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Abstract

The notion of shortcut partition, introduced recently by Chang, Conroy, Le, Milenković, Solomon,
and Than [CCL+23], is a new type of graph partition into low-diameter clusters. Roughly speaking,
the shortcut partition guarantees that for every two vertices u and v in the graph, there exists a path
between u and v that intersects only a few clusters. They proved that any planar graph admits a
shortcut partition and gave several applications, including a construction of tree cover for arbitrary
planar graphs with stretch 1+ϵ and O(1)many trees for any fixed ϵ ∈ (0, 1). However, the construction
heavily exploits planarity in multiple steps, and is thus inherently limited to planar graphs.

In this work, we breach the “planarity barrier” to construct a shortcut partition for Kr -minor-free
graphs for any r. To this end, we take a completely different approach — our key contribution
is a novel deterministic variant of the cop decomposition in minor-free graphs [And86, AGG+14].
Our shortcut partition for Kr -minor-free graphs yields several direct applications. Most notably, we
construct the first optimal distance oracle for Kr -minor-free graphs, with 1+ ϵ stretch, linear space,
and constant query time for any fixed ϵ ∈ (0,1). The previous best distance oracle [AG06] uses
O(n log n) space and O(log n) query time, and its construction relies on Robertson-Seymour structural
theorem and other sophisticated tools. We also obtain the first tree cover of O(1) size for minor-free
graphs with stretch 1+ ϵ, while the previous best (1+ ϵ)-tree cover has size O(log2 n) [BFN19].

As a highlight of our work, we employ our shortcut partition to resolve a major open problem —
the Steiner point removal (SPR) problem: Given any set K of terminals in an arbitrary edge-weighted
planar graph G, is it possible to construct a minor M of G whose vertex set is K , which preserves the
shortest-path distances between all pairs of terminals in G up to a constant factor? Positive answers
to the SPR problem were only known for very restricted classes of planar graphs: trees [Gup01],
outerplanar graphs [BG08], and series-parallel graphs [HL22]. We resolve the SPR problem in the
affirmative for any planar graph, and more generally for any Kr -minor-free graph for any fixed r. To
achieve this result, we prove the following general reduction and combine it with our new shortcut
partition: For any graph family closed under taking subgraphs, the existence of a shortcut partition
yields a positive solution to the SPR problem.
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1 Introduction

Partitioning a graph into clusters is a fundamental primitive for designing algorithms. Perhaps the most
basic requirement of a partition is that every cluster would have a small diameter. However, to be useful,
most partitions require one or more additional constraints, and achieving these constraints is the key to
the power of those partitions. For example, probabilistic partition [Bar96], a principal tool in the metric
embedding literature, guarantees that the probability of any two vertices being placed into different
clusters is proportional to their distance. Sparse partition [AP90, JLN+05] guarantees that each cluster
has neighbors in only a few other clusters. Scattering partition [Fil20b] guarantees that each shortest
path up to a certain length only intersects a small number of clusters. These partitions have found a
plethora of applications in a wide variety of areas, such as metric embeddings, distributed computing,
routing, and algorithms for network design problems, to name a few.

Recently, Chang, Conroy, Le, Milenković, Solomon, and Than [CCL+23] introduced a new notion of
partition called shortcut partition. Roughly speaking, a shortcut partition guarantees that for every two
vertices u and v in the graph, there exists a low-hop path in the cluster graph between Cu and Cv , where
Cu and Cv are the clusters containing u and v, respectively. More formally, a clustering of a graph G is a
partition of the vertices of G into connected clusters. The cluster graph Ǧ of a clustering C of G is the
graph where each vertex of Ǧ corresponds to a cluster in C, and there is an edge between two vertices
in Ǧ if there is an edge in G whose endpoints are in the two corresponding clusters. We always treat Ǧ
as an unweighted graph; to emphasize this, we use the terms hop-length and hop-distance to refer to
path lengths and distances in Ǧ.

Definition 1.1. An (ϵ, h)-shortcut partition is a clustering C= {C1, . . . , Cm} of G such that:

• [Diameter.] the strong1 diameter of each cluster Ci is at most ϵ · diam(G);

• [Low-hop.] for any vertices u and v in G, there is a path π̌ in the cluster graph Ǧ between the
clusters containing u and v such that:

(1) π̌ has hop-length at most h ·max
¦

δG(u,v)
diam(G) ,ϵ
©

,

(2) there exists a shortest path π in G between u and v, such that π̌ only contains (a subset of)
clusters that have nontrivial intersections with π.

Notice that the hop-length of π̌ is always at most h, as δG(u, v) is at most diam(G). In the other extreme,
if δG(u, v)≤ ϵ · diam(G), then we guarantee that the hop-length is at most ϵh.

The shortcut partition is similar to the scattering partition introduced by Filtser [Fil20b]. A key
difference is that in a scattering partition, every shortest path of length αϵ · diam(G) intersects at most
O(α) clusters, while in a shortcut partition, it only requires that there is a low-hop path in the cluster
graph between the two clusters containing the path’s endpoints. The fact that scattering partition requires
a stronger guarantee on shortest paths makes it very difficult to construct; it remains an open problem
whether scattering partition for every planar graph exists [Fil20b, Conjecture 1]. Although shortcut
partition provides a weaker guarantee, it is already sufficient for many applications as shown in previous
work [CCL+23], including the first tree cover in planar graphs with stretch 1+ ϵ using O(1) many trees
for any fixed ϵ ∈ (0, 1), a simpler proof to the existence of a +ϵ · diam(G) additive embedding of planar
graph into bounded-treewidth graph, distance oracles, labeling schemes, (hop-)emulators, and more.

For any given ϵ ∈ (0, 1), the authors of [CCL+23] constructed an (ϵ, O(ϵ−2))-shortcut partition for any
planar graph. This naturally motivates the question of constructing a shortcut partition for broader classes

1The strong diameter of cluster C is the one of induced subgraph G[C]. In contrast, the weak diameter of C is maxu,v∈C δG(u, v).
Here, and throughout this paper, δG(u, v) denotes the distance between u and v in graph G.
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of graphs, specifically Kr -minor-free graphs.2 This will open the door to seamlessly extend algorithmic
results from planar graphs to Kr -minor-free graphs. However, the construction of [CCL+23] heavily
exploits planarity in multiple steps. It starts from the outerface of G, and works toward the interior
of G in a recursive manner, similar in spirit to Busch, LaFortune, and Tirthapura [BLT14]. Specifically,
the construction first finds a collection of subgraphs of G call columns such that every vertex near the
outerface of G belongs to one of the columns. The construction then recurs on subgraphs induced by
vertices that are not in any of the columns. The overall construction produces a structure called the
grid-tree hierarchy, which is then used to construct a shortcut partition. The construction relies on the
fact that each column contains a shortest path between two vertices on the outer face, which splits the
graph into two subgraphs using Jordan curve theorem. As a result, constructing a shortcut partition for
Kr -minor-free graphs requires breaking away from the planarity-exploiting framework of [CCL+23].

In this work, we overcome this barrier and construct a shortcut partition for Kr -minor-free graphs.

Theorem 1.2. Any edge-weighted Kr -minor-free graph admits an (ϵ, 2O(r log r)/ϵ)-shortcut partition for
any ϵ ∈ (0,1).

Remark. Definition 1.1 is slightly stronger than the corresponding definition of shortcut partition for
planar graphs in [CCL+23] (Definition 2.1 in their paper). Specifically, their definition states that the
hop-length of π̌ is at most h, regardless of δG(u, v), while our definition allows smaller hop-lengths for
smaller distances. (For example, when δG(u, v) = ϵ ·diam(G), the hop-length of π̌ is O(ϵh) instead of h.)
Another difference is that, in the current definition, the nontrivial intersections of clusters contained by π̌
stated in condition (2) of the “low-hop” property are with respect to a shortest path in the graph, whereas
in [CCL+23] they are with respect to an approximate shortest path; we discuss this point further in
Section 5. In particular, the shortcut partition provided by Theorem 1.2 for minor-free graphs subsumes
the one in [CCL+23] for planar graphs.

The hop length of 2O(r log r)/ϵ of the shortcut partition in Theorem 1.2 is optimal for every constant r
up to a constant factor: any shortcut partition of a path would have hop length 1/ϵ between the two
endpoints of the path. Also, in the particular case of planar graphs, our shortcut partition in fact improves
over [CCL+23]; the hop length of their partition is O(ϵ−2).

P

∥P∥ ≥ γ

G

X

η

Figure 1. A cluster X “cut off” by η
from part of graph G. There is a buffer
of width γ between X and the part of the
graph that it is cut off from.

Techniques. We base our construction on a modified cop decompo-
sition for Kr -minor-free graphs, first introduced by Andreae [And86]
in the context of the cops-and-robbers game. A cop decomposition
is a rooted tree decomposition; loosely speaking, while a standard
tree decomposition guarantees that each bag contains a bounded
number of vertices, a cop decomposition instead guarantees that
each bag contains vertices from at most r − 2 single-source shortest
path (SSSP) trees. These SSSP trees are called skeletons. Abraham,
Gavoille, Gupta, Neiman, and Talwar [AGG+14], in their construc-
tion of a padded decomposition for Kr -minor-free graphs, adapted
the cop decomposition by allowing each bag to contain up to r − 2
clusters3, each of which is the set of vertices within radius σ ·∆ from
a skeleton in the bag; here σ is a parameter in (0, 1) randomly sam-
pled from a truncated exponential distribution, and∆ := ϵ ·diam(G).

2We sometimes drop the prefix “Kr -” in Kr -minor-free graphs when the clique minor has constant size r.
3Later in the paper, we rename the clusters as supernodes; we reserve the former term for the actual clusters in the shortcut

partition to be constructed.
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One of their goals is to ensure that for every vertex v in the graph, the process of constructing the cop de-
composition guarantees that the number of (random) clusters that could contain v is small in expectation;
this is the bulk of their analysis, through clever and sophisticated use of potential function and setting
up a (sub)martingale. Their result can be interpreted as guaranteeing what we call a buffer property4:

If one cluster X is “cut off” from a piece of the graph by another cluster, then any path from X
to that piece has length at least γ, which we call the buffer width.

In particular, the construction of [AGG+14] intuitively implies that the expected buffer width is about γ.
(Their end goal is a stochastic partition, and hence they could afford the buffer property in expectation.)
Their expected bound on the buffer width is insufficient for our shortcut partition, as well as for all other
applications considered in our paper. One either has to guarantee that the buffer width holds with high
probability or, ideally, holds deterministically.

In this work, we achieve the buffer property deterministically. To do this, we add a layer of recursion
on top of the cop decomposition by [AGG+14] to directly fix the buffer property whenever it is violated,
thereby bypassing the need for the complicated analysis of the potential function. In more detail, we
build a cop decomposition by iteratively creating clusters. At each point in the construction, we create
an SSSP tree connecting to some existing clusters, and initialize a new cluster with that tree as the
cluster’s skeleton. Our idea to enforce the buffer property is natural: we (recursively) assign those
vertices that violate the property to join previously-created clusters. Specifically, whenever a cluster X is
cut off by some cluster η, we assign every vertex within distance γ of X to be a part of some existing
clusters. However, enforcing the buffer property directly comes at the cost of increasing the radius of
some existing clusters — recall that we want all points in a cluster to be at most O(∆) distance away
from its skeleton. Therefore, our implementation of vertex assignment is very delicate; otherwise, the
diameter of a cluster could continue growing, passing the diameter bound prescribed by the shortcut
partition. Our key insight is to show that during the course of our construction, each cluster can only be
expanded a single time for each of the O(r) clusters that it can “see”. This lets us achieve a deterministic
buffer width of γ= O(∆/r).

1.1 Steiner Point Removal Problem

In the Steiner Point Removal (SPR) problem, we are given an undirected weighted graph G = (V, E, w)
with vertex set V , edge set E, nonnegative weight function w over the edges, and a subset K of V . The
vertices in K are called terminals and the vertices in V \ K are called non-terminal or Steiner vertices.
The goal in the SPR problem is to find a graph minor M of G such that V (M) = K, and for every pair
t1, t2 of terminals in K , δM (t1, t2)≤ α ·δG(t1, t2), for some constant α≥ 1; such a graph minor M of G
is called a distance-preserving minor of G with distortion α.5

Gupta [Gup01] was the first to consider the problem of removing Steiner points to preserve all
terminal distances. He showed that every (weighted) tree can be replaced by another tree on the
terminals where the shortest path distances are preserved up to a factor of 8; another proof of this result
is given by [FKT18]. Chan, Xia, Konjevod, and Richa [CXKR06] observed that Gupta’s construction
in fact produces a distance-preserving minor of the input tree, and showed a matching lower bound:
there exists a tree and a set of terminals, such that any distance-preserving minor of that tree must have
distortion at least 8(1− o(1)). Both Chan et al. [CXKR06] and Basu and Gupta [BG08] considered the
following question:

4There is a technical difference between our buffer property and that of [AGGM06], which we clarify in Section 3 (see
Remark 3.3).

5In the literature [KNZ14] the term distance-preserving minor allows the existence of Steiner vertices as well, with the goal
to minimize their usage. For our purpose we do not allow any Steiner vertices.
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Question 1.3. Does every Kr -minor-free graph for any fixed r admit a distance-preserving minor with
constant distortion?

Question 1.3 has attracted significant research attention over the years, and numerous works have
attempted to attack it from different angles. Some introduced new frameworks [FKT18, Fil19, Fil20a]
that simplify known results; others considered the problem for general graphs, establishing the distortion
bound of O(log |K |) after a sequence of works [KKN15, Che18, Fil19]; there are also variants where
Steiner points are allowed, but their number should be minimized [KNZ14, CGH16, CKT22]; and yet
another achieved a constant expected distortion [EGK+14].

Nevertheless, Question 1.3 remains wide open: a positive solution for Kr -minor-free graphs is not
known for any r ≥ 5. Gupta’s result for trees [Gup01] can be seen as providing a solution for K3-
minor-free graphs. Basu and Gupta [BG08] gave a positive answer for outerplanar graphs (which is
(K2,3, K4)-minor-free). Recently, Hershkowitz and Li [HL22] provided a solution for K4-minor-free graphs,
also known as series-parallel graphs. Even for planar graphs, a subclass of K5-minor-free graphs, the
answer is not known. Both outerplanar and series-parallel graphs are very restricted classes of planar
graphs: they have treewidth at most 2. For slightly larger graph classes, such as treewidth-3 planar
graphs or k-outerplanar graphs for any constant k, the SPR problem has remained open to date.

