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Abstract. We introduce a new notion called O-secure pseudorandom
isometries (PRI). A pseudorandom isometry is an efficient quantum cir-
cuit that maps an n-qubit state to an (n+m)-qubit state in an isometric
manner. In terms of security, we require that the output of a ¢-fold PRI
on p, for p € Q, for any polynomial g, should be computationally indis-
tinguishable from the output of a g-fold Haar isometry on p.

By fine-tuning Q, we recover many existing notions of pseudorandom-
ness. We present a construction of PRIs and assuming post-quantum one-
way functions, we prove the security of Q-secure pseudorandom isome-
tries (PRI) for different interesting settings of Q.

We also demonstrate many cryptographic applications of PRIs, includ-
ing, length extension theorems for quantum pseudorandomness notions,
message authentication schemes for quantum states, multi-copy secure
public and private encryption schemes, and succinct quantum commit-
ments.

1 Introduction

Pseudorandomness has played an important role in theoretical computer
science. In classical cryptography, the notions of pseudorandom gener-
ators and functions have been foundational, with applications to tradi-
tional and advanced encryption schemes, signatures, secure computation,
secret sharing schemes, and proof systems. On the other hand, we have
only just begun to scratch the surface of understanding the implications
pseudorandomness holds for quantum cryptography, and there is still a
vast uncharted territory waiting to be explored.

When defining pseudorandomness in the quantum world, there are two
broad directions one can consider.

Quantum States. Firstly, we can study pseudorandomness in the con-
text of quantum states. Ji, Liu, and Song (JLS) |JLS18| proposed the
notion of a pseudorandom quantum state generator, which is an efficient
quantum circuit that on input a secret key k produces a quantum state
(referred to as a pseudorandom quantum state) that is computationally
indistinguishable from a Haar state as long as k is picked uniformly at
random and moreover, the distinguisher is given many copies of the state.
JLS and the followup works by Brakerski and Shmueli [BS19,|BS20b| pre-
sented constructions of pseudorandom quantum state generators from
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one-way functions. Ananth, Qian, and Yuen [AQY22| defined the notion
of a pseudorandom function-like quantum state generator, which is simi-
lar to pseudorandom quantum state generators, except that the same key
can be used to generate multiple pseudorandom quantum states. These
two notions have many applications, including in quantum gravity the-
ory [BFV20, |ABF" 23|, quantum machine learning [HBC " 22|, quantum
complexity [Kre21], and quantum cryptography |[AQY22| [MY22]. Other
notions of pseudorandomness for quantum states have also been recently
explored [ABF 23| /ABK "23| |GLG "23].

Quantum Operations. Secondly, we can consider pseudorandomness in
the context of quantum operations. This direction is relatively less ex-
plored. One prominent example, proposed in the same work of [JLS18§],
is the notion of pseudorandom unitaries, which are efficient quantum
circuits such that any efficient distinguisher should not be able to distin-
guish whether they are given oracle access to a pseudorandom unitary
or a Haar unitary. Establishing the feasibility of pseudorandom unitaries
could have ramifications for quantum gravity theory (as noted under
open problems in |[GLG™23|), quantum complexity theory |[Kre21], and
cryptography |GJMZ23|. Unfortunately, to date, we do not have any
provably secure construction of pseudorandom unitaries, although some
candidates have been proposed in |JLS18|. A recent independent work
by by Lu, Qin, Song, Yao, and Zhao |[LQS™ 23| takes an important step
towards formulating and investigating the feasibility of pseudorandom-
ness of quantum operations. They define a notion called pseudorandom
state scramblers that isometrically maps a quantum state [¢) into an-
other state |1)') such that ¢ copies of |¢), where ¢ is a polynomial, is
computationally indistinguishable from ¢ copies of a Haar state. They
establish its feasibility based on post-quantum one-way functions. In the
same work, they also explored cryptographic applications of pseudoran-
dom state scramblers.

Although pseudorandom state scramblers can be instantiated from one-
way functions, the definition inherently allows for scrambling only a sin-
gle state. On the other extreme, pseudorandom unitaries allow for scram-
bling polynomially many states but unfortunately, establishing their fea-
sibility remains an important open problem. Thus, we pose the following
question:
Is there a pseudorandomness notion that can scramble
polynomially many states and
can be provably instantiated based on well studied cryptographic
assumptions?

Our Work in a Nutshell. We address the above question in this work.
Our contribution is three-fold:

1. NEw DEFINITIONS: We introduce a new notion called Q-secure pseu-
dorandom isometries that can be leveraged to scramble many quan-
tum states coming from the set Q.

2. CoNsSTRUCTION: We present a construction of pseudorandom isome-
tries and investigate its security for different settings of Q.
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3. AppLicATIONS: Finally, we explore many cryptographic applications
of pseudorandom isometries.

1.1 Owur Results

Roughly speaking, a pseudorandom isometry is an efficient quantum cir-
cuit, denoted by PRI, parameterized by a keyE k € {0,1}* that takes
as input an n-qubit state and outputs an (n + m)-qubit state with the
guarantee that PRIy is functionally equivalent to an isometry. In terms
of security, we require that any efficient distinguisher should not be able
to distinguish whether they are given oracle access to PRI, or a Haar
isometryE Z. We consider a more fine-grained version of this definition
in this work, where we could fine-tune the set of allowable queries.
More precisely, we introduce a concept called (n,n +m)-Q-secure- pseu-
dorandom isometries (PRIs). Let us first consider a simplified version of
this definition. Suppose n()), ¢(A\) are polynomials and Q,, 4.x is a subset
of ng-qubit (mixed) states. Let Q@ = {Qn ¢, }ren. The definition states
that it should be computationally infeasible to distinguish the following
two distributions: for any polynomials g,

= (p, PRI (p)),

— (o, T (p) (T1)®9),
where p € O, ,» and T is a Haar isometry.
Let us consider some examples.

1. If Qngx = {]0™)®?} then this notion implies a pseudorandom state
generator (PRSG) |JLS13|.

2. If 9, ¢, consists of all possible ¢ computational basis states then
this notion implies a pseudorandom function-like state generator
(PRFSG) |[AQY22, AGQY22|.

3. If Qp q,x consists of g-fold tensor of all possible n-qubit states then
this notion implies a pseudorandom state scrambler (PSS) [LQS"23].

We can generalize this definition even further. Specifically, we allow the
adversary to hold an auxiliary register that is entangled with the register
on which the g-fold isometry (PRIl or Haar) is applied and we could
require the stronger security property that the above indistinguishability
should hold even in this setting.

In more detail, p is now an (ng + £)-qubit state and the distinguisher is
given either of the following:

= (p, (e @ PRIZY) (p),

- (p, (Le®ZP) p (Iz ®Z;®q))

where I, is an ¢-qubit identity operator. We can correspondingly define
Q to be instead parameterized by n,q, ¢, A, and we require p € Qp g,0,x-
The above generalization captures the notion of pseudorandom isome-

tries (discussed in the beginning of [Section 1.1) against selective queries.

1 We denote A to be the security parameter.

2 The Haar distribution of isometries is defined as follows: first, sample a unitary from
the Haar measure, and then set the isometry, that on input a quantum state |¢), first
initializes an ancilla register containing zeroes and then applies the Haar unitary on
|1} and the ancilla register.
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Specifically, if PRIy is a Q-secure pseudorandom isometry (according to
the above-generalized definition), where Q is the set of all possible ng+¢-
qubit states then indeed it is infeasible for an efficient distinguisher mak-
ing selective querieaE to distinguish whether it has oracle access to PRIy
or a Haar isometry oracle.

Thus, by fine-tuning Q, we recover many notions of pseudorandomness
in the context of both quantum states and operations.

Construction. We first study the feasibility of PRIs.

