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Abstract: The problems of changing the walking speed and stride length of impact-free gaits
for point-foot planar bipeds are addressed. The impact-free gaits are designed using an approach
developed in prior work. It is shown that the impulse controlled Poincaré map (ICPM) approach
can be modified to transition between orbits defining gaits with different walking speeds, and
the continuous controller can be changed during the swing phase to transition between gaits
that have distinct stride lengths. The effectiveness of the approaches is demonstrated using

simulations carried out on a five-link biped.
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NOMENCLATURE
g acceleration due to gravity, (m/s?)
45 length of link j, (m)
m; mass of link j, (kg)

generalized coordinates, ¢ £ [qlT | qQ]T
impulse of uz

J;j mass moment of inertia of link j about its
center-of-mass, (kgm?)

M(q) n X n symmetric, positive-definite mass
matrix

V(q) potential energy of the biped

we R" ! control input vector, uZs [T 73 --- Tn]T

Ug continuous control input, u. = u.(q, ¢)

Uz impulsive control input

v € R? Cartesian coordinates of swing foot, 7 £
e Wl”

0 orientation of link j, measured counter-
clockwise with respect to the vertical

T torque applied on link j by an actuator

mounted on link (j — 1), (Nm)

variable (.) immediately before and after an
event where there is a discontinuous jump
in its value

(.)¢ variable (.) at the start of the swing phase
initial and final value of variable or function
() on distinct gaits

1. INTRODUCTION

The problem of gait design and stabilization for point-
foot bipeds, which are an important class of underactu-
ated, hybrid systems, has received a lot of attention. Vir-

* This work was supported by the National Science Foundation,
under Grant CMMI-2043464.

tual Holonomic Constraints (VHCs), enforced using feed-
back Maggiore and Consolini (2013); Kant and Mukherjee
(2020); Mohammadi et al. (2018), have been successfully
used to design biped gaits. The approaches to gait
design and stabilization by Grizzle and collaborators
Grizzle et al. (2001); Westervelt et al. (2003); Plestan et al.
(2003); Westervelt et al. (2018) use Bézier polynomials
to paramterize the VHCs. The VHCs are enforced by
a nonsmooth controller which drive system trajectories
to the constraint manifold within a single swing phase.
Asymptotically stable gaits on the constraint manifold are
obtained via numerical optimization. Alternative control
designs have been presented in Freidovich et al. (2008);
Ames et al. (2014).

In Khandelwal et al. (2023), a fundamentally different
approach to gait design and stabilization was adopted. A
class of VHCs that guaranteed the existence of a family of
impact-free nominal gaits was proposed. Notably,

e The gait parameters were obtained from solving a set
of algebraic equations.

e The walking speed can be chosen independently of
the gait parameters, which define the stride length.

e Gait stabilization is achieved independently of the
gait design; a continuous controller enforces the
VHCs, and intermittent impulsive inputs stabilize the
orbit corresponding to a certain walking speed.

This paper extends the work in Khandelwal et al. (2023),
and considers the problems of changing the walking speed
for a given stride length by changing the impulsive con-
troller, and changing the stride length by changing the
continuous controller. Thus, it is shown that it is possible
to transition between different orbits on the same con-
straint manifold, as well as between different constraint
manifolds and orbits therein.



2. SYSTEM DYNAMICS
2.1 System Description

The n-link point-foot planar biped of Khandelwal et al.
(2023) is reproduced in Fig.1. A walking gait of the biped
comprises a sequence of alternating single-support and
double-support phases. For the single-support phase, the
stance leg of the biped remains in contact with the ground,
with the stance foot acting as a pivot which does not
slide or leave the ground, and permits rotary motion
without friction. The single-support phase ends when the
swing leg comes in contact with the ground, resulting in a
double-support phase of infinitesimal duration. This phase
involves force interaction between only the swing leg and
the ground, and ends with the relabelling of coordinates
for interchange of stance and swing legs.