We resolve Question 1.3 in the affirmative, thus solving the SPR problem for minor-free graphs in its
full generality:

Theorem 1.4. Let G = (V, E, w) be an arbitrary edge-weighted Kr -minor-free graph and let K ⊆ V be an
arbitrary set of terminals. Then, there is a solution to the SPR problem on G with distortion 2O(r log r).

We prove Theorem 1.4 by devising a general reduction from SPR to shortcut partition. Specifically:

Theorem 1.5. If every subgraph of G admits an (ϵ, f (r)/ϵ)-shortcut partition for every ϵ ∈ (0, 1), then
G admits a solution to the SPR problem with distortion O( f (r)13).

The proof of Theorem 1.5 builds on a reduction by Filtser [Fil20b], from the SPR problem to that of
finding scattering partitions, which require every shortest path between two vertices to intersect only
a small number of clusters. We introduce an inherently relaxed notion which we call the approximate
scattering partition (Definition 2.1) — which among other changes uses approximate shortest paths rather
than exact shortest paths — and adapt Filtser’s reduction using the new notion. The first challenge
underlying this adaptation is that, unlike shortest paths, an approximate shortest path does not have the
optimal substructure property (any subpath of a shortest path is also a shortest path). The second and
perhaps more significant challenge stems from the fact that the partition only guarantees the existence of
some low-hop path in the cluster graph, and the distortion to its length is not with respect to the distance
between the two endpoints. We explain the differences in detail in Section 2. Consequently, we have to
make some crucial changes in the reduction, and more so in its analysis.

We observe that Theorem 1.5 together with a shortcut partition in Theorem 1.2 gives us a solution to the
SPR problem with O(1) distortion in Kr -minor-free graphs, since in this case, f (r) = rO(r) and r is fixed.

1.2 Other Applications of Our Results

Distance oracle. An α-approximate distance oracle is a compact data structure for graph G that given
any two vertices u and v, return the distance between u and v in G up to a factor of α. In constructing a
distance oracle, we would like to minimize the distortion parameter α, the space usage, and the time it
takes to answer a query; there is often a tradeoff between the three parameters.
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Constructing (1+ ϵ)-approximate distance oracles for planar graphs has been extensively studied. A
long line of work [Tho04, Kle02, KKS11, WN16, GX19, CS19] recently culminated in an optimal distance
oracle with linear space and constant query time by Le and Wulff-Nilsen [LWN22]. On the other hand, the
only known (1+ ϵ)-approximate distance oracle for Kr -minor-free graphs achieving O(n log n) space and
O(log n) query time (for any constant ϵ ∈ (0, 1) and constant r) was by Abraham and Gavoille [AG06].
The main reason is that the topology of Kr -minor-free graphs is much more complicated, and many
techniques from planar graphs — such as reduction to additive distance oracles [KKS11, LWN22] or
more sophisticated use of planar shortest path separators [WN16]— do not extend to Kr -minor-free
graphs. Even the shortest path separator [AG06] in Kr -minor-free graphs does not behave as well as its
planar counterpart [GKR01, Tho04]: each path in the separator in Kr -minor-free graphs is not a shortest
path of the input graph, but a shortest path of its subgraph after some previous paths were removed.
As a result, despite significant recent progress on approximate distance oracles for planar graphs, the
following problem remains open:

Problem 1.6. Design a (1+ ϵ)-approximate distance oracle for Kr -minor-free graphs with linear space
and constant query time for fixed ϵ and r.

In this work, we resolve Theorem 1.7 affirmatively. Our oracle can also be implemented in the
pointer-machine model, matching the best-known results for planar graphs [CCL+23].

Theorem 1.7. Given any parameter ϵ ∈ (0, 1), and any edge-weighted undirected Kr -minor-free graphs
with n vertices, we can design a (1+ ϵ)-approximate distance oracle with the following guarantees:

• Our distance oracle has space n · 2rO(r)/ϵ and query time 2rO(r)/ϵ in the word RAM model with word
size Ω(log n). Consequently, for fixed ϵ and r, the space is O(n) and query time is O(1).

• Our distance oracle has space O(n · 2rO(r)/ϵ) and query time O(log log n · 2rO(r)/ϵ) in the pointer
machine model.

Our oracle is constructed via tree covers, which we will discuss next.

Tree cover. An α-tree cover T of a metric space (X ,δX ) for some α≥ 1 is a collection of trees such that:
(1) every tree T ∈ T has X ⊆ V (T) and dT (x , y) ≥ δX (x , y) for every two points x , y ∈ X , and (2) for
every two points x , y ∈ X , there exists a tree T ∈ T such that dT (x , y) ≤ α · δX (x , y). We call α the
distortion of the tree cover T. The size of the tree cover is the number of trees in T.

Tree covers have been extensively studied for many different metric spaces [AP92, AKP94, ADM+95,
GKR01, BFN19, FL22, KLMS22]. Gupta, Kumar, and Rastogi [GKR01] showed among other things that
planar metrics admit a tree cover of distortion 3 and size O(log n). Bartal, Fandina, and Neiman [BFN19]
reduced the distortion to 1+ ϵ for any fixed ϵ ∈ (0, 1) at the cost of a higher number of trees, O(log2 n).
Their result also holds for any Kr -minor-free graphs with a fixed r; however, because of the usage of
shortest path separator [AG06], the final tree cover size contains a hidden dependency on r which is the
Robertson-Seymour constant [RS03], known to be bigger than the tower function of r. Their work left
several questions open: (a) Can we construct a (1+ ϵ) tree cover of O(1) size for planar graphs, and
more generally Kr -minor-free graphs? (b) Can we avoid Robertson-Seymour decomposition and achieve
a more practical construction?

The shortcut partition introduced by Chang et al. [CCL+23] partially resolved the first question: they
constructed a (1 + ϵ)-tree cover for planar graphs of O(1) size. Using our new shortcut partition in
Theorem 1.2, we resolve the question of Bartal et al. for all Kr -minor-free graphs. As our construction is
rooted in the cop decomposition, the construction might behave reasonably well even when the graph is
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not strictly Kr -minor-free, as the performance ultimately depends on the width of the buffer and the
number of times a cluster can expand. This provides a more practical alternative to the Robertson-
Seymour decomposition.

Theorem 1.8. Let G be any edge-weighted undirected Kr -minor-free graph with n vertices. For any
parameter ϵ ∈ (0,1), there is a (1+ ϵ)-tree cover for the shortest path metric of G using 2rO(r)/ϵ trees.

Given a tree cover T in Theorem 1.8, we can obtain a (1 + ϵ)-approximate distance oracle in
Theorem 1.7 as follows. The distance oracle consists of T and an LCA data structure for each tree in T.
For each query pair (u, v), we iterate through each tree, compute the distance on the tree using LCA data
structure, and then return minT∈T dT (u, v). The query time and space are as described in Theorem 1.7
because |T|= 2rO(r)/ϵ; the distortion is 1+ ϵ since the distortion of the tree cover is 1+ ϵ.

Additive embeddings for apex-minor-free graphs. Graph A is an apex graph if there exists a vertex
a ∈ V (A), called the apex, such that A\ {a} is a planar graph. A graph G is apex-minor-free if it excludes
some apex graph A of O(1) size as a minor. We note that apex-minor-free graphs include planar graphs
and, more generally, bounded-genus graphs as subclasses. We show that our shortcut partition also gives
the first deterministic additive embeddings of apex-minor-free graphs into bounded-treewidth graphs.

Given a weighted graph G of diameter ∆, we say that a (deterministic) embedding f : V (G)→ H of
G into H has additive distortion +ϵ∆ if dG(x , y)≤ dH( f (x), f (y))≤ dG(x , y)+ϵ∆ for every x , y ∈ V (G).
The goal is to construct an embedding f such that the treewidth of H, denoted by tw(H), is minimized.
Ideally, we would like tw(H) to depend only on ϵ and not on the number of vertices of G.

Additive embeddings have been studied recently for planar graphs [FKS19, FL22, CCL+23] and
for minor-free graphs [CFKL20]. A key result in this line of work is an additive embedding for planar
graphs where the treewidth of H is polynomially dependent on ϵ [FKS19]; specifically, they achieved
tw(H) = O(1/ϵc) for some constant c ≥ 58, which was recently improved to tw(H) = O(1/ϵ4) [CCL+23].
Cohen-Addad et al. [CFKL20] constructed a family of apex graphs and showed that any deterministic
embedding with additive distortion +∆/12 (ϵ = 1/12) for the family must have treewidth Ω(

⎷
n). Their

result left an important question regarding additive embeddings of apex-minor-free graphs. Here we use
the shortcut partition in Theorem 1.2 to resolve this problem, and thereby completing our understanding
of deterministic additive embeddings of graphs excluding a fixed minor into bounded-treewidth graphs.

Theorem 1.9. Let G be any given edge-weighted graph of n vertices excluding a fixed apex graph as a
minor. Let ∆ be the diameter of G. For any given parameter ϵ ∈ (0, 1), we can construct in polynomial
time a deterministic embedding of G into a graph H such that the additive distortion is +ϵ∆ and
tw(H) = 2O(ϵ−1).

In addition to the aforementioned results, we also obtain generalizations to minor-free graphs of
results from [CCL+23]; we simply use our tree cover from Theorem 1.8 in place of their tree cover
theorem for planar graphs. The results include (1) the first (1+ ϵ)-emulator of linear size for minor-free
graphs, (2) low-hop emulators for minor-free metrics, (3) a compact distance labeling scheme for
minor-free graphs, and (4) routing in minor-free metrics. We refer readers to [CCL+23] for more details.

Organization. In Section 2 we resolve the SPR problem by constructing approximate scattering partition
using the shortcut partition in Theorem 1.2. In Section 3, we introduce and describe in full detail the
construction of the buffered cop decomposition, which we will use in Section 4 to construct the shortcut
partition. In Section 5, we give the details of the applications of shortcut partition in constructing tree
cover, distance oracle, and additive embedding into bounded treewidth graphs.
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2 Reduction to Shortcut Partition

As mentioned, Filtser [Fil20b] presented a reduction from the SPR problem to that of finding scattering
partitions. To prove Theorem 1.5, we introduce an inherently relaxed notion of approximate scattering
partition (refer to Definition 2.1), and adapt the reduction of [Fil20b, Theorem 1] using that notion. Due
to the usage of our relaxed notion of partition, we have to make some crucial changes in the reduction,
and alter various parts of the analysis.

Definition 2.1 (Approximate Scattering Partition). Let G = (V, E, w) be an edge-weighted graph. A
β-approximate (τ,∆)-scattering partition of G is a partition C of V such that:

• [Diameter.] For each cluster C in C, the induced subgraph G[C] has weak diameter at most ∆;
that is, δG(u, v)≤∆ for any vertices u and v in C .

• [Scattering.] For any two vertices u and v in V such that δG(u, v)≤∆, there exists a path π in G
between u and v where (1) π has length at most β ·∆, (2) every edge in π has length at most ∆,
and (3) π intersects at most τ clusters in C. We say π is a β-approximate (τ,∆)-scattered path.

We remark that scattering properties (2) and (3) together imply property (1): the length of π is at most
O(τ) ·∆. Nevertheless, we prefer to keep property (1) separately from properties (2) and (3) in the
definition to emphasize the fact that π is an approximate path.

Notice that the notion of approximate scattering partition is more relaxed than the original notion of
scattering partition [Fil20b]. A scattering partition requires every shortest path with length at most ∆ to
be τ-scattered. However in an approximate scattering partition there are three relaxations:

1. we only require that one such path exists;

2. that path may be an approximate shortest path (rather than an exact shortest path);

3. the β-approximation to the length of such path π is not with respect to the distance between the
endpoints; rather, the length of π is bounded by β times ∆, the diameter bound of clusters.

The following lemma, which we prove in §2.1 and §2.2, is analogous to Theorem 1 by Filtser [Fil20b],
except for the key difference that we employ approximate scattering partitions. We show that such
partitions, with the three aforementioned relaxations introduced, still suffice for solving the SPR problem.

Lemma 2.2. Let G be a graph such that for every ∆ > 0, every induced subgraph of G admits a β-
approximate (τ,∆)-scattering partition, for some constants β ,τ ≥ 1. Then, there is a solution to the
SPR problem on G with distortion O(τ8 · β5) = O(1).

To construct approximate scattering partitions, we use shortcut partitions. Recall the cluster graph of
G with respect to C, denoted Ǧ, is the graph obtained by contracting each cluster in C into a supernode.
The hop-length of a path is the number of edges in the path.

Lemma 2.3. Let G be a graph and let ∆> 0 be a parameter. If any subgraph of G has an (ϵ, h)-shortcut
partition for any ϵ ∈ (0, 1) and some number h, then G has a 2ϵh-approximate (ϵh,∆)-scattering partition.

Proof: Construct graph G′ from G by removing all edges of length greater than ∆. Notice that if any
pair u, v of vertices satisfies δG(u, v) ≤ ∆, then it also satisfies δG′(u, v) ≤ ∆. Thus, any partition of
vertices that satisfies the approximate scattering property for G′ also satisfies that property for G.

Let C be an (ϵ, h)-shortcut partition for the graph G′, with parameter ϵ :=∆/diam(G′). Notice that
C is a clustering of the vertices of G, where for any cluster C in C, the induced subgraphs G[C] and G′[C]
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have strong diameter at most ϵ · diam(G′) =∆; thus, C satisfies the diameter property of approximate
scattering partition.

We now show that C satisfies the scattering property. Let u and v be two vertices in G with δG(u, v)≤
∆. Note that δG′(u, v)≤∆. By the properties of shortcut partition, there is a path π̌ in the cluster graph Ǧ
between the clusters containing u and v, such that π̌ has hop-length at most h ·max

¦

δG′ (u,v)
diam(G′) ,ϵ
©

= ϵh. In
other words, the hop-length of π̌ is t, for some t that is upper-bounded by ϵh. Write π̌ = (C1, C2, . . . , Ct)
as a sequence of t adjacent clusters in Ǧ. Notice that two clusters C and C ′ in Ǧ are adjacent if and only
if there is an edge in G′ between a vertex in C and a vertex in C ′. For every pair of consecutive clusters
Ci and Ci+1 in π̌, let x ′i be a vertex in Ci and x i+1 be a vertex in Ci+1 such that there is an edge ei in G′

between x ′i and x i+1. To simplify notation, define x1 := u and define x ′t := v. With this definition, x i
and x ′i are defined for all i in {1, . . . , t}. Notice that for every i in {1, . . . , t}, vertices x i and x ′i are both
in cluster Ci . By the strong diameter property of C, there is a path Pi in G′ between x i and x ′i , such that
Pi is contained in Ci and has length at most ∆.