We present a construction of PRIs and investigate its security for different
settings of Q. On input an n-qubit state |1)) = 3> (o130 @ |2), define
PRIk |¢) as follows:

1 Frq (=lly)
PRIk |¢) = N Z - wp Y gk, (2]]y))
2€{0,1}7,ye{0,1}™

In the above construction, we parse k as a concatenation of two Ai-
bit strings k1 and k2, where A\ = 2X;. The first key ki1 would serve
as a key for a pseudorandom function f : {0,1}* x {0,1}"™™ — Z,,
where p ~ 2 is an integer. The second key ko would serve as a key
for a pseudorandom permutation g : {0, 1}* x {0, 1}"*™ — {0,1}""™.
Both f and g should satisfy quantum query security. Moreover, both of
them can be instantiated from post-quantum one-way functions [Zhal2,
Zhal6|. We require n to be a polynomial in A, larger than A, and similarly,
we set m to be a polynomial in A, larger than A.

The above construction was first studied by [BBSS23, ABF ' 23|, perhaps
surprisingly, in completely different contexts. Brakerski, Behera, Sattath,
and Shmueli [BBSS23| introduced a new notion of PRSG and PRFSG
and instantiated these two notions using the above construction. Aaron-
son, Bouland, Fefferman, Ghosh, Vazirani, Zhang, and Zhou |ABF " 23]
introduced the notion of pseudo-entanglement and instantiated this no-
tion using the above construction. An important property of this con-
struction is that it is invertible, that is, given the key k, it is efficient to
implement Invy such that Invg PRI is the identity map.

It is natural to wonder if it is possible to modify the above construction
to have binary phase as against p'”* roots of unity, for a large p. There is
some recent evidence to believe since [HBK23| showed that pseudoran-
dom unitaries cannot just have real entries.

Security. We look at different possible settings of @ and study their

securityE.

I. HAAR STATES. Our main contribution is showing that the output of
PRI, on many copies of many n-qubit Haar states, namely, (\wl)@’t s

3 Roughly speaking, the selective query setting is one where all the queries are made
at the same time. In contrast, in the adaptive query setting, each query could depend
on the previous queries and answers.

4 We only consider a simplified version of these settings here and in the technical
sections, we consider the most general version.
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[15)®") with t being a polynomial and |31),...,|is) are Haar states, is
computationally indistinguishable from a Haar isometry on (i), ...,
[45)®"). Moreover, the computational indistinguishability should hold
even if (J1)®", ..., [4s)®") is given to the QPT adversary. In other
words, PRIy can be used to map maximally mixed states on smaller
dimensional symmetric subspaces onto pseudorandom states on larger
dimensional symmetric subspaces. We consider the following setting:

— Let t(A) and s(A) be two polynomials. Let g =s-t and £ =n - q.

— We define Quaar = {Qn.q,6,1}eny Where Qn g ex is defined as fol-

10W£:
Ongex = {E¢1>,4,.,¢5><—%l {@ ) (i ®* ® ® ¢i><7/)i®t] }
i=1

i=1

Recall that the first £ qubits (in the above case, it is the first ¢ red-

colored copies of n-qubit Haar states |11) , ..., |¢s)) are not touched.
On the next ¢ n-qubit states (colored in blue), either PRI%Q or I®1
is applied.

We prove the following.

Theorem 1 (Informal). Assuming post-quantum one-way functions
exist, PRIl is a Qnaar-secure pseudorandom isometry.

This setting is reminiscent of the weak pseudorandom functions [DN02,
ABG " 14] studied in the classical cryptography literature, where we re-
quire the pseudorandomness to hold only on inputs chosen from the
uniform distribution on binary strings.

APPLICATION: LENGTH EXTENSION THEOREM. As an application, we
demonstrate a length extension theorem for PRSGs and PRFSGs. Specif-
ically, we show how to extend the output length of both these pseudo-
randomness notions assuming PRIs secure against Haar queriesE. Specif-
ically, we show the following.

Theorem 2 (Length Extension Theorem; Informal). Assuming
OHaar-secure pseudorandom isometry, mapping n qubits to n + m qubits,
and an n-qubit PRSG, there exists an n + m-qubit PRSG.

Similarly, assuming a Qmnaar-secure pseudorandom isometry, mapping n
qubits to n+m qubits, and n-qubit PRFSG, there exists an (n+m)-qubit
PRFSG.

Prior to our work, the only known length extension theorem was by
Gunn, Ju, Ma, and Zhandry [GJMZ23| who demonstrated a method to
increase the output length of pseudorandom states and pseudorandom
unitaries but at the cost of reducing the number of copies given to the
adversary. That is, the resulting PRSG in their transformation is only

5 J#, denotes the Haar distribution on n-qubit Haar states.

5 An (n,n + m)-pseudorandom isometry secure against any Q trivially gives a PRSG
or PRFSG on n 4+ m qubits. However, our length extension theorem requires the
underlying PRI to only be secure against Haar queries.
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secure if the adversary is given one copy. On the other hand, in the above
theorem, the number of copies of the PRSG is preserved in the above
transformation.

II. MANY COPIES OF AN m-QUBIT STATE. We also consider the setting
where we have multiple copies of a single state. Specifically, we consider
the following setting:

— Let ¢ = g(\) be a polynomial. Let £ =n - q.

— We define Qsingle = {Qn,q,6.3} s> Where Qp g ¢.x is defined as fol-

lows:

Oner = {[0)° ® )" ) € SEC)}
We prove the following.

Theorem 3 (Informal). Assuming post-quantum one-way functions
exist, PRIy is a Qsingle-secure pseudorandom isometry.

Informally, the above theorem ensures that even if an efficient distin-
guisher is given polynomially many copies of |¢), for an arbitrary n-
qubit state |1}, it should not be able to efficiently distinguish ¢ copies of
PRIy, [1) versus ¢ copies of Z |v), for any polynomial g(X).

APPLICATION: PSEUDORANDOM STATE SCAMBLERS.

A recent work |LQS'23| shows how to isometrically scramble a state
such that many copies of the scrambled state should be computation-
ally indistinguishable from many copies of a Haar state. Our notion
of Qsingle-secure pseudorandom isometry is equivalent to pseudorandom
state scramblers. Thus, we have the following.

Theorem 4 (Informal). Osinge-secure pseudorandom isometry exists
if and only if pseudorandom state scramblers exist.

The work of [LQS™ 23] presents an instantiation of pseudorandom scram-
blers from post-quantum one-way functions. While our result does not
give anything new for pseudorandom scramblers in terms of assump-
tions, we argue that our construction and analysis are (in our eyes) much
simpler than |LQS"23|. In addition to pseudorandom permutations and
functions, they also use rotation unitaries in the construction. Their anal-
ysis also relies on novel and sophistical tools such as Kac random walks
whereas our analysis is more elementary.

AppLICATION: MULTI-COPY SECURE PUBLIC-KEY ENCRYPTION.
There is a simple technique to encrypt a quantum state, say [¢): apply
a quantum one-time pad on |¢) and then encrypt the one-time pad keys
using a post-quantum encryption scheme. However, the disadvantage of
this construction is that the security is not guaranteed to hold if the
adversary receives many copies of the ciphertext state. A natural idea
is to apply a unitary t-design on [¢)) rather than a quantum one-time
pad but this again only guarantees security if the adversary receives
at most ¢ queries. On the other hand, we formalize a security notion
called multi-copy secure public-key and private-key encryption schemes,
where the security should hold even if the adversary receives arbitrary
polynomially many copies of the ciphertext.
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Theorem 5 (Informal). Assuming Qsingle-secure pseudorandom isom-
etrgE, there exists multi-copy secure private-key and public-key encryp-
tion schemes.

The investigation of multi-copy security was independently conducted
by |LQS " 23|. However, they only studied multi-copy security in the con-
text of one-time encryption schemes whereas we introduce the definition
of multi-copy security for private-key and public-key encryption schemes
and establish their feasibility for the first time.

