so, by Claim 7, δ = dG(u→ s0) + d(pu → v∗), which
implies the lemma.

To see that pu[j] /= −∞, first observe that dG(sj → v∗) ≤ r − 1 as sj ∈ reach(v, ∂H), and that
dG(u→ sj) + dG(sj → v∗) ≥ dG(u→ v∗) = δ. Thus, we have:

dG(u→ sj) ≥ δ − dG(sj → v∗) ≥ δ − (r − 1) ≥ dG(u→ s0) − (r − 1)

which gives dG(u → sj) − dG(u → s0) ≥ −(r − 1). Furthermore, by definition of s0, dG(u →
sj) − dG(u→ s0) ≤ 0. Thus, pu[j] /= −∞ as desired.

We call the first boundary vertex s0 in a sequence of boundary vertex σH of H the base of σH .
We remark that in Lemma 16, it is important that the distance from u to the base vertex satisfies
dG(u → s0) = max0≤i≤∣∂H ∣−1{dG(u → si)}, we call this condition the maximum base condition. In
general, for any fixed sequence σH , if the maximum base condition is satisfied for u, it might not be
satisfied for some vertex v. Thus, in the following algorithm for computing all-vertices eccentricities,
we have to consider ∣∂H ∣ different boundary sequences, each has a different boundary vertex as the
base. We note that only the base vertex is important; the order of remaining vertices in a sequence
σH could be arbitrary.

The algorithm. The algorithm for computing all-vertices eccentricities has 3 steps. Here we
focus on presenting the ideas and then discuss the implementation later.

� (Step 1). Construct an r-division R of G for r = n2/(3h2+6). For each cluster R ∈ R,
we construct a set, denoted by ΓR, of ∣∂R∣ different sequences of boundary vertices of R
such that each sequence in ΓR admits a different boundary vertex as the base. We write

ΓR = {σ1
R, σ

2
R, . . . , σ

∣∂R∣
R }. Then for each sequence σt

R for t ∈ [∣∂R∣], we construct a set of
infinite patterns w.r.t σt

R: P t
R = {u ∈ V ∶ pt

u} where pt
u is the infinite pattern of u w.r.t σt

R.
Let PR = {P t

R}t.

� (Step 2). For each clusterR ∈ R, each pattern p ∈ (⋃PR∈PR
PR), find v = argmaxṽ∈V (R) d(p→

ṽ); we exclude undefined distances in the search for v. That is, v is the vertex that has max-
imum distance from p over all vertices in V (R); we say that v is the furthest vertex from p.
We then store the distance d(p→ v) in a table.

� (Step 3). We now compute ecc(u) for each vertex u ∈ V . For each cluster R ∈ R, we
compute the distance from u to a vertex v ∈ R furthest from u, denoted by ∆(u → R), as
follows. If u ∈ R, we then simply compute ∆(u → R) by using BFS. If u /∈ R, let st be the
furthest boundary vertex in R: dG(u→ st) =maxs∈∂R dG(u→ s). Let P t

R be the set of infinite
patterns w.r.t the boundary sequence that has st as the base computed in (Step 1). Let pt

u be
the pattern of u in P t

R. Let v be the furthest vertex from pt
u, computed in (Step 2). Then we

return ∆(u → R) = dG(u, st) + d(pt
u, v). By Lemma 16, ∆(u → R) is the maximum distance

from u to vertices in R. Finally, we compute ecc(u) =maxR∈R∆(u→ R).

As discussed in (Step 3), Lemma 16 implies that the computed value ecc(u) is the eccentricity
of u. We now show an efficient implementation and analyze its running time.
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Efficient implementation. Implementing the algorithm for digraphs shown above in truly
subquadratic time turns out harder than the algorithm for undirected graphs in Section 3.2.1. One
reason is that each vertex u now is associated with up to

√
r different pattern vectors, each for

one boundary sequence, in the same cluster R. As each pattern vector has size up to
√
r, the total

amount of information per vertex u, and per cluster R is O(r). The number of clusters is Õ(n/√r)
in Lemma 1. The number of clusters can indeed be improved to Õ(n/r) if one is willing to pay
more running time. Even in the best case on the size of the number of clusters, the total amount
of computation, if done carelessly, is Õ(nr ⋅ (n/r) ⋅ r) = Õ(n2), which is larger than permitted.