Each leg of the biped is comprised of (n—1)/2 links,
with the stance leg links numbered 1 through (n—1)/2
starting from the link in contact with the ground, the torso
numbered link (n+1)/2, and the swing leg links numbered
(n+3)/2 through n starting from the link in contact with
the torso. The link lengths satisfy

€n7j+1 :éj V_] = 1,2,"' ,(n—l)/2

We use the generalized coordinates g = [q1T| qQ]T, where

1 €Q" L gpeQand Q" £ St x St x .- x S, (where
St is the unit circle), defined by

q=1[(02—01) (O3—02) - (0p—0p_1) 62) —11 (1)

where II € R™ has elements equal to zero for all entries
except for the (n+1)/2 entry, which is equal to =.

2.2 Hybrid Dynamic Model

A complete discussion of the hybrid dynamic model will
not be presented here, and is available in Khandelwal et al.
(2023). For the purposes of this paper, we note that the
hybrid dynamics can be divided into the swing-phase dy-
namics (during the single-support phase), and the dynam-
ics of foot-ground interaction and coordinate relabelling
(during the double support phase).

During the swing phase, the biped represents an n-DOF
underactuated system with one passive DOF ¢o, and its

OONG;, j=(n+1)/2

hip joint
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Fig. 1. An n-link point-foot planar biped.

equations-of-motion have the form Kant and Mukherjee
(2020); Khandelwal et al. (2023):

Mi1(q)g1 + M12(q)G2 + h1(q,4) = u
M{5(@)éy + Ma2(q)dz + ho(q,q) =0

which may be rewritten in the form:

G1=A(q,4) + B(@u, G2=C(q:¢) +D(q)u (3)

with the expressions for A(q,q), B(q),C(q,q¢), D(q) avail-
able in Kant and Mukherjee (2020).

(2a)
(2b)

Under the continuous control u., the swing phase dynam-
ics has the state-space representation

i=fa), x2["¢"] €Q" xR (4

Further, any impulsive actuation during the swing phase
results in a discontinuous jump in states.

The double support phase comprises impulsive interaction
between the swing foot and ground, while the stance
foot lifts from the ground without interaction. Following
this, there is an instantaneous interchange between the
stance and swing legs. Both foot-ground interaction and
leg interchange result in discontinuous jumps in the states.

The complete hybrid dynamics of the biped gait can be
described by Khandelwal et al. (2023)

i= f(z), z ¢S, ur =0 @
D. zt=a" +Axz, 2 €S, ur #0 @ (5)
' x+:x_+Amg, r e @
T =R(x7), = €8y @
where
S12{zeQ"xR":v,=0,%, <0} (6a)
S 2{ze€eQ"xR":v,=0,%=0} (6b)

and S £ S; US, is the set of states during the double-
support phase. In (5), Azz and Az, denote the instan-
taneous jumps in states due to impulsive actuation wuz
and foot-ground impact respectively, and R(z) is the rela-
belling map for leg interchange, expressions for which can
be found in Khandelwal et al. (2023).

3. IMPACT-FREE GAITS
8.1 Gait Design Considerations

We recall some key aspects of the impact-free gait de-
sign from Khandelwal et al. (2023) here. The gaits were
designed subject to several boundary conditions. The
boundary condition of zero swing-foot velocity at the time
of swing-foot touchdown ensured no impact. Additional
boundary conditions ensured identical potential and ki-
netic energies at the beginning and end of the swing phase,
and single-step periodicity of the gaits. With the actuated
joint trajectories designed to have the form

Qj :aj01+kj7r+gj SiH(Hj01)7 ] :2,3,'” , (7)
where a; € R, k; € {0,1}, and G;,H; € R, Vj =
2,3,--- ,n, are constants, it was shown (Khandelwal et al.,
2023, Appendix) that impact-free gaits satisfying all
boundary conditions can always be found for bipeds with



n > 5. The parameters are independent of #%, and depend
only on the choice of # € (0,7/2). The value of 6} governs
the stride length of the gait. The parameters governing
the torso motion are chosen to provide sufficient forward
moment to enable the biped to take a step.