ConNJECTURE. Unfortunately, we currently do not know how to prove
that PRI is a Q-secure pseudorandom isometry for every Q. We leave
the investigation of this question as an interesting open problem.

Conjecture 1. For every Q = {Q .02} ren, where Q,, ¢ consists of
ng-qubit states, PRIy is a Q-secure pseudorandom isometry.

Other Applications. We explore other applications of PRIs that were
not covered before.

APPLICATION: QUANTUM MACs. We explore novel notions of message
authentication codes (MAC) for quantum states. Roughly speaking, in
a MAC for quantum states, there is a signing algorithm using a signing
key sk that on input a state, say |¢), outputs a tag that can be verified
using the same signing key sk. Intuitively, we require that any adversary
who receives tags on message states of their choice should not be able to
produce a tag on a challenge message state. For the notion to be mean-
ingful, we require that the challenge message state should be orthogonal
(or small fidelity) to all the message states seen so far.

There are different settings we consider:

— In the first setting, the verification algorithm gets as input multiple
copies of the message state |¢)) and the tag state. In this case, we
require the probability that the adversary should succeed is negligi-
ble.

— In the second setting, the verification algorithm gets as input many
copies of the message state but only a single copy of the tag. In this
case, we weaken the security by only requiring that the adversary
should only be able to succeed with inverse polynomial probability.

— Finally, we consider the setting where we restrict the type of message
states that can be signed. Specifically, we impose the condition that
for every message state [¢), there is a circuit C' that on input an
all-zero state outputs [¢). Moreover this circuit C' is known to the
verification algorithm. In this case, we require that the adversary
only be able to succeed with negligible probability.

We show how to achieve all of the above three settings using PRIs.

APPLICATION: LENGTH EXTENSION THEOREM. Previously, we explored
a length extension theorem where we showed how to generically increase

7 We additionally require that the pseudorandom isometry satisfy an invertibility con-
dition. We define this more formally in the technical sections.
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the output length of pseudorandom (function-like) state generators as-
suming only PRIs secure against Haar queries. We explore a qualitatively
different method to extend the output length of pseudorandom states.
Specifically, we show the following.

Theorem 6 (Informal). Assuming the existence of (n,n + m)-secure
pseudorandom isometry and an (2n)-output PRSG secure against o(m)
queries, there exists a (2n + m)-output PRSG secure against the same
number of queries. Moreover, the key of the resulting PRSG is a concate-
nation of the (2n)-output PRSG and the (n,n + m)-secure PRI.

One might be tempted to conclude that a unitary o(m)-design can be
used to get the above result. The main issue with using a o(m)-design
is that it increases the key size significantly [BCH " 21]. However, in the
above theorem, if we start with a PRI with short keys (i.e., A < m)
then the above transformation gets a PRSG with a much larger stretch
without increasing the key size by much. E

1.2 Technical Overview

Haar Unitaries: Observations Before we talk about proving se-
curity of our construction, we point out some useful properties of Haar
unitaries. Note that Haar isometries are closely related to Haar unitaries
since the former can be implemented by appending suitably many zeroesE

followed by a Haar random unitary.

Behavior on Orthogonal Inputs. In the classical world, a random func-
tion f with polynomial output length is indistinguishable from the cor-
responding random permutation g against a query-bounded black-box
adversary A. One can prove this fact in three simple steps:

1. Without loss of generality one can assume A only makes distinct

queries {x1,...,%q}-

2. f is perfectly indistinguishable from g conditioned on the fact that
f(2:) # fla;) for i # j.

3. If the number ¢ is polynomial, then the probability that f has a
collision on {z1,...,x4} is negligible.

Now consider the quantum analogue of the same problem. Namely, con-
sider two oracles O1,O2 that can only be queried on classical inputs,
where: (1) O1 on input x outputs U |z), where U is a Haar unitary; and
(2) O3 for each distinct input z, outputs an i.i.d. Haar-random state |1).
Our goal is to show that O1, O3 are indistinguishable against a query-
bounded quantum adversary A. If we try to replicate the classical proof
above, we run into problems: we can no longer assume distinct queries
due to the principle of no-cloning, and we need to generalize step |3| in
a non-trivial to an almost-orthogonality argument. Instead, we consider
an alternative proof for the classical case.

Fix the set of queries {z1,...,z4} and for 0 < i < ¢ define a hybrid
oracle O; as follows:

8 The proofs can be found in the full version |https://eprint.iacr.org/2023,/1741.
9 The state being appended and the position of the new qubits is not important.
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— For1<j<gq,ifz; € {z1,...,24-1}, then output consistently as
the previous instance of the same query.

— Otherwise, for 1 < j < ¢: On input z;, sample y; ¢ {y1,...,yj-1}
uniformly at random and output y;. For i + 1 < j < ¢, sample an
i.i.d. random answer y; and output y;.

Now, one can argue that O; is perfectly indistinguishable from O; 1 con-
ditioned on the answer y;11 sampled by O; satisfying yi+1 € {y1,...,¥:}-
It turns out this argument is more easily generalizable to the quantum
case, where we can define oracle O; as answering z1,...,x; using a ran-
dom isometry and answering xit1, . .., Z4 using i.i.d. Haar-random states
(while maintaining consistency). Indistinguishability of O; and O;41 fol-
lows from an analysis comparing the dimensions of the subspaces the
hybrid oracles sample outputs from.

Almost-Invariance Property. The security definition for a pseudoran-
dom unitary, and similarly isometry, can be cumbersome to work with.
Let us focus on the information-theoretic setting first, i.e. when there is
no computational assumption on the adversary besides a query bound.
We investigate what it means for a candidate pseudorandom unitary Fj
to be information theoretically indistinguishable from a Haar unitary
U for different query sets Q; in other words, we consider statistical Q-
security of Fy. Rather than attempting to directly calculate the trace
distance between the output of Fj on a given query p and the output
of a Haar unitary I/ on the same input, which may look significantly
different for different values of p, we are naturally drawn to look for a
simpler condition that suffices for security.

Accordingly, we show that F} is statistically Q-secure if and only if for
every p € Q which describes g queries to Fj, we have that F,;@qp(F,I)‘@q
changes only negligibly (in trace distance) under the action of g-fold Haar
unitary U®?(-)(UT)®?. We prove this fact for any quantum channel @ (in
particular for &(-) = Fj,(-)F}) as long as & is a mixture of unitary maps,
and the proof follows by the unitary invariance of the Haar measure.
We note that the argument above can be easily generalized to a pseu-
dorandom isometry (PRI), since an isometry can be decomposed into
appending zeroes followed by applying a unitary.

Next, we will describe our construction, then discuss its security and
applications in more detail.

Construction We describe how to naturally arrive at our construc-
tion of pseudorandom isometry, which was recently studied by |[BBSS23,
ABF 23| in different contexts. Given an input state |[¢) = 3" s |z), we
will first apply an isometry T to get a state |¢) = >0, |z), followed
by unitary operations. A commonly used technique to scramble a given
input state |p) is to apply a random binary function f with a phase
kickback |JLS18|, i.e. apply the unitary Oy |¢) = 3(=1)¥*)6, |z). The
action of Oy on a mixed state g-query input p = 3°_ ., 8z |2) (7| can
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be calculated as

E (000} ] = | 3o (-)= T D512 (2]

Z,Z

=> B2 1D (Z|E [(—I)Ei f(zi)+f(z§)i| ‘
f

—
s

Observe that if Z and Z’ are related by a permutatio then
(—1)2if(zi)+f(z§) = 1. Otherwise, if there exists z, which occurs odd
number of times in Z and even number of times in Z' (or vice versa),
we get (—1)>i FE+IE) = 0. Ideally we would like all terms |2) ('] to
vanish when Z and Z’' are not related by a permutation. We can easily
fix this by switching to p-th root of unity phase kickback, i.e. apply Oy
for a random function f with codomain Z,, where O [¢)) = >ow w{:(z) |x)
and wp = 2™/ Ag long as ¢ < p (e.g. q is polynomial and p is super-
polynomial), we get that

E[O7%(0D™] = 3 Baa (2.