We define the path π in G′ (and thus also in G) between u and v to be the concatenation P1 ◦ e1 ◦ P2 ◦
e2 ◦ . . . ◦ Pt . Notice that (1) π has length at most 2t ·∆≤ 2ϵh ·∆; indeed, each subpath Pi has length at
most∆ (by the strong diameter property), and each edge ei has length at most∆ (as ei is in G′). Further,
(2) every edge of π has length at most ∆, and (3) π intersects at most ϵh clusters (namely, the clusters
C1, . . . , Ct along π̌). □

Theorem 1.5 follows from Lemma 2.2 and Lemma 2.3. As a direct corollary of Theorem 1.2 and
Lemma 2.3, we obtain the following.

Corollary 2.4. There are constants β and τ such that, for any Kr -minor-free graph G and any ∆ > 0,
there exists a β-approximate (τ,∆)-scattering partition of G. Specifically, β = τ= 2O(r log r).

In what follows we prove Lemma 2.2.

2.1 Algorithm

Our construction for proving Lemma 2.2 is similar to that of [Fil20b], but deviates from it in several
crucial points (see Remark 2.5 for details). For completeness, we next provide the entire construction of
[Fil20b], adapted appropriately to our purposes.

We will assume without loss of generality that the minimum pairwise distance is 1. We shall partition
V into |K | connected subgraphs, each of which corresponds to a single terminal in K . Each vertex in V
will be assigned to a connected subgraph by the assignment function f : V → K , such that at the end of
the process, we can create a graph minor M of G by contracting each connected subgraph f −1(t) into a
supernode for every terminal t ∈ K. By setting wM (t, t ′) := δG(t, t ′) for each edge (t, t ′) ∈ E(M), the
edge-weighted graph M = (K , E(M), wM ) is our solution to the SPR problem on G. For a path P, we
denote by ||P|| the length of P.

We compute the assignment function f in iterations. In iteration i we shall compute a function
fi : V → K ∪ {⊥}, where ⊥ symbolizes that the vertex remains unassigned. The function f will be
obtained as the function fi computed at the last iteration of the algorithm. We will maintain the set of
relevant vertices Ri :=

�

v ∈ V | ζi−1 ≤ δG(v, K)< ζi
	

and the set of assigned vertices Vi by the function fi
to some terminals, for each iteration i, where ζ := c · β ·τ, for β and τ being the constants provided by
Corollary 2.4 and c being some large constant. Initialize f0(t) := t for each t ∈ K, and f0(v) := ⊥ for
each v ∈ V \ K. Define both R0 and V0 to be K. Inductively, we maintain the properties that Vi−1 ⊆ Vi
and
⋃︁

j≤i R j ⊆ Vi , hence the algorithm terminates when all vertices have been assigned.
At the i-th iteration of the algorithm, we compute β-approximate (τ,ζi−1)-scattering partition Pi,

provided by Corollary 2.4, on the subgraph induced on the unassigned vertices Gi := G[V \ Vi−1]. Let Ci
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Figure 2. An SPR instance with 3 Steiner points. Values of assignment function f are shown next to vertices.

be the set of clusters in Pi that contain at least one vertex in Ri . All vertices in the clusters of Ci will be
assigned by fi at iteration i.

We classify the clusters in Ci into levels, starting from level 0, viewing Vi−1 as a level-0 cluster. We say
that a cluster C ∈ Ci is at level j if j is the minimum index such that there is an edge of weight at most ζi

connecting a vertex u in C and another vertex v in some level-( j − 1) cluster C ′. If there are multiple
such edges, we fix one of them arbitrarily; we call vertex v in C ′ the linking vertex of C . Let lvi(C) denote
the level of C . Observe that every Ci contains a vertex in Ri, i.e., there exists a vertex v ∈ Ci such that
ζi−1 ≤ δG(v, K) < ζi. Hence, it is readily verified that every cluster Ci has a linking vertex, and thus
lvi(C) is a valid level.

For every vertex v ∈ Vi−1, we set fi(v) := fi−1(v). For every vertex not in
⋃︁

Ci (or Vi−1), we set
fi(v) =⊥. Next, we scan all clusters in Ci by non-decreasing order of level, starting from level 1. For
each vertex u in each cluster C , we set fi(u) to be fi(vC), where vC is the linking vertex of C . If some
unassigned vertices remain, we proceed to the next iteration; otherwise, the algorithm terminates.

Remark 2.5. The algorithm presented here is different than that of [Fil20b] in three important points:

• As mentioned, we use approximate scattering partitions (as in Definition 2.1) rather than the
scattering partitions of [Fil20b]. This change poses several technical challenges in the argument.

• In the proof of Lemma 2.2, one has to consider β-approximate path I ′ and its replacement I ′′ at
the ith and (i + 1)th iterations, respectively. [Fil20b] uses the same path in both iterations.

• Moreover, β-approximate path I ′ at the ith iteration has its length increased by a constant β;
one has to guarantee that every subpath Pi is still short enough to be subject to the approximate
scattering partition at the (i + 1)th iteration (see Eq. 8 and the paragraph that follows). Thus we
do not use constant 2 as in [Fil20b] but rather use a bigger constant ζ (as defined above).

2.2 Distortion Analysis

From the algorithm, any vertex within distance between ζi−1 to ζi from K is assigned at iteration at
most i. However, the following claim narrows the possibilities down to two choices. The claim is
analogous to Claim 5 in [Fil20b], where we use ζ instead of 2, and its proof is similar.

Claim 2.6 ([Fil20b, Claim 5]). Any vertex v satisfying ζi−1 ≤ δG(v, K)< ζi is assigned during iteration
i − 1 or i. Consequently, any vertex v assigned during iteration i must satisfy ζi−1 ≤ δG(v, K)< ζi+1.
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Proof: If v remains unassigned until iteration i, it will be assigned during iteration i by construction.
Suppose that v was assigned during iteration j. Then v belongs to a cluster C ∈ C j , and there is a vertex
u ∈ C with δG(u, K)≤ ζ j . As C has strong diameter at most ζ j−1 and ζ > 2, we obtain

ζi−1 ≤ δG(v, K)≤ δG(u, K) +δG(u, v)≤ ζ j + ζ j−1 < ζ2 · ζ j−1,

implying that i − 1< 2+ ( j − 1), or equivalently j ≥ i − 1. □

The following claim is analogous to Corollary 1 in [Fil20b], but we introduce a few changes in the proof.

Claim 2.7 ([Fil20b, Corollary 1]). For every v ∈ V , δG(v, f (v))≤ 3τ · ζ2 ·δG(v, K).

Proof: Let i be the iteration in which v is assigned, and let Cv be the cluster in Ci containing v. We shall
prove that

δG(v, f (v))≤ 3τ · ζi+1. (1)

Combining this bound with Claim 2.6 yields

δ(v, f (v))≤ 3τ · ζi+1 ≤ 3τ · ζ2 ·δG(v, K),

as required. The proof is by induction on the iteration i in which v is assigned. The base case i = 0 is
trivial, as then v is a terminal, and we have δG(v, f (v)) = 0 ≤ 3τ · ζ0+1. We henceforth consider the
induction step when i ≥ 1.

First, we argue that lvi(Cv) ≤ ζ · τ. Since cluster Cv is in Ci, there exists a vertex u ∈ Cv such that
δG(u, K) < ζi. Let Pu := (u1, u2, . . . us) be a shortest path from u = u1 to K (with ∥Pu∥ < ζi), let ℓ be
the largest index such that u1, u2, . . . uℓ ∈ V \ Vi−1, and define the prefix Q := (u1, u2, . . . uℓ) of Pu; note
that ℓ < s and uℓ+1 ∈ Vi−1. Since ∥Q∥ < ∥Pu∥ < ζi, we can greedily partition Q into ζ′ ≤ ζ sub-paths
Q1, . . . ,Qζ′ , each of length at most ζi−1, connected via edges of weight less than ζi; that is, Q is obtained
as the concatenation Q1◦e1◦Q2◦e2 . . .◦eζ′−1◦Qζ′ , where ∥Q j∥< ζi−1 and ∥e j∥< ζi for each j. Consider
the β -approximate (τ,ζi−1)-scattering partition Pi (provided by Corollary 2.4), used in the ith iteration,
on the subgraph Gi = G[V \ Vi−1] induced on the unassigned vertices. For each j, the sub-path Q j of Q
is contained in Gi and it satisfies ∥Q j∥ ≤ ζi−1, thus there exists a β-approximate path Q′j between the
endpoints of Q j that is scattered by τ′ clusters, with τ′ ≤ τ, and each edge of Q′j is of weight at most

ζi−1. The path Q′1 ◦ e1 ◦Q′2 ◦ e2 . . . ◦ eζ′−1 ◦Q′
ζ′

obtained from Q by replacing each sub-path Q j by its
scattered path Q′j , is a path from u1 to uℓ intersecting at most ζ ·τ clusters in Ci . Since uℓ is in a cluster
of level 1 (because uℓ+1 is in Vi−1, which is of level 0), lvi(Cv)≤ ζ ·τ, as required.

We then show that δG(v, f (v))≤ lvi(Cv) · 2 · ζi + 3τ · ζi by induction on the (ith-iteration) level of Cv.
We employ a double induction, one on the iteration i and the other on the level of Cv; aiming to avoid
confusion, we shall refer to the former as the “outer induction” and to the latter as the “inner induction”.

Let x be the linking vertex of Cv; in particular, we have f (v) = f (x). Let xv be the vertex in Cv such
that (x , xv) ∈ E and w(x , xv)≤ ζi . For the basis lvi(Cv) = 1 of the inner induction, x is assigned during
iteration i′ < i. By the outer induction hypothesis for iteration i′ (i.e., substituting i with i′ in Eq. 1), we
obtain δG(x , f (x))≤ 3τ · ζi′+1 ≤ 3τ · ζi . By the triangle inequality and since ζ > 1:

δG(v, f (v))≤ δG(v, xv) +δG(xv , x) +δG(x , f (v))

≤ ζi−1 + ζi +δG(x , f (x))≤ ζi−1 + ζi + 3τ · ζi ≤ 2 · ζi + 3τ · ζi .
(2)

For the inner induction step, consider the case lvi(Cv)> 1. Let Cx be the cluster in Pi containing x; in
particular, we have lvi(Cx) = lvi(Cv)− 1. By the inner induction hypothesis on the level of Cx , we have
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δ(x , f (x))≤ lvi(Cx) · 2 · ζi + 3τ · ζi . Using the triangle inequality again, we have:

δG(v, f (v))≤ δG(v, xv) +δG(xv , x) +δG(x , f (v))

≤ ζi−1 + ζi +δG(x , f (x))≤ ζi−1 + ζi + lvi(Cx) · 2 · ζi + 3τ · ζi

≤ 2 · ζi + (lvi(Cv)− 1) · 2 · ζi + 3τ · ζi = lvi(Cv) · 2 · ζi + 3τ · ζi ,

(3)

which completes the inner induction step.
Since lvi(Cv)≤ ζ ·τ and as ζ > 3, it follows that δ(v, f (v))≤ 3τ · ζi+1, which completes the outer

induction step. The claim follows. □

Now we are ready to prove Lemma 2.2.

Proof (of Lemma 2.2): We prove that our algorithm returns a minor of G that satisfies the SPR con-
ditions. By the description of the algorithm, it is immediate that the subgraph induced by the vertex
set f −1(t) is connected, for each t ∈ K. Thus, it remains to prove that the minor M induced by f is a
distance preserving minor of G with distortion O(τ8 · β5).

Consider an arbitrary pair of terminals t and t ′. Let P := (v1, v2, . . . , v|P|) be a shortest path between
v1 := t and v|P| := t ′. For each subpath I := (vℓ, vℓ+1, . . . vr) of P, let I+ denote the extended subpath
(vℓ−1, vℓ, vℓ+1, . . . vr , vr+1); we define v0 := v1 and v|P|+1 := v|P| for technical convenience. Partition P
into a set I of subpaths called intervals such that for each subpath I ∈ I between vℓ and vr :

∥I∥ ≤ η ·δG(vℓ, K)≤ ∥I+∥, (4)

where η := 1
4ζ . It is easy to verify that I can be constructed greedily from P.

Consider an arbitrary interval I = (vℓ, vℓ+1, . . . vr) ∈ I. Let u ∈ I be a vertex that is assigned in
iteration i, and assume no vertex of I was assigned prior to iteration i. Since u is assigned in iteration i,
u belongs to a cluster C in Ci , which is the subset of clusters that contain at least one vertex in Ri , among
the β -approximate (τ,ζi−1)-scattering partition Pi computed at the ith iteration. Hence, by definition, C
has strong diameter at most ζi−1 and there exists a vertex u′ ∈ C such that δG(u′, K)< ζi , implying that

δG(u, K)≤ δG(u, u′) +δG(u
′, K)< ζi−1 + ζi < 2ζi . (5)

By Eq. 4 and the triangle inequality,

δG(vℓ, K)≤ δG(vℓ, u) +δG(u, K)≤ ∥I∥+δG(u, K)≤ η ·δG(vℓ, K) +δG(u, K),

which together with Eq. 5 and the fact that η < 1/2 yields

δG(vℓ, K)≤
δG(u, K)

1−η
<

2ζi

1−η
< 4ζi . (6)

By Eq. 4 and Eq. 6,
δG(vℓ, vr) = ∥I∥ ≤ η ·δG(vℓ, K)< η · 4ζi = ζi−1, (7)

where the last inequality holds as η= 1
4ζ .

At the beginning of iteration i, all vertices of I are unassigned, i.e., I is in Gi = G[V \ Vi−1], and Eq. 7
yields δGi

(vℓ, vr) = δG(vℓ, vr)< ζi−1. At the ith iteration a β-approximate (τ,ζi−1)-scattering partition
Pi on Gi is computed, thus there exists a β -approximate (τ,ζi−1)-scattered path I ′ in Gi from vℓ to vr that
is scattered by at most τ clusters in Pi , with ∥I ′∥ ≤ β · ζi−1. A path is called a detour if its first and last
vertices are assigned to the same terminal. Since vertices in the same cluster will be assigned to the same
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terminal, at the end of iteration i, I ′ can be greedily partitioned into at most τ detours and τ+1 subpaths
that contain only unassigned vertices; in other words, we can write I ′ := P1 ◦Q1 ◦ . . . ◦ Pρ ◦Qρ ◦ Pρ+1,
where ρ ≤ τ, Q1,Q2, . . .Qρ are detours, and each of the (possibly empty) sub-paths P1, P2, . . . Pρ+1
contains only unassigned vertices at the end of iteration i.