3.2 VHCs and Orbit Describing Impact-Free Gait

The actuated joint trajectories in (7) are expressed as
VHCs in terms of the generalized coordinates g as

p(@) =q — ®(q2) =0, ®:8"— Q"' (8)

with the choice of generalized coordinates in (1) and pa-
rameter choices in (Khandelwal et al., 2023, Appendix)
ensuring that the VHCs in (8) are odd, i.e., ®(g2) =
—®(—g2) (Kant and Mukherjee, 2020, Assumption 2),
(Khandelwal et al., 2023, Remark 4). The constraint man-
ifold C corresponding to the VHCs in (8) is

c=~{wdn == 50} ©

The VHCs in (8) are regular and C is stabilizable if
ML(0®/0q2) + Mas # 0 (Kant and Mukherjee, 2020,
Remark 1), (Khandelwal et al., 2023, Remark 5).

The VHCs in (8) are enforced, and C rendered controlled
invariant using the continuous control Kant and Mukherjee
(2020)

ue = [B = (09/0g)D] ' [~ A+ (6°®/0q3)d3
+(0%/0q2)C = kpp — kap]
where k, and kg are positive definite matrices.

(10)

Consistent with (8) being satisfied, i.e. from substituting
(8) in (2b), the swing phase zero dynamics can be ex-
pressed as

Go = a1(q2) + a2(q2) 63 (11)
which has an integral of motion of the form E(g2,q2) =
(1/2)M(q2)d3 +P(q2) Kant and Mukherjee (2020), where
P(g2) has minimum and maximum values Ppi, and Prax-
For energy level sets E(gq,¢2) = ¢, a feasible gait is one
for which ¢ > Ppax, which ensures that the biped is able
to complete a step.

The constraint manifold C contains a family of gaits, all
of which have the same stride length that depends on
the choice of § and the gait parameters in (7). Different
walking speeds can be achieved by choosing different
values of 01, as long as it is greater than some minimum

value. Every choice of (‘)i corresponds to a unique energy
level set ¢*; a particular impact-free gait is the hybrid orbit

O* =C*UR" (12)

C* = {Z‘ eC: E(q2742) = C*} c* > Pmax (1334)
R ={z",27 127 €C*'NSy,at =R(z~) €C*} (13Db)

The only jump in states is due to coordinate relabelling.

8.8 Hybrid Orbit Stabilization

The impulse controlled Poincaré map (ICPM) described
in Khandelwal et al. (2023) is used to stabilize O*. We
choose the Poincaré section:

Y={z€Q"XR":q=¢5,42 <0} (14)

where g5 is chosen to permit the continuous controller
sufficient time to drive system trajectories close to C. The
states on X are:

2= [l d"]",

With impulsive inputs Z applied when the system tra-
jectory intersects X, the hybrid dynamics of the impulse-
controlled system is expressed by the map

2(k + 1) = Plz(k), Z(k)

z€ Q"L x R (15)

(16)

which is obtained numerically and captures the dynamics
between successive intersections of the system trajectory
with X. The intersection of O* with ¥ is a fixed point
z(k) =2z*,Z(k) =0 of P:

z* =P(z%,0) (17)
Starting from a system trajectory not on O*, intermittent
impulsive inputs Z(k) can be used to asymptotically sta-
bilize the fixed point z*, and consequently the orbit O*.
The map P is linearized about z(k) = z* and Z(k) = 0:

e(k+1) = Ae(k) +BZ(k), e(k)=z(k)—z" (18)
A= WzP(Z7I)]z:z*, 7=0

19

B £ [VP(2, )] .. 70 1)

The matrices A € RZ"—1Dx@n=1) and B ¢ RZn—1x(n-1)

are computed numerically. If (A, B) is controllable, the

orbit O* is rendered asymptotically stable by the discrete
feedback:

Z(k) = Ke(k)

with K chosen such that the eigenvalues of (A + BK) lie
inside the unit circle.

The ICPM approach to stabilization of O* is depicted in
Fig.2. The orbit O* (shown in red), intersects ¥ at z*
and corresponds to an impact-free gait where the states
undergo a single discontinuous jump in states (4) due to
coordinate relabelling. A trajectory not on O* (shown in
black) has additional discontinuous jumps in states (2) on
¥ due to application of Z(k), and (3) due to foot-ground
impact. As the system trajectory converges to O* due to
input Z(k), the jumps (2) and (3) converge to zero.