Z,Z
Jo: Z'=0(2)

Now we would like to scramble the remaining terms |Z) (Z/| in the equa-
tion above. A natural try is to apply a random permutation 7 in the
computational basis, denoted by O, as a unitary operation. Such an
operation would scramble the term above as O27|2) (#'| (O1)®9, which
only depends on o as long as Z has distinct entries. Hence, to achieve
maximal scrambling we would like |¢) to have negligible weight on states
|Z) with collisions of the form z; = z;.

In order to make sure that the weight on |Z) with distinct entries is close
to 1, we pick T to append a uniform superposition of string which
brings us to the information-theoretic inefficient construction

1 x
Gigm ) = N > e - wp A |x(zlly)), (1)
2€{0,1}" ye{0,1}™

To make the construction efficient, we instantiate f and g with a post-
quantum pseudorandom function and a post-quantum pseudorandom
permutation, respectively, hence reaching our construction

1 Ty (2lly)
Fe W)= 2= 30w g (ally)).
z€{0,1}",ye{0,1}™

Security Proof As a first step, we argue that a QPT adversary cannot
distinguish the PRF (f%,) and the PRP (gi,) from a random function
and a random permutation, respectively. To show this we use a 2¢-wise

10 This condition will later be referred to as Z and 2 having the same type.
11 Note that this step crucially relies on the fact that we are constructing a pseudoran-
dom isometry, not a pseudorandom unitary.
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independent hash function as an intermediate hybrid for fx, to get an ef-
ficient reduction, following |Zhal2| who showed that such a hash function
is indistinguishable from a random function under g queries. Combining
this with |[Zhal6] who showed how to instantiate the PRP (gi,) from
post-quantum one-way functions, we successfully invoke computational
assumptions.
Now that we have invoked the computational assumptions as per the exis-
tence of quantum-secure PRF and PRP, we are left with the information
theoretic construction given by G(s,~) (eq. (1)), which is parametrized
by a random function f and a random permutation 7. Below, we write
p € Q as a short-hand to mean p € Q,, 4,¢,» for some A € N. To show that
Gy, is statistically Q-secure for different query sets Q, we will show
that the output of G ») under any query p € Q is almost-invariant un-
der g-fold Haar unitary as per our second observation above. We achieve
this in two steps:
Step 1: Find a particular mixed state puni, to be defined later, which
is almost-invariant under g-fold Haar unitary. Conclude that if the
output of G ) under any query p € Q is negligibly close (in trace
distance) to puni, then it is g-fold Haar almost invariant, hence G(5,m)
satisfies statistical Q-security.
Step 2: For 3 different instantiations of Q, prove that the condition
in Step 1 is satisfied, hence Gy ) is statistically Q-secure.
Note that our proof-strategy outlined above is a top-down approach, and
the first two steps can be viewed as reducing the problem of PRI-security
to a simpler condition that is easier to check for different query sets, and
is independent of the action of Haar isometry on Q. In Step 3, we show
instantiations of Q that satisfy the simpler condition. Next, we delve into
the details of each step.

Step 1: An Almost-Invariant State: pyn;. Having established g-fold
Haar almost-invariance as a sufficient condition for statistical security of
G (s,m), it is natural to ask the question:

Can we find a state p* which is both:

(a) close to the output of Gy x) on certain inputs, and

(b) q-fold Haar almost-invariant?
This would allow us to use negligible closeness to p* as a sufficient con-
dition for g-fold Haar almost-invariance, hence for statistical security of
G(s,m)- We start by analyzing condition (a).
We restrict our attention to queries with a particular, yet quite general,
structure. Namely, suppose Q = {Q,, ¢,¢,2} is such that every p € Q is a
mixture of pure states of the form ®?:_, [¢:)®", where ¢ = st. In other
words, the adversary makes queries in the form of s states with t-copies
each, or formally queries from the s-fold tensor product of symmetric
subspaces, denoted by H = (Vt(CN)s. For such inputs, the output of
the isometry will belong to the corresponding tensor product of sym-
metric subspaces H' := (VIC"™)", where N = 2" and M = 2™. It is
known |[Harl3| that # is spanned by s-fold tensor product of type states
[Y7y,.... 1) = @ji_; [typer,), where [types,) is a uniform superposition
over computational basis states |Z) € CV* of the same type (T}), where

11
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Z and ¢ are said to have the same type if f = o& for some permutation
o € S; over t elements.

To understand the action of G ») on Q, we consider its action on a basis
state |¢r, ... 1,) of H. We first look at the action of a random isometry
Z on |¢r,,....1,) and see that

Ig[fg)q |1y, ) (U .. TS‘I®q} = ET, [WT{ ,,,,, TS/><¢T{,...,TS/‘]

T, T!
is maximally mixed over H’, where T7, ..., T, are types over C¥M? The
same fact is not quite true for Gy ) due to cross terms. Nonetheless,
such terms cancel out whenever (71, ...,7Ts) form a set of unique types,
denoted by (T1,...,Ts) € Tunin ,, meaning collectively they span st dis-

tinct computational basis states |z) € CV, thanks to the nice algebraic
structure of the image of f, i.e. Z,. As a result, we get

® ®
fﬂ%r [G(f?ﬂ') |1/]T1 ..... Ts > <'¢)T1 ,,,,, Ts | G(flfﬂ,)]

[lory, ) Wry, )] = puni 2)

(T}, TT ptm
ums’t

for any (Th,...,Ts) € Tjni;t. Fortunately, puni satisﬁeﬁ property (b) as
well. The reason is that the ¢-fold unique type states |[¢1, ... 7, ) constitute
the vast majorit of the basis for H’, so that pun is negligibly close
to the maximally mixed state over H’, which is invariant under g¢-fold
unitary operations. Therefore, if G%‘fﬂp(GIf’w))@q is negligible close to
puni, then it is g-fold Haar almost-invariant, hence we have a simpler
sufficient condition to check for PRI security as desired. Note that so far
we have ignored the ¢-qubit (purification) register held by the adversary,
but the arguments generalize without trouble.

Step 2: Closeness to pyni- In the final step of our security proof, we
show that Gy ) is statistically Q-secure for three instantiations of Q by
showing that the output of G(fm) is close to puni in each case.

DistiNcT TYPES: By |eq. (2), it follows that G(f ) is Q-secure fo

Q = T’”i?,t' We can generalize this to distinct type states |Yr, .. 1.),
which are defined by the condition that the computational basis states
spanned by the types T; are mutually disjoint, denoted by (T1,...,Ts) €
73;52‘{ Note that 7],1@% C 73;52% since for types (11,...,7Ts) € 7:“5?_‘ each
T; may contain repetitions. Fortunately, a careful analysis shows that
the output of Gy ) on a distinct type state acquires a nice form and is
close to puni as well. Intuitively, the reason for this is that the first step

in our construction appends a random string @ to the input query, and

12 We note that Puni = Punig ¢ 18 parametrized by s,t in the tecnhical sections, which we
omit here for simplicity of notation.

13 This follows from the fact that a random type will contain no repetitions with over-
whelming probability as long as ¢ = poly(}\).

4 The reader may observe that we can also consider the convex closure of ﬂni?’f
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after this step the internal collisions in 'Eisgt get eliminated except with
negligible weight. Accordingly, we get security for the query set

Qdistinctt,s = {® |typeTi><typeTi| : (T17 e 7TS) € 73]5?,1 } .

i=1
As a corollary, we conclude that our construction is secure against com-

putational basis queries.