The key idea in the implementation is not to compute all the patterns of all vertices in the
graph. As we see in (Step 3), we only need to compute a pattern pu associated with a specific
boundary sequence where the base of the sequence is the furthest boundary vertex; other boundary
sequences are not relevant to computing ∆(u → R). And this is what we will do: we will not
compute all the sets ΓR and PR as described in (Step 1) up front. Instead, we will implement (Step
3) directly first, and then add patterns to PR along the way we examine each vertex u.

Recall that B is the set of boundary vertices of the r-division R: B = ∪R∈R∂R. Let D(B →
V ) = {dG(s→ v) ∶ (s, v) ∈ B × V }, D(V → B) = {dG(v → s) ∶ (v, s) ∈ V ×B}. Observation 2 remains
true here:

Observation 4. D(B → V ) and D(V → B) can be computed in time Õ(n2/√r).

We also obtain a polynomial bound on the number of infinite patterns as a corollary of Lemma 15.

Corollary 7. ∑PR∈PR
∣PR∣ = Õ(r(3h

2+1)/2) for every R ∈ R.

Proof. The number of infinite patterns per boundary sequence σR isO((∣∂R∣⋅∣V (R)∣)h2) = Õ(r3h2/2).
The corollary follows from the fact that we have up to

√
r different boundary sequences.

Now we show the detailed implementation of the algorithm, given D(B → V ) and D(V → B).
In (Step 1), we now only form all ∣∂R∣ boundary sequences – the set ΓR– for each cluster R. The
total running time per region is O(∣∂R∣2) = Õ(r). By Lemma 1, the running time to find all
{ΓR}R∈R is:

Õ(n ⋅ r/
√
r) = Õ(n ⋅ r1/2) (30)

Now we jump to (Step 3). For each vertex u and each cluster R, we first find the furthest
boundary vertex st, in O(∣∂R∣) time by looking through all the distances from u to vertices ∂R
stored in D(V → B). Thus, the total running time of finding all furthest boundary vertices over
all vertices and all clusters is:

n ∑
R∈R
∣∂R∣ = Õ(n2/

√
r) (31)

by Lemma 1. Now we know the boundary sequence σt
R, computed in (Step 1), as we know the

furthest vertex st. We can compute pt
u, which is the pattern satisfying the maximum base condition,

in O(∣∂R∣) time; the same time it takes to find st. Thus, the total running time to find all infinite
patterns satisfying the maximum base condition over all vertices and clusters is Õ(n2/√r) by
Equation (31).

Finally, we have to compute maxṽ∈R d(pt
u → ṽ), and find the vertex v which is furthest from

pt
u in R. We could not naively iterate over all vertices in R every time we examine a vertex u.

Recall that the number of distinct infinite patterns per cluster R is Õ(r(3h2+1)/2), and hence many
vertices will share the same infinite patterns. We then could store results computed before in table
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and do table look up if we encounter the same pattern again. More specifically, we store a trie data
structure L: for a vertex u, if pt

u is not in L, which we can check in O(∣∂R∣) time, then we iterate
over all vertices in R to find v, and store v and d(pt

u → v) in L, keyed by pt
u. Otherwise, we simply

lookup v and d(pt
u → v) from L. Modulo the running time to find v and d(pt

u → v) when pt
u /∈ L,

the total time to look up v and d(pt
u → v) will be ∣∂R∣, which is also the time to find st. Thus, the

total running time is Õ(n2/√r) by Equation (31).
We now bound the running time to find v and d(p → v) for every pattern p ∈ (⋃PR∈PR

PR).
For each given pattern p, computing the distance from p to a vertex ṽ ∈ R can be done in
O(∣∂R∣) = Õ(√r) time by definition in Equation (28). Then finding maxv∈R d(p → v) can be
done in ∣V (R)∣Õ(√r) = Õ(r3/2) time. Over all patterns in (⋃PR∈PR

PR), by Corollary 7, the total

running time is Õ(r(3h2+1)/2 ⋅ r3/2) = Õ(r(3h2+6)/2). Over all clusters in R, the running time is:

Õ(n/
√
r) ⋅ Õ(r(3h2+6)/2) = Õ(nr(3h2+5)/2) (32)

In summary, by Equation (30), Equation (31), and Equation (32), the total running time to
compute all-vertices eccentricities is:

Õ(nr(3h2+5)/2) + Õ(n2/
√
r) = Õ(n2−1/(3h2+6)) (33)

when r = n2/(3h2+6), as claimed in Corollary 3. This is also the running time to compute the
directed diameter of G.

5 Lower Bound for Directed VC-dim Edge Set System

In this section, we prove the lower bound in Theorem 6, which we restate below.