(20)

Fig. 2. The ICPM approach to orbital stabilization of
an impact-free gait (shown in red). The different

components of the hybrid dynamics, namely, (1), (2),
(3 and (@) are described by (5).

Remark 1. The high-gain feedback, applied in addition to
Uc, is used to realize a continuous-time approximation of
impulsive inputs Jafari et al. (2016); Kant and Mukherjee
(2020); Khandelwal et al. (2023):



1

upg = B! ;A((ﬁics(k) —q1)— A (21)

where ¢{°5(k) = dy(k) + BKe(k), A = (1/Ma)B(q)x
[M12h2 - (hl — UC)MQQ], A= dlag [)\1 )\2 s An,1]7 )\1 >
0,i=1,2,---,n—1, and g > 0 is a small number. The
high-gain feedback remains active as long as || (k) —

G1]| > € where € is a small, positive number.

4. CHANGING WALKING SPEED

We consider the problem of changing the walking speed
of the biped while the stride length is kept the same.
This is achieved by changing only the value of 9?[, and
consequently ¢*, while #1 and the associated gait parame-
ters, i.e. the VHCs, are left unchanged. Thus, the system
trajectories during the swing phase evolve on the same
constraint manifold C for both the initial and final gaits;
consequently the continuous controller (10) enforcing the
VHC:s is not altered as it only drives system trajectories to
C. Impulsive inputs are used to guide the system trajectory
from one hybrid orbit to another. Let the initial and final
orbits be given by Of = C;UR; and Of = Cf UR}, where

C; ={z €C: E(q, ¢2) = i} o > Prmax (22a)
Riy={z",2" 12" €eCgNSy,at =R(z7) €C5} (22b)
Ci ={zeC:E(q,d) =c} ¢ > Pmax (22¢)
Ri={z",27 127 €C{NSy,a" =R(z™) €Cf} (22d)
In transitioning from Of to Of, the value of 0% (conse-

quently, ¢*) is changed gradually over a finite number of
steps, as in Khandelwal et al. (2024), by choosing

[ k<h | |
0l ={F(k) ko <k <k, Flhko)= 06 Fk) =0}
i, k>ke

(23)
where F'(k) is a monotonic function. For every intersection
of the system trajectory with ¥ when k € (ko, k), the
fixed point z* = z*(k) must be recomputed. F(k) must
be chosen to ensure that every intersection of the system
trajectory with X lies within the domain of linearization of
2*(k), and the impulsive torques demanded are reasonable.
For k < ko, z*(k) = z§, and for k > k¢, 2*(k) = zf. The
ICPM approach of (18) and (19) is rewritten as

e(k+1) = A(k)e(k) + B(k)I(k), e(k) = z(k) — z*((l;)4)
A(k) £ [VZ]P(Z’I)]z:z*(k), =0

A (25)

B(k) = [VIP(ZaI)L:z*(k),Izo
It must be ensured that the pair [A(k), B(k)] is controllable
Vk, and the gain matrix K in (20) must be recomputed for
every k € {ko,...,k¢}.

5. CHANGING STRIDE LENGTH

A change in the stride length of the biped requires a change
in the value of ¢ and associated gait parameters, resulting
in distinct VHCs &y = Py(g2) and &f = P¢(go) for the
initial and final gaits, and associated constraint manifolds:

Co = {((L(J) tq1 = Polg2), 41 = [?;;ﬂ (12} (26)
O R S e Y Sy

each of which comprise families of impact-free gaits with
different stride lengths. The VHCs ®y and ®¢ are enforced
by the continuous controllers:

Ueo = [B — (080 /q2) D] " [~ A + (0°®0/0¢3) 5

+(0%0/9g2)C — kppo — kapo]  (28)
Uet = [B — (9%:/0qz) D) " [~ A+ (9°®:/043)d5
+(0P¢/0q2)C — kpps — kaps]  (29)

We wish to transition from a gait on Cy to one on Cs.
To do this, the continuous controller in (28) enforcing the
initial VHCs @ is changed to the one in (29) to enforce
the new VHCs ®¢ at step ks when the switch is desired.
While the change from wu.y to uc, may be performed at
any point during the swing phase of step ks, we choose to
do this when the system trajectory passes through ¢, =0
since this represents the intersection of the initial and final
VHCs, which are odd functions, i.e.