MaNy CoPIES OF AN n-QUBIT STATE: Next, we show security for many
copies of the same pure state, defined by the query set

Qsinge = {1)%' @ [1)®* + 9) € S},

which allows for the adversary to keep t copies of the state that are not
fed into the PRI, with ¢ = ¢ = t. We can write the input state in the
type-basis of the symmetric subspace as

W) (|*" = > ar g typer) (types| .

T, 7!

Thanks to the algebraic structure of Z,, the terms with T # T’ vanish
under the application of G%qﬂ)(-)(GJ(rf ﬂ))®q. The rest of the terms are
approximately mapped to puni as we showed in Quistinct, ,-security above

(by taking s = 1). Hence, the result follows.

HaAR STATES: Finally, we consider the case when the query contains
a collection of s i.i.d. Haar states, with ¢ copies of each kept by the
adversary and t copies given as input to the PRI, i.e. the query set is

W@l e |wi><wi|®*} } |

Note that without the red part, the security would simply follow by
taking an expectation over unique types in Since the adversary
will keep t copies of each Haar state to herself, she holds an entangled
register (purification) to the query register, hence we need to work more.
We first recall that the query phaar € QHaar is negligibly close to the
uniform mixture of unique s-fold type states (for 2¢ copies). We combine
this with the useful expression

s

OHaar = {E|w1>,-~,|’¢s>e%n |:®

i=1

hmeM:éﬁZ S @@, 3)

o€S2t Fe[N]?t
type(7)=T

to express the output as

&t - -
pox E [@ (1t @ (Girm) ") 1) (0s(a0)]
T17-,<-7Ts =1
(@1, ,@5)€(T, -+, Ts)
01, ,05E€S2¢

13
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. (Im ® (szm))@t))} '

Above, due to the nice structure of G s ), the only terms that do not
vanish are those with permutations o; that act separately on the first and
the last n qubits, i.e. o;(#;) = o} (azzl)||af(m?) with ¢? € S,,, 2% € {0,1}".
With this observation, and using in reverse, we see that the g¢-
fold application of Gy ) effectively unentangles the state, which was the
only barrier against security.

Applications We discuss applications of PRIs, giving an overview of

Multi-Copy Secure Encryption. As a first application, we achieve multi-
copy secure public-key and private-key encryption for quantum messages.
Multi-copy security is defined via a chosen-plaintext attack (CPA) with
the modification that the CPA adversary gets polynomially many copies
of the ciphertext in the security experiment. This modification only af-
fects security in the quantum setting due to the no-cloning principle, with
the ciphertexts being quantum states. We note that using ¢-designs one
can achieve multi-copy security if the number of copies is fixed a-priori
before the construction, whereas using PRI we can achieve it for arbi-
trary polynomially many copies. Multi-copy security was independently
studied by |[LQS™ 23| albeit in the one-time setting.

We will focus on the public-key setting, for the private-key setting is sim-
ilar. Formally, we would like an encryption scheme (Setup, Enc, Dec) with
the property that no QPT adversary, given p®*, where p < Enc(|us)),
can distinguish the cases b = 0 and b = 1 with non-negligible advan-
tage, for any quantum messages |¢o), |t1). In the construction, we will
use a post-quantum public-key encryption scheme (setup,enc,dec) and
a secure pseudorandom isometry PRI. The public-secret keys are those
generated by setup(1*). To encrypt a quantum message 1), we sample a
PRI key k and output (ct, ¢), where ct is encryption of k using enc, and
¢ < PRI (]¥)). Note that for correctness we need the ability to efficiently
invert the PRI, which is a property satisfied by our PRI construction.
To show security, we deploy a standard hybrid argument where we invoke
the security of (setup, enc,dec) as well as the QOsingle-security of PRI. This
suffices since we only run PRI on copies of the same pure-state input (the
quantum message).

Succinet Commitments. |GIMZ23| showed how to achieve succinct
quantum commitments using pseudorandom unitaries (PRU) by first
achieving one-time secure quantum encryption, and then showing that
one-time secure quantum encryption implies succinct commitments. We
adapt their approach to achieve succinct quantum commitments from
PRIs. [LQS™ 23] uses the work of [GJMZ23]| in a similar fashion to achieve
succinct commitments from quantum pseudorandom state scramblers.

To one-time encrypt a quantum message, we apply in order: (1) inverse
Schur transform, (2) PRI, and (3) Schur transform. Note that in contrast
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with |GJMZ23|, the Schur transforms in (1) and (3) have different di-
mensions. The security proof follows that of |[GJMZ23| closely and relies
on Schur’s Lemma.

Quantum MACs. We show how to achieve a restricted version of quan-
tum message authentication codes (QMACSs) using an invertible pseudo-
random isometry PRI. We face definitional challenges in this task.
Similar to an injective function, an isometry does not have a unique
invers We discuss this and give a natural definition of the inverse in
[Section 2.1.

There is extensive literature [BCG 02, [DNS12, |GYZ17,|AM17| on one-
time, private-key quantum state authentications, i.e., the honest par-
ties can detect whether the signed quantum state has been tempered.
However, defining many-time security, such as existentially unforgeable
security under a chosen-message attack, is quite challenging. In particu-
lar, defining QMACS is non-trivial for several reasons, explicitly pointed
out by [AGM18|. Firstly, one needs to carefully define what constitutes
a forgery, and secondly, verification may require multiple copies of the
message and/or the tag. We give a new syntax which differs from the
classical setting in that the verification algorithm outputs a message in-
stead of Accept/Reject.

In our construction, the signing algorithm simply applies PRI to the
quantum message, whereas the verification applies the inverse of PRI.
Given this syntax, we show that our construction satisfies three different
security notions:

— In the first setting, the verification algorithm is run polynomially
many times in parallel on fresh (message, tag) pairs, and the out-
puts of the verifier is compared with the message using a SWAP
test. We argue that during a forgery, each swap test succeeds with
constant probability, hence the forgery succeeds with exponentially
small probability due to independent repetition of SWAP tests.

— In the second setting, the verification is run once on the tag, and
the output is compared to polynomially many copies of the message
using a generalized SWAP test called the permutation test [BBD 197,
KNYO08, GHMW15, BS20a|. The upside of this security notion is that
it requires only one copy of the tag, yet the downside is that the it
yields inverse polynomial security rather than negligible security.

— In the third setting, the adversary is asked to output the description
of an invertible quantum circuit that generates the forgery message
on input |0"), together with the tag. In this setting, the verification
is run on the tag, and the inverse of the circuit is computed on the
output to see if the outcome is |0™). We show that negligible security
in this setting follows as a direct consequence of PRI security.

Now we will describe the security proof for the first and the second set-
tings. Firstly, we can replace the PRI with a Haar isometry Z using PRI
security. Next, suppose the adversary A makes ¢q queries [¢1) , ..., |1q) to
the signing oracle, receiving tags |v1),...,|vq) in return. Let the forgery

15 We remind the reader that the map Z' is not a physical map (quantum channel) for
a general isometry Z.
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output by A be (|¢*),|¢*)). It is forced by definition that [¢)*) is or-
thogonal to V' := span(|¢1),...,|1)q)). From A’s point of view, Z [¢*)
is a Haar-random state sampled from V*. Therefore, any |¢*) € V will
be mapped to a state orthogonal to [)*) by the verification, whereas
a forgery satisfying |¢*) € V= is as good as any other such forgery.
Putting these together, a straightforward calculation using the fact that
dimV < ¢ <« 2” suffices for the proof in both settings.

PRS Length Extension. We show how to generically extend the length
of a Haar-random state using a small amount of randomness assuming
the existence of PRIs. Formally, we show that if PRI is a secure (n, n+m)-
pseudorandom isometry, then given ¢ copies of a 2n-qubit Haar-random
state |0), the state (I, ® PRI)®?|0)®", obtained by applying PRI to
the last n qubits, is computationally indistinguishable from ¢ copies of a
(2n + m)-qubit Haar-random state |v)®".