Theorem 6. For any constant integer r ≥ 1, there exists an unweighted planar digraph G = (V,E)
and a subset X ⊆ E of size r such that X is shattered by

Ð→SP(G).

We will construct a graph with a set of r directed edges X = {e1, e2, . . . , er} on a path P such
that for every subset Y ⊆ X, there exists a vertex v /∈ P such that Y belongs to the shortest path
tree rooted at v.

We construct P as follows (see Figure 5(a)). First, form the set X of r directed edges, where
ei = (ui → vi). Then add a path of length 2 between vi+1 and ui consisting of two edges in different
directions: (vi+1 → xi), (ui → xi). The idea is to ensure that no endpoint of ei can reach (or be
reached by) other endpoints of other edges by going along the path P . Set the weight of each edge
to be 1.

Now we construct shortest path trees where each tree realizes a subset Y of X. By realizing Y ,
we mean the subset Y will be included in some shortest path tree, while other edges in X ∖ Y will
not be included by the same tree. We will add edges with integer weights and finally we can turn
them into unweighted edges by subdividing them.

Choose a sufficiently large number M and 2r other numbers: 1 ≪ A0 ≤ A1 ≤ . . . ≤ A2r−1 where
Ai = 4Ai−1. M will be sufficiently larger than all {Ai}. The following inequalities will be helpful:

Ai ≥ 2At + (Ai−1 +Ai−2 + . . . +A0 + 1) for any t ≤ i − 1 (34)

Now consider all 2r bit strings {0,1}r, the i-th string, denoted by si, is the binary representation
of i for i ∈ [0,2r − 1]. Starting from s0, for each string si, we will add a new vertex ai to the graph
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Figure 5: (a) the path P . (b) Vertex a0, corresponding to the bit string s0 = 0 . . .0 containing r
bits of 0s, connected to P via directed edges.

along with some other vertices and directed edges. Some directed edges will be given weights based
on M and Ai. Vertex ai will be embedded outside the outer face of Gi−1, the directed graph
constructed after step i − 1. The final graph is G = G2r−1.
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Figure 6: Adding ai to the current graph Gi−1.

The path P will separate the plane into two parts: the upper part (or 0 part) and the lower part
(or 1 part); see Figure 5(b). The upper part will realize the fact that some edges of X are NOT
added to the shortest path tree of ai and the lower part serves the opposite purpose. In particular,
if the j-th bit of si is 0, then the shortest path from ai to vj will only contain edges from the upper
part and hence does not contain ej . Otherwise, the shortest path from ai to vj will only contain
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edges from the lower part and ej . The rule for adding ai is as follows (see Figure 6):

1. Add two directed paths Qi
1 = (ai = yi0 → yi1 . . . → yir) and Qi

2 = (ai = zi0 → zi1 . . . → zir)
directed away from ai. Each path has exactly r edges. Each edge of the two paths is assigned
a weight M − 2 ⋅Ai. Q

i
1 is embedded in the upper part of the plane, separated by P , and Qi

2

is embedded in the lower part of the plane.

2. Look at the bit string si (see an example in Figure 6, the first 3 bits are {1,0,1}, and the last
bit is 0 in the string of ai). Assume that i ≥ 1.

� if the j-th bit is 1, add a directed edge (yij → y(i−1)j) of weight Ai, and add a directed
edge (zij → z(i−1)j) of weight 1. Note that y(i−1)j and z(i−1)j are vertices on the paths

Qi−1
1 and Qi−1

2 , respectively, of ai−1. For example, in Figure 6, the first bit of si is 1 and
hence we have an edge of weight Ai from yi1 to y(i−1)1 and an edge of weight 1 from zi1
to z(i−1)1. The same holds for yi3 and zi3.

� if the j-th bit is 0, add a directed edge (yij → y(i−1)j) of weight 1, and add a directed
edge (zij → z(i−1)j) of weight Ai. For example, in Figure 6, the second bit of si is 0 and
hence we have an edge of weight 1 from yi2 to y(i−1)2 and an edge of weight Ai from zi2
to z(i−1)2. The same holds for yir and zir.

When i = 0 (see Figure 5(b)), we connect y0j to vj and z0j to uj for every j ∈ [1, r]. Note that,
since s0 only contains 0 bits, every edge (y0j → vj) has weight 1 and every edge (z0j → uj)
has weight A0. In this case, no edge in X will be included in the shortest path tree of a0.