Fix an arbitrary index j ∈ [1 ..ρ + 1]. Let a j and b j be the first and last vertices of Pj; it is possible
that a j = b j . Since ∥I ′∥ ≤ β · ζi−1 and as β < ζ, we have

δG(a j , b j)≤ ∥Pj∥ ≤ ∥I ′∥ ≤ β · ζi−1 < ζi . (8)

At the beginning of iteration i + 1, all vertices of Pj are unassigned by definition, hence Pj is in Gi+1 =
G[V \ Vi] and by Eq. 8, δGi+1

(a j , b j) ≤ ∥Pj∥ < ζi. At the (i + 1)th iteration a β-approximate (τ,ζi)-
scattering partition Pi+1 on Gi+1 is computed, thus there exists a β-approximate (τ,ζi)-scattered path
P ′j in Gi+1 from a j to b j that is scattered by at most τ clusters in Pi+1, with ∥P ′j∥ ≤ β · ζ

i .
Next, consider the path I ′′ := P ′1 ◦Q1 ◦ . . . ◦ P ′ρ ◦Qρ ◦ P ′ρ+1. By Eq. 7 we have

∥I ′′∥ ≤ ∥I∥+
ρ+1
∑︂

j=1

∥P ′j∥ ≤ ζ
i−1 + (τ+ 1)β · ζi ≤ (τ+ 2)β · ζi (9)

Since no vertex in I (in particular, vℓ) was assigned prior to iteration i, Claim 2.6 yields δG(vℓ, K)≥ ζi−1.
Eq. 4 yields ∥I+∥ ≥ η ·δG(vℓ, K)≥ η · ζi−1, and as η= 1

4ζ we obtain

∥I ′′∥ ≤ (τ+ 2)β · ζi ≤ 4ζ2(τ+ 2)β · ∥I+∥. (10)

Next, we argue that all vertices in I ′′ are assigned at the end of iteration i + 1. Let w be an arbitrary
vertex in I ′′; by Claim 2.6, it suffices to show that δG(w, K)< ζi+1. Recall that u is a vertex of I that is
assigned in iteration i. By Eq. 5, Eq. 7, Eq. 9 and the triangle inequality,

δG(w, K)≤ δG(vℓ, K) +δG(vℓ, w)≤ δG(vℓ, u) +δG(u, K) +δG(vℓ, w)

≤ ∥I∥+δG(u, K) + ∥I ′′∥< ζi−1 + 2ζi + (τ+ 2)β · ζi < ζi+1,
(11)

where the last inequality holds since ζ= c · β ·τ for a sufficiently large constant c.
Hence, every vertex in P ′j is assigned by iteration i + 1, for every j ∈ [1 ..ρ + 1]. Then, P ′j could be

greedily partitioned into at most τ detours, as before with I ′, but we have no subpaths of unassigned
vertices in I ′′, since every vertex in I ′′ must be assigned by the end of iteration i + 1. We have thus
shown that I ′′ can be partitioned into at most O(τ2) detours D1, D2, . . . Dg , with g = O(τ2). For each
j ∈ [1 .. g], let x j and y j be the first and last vertices in Dj. Because I ′′ are partitioned greedily into
maximal detours, one has f (y j) ̸= f (x j+1) for all j. Observe that there exists an edge between f (x j)
and f (x j+1) in the SPR minor M for each j ∈ [1 .. g − 1], since f (x j) = f (y j) ∈ K and (y j , x j+1) ∈ E.
Consequently, by the triangle inequality, Corollary 2.7 and Eq. 10,

δM ( f (vℓ), f (vr))≤
g−1
∑︂

j=1

δM ( f (x j), f (x j+1)) =
g−1
∑︂

j=1

δG( f (x j), f (x j+1))

≤
g−1
∑︂

j=1

�

δG(x j , f (x j)) +δG(x j , x j+1) +δG(x j+1, f (x j+1))
�

≤ 2
g
∑︂

j=1

δG(x j , f (x j)) +
g−1
∑︂

j=1

δG(x j , x j+1)≤ 2
g
∑︂

j=1

δG(x j , f (x j)) + ∥I ′′∥

≤ 6τζ2
g
∑︂

j=1

δG(x j , K) + 4ζ2(τ+ 2)β · ∥I+∥.

(12)
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For every vertex v′′ ∈ I ′′, we have

δG(v
′′, K)≤ δG(v

′′, vℓ) +δG(vℓ, K)≤ ∥I ′′∥+δG(vℓ, K)

≤ 4ζ2(τ+ 2)β · ∥I+∥+
∥I+∥
η
≤ 4ζ2(τ+ 3)β · ∥I+∥,

(13)

where the penultimate inequality holds by Eq. 4 and Eq. 10 and the last inequality holds since η= 1
4ζ .

We remark that Eq. 13 also holds for any vertex v′ ∈ I , which will be used below for deriving Eq. 17.
Hence, for every j ∈ [1 .. g], δG(x j , K)≤ 4ζ2(τ+ 3)β · ∥I+∥; plugging this in Eq. 12 yields:

δM ( f (vℓ), f (vr))≤ 24ζ4τ(τ+ 3)β g · ∥I+∥+ 4ζ2(τ+ 2)β · ∥I+∥= O(ζ4 ·τ4 · β) · ∥I+∥. (14)

Next, we bound the distance between t and t ′ in M . So far we fixed an arbitrary interval I =
(vℓ, vℓ+1, . . . vr) ∈ I. Writing I= {I1, I2, . . . Is}, we have

∑︁s
j=1 ∥I j∥= ∥P∥= δG(t, t ′), hence

s
∑︂

j=1

∥I+j ∥ ≤ 2∥P∥= 2 ·δG(t, t ′). (15)

For each I j , let v j
ℓ

and v j
r be the first and last vertices of I j . For each j ∈ [1 .. s−1], since (v j

r , v j+1
ℓ
) ∈ E, ei-

ther ( f (v j
r ), f (v j+1

ℓ
)) ∈ E(M) or f (v j

r ) = f (v j+1
ℓ
), thus we have δM ( f (v

j
r ), f (v j+1

ℓ
)) = δG( f (v

j
r ), f (v j+1

ℓ
)).

Hence, using the triangle inequality:

δM (t, t ′)≤
s−1
∑︂

j=1

�

δM ( f (v
j
ℓ
), f (v j

r )) +δM ( f (v
j
r ), f (v j+1

ℓ
))
�

+δM ( f (v
s
ℓ), f (vs

r))

≤ O(ζ4 ·τ4 · β) ·
s
∑︂

j=1

∥I+j ∥+
s−1
∑︂

j=1

δM ( f (v
j
r ), f (v j+1

ℓ
)) (by Eq. 14)

≤ O(ζ4 ·τ4 · β) ·δG(t, t ′) +
s−1
∑︂

j=1

δM ( f (v
j
r ), f (v j+1

ℓ
)). (by Eq. 15)

= O(ζ4 ·τ4 · β) ·δG(t, t ′) +
s−1
∑︂

j=1

δG( f (v
j
r ), f (v j+1

ℓ
)).

(16)

Using the triangle inequality again, we have:

s−1
∑︂

j=1

δG( f (v
j
r ), f (v j+1

ℓ
))≤

s−1
∑︂

j=1

�

δG( f (v
j
r ), v j

r ) +δG(v
j
r , v j+1
ℓ
) +δG(v

j+1
ℓ

, f (v j+1
ℓ
))
�

≤
s−1
∑︂

j=1

δG(v
j
r , v j+1
ℓ
) +

s
∑︂

j=1

�

δG(v
j
ℓ
, f (v j

ℓ
)) +δG(v

j
r , f (v j

r ))
�

≤ ∥P∥+ 3τζ2 ·
s
∑︂

j=1

�

δG(v
j
ℓ
, K) +δG(v

j
r , K)
�

(by Corollary 2.7)

≤ δG(t, t ′) + 3τζ2 · 4ζ2(τ+ 3)β ·
s
∑︂

j=1

(∥I+j ∥+ ∥I
+
j ∥) (by Eq. 13)

≤ O(ζ4 ·τ2 · β) ·δG(t, t ′) (by Eq. 15).

(17)

Plugging Eq. 17 into Eq. 16, we obtain δM (t, t ′) = O(ζ4 · τ4 · β) · δG(t, t ′). Since ζ = O(β · τ), we
conclude that δM (t, t ′) = O(τ8 · β5), as required. □
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3 Buffered cop decompositions for minor-free graphs

notation meaning

T partition tree: nodes of T are supernodes

T̂ expansion of T

η
supernode: induced subgraph on its vertices (one may identify η with these vertices);
η contains Tη initially and may only grow

dom(η) domain of η: subgraph induced by the union of all supernodes in the subtree of T rooted at η

Tη tree skeleton: SSSP tree in dom(η) (remain fixed)

S set of supernodes: S starts empty and grows, and each supernode may grow

witness vS vertex adjacent to some vertex in supernode S

H sees S subgraph H has a witness vertex vS to S

S|H set of supernodes in S subgraph H can see

domS(η) domain of η with respect to S: may shrink; the final domS(η) is dom(η)

∂H ′↓X boundary vertices: vertices in G \H ′ that are (1) adjacent to H ′, and (2) in domS(X )

NH ′X buffer vertices: unassigned vertices in H ′ within distance (in domS(X )) ∆/r of ∂H ′↓X
ηS vertices assigned to η by the current S

Table 1. Glossary for the construction of buffered cop decompositions.

Buffered cop decomposition. Let G be a graph. A supernode η with skeleton Tη and radius ∆ is an
induced subgraph η of G containing a tree Tη where every vertex in η is within distance ∆ of Tη for
some real number ∆, where distance is measured with respect to η. We occasionally abuse notation and
use η to refer to the set of vertices in η, rather than the subgraph. A buffered cop decomposition for G is a
partition of V (G) into vertex-disjoint supernodes, together with a tree T called the partition tree, whose
nodes V (T) are the supernodes of G. For any supernode η, the domain dom(η) denotes the subgraph
induced by the union of all vertices in supernodes in the subtree of T rooted at η.

Definition 3.1. A (∆,γ, w)-buffered cop decomposition for G is a buffered cop decomposition T that
satisfies the following properties:

• [Supernode radius.] Every supernode η has radius at most ∆.

• [Shortest-path skeleton.] For every supernode η, the skeleton Tη is an SSSP tree in dom(η), with
at most w− 1 leaves.

• [Supernode buffer.] Let η be a supernode, and let X be another supernode that is an ancestor of η
in the partition tree T. Then either η and X are adjacent6 in G, or for every vertex v in dom(η),
we have δdom(X )(v, X )≥ γ.

• [Tree decomposition.] For every supernode η, define the bag of η, denoted Bη ⊆ V (T), to be
a set containing η and all ancestor supernodes adjacent to η in G. Then |Bη| ≤ w for every η.
Further, define B̂η ⊆ V (G) to be the set of vertices contained in some supernode in Bη, that is,
B̂η =
⋃︁

X∈Bη
V (X ); and define the expansion of T, denoted T̂, to be a tree isomorphic to T with

vertex set {B̂η}η∈V (T). Then T̂ is a tree decomposition of G.

6that is, there is some a ∈ η and b ∈ X such that (a, b) is an edge in G
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We say that T has radius ∆, buffer γ, and width w.

Our definition of buffered cop decomposition is somewhat different from the cop decomposition in the
prior work [And86, AGG+14]. Recall that the cop decomposition in prior work is a tree decomposition,
where each bag of the tree decomposition can be partitioned into r − 1 supernodes. Here each node of
the partition tree T in our definition is exactly one supernode. The expansion Ť in our definition is a cop
decomposition in the sense of prior work. We find that this alternative definition helps to simplify the
presentation of our buffer-creating algorithm significantly. See Figure 3 for an illustration of buffered
cop decomposition, and Table 1 for a glossary of terminologies related to the construction of buffered
cop decompositions.

Figure 3. Left: A non-planar graph G with a partition into supernodes. Notice that the purple cluster is connected and goes
behind the dark blue supernode. Middle: The partition tree T of a buffered cop decomposition for G. The supernode buffer
property guarantees that any path between the brown and pink supernodes is of length at least γ. Right: The expansion of T,
where each bag contains at most 5 supernodes.

This section is devoted to proving the following theorem.

Theorem 3.2. Let G be a Kr -minor-free graph, and let ∆ be a positive number. Then G admits a
(∆,∆/r, r − 1)-buffered cop decomposition.

We emphasize that in the construction of buffered cop decomposition, the most interesting property
that we need to guarantee is the supernode buffer property. This property says that if a supernode X
gets “cut off” from part of the graph, there is a “buffer region” of at least γ between X and that part of
the graph. More precisely, let G′ be the subgraph of G induced by vertices in descendant supernodes
of X that are not adjacent to X . (That is, X is “cut off” from G′ by the descendant supernodes that are
adjacent to X .) The supernode buffer property in Definition 3.1 implies that δdom(X )(v, X )≥ γ for every
v ∈ V (G′). The construction of [AGG+14] produces a cop decomposition with the other three properties;
that is, a buffered cop decomposition with radius ∆ and width r − 1. A delicate argument in [AGG+14]
shows that their construction achieves something similar to a supernode buffer of ∆/r in expectation.

Review of the construction of [AGG+14]. The construction of [AGG+14] iteratively builds a collection
S of supernodes of a graph G. At each point in the algorithm, they process a subgraph H of G by creating
a new supernode η in H, and then recursing on the connected components of H \η.

To describe how to create each new supernode η, we introduce some terminology. A subgraph H sees
a supernode S if (1) S is disjoint from H, and (2) there exists some witness vertex vS in H that is adjacent
to a vertex in S. For any subgraph H, let S|H be the set of supernodes that H sees. The algorithm of
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[AGG+14] guarantees that, if G excludes a Kr -minor, the subgraph H (at any point in the algorithm)
sees at most r − 2 previously-created supernodes. Their algorithm has the following steps:

1. Initialize a new supernode η.

Choose an arbitrary vertex v in H. Build a shortest-path tree Tη in H that connects v to an arbitrary
witness vertex for every supernode seen by H. Initialize supernode η← Tη with skeleton Tη.

2. Expand η, to guarantee supernode buffer property in expectation.

Let γ be a random number between 0 and C ·∆ (for some constant C) drawn from a truncated
exponential distribution with rate O(r/∆), meaning that E[γ] = O(∆/r). Assign every vertex
within distance γ of Tη to be a part of supernode η (where distances are with respect to H).

3. Recurse.

Recurse on each connected component in the graph in H \η.

The subgraph H is initially selected to be G. The buffered cop decomposition is implicit from the
recursion tree. They show that at any point in the algorithm, the set of supernodes seen by H forms a
model of a complete graph (see Lemma 3.7); this proves the bag width property. The tree decomposition,
radius, and shortest-path skeleton properties are all straightforward to verify. The proof of the “expected”
supernode buffer property is quite complicated, and requires dealing with the fact that γ is drawn from
a truncated exponential distribution rather than a normal exponential distribution.