Do (0) = P¢(0) =0 (30)
Once the continuous controller has been changed, the
ICPM approach described in section 3.3 can be used to
stabilize the orbit corresponding to the desired walking
speed on Cs.

6. CASE STUDY: FIVE-DOF BIPED

The approaches developed in sections 4 and 5 will be
applied to the five-link biped in Khandelwal et al. (2023),
whose kinematic and dynamic parameters are reproduced
in Table 1. The expressions for the matrices in (2) can be
deduced from Jafari et al. (2013).

An impact-free gait for this biped is described by the
actuated joint trajectories

9j = ajel + k‘j?‘f’ + Qj Sil’l(,Hjel), 7 =2,3,4,5 (31)
For a gait described by (31) and the choice i = /20,
a set of feasible gait parameters are listed in Table 2
Khandelwal et al. (2023). This gait has a stride length of
0.5371 m.

Using (31) and the parameters in Table 2, the VHCs in
(8) can be expressed as:
p@) =q — (@) =0, @:8'— Q"
—0.3500¢2 + 0.1023 sin(20g2)
—0.6500gs — 0.2773 sin(20gs)
—0.6500¢2 + 0.2123 sin(20g2)
—1.1761¢5 — 0.0373 sin(20¢2) — 0.1706 sin(25.5¢2)
(32)

b=

Table 1. Kinematic and dynamic parameters of
five-link biped

J 4 (m) [ dj (m) | my (kg) | J; (kg m?)
1,5 0.5000 | 0.2500 | 0.4000 0.0083
2, 4 0.5500 | 0.2750 | 0.4500 0.0113
3 (torso) | 0.6000 | 0.4200 | 0.5500 0.0165




Table 2. Gait parameters for ¢ = 7/20

2 0.6500 0 0.1023 | 20.0
3 (torso) 0.0000 0 —0.1750 | 20.0
4 —0.6500 1 0.0373 | 20.0
5 —1.8261 1 —0.1706 | 25.5

which are enforced by the continuous controller in (10)
with gain matrices

kp=4501;, kq=401I, (33)

where I, € R™*™ is the identity matrix. In Khandelwal et al.
(2023), the orbit defined by §i = —1.0891 rad /s, which cor-
responds to a walking speed of 1.1554 m/s was stabilized.
This orbit is treated as the initial gait for the simulations
in the subsequent two sections.

6.1 Changing Walking Speed

For the constraint manifold defined by the VHCs in (32),
we wish to transition from the orbit @ defined by i, =
—1.0891 rad/s to Of defined by 6%, = —0.8713 rad/s. This
corresponds to a change in walking speed from 1.1554 to
0.7218 m/s. As described in (23), the value of 6% is changed
following the rule:

—1.0891 k<2
07 =< —1.0891 +0.0311(k —2) 2<k<9 (34)
—0.8713 E>9
We choose the Poincaré section:
Y= {r € Q" xR:q=n/40,4s < 0} (35)

on which to apply impulsive inputs. The states on X are
2,2 € Q* x R®, as defined in (15). For k € {2,...,9}, the
fixed point z* = 2* (k) is recomputed for every 4. For k <
2, z*(k) = z§, the intersection of Of with X, and for k > 9,
z*(k) = zf, the intersection of Of with X. The linearized
matrices A(k) € R%*? and B(k) € R%** are computed
numerically for each z* (k). Every pair [A(k), B(k)] is found
to be controllable, and the gain matrices I obtained using
LQR with the weighting matrices

Q@ = blockdiag [I4 1.5I5], R=2.5I, (36)
The simulation results are shown in Fig. 3 for 16 steps,
which corresponds to a duration of approx. 9.80 s. The
impulsive inputs are realized using the high-gain feedback

in (21), with the choices:

A=14, p=0.0025, €=0.0001 (37)
The components of p(g) plotted in Fig. 3(a)-(d) demon-
strate convergence of the system trajectories to C, with the
jumps in p corresponding to the instants of application of
impulsive inputs. The joint torques 7; are plotted in Fig.
3(e)-(h), with the impulsive torques shown in red. Clearly,
the values of u. are large after un, terminates. It can be
seen that impulsive inputs are not applied for k£ > 14 as
the system trajectories are sufficiently close to Of. The
phase the passive joint is shown in Fig. 3(i) for ¢ < 4 s and
Fig. 3(j) for t > 4 s.