In the proof, we can replace PRI with a random isometry Z up to negli-
gible loss invoking security. After writing |6) (8|®" as a uniform mixture
of type states, we obtain the expression

¢ = B [ D [typer)(typer| (1, © 7)™

where by a collision-bound we can assume (up to a negligible loss) that T’
is sampled as a good type, meaning if it contains strings {z1||y1 . . . z¢||y¢ },
then z; # x; and y; # y; for i # j. For such good types T, we
can show that the state p’ is close to the uniform mixture of type
states |types) (typer/| spanning states of the form |Z)|Z), where Z €
{0,1}"F™* is a random vector with pairwise distinct coordinates. This
is because the mapping (I, ® I)®t scrambles ¥ and leaves T untouched.
In the proof we use our (first) observation about how ¢-fold Haar unitary
acts on orthogonal inputs.

For technical reasons, our loss in this step is proportional to t!, which
necessitates the assumption that ¢ must be sublinear in the security pa-
rameter (e.g. t = polylog()\). In more detail, we expand p’ by expressing
the type state |typer) as superposition of computational basis states
pairwise related by a permutation to get

1 " " _ .
f =3 3 @) @| ©EIZ® o (@) (m(@) (2]
T o, mESt
1 R R _,
=5 > le@) (@) ® P BT 1771 ()P,
T o,mESt
where we used the fact that the permutation operators Py, Pr commut
with the ¢-fold isometry Z®*. We can show that the term between the
permutation operators P,, P} is maximally scrambled for any given o, 7,
which can be combined with a union bound over o, 7 that yields a fac-

tor of ¢! in the loss. Unfortunately we do not know how to relate the

16 Technically the permutation operator acts on a larger Hilbert space after applying
the isometry, but it applies the same permutation to the order of ¢ copies.
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terms across different o, 7 to avoid this loss. Finally, the uniform mix-
ture we obtained is negligibly close to the distribution of |y)®t by another
collision-bound.

2 Pseudorandom Isometry: Definition

For a given class of inputs Q, we propose the following definition of
O-secure psuedorandom isometries. Throughout the rest of the paper,
for a polynomial p(-), we denote p to be p(\), where X is the security
parameter.

Definition 1 (Q-Secure Pseudorandom Isometry (PRI)). Let
n,m, q, ¢ be polynomials in X. Suppose Q = {Qn q.0.x }ren, where Qpn g ox C
D(Canq“). We say that PRI = {Fx}, oy is an (n,n +m)-Q-secure pseu-
dorandom isometry if the following holds:
— For every k € {0,1}*, Fi(k,-) is a QPT algorithm implementing a
quantum channel such that it is functionally equivalent to Ty, where
Tk is an isometry that maps n qubits to n + m qubits.
— For sufficiently large A € N, any QPT distinguisher A, the following
holds: for every p € Qn.q.0,x,

|Pr[A((Ie® EZN (p)) = 1] = Pr[A((Le ® I%7) (p)) = 1] | < negl()),

where:
e Z(-) is the channel implementing a Haar-random isometry that
takes an n-qubit input |p) and outputs an (n + m)-qubit output

Z(|4)),

e [, is an identity operator on £ qubits.

We sometimes write Q-secure with m,n being implicit. We consider the
following set of queries. We color the part of the query given to I, with
red and color the part of the query given to Fy or Z with blue.

Computational basis queries. We define QSLCZ";")A as follows.

om £ n
Q) = D(C* ) @ {(|lz1) (21| ® ... @ |zg)(zg]) = @1,...,24 € {0,1}"}.

Let n(-),q(+),€(-) be polynomials. We also define Qcomp (implicitly pa-
rameterized by n(-),q(-),4(-)) to be Qcomp = {QSZT}’?;}AGN,

(Single

Multiple copies of a single pure state. We define Qn’q’e}; as follows:

Qsii;i'i)\ = D(CZ() ® {(|¥)(1|®7) : ) is an n-qubit pure state} .

Let n(-),q(-),€(-) be polynomials. We also define Osingle (implicitly pa-

rameterized by n(-),q(-),4(-)) to be Qsingle = {Q&Si;glje; .
D52 Nen
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(Haar)
n,s,t, 0,

Haar queries. We first define Q
S(~)’t(-)7€/(-)’

,, as follows, for some polynomials

s(X)

QS:I:BZ’,)\ = D((CQ[: m) ® ® | ) (s | ZHY)

[1),-- ,st(A)N—ﬁ%

s(A)

R [¢41) (i **
=1

H
Next, we define Q( aar))\ as follows
(Haar) __ (Haar)
Q,q,(’)\_ U Qnstl’
s,t,0
such that g=st
and ¢=0'+st

Let n(+), q(+), £(-) be polynomials. We also define Qnaar (implicitly param-
eterized by n(-),q(:),£4(-)) to be OHaar = {Q }12?2)/\ sen

Distinct Querries We define a class of states

26N >
) @ {Q Ityper, ) typer, | (T, -+, Ts) € Tasz, }-

i=1

distinc
Q'Ez tts,Zt,))\ S D((C

Next, we define the following class:

Q(dIStInCt) Q(distinct)
n,q, L, n,t,s,4,\"
s,t
such that g=st

We define Qitinee) = {Q 7% Faen.

Selective PRI. Above, we considered the security of PRI in the setting
where the queries came from a specific query set. However, we can con-
sider an alternate definition where the indistinguishability holds against
computationally bounded adversaries making a single parallel query to
an oracle that is either PRI or Haar. We term such a PRI to be a selec-
tively secure PRI.

Definition 2 (Selective Pseudorandom Isometry). PRI = {F)},
is an (n,n + m)-selective pseudorandom isometry if the following holds:
— For every k € {0,1}*, Fx(k,-) is a QPT algorithm such that it is
functionally equivalent to Iy, where Iy, is an isometry that maps n
qubits to n + m qubits.
— For sufficiently large X € N, for any q = poly(\), any QPT distin-
guisher A making 1 query to the oracle, the following holds:

e [APED% 2 1] by [AZO® 2 1] < negi(),

where:
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o F\(k,-) takes as input 1) and outputs Fx(k,|))
e 7Z(:) is a Haar-random isometry that takes as n-qubit input |1)
and outputs an (n + m)-qubit output Z(|1))).

The following claim is immediate.

Claim. Let n(-), m(-) be two polynomials. Suppose PRI is an (n,n +m)-
Q. q,e-secure pseudorandom isometry for every polynomial ¢(-), (+), and,
Qn,q,l = {Q":CI’LA}AERU where Qn,q,f,k = D(CQHQJJ). Then, PRI is a
selective pseudorandom isometry.

Similarly, the other direction is true as well.

Claim. Let n(-), m(-) be two polynomials. Suppose PRI is an (n,n +m)-
secure pseudorandom isometry. Then PRI is a (n,n + m)-Q, 4 ¢-secure
pseudorandom isometry for every polynomial ¢(-),4(:), and, Qn ¢ =

+e
{Qn,q,é,k}xeNU where Qn,q,l,)\ = D((Can )

Adapive PRI. We also define an adaptive version of the pseudorandom
isometries below. In this definition, the adversary can make an arbitrary
number of queries to the oracle.

Definition 3 (Adaptive Pseudorandom Isometry). PRI = {F\}, oy
is an (n,n 4+ m)-adaptive pseudorandom isometry if the following holds:
— For every k € {0,1}*, Fa(k,-) is a QPT algorithm such that it is
functionally equivalent to Iy, where Iy is an isometry that maps n
qubits to n + m qubits.
— For sufficiently large A € N, for any t = poly(\), any QPT distin-
guisher A making t queries to the oracle, the following holds:

‘Pr [AF*(’” - 1} —Pr [AI(') - 1” < negl()\),

where:
o Fi(k,-) takes as input |¢) and outputs Fx(k, 1))
e Z(-) is a Haar-random isometry that takes as n-qubit input |¢)
and outputs an (n + m)-qubit output Z(|1))).