Remark 3.3. While the buffer guarantee of [AGG+14] is in expectation, the nature of their buffer
property is somewhat stronger than ours: they guarantee that whenever a new skeleton Tη is added and
cuts off the shortest path from a vertex v to another skeleton X (which could still be adjacent to Tη), the
distance from v to Tη is smaller than the distance from v to X by O(∆/r) in expectation. Here we only
guarantee the distance reduction from v to X when X and Tη are not adjacent.

3.1 Construction

We modify the algorithm of Abraham et al. [AGG+14] to obtain the (deterministic) supernode buffer
property. Throughout our algorithm, we maintain the global variables S, indicating the set of supernodes,
and T, indicating the partition tree. At any moment during the execution of our algorithm, some vertices
of graph G will already be assigned to supernodes, and some vertices will be unassigned. At the end
of the execution, all vertices will be assigned by S. At each stage of the algorithm, we (1) select some
unassigned vertices to become a new supernode η, (2) assign some unassigned vertices to existing
supernodes (not necessarily η) to guarantee the supernode buffer property, and (3) recurse on connected
components induced by the remaining unassigned vertices.

Our main procedure is BUILDTREE(S, H), which takes as input a connected subgraph H induced
by unassigned vertices in G. It assigns vertices in H to supernodes in S, and returns a buffered cop
decomposition. Figure 4 gives an example; Figure 5 gives the complete pseudocode. The algorithm
consists of the following steps:

1. Initialize a new supernode.

Choose an arbitrary vertex v in H. Build a shortest path tree Tη in H that connects v to an arbitrary
witness vertex for every supernode seen by H. Initialize supernode η to be the subgraph of G
induced by all vertices of Tη; set Tη to be the skeleton of η; and add η to S. Define the domain of
η with respect to S, domS(η), to be the set of all vertices in H that are not assigned (by S) to any
supernode above η in the partition tree T; initially domS(η) = H, and at the end of the algorithm
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it will hold that domS(η) = dom(η). (Notice that η will grow and domS(η) will shrink over the
course of the algorithm as S changes, though Tη will remain unchanged. See Claim 3.6(3).)

2. Assign vertices to existing supernodes, to guarantee the supernode buffer property.

For each connected component H ′ of H \η, consider the set of supernodes X that can be seen by H
but cannot be seen by H ′. These supernodes are “cut off” from H ′. In this step, we identify every
currently unassigned vertex that could be close to a cut-off supernode, and assign those vertices to
some existing supernode (possibly to the newly-created η).

In more detail: For each X in X, define the boundary vertices ∂H ′↓X to be the set of vertices in
G \H ′ that are (1) adjacent to H ′, and (2) in domS(X ). Our algorithm will maintain the invariant
that all vertices adjacent to H ′ (in particular, all vertices in ∂H ′↓X ) have already been assigned to a
supernode by S; see Invariant 3.4 for the formal statement. Define the set of buffer vertices NH ′X to
be the set of unassigned vertices in H ′ within distance ∆/r of ∂H ′↓X , where distance is measured
with respect to domS(X ). Assign each vertex in NH ′X to the same supernode as a closest vertex in
∂H ′↓X , breaking ties consistently and measuring distance with respect to domS(X ); notice that “the
supernode of a vertex in ∂H ′↓X ” is well-defined because of Invariant 3.4.

This procedure may cut off H ′ from another supernode, even if H ′ may originally have been able
to see that supernode (even η itself could become cut off at this point); and it may break H ′ into
multiple connected components. Repeat this assignment process on each connected component
until we have dealt with all supernodes that have been cut off.

In Lemma 3.12, we show that this procedure guarantees that the supernode buffer property holds.
It will suffice to show that, in this step, we assign every vertex in H ′ that could become close to
some cut-off supernode X , even if X grows in the future. Crucially, in this step we assign every
vertex in H ′ that is within ∆/r distance of the boundary ∂H ′↓X . It would not suffice to just assign
vertices within ∆/r distance of X in the current step, because X could potentially grow in the
future, and the distance from a vertex in H ′ to X could shrink. We show that even if X expands in
the future, it remains disjoint from X ′; further, we show that every path in dom(X ) from a vertex
in H ′ to a vertex outside of H passes through some boundary vertex in ∂H ′↓X . Thus, every vertex
in H ′ is closer7 to ∂H ′↓X than to X (which are always outside H ′), even if X expands in the future.
This means that the vertices of NH ′X form a buffer of ∆/r between X and the unassigned vertices
of H ′. Note that we assign each vertex in NH ′X to some supernode that is not X (as H ′ does not
see X , no vertex in NH ′↓X is in X ).

This procedure is called GROWBUFFER(S,X, H ′); see pseudocode in Figure 6. It takes as input a
subgraph H ′ and a list X of supernodes that have been cut off from H ′. It assigns some vertices in
H ′ to existing supernodes in S.

3. Recurse.

For each connected component H ′ in the graph induced by unassigned vertices, recursively call
BUILDTREE(S, H ′).

To initialize, let S ← ∅, and call BUILDTREE(S, G) to produce a buffered cop decomposition T for G.
Throughout the algorithm, we maintain the following invariant:

Invariant 3.4. Suppose that call C , whether it is GROWBUFFER(S,X, H) or BUILDTREE(S, H), is made
at some point in the algorithm. At the time call C is made, every vertex in H is unassigned, and every
vertex in G \H that is adjacent to H is already assigned to some supernode.

7We assume the weight of every edge in G is nonzero.
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(We say that a vertex v of graph G is adjacent to a subgraph H of G if (1) v is in G \H, and (2) there is an
edge in G between v and some vertex in H.) The invariant is clearly true when we make the initial call
BUILDTREE(∅, G), and it is preserved throughout the algorithm: a recursive call to GROWBUFFER(S,X, H)
or BUILDTREE(S, H) is only made if H is a maximal connected component induced by unassigned vertices.
Because we maintain this invariant, the procedure GROWBUFFER is well-defined.

Figure 4. Example of one iteration of BuildTree(H). From left to right: (1) The graph G before an iteration, with H being a
connected component of unassigned vertices. (2) Pick an arbitrary vertex v in H and compute Tη by taking shortest paths
from v to X1 and X2. (3) Supernode X1 is cut off from H ′, so find the set NH ′X1

(vertices in H ′ within distance ∆/r of the

boundary of ∂H ′↓X1
) and assign each vertex of NH ′X1

to the supernode containing the closest boundary vertex, to ensure the
buffer property. (4) There are now two connected components, one of which is cut off from X2, so we must grow a buffer for
X2 in that component.

A remark on the global variable. The procedure BUILDTREE(S, H) is recursive: it initializes a super-
node, calls GROWBUFFER, and then recursively calls BUILDTREE(S, H ′i ) on disjoint subgraphs H ′i . Each of
these recursive calls modifies the same global variable S. However, the modifications to S that are made by
each call Ci := BUILDTREE(S, H ′i) do not affect the execution of any sibling calls C j := BUILDTREE(S, H ′j).
Only the ancestors of Ci in the recursion tree affect the execution of Ci .

Before proving this observation, we introduce the following important terminology. We say that a
call C := BUILDTREE(S, H) occurs above (resp. below) a call C ′ := BUILDTREE(S, H ′) if C is an ancestor
(resp. descendent) of C ′ in the recursion tree. If two calls to BUILDTREE are in different branches of the
recursion tree, then they are neither above nor below each other. Intuitively, “C is above C ′” means
that C was a relevant call that happened before C ′. Similarly, we say “supernode η1 is initialized above
supernode η2” if the instance of BUILDTREE that initialized η1 occurred above the instance of BUILDTREE

that initialized η2. Finally, we say that “supernode η is initialized above a call C := GROWBUFFER(S,X, H)”
if the call to BUILDTREE that initialized η is above or is the same as the call to BUILDTREE that caused C
to be called. Note that the algorithm never initializes a new supernode during a GROWBUFFER call.

With this terminology, we can state a stronger version of Invariant 3.4.

Invariant 3.5. Suppose that call C , whether it is GROWBUFFER(S,X, H) or BUILDTREE(S, H), is made
at some point in the algorithm. At the time call C is made, every vertex in H is unassigned, and every
vertex in G \ H that is adjacent to H was already assigned during a call above C to some supernode
initialized above C .

Indeed, when some call C̃ (whether it is GROWBUFFER or BUILDTREE) makes call C on some subgraph H,
the graph H is a maximal connected component of unassigned vertices — and crucially, this connected
component is with respect to the assignments S before any calls to GROWBUFFER or BUILDTREE are made
by C̃. Thus, every vertex adjacent to H has been assigned to some existing supernode (before any sibling
calls of C are made), meaning it was initialized above C .
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We now prove that the execution of a call C , whether it is GROWBUFFER(S,X, H) or BUILDTREE(S, H),
depends only on H and the vertices assigned to supernodes above C . Indeed, a call to BUILDTREE(S, H)
uses S to determine the supernodes seen by H, which is determined by the vertices adjacent to H (and
thus, by Invariant 3.5, by calls above C and not by sibling calls). A call to GROWBUFFER(S,X, H) uses
S in two places. First, it uses S to determine ∂H↓X (where X denotes the supernode selected from X

to be processed during the execution of C), which is a subset of the vertices adjacent to H (and thus
determined by calls above C). Second, it uses S to determine, for every vertex v in H, a closest vertex
∂H↓X with respect to domS(X ). Notice that a shortest path P in domS(X ) from v to ∂H↓X is contained in
H ∪ ∂H↓X : the first vertex along P that leaves H is in ∂H↓X , and thus is an endpoint of P. This means
that P is determined by the graph H ∪ ∂H↓X (and as argued earlier, Invariant 3.5 implies that ∂H↓X is
determined by calls above C).

This shows that calls only affect each other if one is above the other; sibling calls do not affect each
other. We will not explicitly use this fact in our proofs, instead depending solely on Invariant 3.5 — but
it is nevertheless important intuition.

BUILDTREE(S, H):
〈〈Initialize supernode η〉〉
S|H ← supernodes in S seen by H
v← arbitrary vertex in H
Tη← SSSP tree in H, connecting v to a witness vertex for every supernode in S|H
initialize supernode η← subgraph induced by vertices of Tη
set Tη to be the skeleton of η, and add η to S 〈〈Currently, domS(η) = H〉〉
initialize tree T with root η

〈〈Grow buffer and recurse〉〉
for each connected component H ′ of H \η:

X← list containing supernodes seen by H but not by H ′

GROWBUFFER(S,X, H ′)
for each connected component H ′ of H \

⋃︁

S:
T′← BUILDTREE(S, H ′)
attach tree T′ as a child to the root of T

return tree T

Figure 5. Pseudocode for procedure BuildTree(S, H)

3.2 Analysis: Basic properties

Let T be the tree produced by BUILDTREE(∅, G). We will show that if G excludes a Kr -minor, then T

is a (∆,∆/r, r − 1)-buffered cop decomposition for G. In this section, we prove a collection of basic
properties about T, including the shortest-path skeleton and tree decomposition properties. The proofs
of the supernode buffer and supernode radius properties are deferred to the next two sections.

Notation for supernodes changing over time. When we write “supernode η” without any subscript or
description, we refer to the supernode in T, at the end of the execution of the entire algorithm. In some
proofs, we will need to refer to the global variable S at a specific point in the algorithm’s execution. We
adopt the following convention: If we say a call C ′ := BUILDTREE(S′, H ′) is made during the algorithm,
we use the variable S′ to denote the global variable at the start of call C ′. We use the notation “supernode
ηS′” to refer to the vertices of G that have already been assigned to η by S′. It does not refer to those
vertices that will be assigned to η in the future. The phrase “the set of supernodes in S′” refers to the set
of supernodes ηS′ that are assigned by S′.
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GROWBUFFER(S,X, H):
〈〈Note: All supernodes in X are not seen by H〉〉
If X is the empty list, do nothing and return.

〈〈Grow buffer around a supernode in X〉〉
X ← arbitrary supernode in X 〈〈X is processed during this call〉〉
∂H↓X ← set of vertices in G \H that are (1) adjacent to H, and (2) in domS(X )
NHX ← vertices v in H such that δdomS(X )(v,∂H↓X )≤∆/r
〈〈We show that δdomS(X )(v,∂H↓X )< δdomS(X )(v, X ) 〉〉
for each v in NHX :

ηv ← supernode containing the vertex x in ∂H↓X that minimizes δdom(X )(v, x),
breaking ties consistently

assign v to supernode ηv , and update S

〈〈This changes ηv , and the domains of supernodes initialized below ηv〉〉
〈〈Since H does not change, ∂H↓X and NHX remain fixed〉〉

〈〈Growing a buffer may cut off more supernodes, so update X〉〉
for each connected component H ′ of H \

⋃︁

S:
X′← X \ {X }
add to X′ all supernodes in S that are seen by H but not by H ′

GROWBUFFER(S,X′, H ′)

Figure 6. Pseudocode for procedure GrowBuffer(S,X, H)

Terminology for GROWBUFFER. Suppose that some call C := GROWBUFFER(S,X, H) occurs during the
algorithm. This call begins by selecting an arbitrary supernode X from X; we say that X is the supernode
processed during C . The call C then defines the set NHX ; we say that every point in NHX is assigned
during C .

Claim 3.6. The following properties hold.

1. For every S that appears in the algorithm, every supernode ηS induces a connected subgraph of G.

2. Suppose that call C , whether it is GROWBUFFER(S,X, H) or BUILDTREE(S, H), is made at some
point in the algorithm. Over the course of the algorithm, every vertex in H is assigned either to a
supernode initialized by C , or to a supernode initialized below C , or to a supernode in S that H
sees (at the time C is called).

3. Supernode ηS will grow and domS(η) will shrink over the course of the algorithm as S changes.
Further, after the algorithm terminates, we have domS(η) = dom(η).

Proof: (1) When supernode η is initialized, it is connected (because the skeleton Tη is connected).
Whenever a vertex v is assigned to η by a call to GROWBUFFER(S,X, H), we claim that connectivity is
preserved. Let X denote the supernode processed during GROWBUFFER(S,X, H), let ∂H↓X denote the set
of boundary vertices, and let NHX denote the vertices assigned during GROWBUFFER(S,X, H). Let P be
a shortest path in domS(X ) from v to the closest point ∂H↓X . Every vertex in P is closer to ∂H↓X than v.
Further, we claim that every vertex in P (excluding the endpoint, which is a boundary vertex) is in H.
Indeed, every vertex in P is in domS(X ), so the first vertex along x that leaves H is in ∂H↓X , and thus is
the endpoint of P. Thus, every point in P (excluding the endpoint) is in NHX . As every vertex in NHX is
assigned according to the closest vertex in ∂H↓X (and ties are broken consistently), every vertex in path
P is assigned to the same supernode η, and the connectivity of η is preserved.