0.15 0.00

0.0 t (5)

9.80

003 0.10

0.00 P4

-0.05 P3

0.0 t (s) 9.80

42
q2

Og

O¢

14
-0.2 q2 0.2

14
0.2 q2 0.2

Fig. 3. Changing walking speed using the ICPM approach:
(a)-(d) show the components of p(g), (e)-(h) show the
joint torques 7;,j = 2,3,4,5, with impulsive torques
shown in red, (i) shows the phase portrait of the
passive coordinate for ¢ < 4 s, with the initial orbit
shown in red, and (j) for ¢ > 4 s, with the final orbit
shown in red.

Table 3. Gait parameters for 6% = 7/16

J aj k; g; H;
2 0.6500 | 0 0.1277 | 16.0
3 (torso) | 0.0000 | 0 | —0.1750 | 16.0
4 —0.6500 | 1 0.0465 | 16.0
5 —1.8261 | 1 | —0.2133 | 204

6.2 Changing Stride Length

We demonstrate transition from a gait with 6% = 7/20
and parameters in Table 2 to one with 67 = 7/16 and
parameters in Table 3. The initial gait is defined by the
VHCs ®g, which are identical to those in (32). The initial

orbit on Cy corresponds to 9’1 = —1.0891 rad/s.

The final gait has a stride length of 0.6702 m, and is defined
by the VHCs
pi(q) = a1 — Pr(q2) =0, @: 5" = Q
—0.3500g2 + 0.1277 sin(16¢-2)
—0.6500¢3 — 0.3027 sin(16¢s2)
—0.6500¢2 + 0.2215sin(1642)
—1.1761g5 — 0.0465 sin(16¢5) — 0.2133'sin(20.4¢5)
(38)

o=

The desired orbit on C¢ that we wish to stabilize is the
one for which 6} = —1.5453 rad/s, which results in the



same walking speed, 1.1554 m/s, as the initial orbit on
Co. The continuous controller is changed from (28) to (29)
when g2 = 0 on step 2; the gains k, and k4 are given
in (33). With the same Poincaré section as in (35), the
intersection of the final orbit (on C¢) with ¥ represents the
fixed point to be stabilized by the ICPM approach. Again,
the pair (A, B), obtained by linearization about the new
fixed point, is controllable, and the gain matrix K obtained
using LQR with the weighting matrices in (36).

The simulation results are shown in Fig. 4 for 10 steps, a
duration of approx. 5.57 s. The impulsive inputs are real-
ized using the high-gain feedback in (21) with parameter
choices (37). The instant the VHCs are changed from ®
to @ is t &~ 0.70 s. Figure 4(a)-(d) shows the components
of po(q) for t < 0.70 s and p¢(q) for t > 0.70 s. For
t > 0.70 s, the controller u.s drives system trajectories
to C¢. The joint torques 7; are plotted in Fig. 4(e)-(h),
with the impulsive torques shown in red. Impulsive torques
are required for £k = 3 through k¥ = 6 to drive system
trajectories sufficiently close to the desired orbit on C.
The phase the passive joint is shown in Fig. 4(i) for ¢ < 2
s and Fig. 4(j) for t > 2 s.

7. CONCLUSION

The problems of changing the walking speed of an impact-
free gait with a given stride length, and of transitioning
between impact-free gaits with distinct stride lengths
are addressed. The first problem was solved by the use
of a wvariation of the impulse controlled Poincaré map
approach to transition between distinct orbits on the same
constraint manifold. The solution to the second problem
involved switching the continuous controller when the
constraint manifolds describing the distinct stride lengths
intersected. The efficacy of the proposed approaches is
illustrated by simulations of a five-link biped. Future work
will focus on the robustness of the gait design.
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