We now analyze the shortest path tree of ai, denote by Ti. We say that an edge is horizontal if
it belongs to P or Qt

1 or Qt
2 for some t ∈ [0,2r −1]; otherwise, we say that the edge is vertical. Note

that a vertical edge is either an edge from a vertex ytj ∈ Qt
1 down to some vertex in Qt−1

1 when t ≥ 1
or down to some vertex in P when t = 0, or from a vertex ztj ∈ Qt

2 up to a vertex in Qt−1
2 when t ≥ 1

or to a vertex in P when t = 0.
The following claim is the key to the proof; see Figure 7.

Claim 8. For any j ∈ [1, r], then the shortest path from ai to vj in G ∖ {ej} consists of: (a) the
subpath from ai to yij of Qi

1, which only contains horizontal edges, and the directed paths from yij
to vj, which only contains vertical edges.

Proof. The shortest path from ai to vj is the path highlighted green in Figure 7. Let W1 be the
path from ai to vj as described in the claim. Note that there is a unique directed path from yij
to vj , which only contains vertical edges. Similarly, there is a unique directed path from ai to yij
which only contains horizontal edges. Thus, if the shortest path from ai to vj goes through yij , the
path must be W1.

Let R be the shortest path from ai to vj ; assume that R /= W1. Thus, yij /∈ R. Observe that
R can only include edges in the upper part of P since ej is deleted from G. That is, R does not
contain any z-vertex. Furthermore, R contains exactly j horizontal edges and i vertical edges. Note
that W1 also contains exactly j horizontal edges and i vertical edges. Additionally, the weight any
horizontal edge of W1 is at most the weight of any horizontal edge of R by the choice of {Ai}2

r−1
i=0 .
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Figure 7: Two green-highlighted paths are shortest path from ai to vj and to uj in graphs G∖{ej}
and Gi, respectively.

Let (yt(j−1) → ytj) be the last horizontal edge of R; see Figure 7. As yij /∈ R, t < i. Thus we
have:

w(R) −w(W1) ≥ w(yt(j−1) → ytj) −w(yi(j−1) → yij) − ( total weight of all vertical edges of W1)

≥M − 2At − (M − 2Ai) − (Ai +Ai−1 + . . .A0)
≥ Ai − 2At − (Ai−1 + . . .A0) ≥ 1 (by Equation (34))

(35)

This contradicts that R is a shortest path from ai to vj .

The following claim is similar to Claim 8, except that the graph is G. The proof is exactly the
same.

Claim 9. For any j ∈ [1, r], the shortest path from ai to uj in G consists of: (a) the subpath from
ai to zij of Qi

2, which only contains horizontal edges, and the directed paths from zij to uj, which
only contains vertical edges.

Lastly, we claim that ej is in Ti or not is equivalent to whether the j-th bit in the bit string si
is 1 or 0. This implies that the directed edge set system does not have a bounded VC dimension.

Claim 10. For any j ∈ [1, r], if si[j] = 1 then ej ∈ Ti; otherwise, ej /∈ Ti

Proof. Let W1 be the shortest path from ai to v in G∖ ej , and W2 be the shortest path from ai to
uj in G. Suppose that si[j] = 1, then w(yij → y(i−1)j) = Ai and w(zij → z(i−1)j) = 1. See Figure 7.
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Note that both W1 and W2 contain the same number of horizontal edges, each of the same weight
M − 2Ai. Thus, we have:

w(W1) −w(W2 ○ ej) ≥ Ai − ( total weight of all vertical edges of W2) − 1
≥ Ai − (1 +Ai−1 + . . .A0) − 1 > 0 (by Equation (34))

(36)

Thus, W2 ○ ej is the shortest path from ai to vj , implying the claim. The proof that if si[j] = 0
then ej /∈ Ti follows the same line.

6 Conclusion

In this work, we propose a systematic study of VC set systems in minor-free graphs, both di-
rected and undirected. Our work leaves many open problems. First, could we establish a formal
relationship between our set system LP̂G,M(S) and the original set system LPG,M(S) by Li and
Parter [LP19] in the sense that if one has a bounded VC dimension, then the other also does. This
will imply that LPG,M(S) is a VC set system for any M,S and any minor-free graph G. The second
question is to extend all results here to graphs beyond minor-free, such as graphs of polynomial
expansion and nowhere dense graphs. The third question is, could we design a truly subquadratic
space distance oracle with constant query time for minor-free digraphs? Our oracle in Corollary 4
has O(logn) query time. The fourth question is to obtain a similar metric compression result for
digraphs. As far as we know, our Theorem 4 is not sufficient for metric compression as we do not
have the triangle inequality in digraphs.
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