(2) Let v be a vertex in H assigned to supernode η. Suppose that η ⊆ H (and suppose that C itself did
not initialize η). In this case, we claim that η was initialized below C . This follows from the fact that, for
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any call to BUILDTREE, the children calls to BUILDTREE in the recursion tree operate on pairwise disjoint
subgraphs. This implies that η is initialized either above or below C; as H consists of unassigned nodes
at the time C is called, η is initialized below C .

Now suppose that η is not contained in H. As η is connected (Item 1), there is a path P in η between
v and a vertex outside of H. By Invariant 3.4, the first vertex along P that leaves H has already been
assigned in S, at the time C is called. Thus, H sees ηS.

(3) The fact that supernodes only grow over time is immediate from the algorithm. Let H denote the
domain of η at the time η is initialized. By definition, domS(η) is the set of vertices in H that are now
assigned to supernodes above η; as supernodes only grow over time, domS(η) only shrinks. It remains
to show that the final domS(η) is equal to dom(η). Indeed, by Item 2 (applied to the call to BUILDTREE

that initialized η), every vertex in H is assigned to a supernode initialized either above or below η (or is
assigned to η itself). A supernode is below η in the partition tree T if and only if it is initialized below η.
Thus, after the algorithm terminates, domS(η) is the set of vertices that are in η or in supernodes below
η, which is precisely dom(η). □

Lemma 3.7. Suppose that BUILDTREE(S, H) is called during the algorithm. Let S|H be the set of supern-
odes in S seen by H. Then S|H contains at most r − 2 supernodes; furthermore, the supernodes in S|H
are pairwise adjacent.

Proof: We first prove that the supernodes in S|H are pairwise adjacent. Consider a pair (X , Y ) of
supernodes in S|H , and assume without loss of generality8 that Y is initialized below X . Let x and y
be the vertices chosen to be the roots of the skeletons of X and Y , respectively. Since H sees both XS

and YS, and as XS and YS are connected individually, there exists a path P from x to y containing only
vertices in H, XS, and YS.

Consider the time just before Y is initialized. Let S̃ denote the assignments of vertices at that time,
and let H̃ be the connected component of the subgraph induced by the unassigned vertices that contains
y at that time. Observe that, although X S̃ may expand later, all vertices in P are either unassigned (and
thus belong to H̃) or belong to X S̃. Hence, there is a path from y to X S̃ containing only unassigned
vertices, meaning that H̃ sees X S̃. Thus, when YS̃ is initialized, it must be adjacent to X S̃ by construction.
By Claim 3.6(3), supernodes only grow, and thus X and Y must be adjacent.

By Claim 3.6(1), every supernode is connected. Thus, the above claim implies that S|H ∪{η} forms a
model for a Kk+1-minor, where k = |S|H |. As G excludes Kr -minors, we have |S|H | ≤ r − 2. □

Lemma 3.8 (Shortest-path skeleton property). Every supernode η has a skeleton that is an SSSP tree
in dom(η) with r − 2 leaves.

Proof: Notice that, throughout the course of the algorithm, domS(η) may shrink but it never expands
by Claim 3.6(3). As Tη is an SSSP tree in its original domain domS(η), it is also an SSSP tree in dom(η).
(We remark that η only grows over the course of the algorithm, so Tη is a subgraph of η, and thus is a
subgraph of dom(η)). By Lemma 3.7, tree Tη has at most r − 2 leaves. □

Claim 3.9. Let C be a call, whether to BUILDTREE(S, H) or to GROWBUFFER(S,X, H), and let η be a
supernode initialized above C . Let H ′ be a subgraph of H. If H ′ is adjacent to a vertex in η (after the
algorithm terminates), then H sees ηS.

Proof: Let v be a vertex in η \ H ′ adjacent to H ′. As η is connected, there is a path P from v to Tη
contained in {v} ∪η. As η is initialized above C (and, at the time C is called, subgraph H contains only

8By Invariant 3.5, both X and Y are initialized above BUILDTREE(S, H), so one of X or Y was initialized below the other.
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unassigned vertices), the skeleton Tη is disjoint from H. Thus, P starts at a vertex in H and ends at a
vertex outside of H. Consider the first vertex along P that leaves H. By Invariant 3.4, this vertex had
already been assigned (to η) at the time C was called. We conclude that H sees ηS. □

Lemma 3.10 (Tree decomposition property). T̂ satisfies the tree decomposition property.

Proof: First, note that Lemma 3.7 directly implies that each supernode sees at most r − 2 ancestor
supernodes, meaning that each bag in T̂ contains at most r − 1 supernodes. Next, we prove that T̂ is a
tree decomposition.

(1) The union of all vertices in all bags of T̂ is V by construction.

(2) Let (x , y) be an edge in G. We need to show that there is a bag in T̂ that contains both x and y . Let
X be the supernode containing x , and let Y be the supernode containing y. We will prove that either
X = Y or one of them is an ancestor of the other (recall that, by definition, the bag of X contains all
supernodes above X that are adjacent to X ).

Assume that X ≠ Y . We claim that X and Y are in an ancestor-descendent relationship in T. Otherwise,
consider the lowest common ancestor η of X and Y , initialized by a call C := BUILDTREE(S, H). As X and
Y are in different subtrees of η, vertices x and y are both unassigned and belong to different connected
components of unassigned vertices, at the time when C begins to recursively make calls to BUILDTREE.
But this is impossible, as there is an edge between x and y .

(3) We prove that for any supernode η, if there are two bags BX and BY containing η, every bag in the
path between them in T̂ contains η.

Let P be the path between BX and BY in T̂. Assume that there exists some bag in P not containing
η. Observe that the bag Bη is a common ancestor of both BX and BY . Consider two paths: PX from Bη
to BX and PY from Bη to BY . One of them, say PX , must have a bag that does not contain η. Let Bη′
be the lowest bag in PX such that Bη′ does not contain η, and let Bη′′ be the child of Bη′ in PX . Notice
that Bη′′ contains η. We remark that Bη′ is a descendent of Bη. From the construction of T̂, we get
that supernode η′′ is adjacent to η but supernode η′ is not. Suppose that η′ is initialized during the
call C ′ := BUILDTREE(S′, H ′), and η′′ is initialized during the call C ′′ := BUILDTREE(S′′, H ′′). As η is
initialized above C ′, and H ′′ ⊆ H ′, and H ′′ is adjacent to η, Claim 3.9 implies that H ′ sees ηS′ at the time
C ′ is called. Thus, by construction η′ is adjacent to η, a contradiction. □

3.3 Analysis: Supernode buffer property

The following observation is almost immediate from the construction. It says that, if some subgraph H ′

is cut off from an old supernode X , there was some call to GROWBUFFER that processed X .

Observation 3.11. Suppose that call C ′ := BUILDTREE(S′, H ′) is made during the algorithm. If X is a
supernode initialized above C ′, and if H ′ does not see XS′ at the time C ′ is called, then there is some call
C := GROWBUFFER(S,X, H) such that (1) H ⊇ H ′, and in particular C is above C ′, (2) H does not see XS,
and (3) X was processed during C .

To see why the observation holds, denote by C̃ := BUILDTREE(S̃, H̃) the lowest call above C ′ such
that H̃ sees X S̃ (or, if no such call exists, let C̃ be the call that initializes X ). After making some calls to
GROWBUFFER, the call C̃ must recurse on some subgraph that does not see X . Since the algorithm calls
GROWBUFFER whenever a supernode gets cut off, there must be some (recursive) call to GROWBUFFER

caused by C̃ that processed X , as claimed by the observation. We shall use this observation to prove the
supernode buffer property.
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Lemma 3.12 (Supernode buffer property). Let X and η be supernodes, with η initialized below X . If
η is not adjacent to X in G, then for every vertex v in dom(η), we have δdom(X )(v, X )>∆/r.

Proof: We prove the following claim by induction (starting immediately below the call that initialized
X , and working downward in the recursion tree):

Let C ′ := BUILDTREE(S′, H ′) be a call that is below the call that initialized X . Either H ′ sees
XS′ , or δdom(X )(v, X )>∆/r for every vertex v in H ′.

We emphasize that the guarantee δdom(X )(v, X )>∆/r refers to the final X , after all expansions are made.
This suffices to prove the lemma. Indeed, the call to BUILDTREE(S′, H ′) that initialized η comes below
the call that initialized X , and dom(η) ⊆ H ′ by Claim 3.6(3); thus, either H ′ sees XS′ (in which case η is
adjacent to X by definition of Tη), or every point v in dom(η) satisfies δdom(X )(v, X )>∆/r.

Inductive step. Suppose that H ′ does not see XS′ . As we are in the inductive step, we may assume that
the parent of C ′ in the recursion tree, C̃ := BUILDTREE(S̃, H̃), is below the call that initialized X . If H̃
does not see X S̃, then we are done: since graph H̃ is a supergraph of H ′, the inductive hypothesis implies
that δdom(X )(v, X )>∆/r for every vertex v in H ′.

The interesting case occurs when H̃ sees X S̃, but H ′ does not see XS′ : that is, X becomes “cut off” from
H ′ some time in between. In this case, by Observation 3.11 there is some call C := GROWBUFFER(S,X, H)
above C ′ that processes X , with H ⊇ H ′ and H does not see XS. Consider any vertex v in H such that
δdom(X )(v, X )≤∆/r (where, again, we emphasize that X refers to the final X , after all expansions). If
no such vertex exists, we are done.

Figure 7. From left to right: (1) During call C̃ , subgraph H̃ sees supernode X . The grey supernode is above X , and is not
in domS̃(X ). (2–3) During call C , supernode X is cut off from H, and every point in NHX (i.e. every point close to ∂H↓X ) is
assigned. (4) For every subgraph H ′ of H, every path in dom(X ) from H ′ to X passes through ∂H ′↓X .

We argue that vertex v is at most ∆/r away from ∂H↓X with respect to domS(X ); see Figure 7. Let P
be a shortest path from v to X in dom(X ), where by assumption ∥P∥ ≤∆/r. As the domain of X only
shrinks over time (Claim 3.6(3)), path P is in domS(X ).9 By Claim 3.6(2) on the call C , every vertex in
H is assigned either to a supernode initialized below C , or to a supernode in S that H sees. Because X
already existed in S (and thus X is not initialized below C) and H does not see XS, the other endpoint of P
which is eventually assigned to X cannot be in H. So P passes through some vertex x outside of H that is
adjacent to H. As P is contained in domS(X ), vertex x is in ∂H↓X . Thus, δdomS(X )(v,∂H↓X )≤ ∥P∥ ≤∆/r.

This means that v is assigned to some supernode in S by the GROWBUFFER algorithm. Recall that
call C ′ is below call C by Observation 3.11; thus, as calls are only made on connected components of

9However, notice that at the time when call C was made, X might not have grown into its final shape and XS could be much
smaller; in particular, P may not be a path from v to XS and the distance from v to XS can be larger than ∆/r.
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unassigned vertices, we conclude that H ′ is a subgraph of H that includes only unassigned vertices. Thus,
vertex v is not in H ′. This completes the proof of the induction step.

Base case. In the base case, the parent of C ′ in the recursion tree is the call C̃ := BUILDTREE(S̃, H̃) that
initialized X . If H ′ sees XS′ , then we are done. If H ′ does not see XS′ , then we are in the “interesting
case” described above (except that here H̃ doesn’t see X S̃): by Observation 3.11, there is some call
C := GROWBUFFER(S,X, H) above C ′ and below C̃ , during which X is processed. The argument for this
case is identical to the one in the inductive case. □

3.4 Analysis: Supernode radius property

We now prove that every supernode η satisfies the radius property. To this end we prove three claims:

• Every time a supernode is cut off from a subgraph, the radius of η expands by at most ∆/r
(Claim 3.13).

• There are at most r − 2 supernodes that can cause η to expand (Claim 3.15).

• Each of the r − 2 supernodes can cause η to expand at most once (Claim 3.14).

Combining these three claims in an inductive argument shows that the total expansion of η is bounded
by ∆ (Lemma 3.16).

Claim 3.13. Suppose that v is assigned to a supernode η during a call C := GROWBUFFER(S,X, H). Let
X denote the supernode processed during C , and let ∂H↓X denote the boundary vertices. Let ṽ be the
closest vertex in ∂H↓X to v (with respect to domS(X )). Then δη(v, ṽ)≤∆/r (with respect to the final η).

Proof: Let NHX denote the set of points assigned during C . Let P be a shortest path between v and ṽ in
domS(X ). Every vertex in P (other than ṽ) is in NHX . Because we assign every vertex in NHX according
to the closest vertex in ∂H↓X , every vertex in P is assigned to η. Further, P has length at most ∆/r,
because every vertex in NHX is within distance ∆/r of some vertex in ∂H↓X (with respect to domS(X )),
and ṽ is the closest vertex in ∂H↓X to v. Thus, δη(v, ṽ)≤∆/r. □

We next show that each supernode seen by supernode η may cause η to be expanded at most once:
if supernode X̃ causes η to expand because X̃ is cut off, supernode X̃ cannot be cut off again later on in
the recursion. Later (in Claim 3.15) we will show that only supernodes seen by η may cause it to expand.
Let X̃ be a supernode, and let H be a subgraph. We say that X̃ is spent with respect to H if there exists
some call GROWBUFFER(S̃, X̃, H̃) where H̃ ⊇ H, and X̃ is processed during the call. In other words, X̃ is
cut off from H̃ and H (even as X̃ grows), and it has already been “dealt with” during the previous call C̃ .

Claim 3.14. Suppose that call GROWBUFFER(S,X, H) is made during the algorithm. If supernode X̃ is
spent with respect to H, then X̃ is not in X.

Proof: By definition of “spent”, there is some call C̃ := GROWBUFFER(S̃, X̃, H̃) where H̃ ⊇ H, and X̃ is
processed during C̃ . Notice that, because X̃ is in X̃, subgraph H̃ does not see X̃ S̃. Observe that:

• Call C̃ makes some calls to GROWBUFFER(S′,X′, H ′). For each of these calls made by C̃ , notice that
the set X′ contains only supernodes in X̃ \ {X̃ } (the “leftover” ones from C̃) or supernodes in S̃

that can be seen by H̃ but not by H ′ (those newly added ones). In particular, X′ does not contain
X̃ . Further, H ′ does not see X̃ S′ . This follows from Claim 3.9: if H ′ could see X̃ S′ , then (because X̃
was initialized above C̃ , and H ′ ⊇ H̃), Claim 3.9 would imply that H̃ could see X̃ S̃, a contradiction.