Observations. It should be immediate that pseudorandom unitaries,
introduced in |JLS18|, imply adaptive PRI, which in turn implies selec-
tively secure PRI. Whether pseudorandom isometries are separated from
pseudorandom unitaries or there is a transformation from the former to
the latter is an interesting direction to explore.

If we weaken our definition of pseudorandom isometries further, where
we a priori fix the number of queries made by the adversary and allow
the description of the pseudorandom isometry to depend on this then
this notion is implied by unitary ¢-designs [AEQ7, [ BHH16]|.

In terms of implications of pseudorandom isometries to other notions of
pseudorandomness in the quantum world, we note that pseudorandom
isometries imply both PRSGs and PRFSGs.

19
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2.1 Invertibility

Invertible Pseudorandom Isometries. In applications, we need a stronger
notion of invertible pseudorandom isometries.

Definition 4 (Invertible O-Secure Pseudorandom Isometry).
We say that PRI = {F)‘}AEN is an invertible (n,n + m)-Q-secure pseu-
dorandom isometry if first and foremost, it is a Q-secure pseudorandom

isometry (Definition 1)) and secondly, there is a QPT algorithm Inv with
the following guarantee: for every |¢p) € S ((CQH) and k € {0,1}*,

TD([¢) (], Inv (k, Fx(k, |1)))) = negl(X).

Remark 1. Similarly, we can define invertible versions of Q-secure PRIs
and selectively secure PRIs. Also, note that for |¢) which is orthogonal
to the range of F(k,-), being invertible has no guarantee on Inv(k, |¢)).

Inverse of Isometries. For a (fixed) isometry Z maps n-qubit states
to (n + m)-qubit states, the “inverse” of Z is not unique. However, un-
der the view of Stinespring dilation, it is possible to naturally define a
quantum channel Z~' such that Z7* o (T |1)(¥|Z1) = 1) (¥| for every

[v) €S ((Czn) Consider an arbitrary unitary Uz on n+m qubits such
that Uz is consistent with Z, that is, Uz [¢) [0™),,, = Z[) for every
vy € S ((C2n>. One can easily verify that Traux (U}IW)(«MITUI) =

|) (| for every |[¢) € S ((CTL). Furthermore, one can even provide a

distribution over such unitaries. This yields the following candidate defi-
nition: let pz be some distribution over unitaries that are consistent with
7, the inverse of Z can be defined as

ITYX)= E Tram (U}XUZ) .
Uz<+npz

Since we focus on Haar isometries in this work, we’ll choose the distri-

bution puz to be Haar random conditioned on being consistent with Z.

Formally, we have the following definition.

Definition 5 (Inverse of Isometries). Let Z be an isometry from n
qubits to n+m qubits. The inverse of Z is a quantum channel from n+m
qubits to n qubits defined to be

I7'X):= E  Tram (U* XU) ,
U(_%n-f—m‘I

for any X € E(C2n+m), where register Aux refers to the last m qubits
and Him |z denotes the Haar measure over (n + m)-qubit unitaries U

conditioned on U |) [0™),, =T |¥) for any |v) € S ((Czn).

The inverse of a Haar isometry satisfies the following:

17 The readers should not confuse Z', the conjugate transpose of Z, with the channel
iy
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Fact 7. Let T be a Haar isometry from n qubits to n+m qubits. Then the
joint distribution of (T,T~1) is identically distributed to the following pro-
cedures: (1) Sample U < H1m. (2) Define I to be the first 2" columns

of U. That is, I satisfies I |1p) = U |¢) |0™),,, for any |¢) € S ((an).
(3) Define T7H(X) := Traw(UTXU).

Strong Invertible Adaptive PRI. In order to achieve more applications,
we define the following stronger security definition in which the adversary
is given the inversion oracle.

Definition 6 (Strong Invertible Adaptive Pseudorandom Isom-
etry). PRI = {F)}aen is a strong invertible (n,n + m)-pseudorandom
isometry if it satisfies the following conditions for every A € N:

— For every k € {0,1}*, F(k,-) is a QPT algorithm such that it is
functionally equivalent to Iy, where Iy is an isometry that maps n
qubits to n + m qubits.

— For every k € {0,1}*, Inv(k,-) is a QPT algorithm such that it
is functionally equivalent to I,;l, where I,;l is the inverse of Iy
@) that maps n + m qubits to n qubits.

— For any polynomial t = poly(X), any QPT distinguisher A making a
total of t queries to the oracles, the following holds:

Pr [AF<k")’I"V(k") = 1] — Pr [AIH’IH(') = 1] < negl(M).

k+{0,1}* IS ntm

3 Construction

Let m(-),n(-) be polynomials. Let p = p(\) be a A-bit integer. Let A =
2A1. We use the following tools in the construction of PRI.
— f {01} x {0,1}"<)‘1)+m<)‘1) — Zp is a quantum-query secure
pseudorandom function (QPRF).
— g : {0, 1} x {0,1}rA0FmA) _y rg 13m0+ g 5 quantum-
query secure pseudorandom permutation (QPRP).
We present the construction of psuedorandom isometry {Fi}xen in [Fig-
[are I Note that the construction presented is functionally equivalent to
an isometry even though it performs a partial trace.

3.1 Main Results

Our construction is secure against inputs of the form: (1) distinct type
state, (2) multiple copies of the same pure state, (3) i.i.d. Haar states.
We state the formal theorem below:

Theorem 8 (Main Theorem). Letn,m,s,t,£,q = poly(\). Let Q<di5“"°t)

n,t,s,4,\7

inj;?zx and Qis,i;,g;; be as defined in then, assuming the exis-

tence of post-quantum one-way functions, the construction of PRI given

in|Figure 1|is Q-secure for Q € {QS‘:T%, Q(Ha?)\, Q(Singgle;}.

n,4, n,q,€,
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On input a key k € {0,1}* and an n-qubit register X. We define the operation of
Fx(k,-) as follows.
— Parse the key k as ki||k2, where ki € {0,1}! is a QPRF key and k2 € {0,1}* is
a QPRP key.
— Append an m-qubit register Z initalized with |0™), to register X.
Apply H®™ to register Z.
— Apply Oy, to registers X and Z.
— Apply Oy, to registers X and Z.
Explicitly, Fi(k,-) maps the basis vector |z)y to

§ f(k1,z|l2)
— Wp |g(k27m||z)>XZ'
V2 z€{0,1}™

Fig. 1. Description of F).

Although we are not able to prove stronger security of our construction,
we observe that our construction naturally mimics the steps of sampling
a Haar isometry by truncating columns of a Haar unitary. We have the
following conjecture.

Congecture 2. Assuming the existence of post-quantum one-way func-
tions, the construction of PRI given in is a strong invertible

adaptive PRI (Definition 6)

4 Applications

We explore the cryptographic applications of pseudorandom isometries.
Notably, some applications in this section only require invertible Q-secure
, for classes of Q which can be initiated by post-quantum
one-way functions, as we showed in

In[Section 4.2] we present quantum message authentication codes. In[Sec-
tion 4.3] we present length extension theorems.

4.1 PRI implies PRSG and PRFSG

Theorem 9 (PRI implies PRSG and PRFSG). Assuming (n,n+
m)-Qcomp-pseudorandom isometries exist, there exist an (n + m)-PRSG
and a selectively-secure (n,n + m)-PRFSG.

4.2 Quantum Message Authentication Codes

The scheme of authenticating quantum messages was first studied by
Barnum et al. [BCG'02] in which they considered one-time private-key
authentication schemes. The definition in [BCG'02] is generalized in
the following works [DNS12, |(GYZ17|. In particular, Garg, Yuen, and
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Zhandry |GYZ17| defined the notion of total authentication, which is
tailored for one-time (information-theoretic) security. They showed that
total authentication implies unforgeability (in certain settingﬂ and key
reusability — conditioned on successful verification of an authentication
scheme that satisfies total authentication, the key can be reused by the
honest parties. Moreover, they constructed a total-authenticating scheme
from unitary 8-designs. Later, the works of [Por17,/AM17| independently
improved the construction by using only unitary 2-designs to achieve
total authentication.