An inductive argument shows that, for every call to GROWBUFFER(S′,X′, H ′) made recursively as a
result of C̃ , the set X′ does not contain X̃ .
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• After the recursion from C̃ terminates, the algorithm calls BUILDTREE on subgraphs of H̃, which
may recursively result in more calls to BUILDTREE. Let BUILDTREE(S′, H ′) be one of these calls,
where H ′ ⊆ H̃. We claim that H ′ does not see X̃ S′ . As in the previous bullet point, this follows from
Claim 3.9: if H ′ could see X̃ S′ , then Claim 3.9 would imply that H̃ could see X̃ S̃, a contradiction.

This means that whenever BUILDTREE(S′, H ′) makes a call GROWBUFFER(S′′,X′′, H ′′), the set X′′

does not include X̃ ; indeed, the set X′′ only includes supernodes that are seen by H ′.

It follows from these two cases that, for every call to GROWBUFFER(S′,X′, H ′)with H ′ ⊆ H̃, the supernode
X̃ is not in X′. In particular, the call GROWBUFFER(S,X, H) satisfies H ⊆ H̃, and so X̃ is not in X. □

The following claim, in conjunction with Lemma 3.7, implies that for any supernode η, at most
r − 2 supernodes can cause it to expand. We crucially rely on the fact that when supernode X is cut
off, we only expand supernodes initialized below X ; we do this because we only need to guarantee the
supernode buffer property with respect to dom(X ).

Claim 3.15. Suppose that v is assigned to supernode η during a call C := GROWBUFFER(S,X, H),
and let X be the supernode in X processed during C . Suppose that η was initialized by a call Ĉ :=
BUILDTREE(Ŝ, Ĥ). Then Ĥ sees X Ŝ.

Proof: We first show that η is initialized below X . As v is assigned to supernode η during C , there is
some vertex in ∂H↓X ⊆ domS(X ) that was assigned to η (in S). Suppose that X was initialized during
the call C̄ := BUILDTREE(S̄, H̄), and notice that domS(X ) ⊆ H̄. Applying Claim 3.6(2) to call C̄ shows
that every vertex in H̄ is (eventually) assigned to a supernode above X , or to X , or to a supernode below
X . By definition, domS(X ) contains the vertices in H̄ that are not assigned to supernodes above X (in S).
Thus, every vertex in domS(X ) is assigned to X or to a supernode below X , and so either η= X or η is
below X . It cannot be that η = X (indeed, H sees η because v ∈ ∂H↓X , and H does not see X because X
is in X), so η is below X .

We also observe that C is below Ĉ: because H is adjacent to a vertex in η, Invariant 3.5 implies that
η was initialized above C . Thus, Ĥ ⊇ H.

Now, for the sake of contradiction suppose that Ĥ does not see X Ŝ. As η is below X and Ĥ does not
see X Ŝ, Observation 3.11 implies that there is some call C̃ := GROWBUFFER(S̃, X̃, H̃) such that (1) H̃ ⊇ Ĥ,
and (2) X is processed by C̃ . As Ĥ ⊇ H, this means that X is spent with respect to H, and Claim 3.14
implies that X is not in X, a contradiction. □

Lemma 3.16. Every supernode η has radius ∆ with respect to skeleton Tη.

Proof: Let BUILDTREE(Ŝ, Ĥ) be the call that initialized η, and let Ŝ|Ĥ denote the set of supernodes in Ŝ

that can be seen by Ĥ. In other words, by Claim 3.15, Ŝ|Ĥ is the set of supernodes that can cause η to
expand. We prove the following statement by induction on k.

Let v be a vertex assigned to η during a call C := GROWBUFFER(S,X, H). If there are at most
k supernodes in Ŝ|Ĥ that are spent with respect to H, then δη(v, Tη)≤ (k+ 1) ·∆/r.

Let X be the supernode processed during the call C . Let ṽ be the closest vertex to v in ηS (with respect
to domS(X )), as defined in Claim 3.13.

Inductive step (k > 0). If ṽ is in Tη, then Claim 3.13 implies that v is within distance ∆/r of Tη
(in the final subgraph η), satisfying the claim. Otherwise, ṽ was assigned to η by some call C̃ :=
GROWBUFFER(S̃, X̃, H̃).

We now show that the number of supernodes spent with respect to H is strictly greater than the
number of supernodes spent with respect to H̃, aiming to apply the induction hypothesis on H̃.
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• Every supernode in Ŝ|Ĥ that is spent with respect to H̃ is also spent with respect to H. Indeed, for
every such supernode X̄ spent with respect to H̃, there is some call C̄ := GROWBUFFER(S̄, X̄, H̄)
such that X̄ ⊇ X̃ and C̄ processes X̄ ; as H̃ ⊇ H, call C̄ also serves as a witness that X̄ is spent with
respect to H.

Now, consider the supernode X̃ that was processed during C̃ . Observe that:

• X̃ is not spent with respect to H̃. This follows from Claim 3.14 and the fact that X̃ ∈ X̃.

• X̃ is spent with respect to H. First we argue that H̃ ⊋ H. Observe that call C̃ is above call C , because
ṽ was already assigned when C is called. Thus, vertices that are unassigned when C is called are
also unassigned when C̃ was called. In particular, when C̃ was called, every vertex in H ∪ {ṽ} is
unassigned. As H̃ is a maximal connected component of unassigned vertices and ṽ is adjacent to
H by definition, H̃ ⊋ H.

The existence of call C̃ (which processes X̃ ) together with the fact that H̃ ⊇ H implies that X̃ is
spent with respect to H.

Moreover, Claim 3.15 implies that X̃ is in Ŝ|Ĥ , because a vertex was assigned to η during a call to
GROWBUFFER in which X̃ is processed. We conclude that there is at least one more supernode in Ŝ|Ĥ that
is spent with respect to H than those with respect to H̃. Thus, we can apply the inductive hypothesis to
conclude that ṽ is within distance k ·∆/r of Tη. By Claim 3.13, v is within distance ∆/r of ṽ, and so v
is within distance (k+ 1) ·∆/r of Tη.

Base case (k = 0): In this case, we claim ṽ must be in Tη, and so δη(v, Tη)≤∆/r. Suppose otherwise.
Then ṽ is assigned by a call to GROWBUFFER, and the argument above implies that there is at least one
supernode in Ŝ|Ĥ that is spent with respect to H. This contradicts our assumption that k = 0.

By Lemma 3.7, there are at most r − 2 supernodes in Ŝ|Ĥ , and so we conclude that every vertex in η is
within distance ∆ of Tη. □

We conclude Theorem 3.2.

4 Shortcut partition from buffered cop decomposition

We first rephrase the definition of shortcut partition. Let G be a graph, let ϵ be a number in (0, 1), and
let C be a partition of the vertices of G into clusters of strong diameter ϵ · diam(G). Recall that the
cluster graph Ǧ is obtained from the original graph G by contracting each cluster in C into a single
supernode. Let P be an arbitrary path in G. We define costC(P) to be the minimum hop-length of a
path P̌ in Ǧ, where (1) P̌ is a path between the clusters containing the endpoints of P, and (2) P̌ only
contains clusters with nontrivial intersection with P. When C is clear from context, we omit the subscript
and simply write cost(P). Notice that C is an (ϵ, h)-shortcut partition if, for every path P in G, we have
cost(P)≤ h ·max

¦

∥P∥
diam(G) ,ϵ
©

; indeed, for any pair u, v of vertices in G, applying this condition for any

shortest path P between u and v yields cost(P)≤ h ·max
¦

∥P∥
diam(G) ,ϵ
©

= h ·max
¦

δG(u,v)
diam(G) ,ϵ
©

, as required.

In the rest of this section, we prove the following lemma:

Lemma 4.1. Let G be a Kr -minor-free graph, and let ∆ be a positive number. Then there is a partition
C of G into connected clusters, such that (1) each cluster has strong diameter at most 4∆, and (2) every
path P in G with ∥P∥<∆/r has cost(P)≤ rO(r).

We now show that Lemma 4.1 implies Theorem 1.2, which we restate below.

26



Theorem 1.2. Any edge-weighted Kr -minor-free graph admits an (ϵ, 2O(r log r)/ϵ)-shortcut partition for
any ϵ ∈ (0,1).

Proof: Let C be the partition guaranteed by Lemma 4.1 for ∆ := ϵ·diam(G)
4 . Every cluster of C has strong

diameter at most 4∆ = ϵ · diam(G). To prove that C is an (ϵ, h)-shortcut partition with h = rO(r)/ϵ =
2O(r log r)/ϵ, it suffices to show that cost(P)≤ rO(r)/ϵ ·max

¦

∥P∥
diam(G) ,ϵ
©

, for an arbitrary path P in G.

We greedily partition P into a sequence of O
� 

r∥P∥
∆

£�

vertex-disjoint subpaths, where each subpath
has length at most ∆/r. That is, we can write P as the concatenation P1 ◦ e1 ◦ P2 ◦ e2 . . . ◦Qτ for some
τ= O
� 

r∥P∥
∆

£�

, such that each Pi has length at most ∆/r. We can upper-bound the cost of P:

cost(P)≤
τ
∑︂

1=1

cost(Pi) +
τ−1
∑︂

i=1

cost(ei).

Each edge has cost at most 1, and (by Lemma 4.1) each subpath Pi has cost at most rO(r). It follows that
cost(P)≤ rO(r) ·

 

∥P∥
ϵ·diam(G)

£

= rO(r)/ϵ ·max
¦

∥P∥
diam(G) ,ϵ
©

, which concludes the proof. □

4.1 Construction

Let T be a (∆,∆/r, r −1)-buffered cop decomposition for G. We partition each supernode η into clusters
as follows. Fix an arbitrary supernode η.

Let N be a ∆-net of the skeleton Tη of η, which is an SSSP tree in dom(η); that is, N is a subset of
vertices in Tη, such that (1) every vertex v in Tη satisfies δTη(v, N) = δdom(η)(v, N) ≤ ∆, and (2) for
every pair of vertices x1 and x2 in N , we have δTη(x1, x2) = δdom(η)(x1, x2) > ∆. (The net N can be
constructed greedily.) For each net point in N , we initialize a separate cluster.

We partition the rest of the vertices in η based on their closest point in the net N . In more detail,
consider each vertex v in η in increasing order of their distance to N . Find the shortest path Pv from
v to the closest point in N (if there are multiple such paths, we fix Pv arbitrarily). Let v′ be the vertex
adjacent to v in Pv . Set the cluster of v to be the same as the cluster of v′. Observe that each cluster has
a single net point in N , which we refer to as the center of the cluster; the centers of clusters constitute N .

Lemma 4.2. For each supernode, each of its clusters has strong diameter at most 4∆.

Proof: Let η be an arbitrary supernode and N be the set of cluster centers of η. First, we claim by
induction on δη(v, N) that for every v ∈ η, the cluster Cv that contains v also contains a shortest path
from v to N . For the basis, the claim clearly holds if v ∈ N . For the induction step, suppose that v ̸∈ N .
Let Pv be the shortest path from v to N that is fixed in our construction, and let v′ be the vertex after v
in Pv . Hence, v′ is assigned to Cv . Since δη(v′, N)< δη(v, N), cluster Cv contains a shortest path from
v′ to N , denoted by Q′v , by our induction hypothesis. Hence, the path (v, v′) ◦Qv′ is a shortest path from
v to N , which is contained in Cv . This completes the induction step.

Consider an arbitrary cluster C in η and any vertex v ∈ C . By the supernode radius property, there
is a vertex vT in Tη such that δη(v, vT ) ≤∆; as N is a ∆-net, we have δη(vT , N) ≤∆. By the triangle
inequality, δη(v, N) ≤ 2∆. By the above claim, C contains a shortest path from v to N , and is thus of
length at most 2∆. As C contains a single cluster center, the diameter of C must be at most 4∆. □

We now bound the cost of a path P. We first prove that “the highest supernode η that P intersects” is
well-defined, then show that P intersects few clusters in η, and finally give an inductive argument to
bound cost(P).
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Claim 4.3. Let P be a path in G. P is contained in dom(η) for some supernode η that P intersects.

Proof: Let T̂ denote the expansion of the partition tree T. For every supernode η1, the tree decomposition
property implies that the set of bags in T̂ containing η1 induces a connected subtree of T̂, which we
denote T̂[η1]. Further, for every pair of supernodes η1 and η2 that are adjacent in G, there is some
bag shared by both T̂[η1] and T̂[η2]; it follows that T̂[η1]∪ T̂[η2] is a connected subtree of T̂. As P is
connected, the set of bags containing any supernode that P intersects induces a connected subtree of T̂,
which we denote T̂[P].

Let Bη denote the root bag of the subtree T̂[P], where Bη is in one-to-one correspondence with the
supernode η in T. Bag Bη contains the supernode η, as well as some supernodes above η in T. Path P
does not intersect any supernode above η, as otherwise T̂[P] would include a bag above Bη. Thus, P is
in dom(η). Further, P intersects some supernode in Bη, so P intersects η. □

Claim 4.4. If P is a path of length less than ∆, and η is a supernode such that P is contained in dom(η),
then P intersects at most 9r clusters in η.

Proof: Suppose for contradiction that P satisfies the conditions of the claim, yet it intersects at least
9r+1 clusters in η. By the shortest-path skeleton property, the skeleton Tη of η is an SSSP tree in dom(η)
with at most r − 2 leaves, thus the vertices of Tη can be partitioned into at most r − 2≤ r shortest paths.
Since each cluster in η has its center chosen from one of at most r shortest paths, P intersects at least 10
clusters with centers in the same shortest path, denoted by Q. Let Cu (respectively, Cv) be the first (resp.,
last) cluster (among those with centers in Q) that P intersects, let u (resp., v) be an intersection point of
P and Cu (resp., Cv), and let cu (resp., cv) be the center of Cu (resp., Cv). Since Q is a shortest path in
dom(η) that intersects at least 10 centers and as the distance between any two cluster centers is at least
∆, we have δdom(η)(cu, cv)≥ 9∆. By the triangle inequality, we have:

||P|| ≥ δdom(η)(u, v) ≥ δdom(η)(cu, cv)− (δdom(η)(cu, u) +δdom(η)(cv , v))
⏞ ⏟⏟ ⏞

≤4∆+4∆ by Lemma 4.2

≥ 9∆− 8∆ ≥ ∆,

yielding a contradiction. □

We say that a path P is k-constrained if, for every supernode η that P intersects, there are at most k
supernodes that P intersects that are contained in the bag Bη corresponding to η.

Lemma 4.5. Let P be a k-constrained path with ∥P∥<∆/r. Then cost(P)≤ (54r)k.

Proof: The proof is by induction on k. The basis is trivially true, as only the empty path is 0-constrained.
We next prove the induction step. By Claim 4.3, there is some supernode η that P intersects, such that P
is in dom(η). Choose an arbitrary vertex vη ∈ P ∩η and split P at vη into two subpaths, P ′ and P ′′; vη
is an endpoint of both P ′ and P ′′. We will show cost(P ′) ≤ 27r · (54r)k−1 = 1

2(54r)k, so by symmetry,
cost(P) = cost(P ′) + cost(P ′′)≤ (54r)k.

We partition P ′ into a sequence of vertex-disjoint subpaths P1, P1:2, P2, P2:3, . . . as follows. Let C[η]
denote the set of clusters in η that P ′ intersects. Define C1 to be the cluster (in C[η]) that contains vη,
define P1 to be the maximal prefix of P ′ that ends in a vertex in C1, and define P[C1 :] := P ′ \ P1 to be
the suffix of P ′ starting after P1. For all i ≥ 1 with Ci ̸=∅, we recursively define (see Figure 8):

• Define Ci+1 to be the first cluster in C[η] that P[Ci :] intersects. If P[Ci :] intersects no clusters in
C[η], then define Ci+1 :=∅.
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Figure 8. Path P ′ with subpaths P1:2, P2:3, and P3:4 highlighted in purple, where η is the pink supernode.

• Define Pi:i+1 to be the maximal prefix of P[Ci :] that contains no vertex in Ci+1. If Ci+1 =∅, then
set Pi:i+1 := P[Ci :]. Notice that Pi:i+1 may be the empty path if the first vertex on P[Ci :] is in Ci+1.

• Define Pi+1 to be the maximal subpath of P[Ci :] with both endpoints in Ci+1. Notice that Pi+1
starts immediately after Pi:i+1.

• Define P[Ci+1 :] to be the suffix of P[Ci :] that starts after Pi+1. Notice that P[Ci+1 :] contains no
vertices in Ci+1.

By Claim 4.4, C[η] contains at most 9r clusters10; thus, there are at most 9r subpaths Pi and 9r subpaths
Pi:i+1 defined by the above procedure. There are at most 18r edges in P ′ that connect the subpaths. The
cost of P ′ is bounded by the sum of costs of the subpaths as well as the edges between the subpaths.

• Each edge has cost at most 1.

• Each subpath Pi has cost 0, as either Pi is empty or its endpoints are in the same cluster.

• As we argue next, each subpath Pi:i+1 has cost at most (54r)k−1.

Observe that every supernode η′ that P ′ intersects has η in its bag Bη′ . Indeed, if Bη′ did not
contain η, then η′ and η would not be adjacent by definition; as η is above η′ in T (by definition
of η), the supernode buffer property implies that ∥P∥ ≥ δdom(η)(η′,η) ≥ ∆/r, a contradiction.
Further, notice that Pi:i+1 does not intersect η. Thus, as P ′ is k-constrained, each subpath Pi:i+1 is
(k− 1)-constrained. The inductive hypothesis implies that cost(Pi:i+1)≤ (54r)k−1, as argued.

Since k ≥ 1, we conclude that

cost(P ′) ≤ 18r · 1+ 9r · 0+ 9r · (54r)k−1 ≤ 27r · (54r)k−1.

This proves the lemma. □

Noting that every path is (r−1)-constrained (as every bag contains at most r−1 supernodes), Lemma 4.2
and Lemma 4.5 prove Theorem 1.2.

5 Other Applications

In this section, we describe several applications of our shortcut partition mentioned in the introduction.
We will start with two direct applications (Section 5.1) and then proceed to the application on the
embedding of apex-minor-free graphs (Section 5.2).

10Claim 4.4 is stronger than what we need here
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5.1 Direct Applications

Tree cover. The authors of [CCL+23] provided a construction of (1 + ϵ)-tree cover for minor-free
graphs via shortcut partition. Their definition of (ϵ, h)-shortcut partition is slightly different than
our Definition 1.1; it is strictly weaker. Recall that the low-hop property of Definition 1.1 guarantees:

For any pair of vertices u and v in G, there exists some shortest path π in G between u and
v, and a path π̌ in the cluster graph Ǧ such that (in addition to other properties) π̌ only
contains clusters that intersect π.

The definition of [CCL+23] (Definition 2.1) instead only guarantees:

For any pair of vertices u and v in G, there exists some path π′ in G between u and v with
∥π′∥ ≤ (1+ ϵ)δG(u, v), and a path π̌ in the cluster graph Ǧ such that (in addition to other
properties) π̌ only contains clusters that intersect π′.

This is a weaker guarantee. Also, as mentioned already, the definition of [CCL+23] states that the
hop-length of π̌ is at most h, regardless of δG(u, v), while our definition takes δG(u, v) into account,
allowing smaller hop-lengths for smaller distances. Consequently, the shortcut partition we construct
in Theorem 1.2 can be used in their construction of tree cover.

The tree cover construction of [CCL+23] consists of two steps.11 The first step is a reduction from a
tree cover with multiplicative distortion (1+ ϵ) to a tree cover with additive distortion +ϵ∆, where ∆ is
the diameter, with a loss of a O(log(1/ϵ)) factor to the cover size. In the second step, it is shown that an
(ϵ, h)-shortcut partition for minor-free graphs implies a tree cover of size 2O(h) with additive distortion
+ϵ∆. Their result can be summarized as follows.

Lemma 5.1 (Lemma 1.7 and Theorem 1.8 in [CCL+23]). Let G be a minor-free graph, and ϵ ∈ (0, 1).
If every subgraph of G admits an (ϵ, h)-shortcut partition, then G has a (1+ ϵ)-tree cover of size 2O(h).

By Theorem 1.2, any Kr -minor-free graph has an (ϵ, rO(r)/ϵ)-shortcut partition. This proves Theorem 1.8.

Distance oracle. As discussed in Section 1.2, we construct our distance oracle from our tree cover
(Theorem 1.8): given a query pair (u, v), query the distance dT (u, v) in T , for each tree T in the tree
cover T, and return minT∈T dT (u, v). Distance query in a tree is reduced to a lowest common ancestor
(LCA) query. In the RAM model, there are LCA data structures [HT84, BFC00] with O(n) space and O(1)
query time. In the pointer machine model, this can be carried out with O(n) space and O(log log n) query
time [vL76]. Theorem 1.7 now follows.

5.2 Embedding of apex-minor-free graphs

The authors of [CCL+23] show that any planar graph G with diameter ∆ can be embedded into a graph
of treewidth O(ϵ−4) with distortion +ϵ∆. Their argument uses three properties of planar graphs, which
carries over to any minor-free graph with these properties (Lemma 5.5). Loosely speaking, they show
that if (P1) G has an (ϵ, h)-shortcut partition, (P2) G has an +ϵ∆ forest cover F for G that “interacts
nicely” with the shortcut partition (Lemma 5.4), and (P3) G has the local-treewidth property, then G can
be embedded into a graph of treewidth O(h · |F|) with distortion +ϵ∆.

Theorem 1.2 gives us a shortcut partition for minor-free graphs and hence (P1). Apex-minor-free
graphs have the local treewidth property [Epp00, DH04a, DH04b] (see Lemma 5.2 below) and hence

11The more efficient tree cover construction for planar graphs in [CCL+23] does not follow the two-step framework; instead,
the authors exploited planarity to get a better (and indeed polynomial) dependency on ϵ in the size of the cover.
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satisfy (P3). The main goal of this section is to show (P2) (by proving Lemma 5.4), and we do so by
applying the framework of [CCL+23] to our shortcut partition to construct an appropriate forest cover.

Lemma 5.2 (Diameter-treewidth property [DH04b]). Let G be a graph excluding a fixed apex graph
as a minor. Let D be its (unweighted) diameter. Then tw(G) = O(D).

We note that the big-O in Lemma 5.2 hides the dependency on the size of the minor; it is the Robertson-
Seymour constant. As a result, the dependency on the minor of our Theorem 1.9 also has a Robertson-
Seymour constant.

We recall the construction of the [CCL+23] tree cover for completeness. A forest F is dominating
if dF (u, v) ≥ dG(u, v) for every two vertices u, v ∈ V (G). In the definition of the tree cover for G, we
allow Steiner vertices, i.e., which do not belong to G, in a tree. Here the forest we construct will contain
no Steiner vertices, meaning that V (F) ⊆ V (G). In this case, we say that F is Steiner-free. Let C be a
clustering of G. Let Ǧ be the cluster graph obtained from G by contracting clusters in C; Ǧ is a simple
unweighted graph. Let F̌ be a forest, subgraph of Ǧ such that every tree in F̌ is rooted at some node. We
define the star expansion of F̌ to be a forest F of G obtained by applying the following to each tree Ť ∈ F̌
(see Figure 9):

Let VT denote the set of vertices (of G) that belong to clusters in Ť . Choose an arbitrary
vertex r in the cluster that is the root of Ť . Let T be a star rooted at r connected to every
vertex in VT . We assign each edge (r, u) of T a weight dG(r, u). We then add T to F .

Figure 9. An illustration of G, Ǧ, G′, F , F̌ , and F ′.

Let F̌ be a collection of rooted forests of Ǧ, each of which is a subgraph of Ǧ, called a spanning forest
cover. The star expansion of F̌ is a collection of rooted forests, denoted by F, obtained by taking star
expansion of each rooted forest F̌ in F̌. We note that a forest in F̌ might not be a subgraph of G, but
it is Steiner-free. (That is, each forest might contain Steiner edges—edges not in G—but not Steiner
vertices.) The following lemma was proven in [CCL+23].

Lemma 5.3 (Adapted from Theorem 2.2 and Theorem 2.5 in [CCL+23]). Let G be an edge-weighted
minor-free graph with diameter ∆, and let ϵ ∈ (0, 1). Suppose that G has an (ϵ, h(ϵ))-shortcut partition
C. Let Ǧ be the cluster graph obtained from G by contracting clusters in C. Then there exists a spanning
forest cover F̌ of Ǧ such that its star expansion F satisfies the following properties:
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• [Root preservation.] For every pair of vertices u and v in G, there is a tree T in some forest of F
such that (1) δT (u, v) ≤ δG(u, v) + ϵ∆, and (2) a shortest path from u to v in T passes through
the root of T .

• [Size.] F contains 2O(h(ϵ)) forests.

We remark that the second half of the root preservation property was not explicitly stated in [CCL+23];
however, it is immediate from the fact that F is a set of star forests.

We now show the following structural result for apex-minor-free graphs (see Figure 9 for illustration).

Lemma 5.4. Let G be an edge-weighted graph with diameter ∆ excluding a fixed apex graph as a minor,
and let ϵ ∈ (0, 1). Then there is a partition C of the vertices of G into clusters with strong diameter ϵ∆,
and a set F of 2O(1/ϵ) forests with the same vertex set as G, that satisfy the following properties:

• [Low-hop.] For every pair of vertices u and v, there is a path between u and v that intersects at
most h clusters, for some h= O(1/ϵ).

• [Root preservation.] For every pair of vertices u and v in G, there is a tree T in some forest of F
such that (1) δT (u, v) ≤ δG(u, v) + ϵ∆, and (2) a shortest path from u to v in T passes through
the root of T .

For each cluster C in C, choose an arbitrary vertex vC to be the center vertex, and define the star SC to be
a star connecting vC to every other point in C . Define G′ to be the graph obtained by replacing every
supernode C in cluster graph Ǧ with the star SC : every edge between two clusters in Ǧ is replaced with
an edge in G′ between the centers of the two clusters. Notice G′ has the same vertex set as G.

• [Contracted treewidth.] Graph G′ has treewidth O(h).

• [Forest correspondence.] For every forest F in F, there is a corresponding spanning forest F ′ (a
subgraph of G′) such that: For every tree T in F , there is a tree T ′ in F ′ such that V (T ) = V (T ′)
and root(T ) = root(T ′).

Proof: By Theorem 1.2, there is a partition C of G that is an (ϵ, h)-shortcut partition, for h = O(1/ϵ). By
Lemma 5.3, we can construct a spanning forest cover F̌ of Ǧ and its star expansion F satisfying the root
preservation property. Furthermore, F has 2O(1/ϵ) forests. We now show the other three properties of
the theorem.

[Low-hop.] The low-hop property follows directly from the statement of Theorem 1.2.

[Contracted treewidth.] Let Ǧ denote the graph obtained by contracting every cluster in C into a
supernode. By the low-hop property, the (unweighted) diameter of Ǧ is at most h. Graph Ǧ excludes
the same minors as G, so Lemma 5.2 implies that Ǧ has treewidth O(h). Now notice that we can obtain
G′ from Ǧ by creating new (degree-1) vertices and adding an edge between each new vertex and a
supernode in Ǧ. We construct a tree decomposition for G′, starting from the tree decomposition for Ǧ:
For each new vertex v attached to an existing supernode u, create a bag containing u and v, and add
it as a child to an arbitrary bag containing u in the tree decomposition of Ǧ. This procedure does not
change the treewidth; it is still O(h).

[Forest correspondence.] By definition, each forest F ∈ F is a star expansion of a forest F̌ ∈ F̌. To get
the forest correspondence property, we simply transform F̌ into a forest F ′ on G′ in the natural way: For
each tree Ť in F̌ , replace every vertex C in Ť with the corresponding star SC in G′, and replace every
edge in Ť with the corresponding edge between star centers in G′. We claim that F ′ is a forest. Indeed,
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this transformation maps each tree Ť to a tree T ′ in G′, because T ′ is connected and has one more vertex
than it has edges. Recall that for each tree Ť ∈ F̌ , there is a corresponding tree T ∈ F , which is obtained
by star expansion. By construction, T and T ′ has the same vertex set. We then can set the root of T ′ to
be the same as the root of T .

Further, the trees T ′ are vertex disjoint because the clusters C are vertex disjoint, and there are no
edges between the trees T ′. Thus, F ′ is a spanning forest of G′. □

The following reduction is implicit in [CCL+23].12

Lemma 5.5 ([CCL+23], Section 7). Let G be an edge-weighted minor-free graph with diameter∆, and
let ϵ be a number in (0,1). Suppose there is a partition C of G into clusters of strong diameter ϵ∆,
together with a set of forests F, such that C and F satisfy the low-hop property with parameter h, the
root preservation property, the contracted treewidth property, and the forest correspondence property.
Then G can be embedded deterministically into a graph with treewidth O(h · |F|) and distortion +O(ϵ∆).

Combining Lemma 5.4 and Lemma 5.5 proves Theorem 1.9.
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