In the fully classical setting, many-time security of an authentication
scheme is defined via unforgeability — no efficient adversary can forge
an un-queried message-tag pair. A message authentication code (MAC)
is a common primitive that satisfies the desired properties. However, con-
sider MACs for classical messages: when the adversary is allowed to query
the signing oracle in superposition [BZ13, AMRS20|, defining the fresh-
ness of the forgery is already nontrivial. For quantum message authen-
tication schemes, it is well-known that authentication implies encryp-
tion [BCG™02]. Furthermore, due to the quantum nature of no-cloning
and entanglement, it is challenging to define a general many-time secu-
rity notion [AGM18, /AGM21]|. Nevertheless, we consider a strict version
of MACs for quantum messages in this subsection. We’ll focus on several
weak yet nontrivial notions of unforgeability and show how to achieve
them using PRIs.

Syntax. A message authentication codes (MAC) scheme for quantum
messages of length n(\) is a triple of algorithms (Setup, Sign, Ver).

— Setup(1*): on input the security parameter X, output a key k
{0,1}%.

— Sign(k, [¥)): on input k& € {0,1}* and a quantum message |¢) €
S ((CQH), output a quantum ta gy € S (CQS) where s(\) =
poly(A) is the tag length.

— Ver(k, |$)): on input k € {0,1}* and a quantum tag |¢) € S ((CQS),
output a mixed quantum state p € D(C?").

Definition 7 (Correctness). There exists a negligible function £(-)
such that for every A € N, k € {0,1}*, and quantum message 1)) €

S ((CQ"),
TD(Ver(k, Sign(k, [1))), [¥)(]) < e(N).

Security Definitions. Defining security for MACs for quantum states
is quite challenging, as discussed in prior works, notably in [AGM18].

18 Tn more detail, they show total authentication implies unforgeability for MACs for
classical messages with security against a single superposition message query.

19 We emphasize that here we explicitly require the tag to be a pure state. We can
relax this condition to allow for the signature algorithm to output a state that is
close to a pure state without changing the notion much.
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Nonetheless, our goal is to present some reasonable, although restric-
tive, definitions of MACs for quantum states whose feasibility can be
established based on the existence of pseudorandom isometries. We be-
lieve that our results shed light on the interesting connection between
pseudorandom isometries and MACs for quantum states and we leave
the exploration of presenting the most general definition of MACs for
quantum states (which in our eyes is an interesting research direction by
itself!) for future works.

When the adversary is only asked to output a single copy of the (quan-
tum) forgery, it is unclear how to achieve negligible security error. For
example, if the verification is done by simply applying a SWAP tes
then the success probability of the forger is at least 1/2. In the following,
we introduce several notions capturing unforgeability. First, in order to
boost security, a straightforward way is to simply ask the adversary to
send t = poly(A) copies of the forgery message and tag.

Definition 8 (Many-Copies-Unforgeability). Let ¢ = poly(\). For
every polynomial q(-) and every non-uniform QPT adversary, there exists
a function €(-) such that for sufficiently large A € N, the adversary wins
with probability at most e(\) in the following security game:

1. Challenger samples k + {0,1}*.

2. The adversary sends |t1),...,|1q) € S ((Czn) and receives Sign(k,

[i)) fori=1,...,q.

3. The adversary outputs (|¢*) ® |¢*))®" where [*) € S ((Czn) is or-
thogonal to |1;) fori=1,...,q.

4. Challenger runs SwapTest(|¢)™) (|, Ver(k, |¢*))) t times in parallel.
The adversary wins if and only if every SWAP test outputs 1.

Remark 2. We note that, in general, the forgery message and the tag
could be entangled. Here, we focus on a restricted case in which the mes-
sage and tag are required to be a product state. We leave the exploration
of stronger security notions for future works.

In some cases, it is unsatisfactory to ask the adversary to output multiple
copies of the forgery tag due to the no-cloning theorem and in this case,
we can consider the following definition in which the adversary needs to
output multiple copies of the forgery message but only a single copy of the
forgery tag. The winning condition of the adversary is defined by passing
the generalized SWAP test — called the permutation test [BBD'97,
KNYO08, GHMW15, BS20a|.

Lemma 1 (Permutation Test). The permutation test is an efficient
quantum circuit PermTest that takes as input p € D((CH)®?), outputs 1
with probability p := Tr(Hs‘f,‘é ), and outputs 0 with probability 1 — p.

Definition 9 ((PermTest,t, )-unforgeability). For every polynomial
q(-) and every non-uniform QPT adversary, there exists a function e(-)
such that for sufficiently large A € N, the adversary wins with probability
at most €(\) in the following security game:

20 The SWAP test is an efficient quantum circuit that takes as input two density
matrices p, o of the same dimension and output 1 with probability %(pa).
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. Challenger samples k < {0,1}*.
2. The adversary sends |i1),..., 1) € S ((CQW) and receives Sign(k,

i) fori=1,....q
3. The adversary outputs |*)®" ® \d)*) where |p*) € S ((CQTL) and 1is

orthogonal to |;) fori=1,.
4. The adversary wins if PermTest(\l/) Y0¥ |®' @ Ver(k, |¢*))) = 1

Finally, suppose Sign(k, -) is an isometry for every k € {0, 1}A. We con-
sider another definition in which we ask the adversary to send the classi-
cal description of the quantum circuit that generates the forgery message
and only one copy of the corresponding tag.

Definition 10 (Uncompute-Unforgeability). For every polynomial
q(+) and every non-uniform QPT adversary, there exists a negligible func-
tion () such that for every A € N, the adversary wins with probability
at most €(\) in the following secumty game:

1. Challenger samples k + {0,1}*.

2. The adversary sends |t1),...,|1q) € S ((Czn) and receives Sign(k,
[i)) fori=1,...,q.

3. The adversary outputs a pair (C,|¢*)) where C is the classical de-
scription of a quantum circuit containing no measurements such that
C'|0") 1is orthogonal to |¢;) fori=1,...,q

4. Challenger applies CTVer(k,-) on |¢*) and performs a measurement
on all qubits in the computational basis. The adversary wins if and
only if the measurement outcome is 0".

Let PRI = {Fx} en be a strong invertible adaptive (n,n +m)-PRI (Detf-

where n(-), m(-) are polynomials. We construct a MAC for
quantum messages from PRI.

Construction 10 (MAC for quantum messages).
1. Sign(k,|¥)) : on input k € {0,1}" and a message |) € S ((C2n),
output Fx(k,|)) € S (C2"L+n).
2. Ver(k,|¢)) : on input k € {0,1}* and a tag |¢) € S (C2m+">, output
Inv(k,|®)).
The correctness of follows from the invertibility of PRI.

Theorem 11. For every t € N, [Construction 10 satisfies (PermTest, ¢,
O(1/t))-unforgeability.

Theorem 12. [Construction 10 satisfies uncompute-unforgeability.

4.3 Length Extension of Pseudorandom States

We introduce methods to increase the length of pseudorandom quantum
states while preserving the number of copies. In the classical setting, the
length extension of pseudorandom strings can be accomplished by repeat-
edly applying PRGs. On the other hand, since pseudorandom random
states are necessarily (highly) pure and entangled |[JLS18,|AQY22|, no
such method was known that would not decrease the number of copies.

25
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Theorem 13 (Length Extension Theorem). Assuming Qnaar-secure
pseudorandom isometry, mapping n qubits to n+m qubits, and an n-qubit
PRSG, there exists an (n+m)-PRSG. Similarly, assuming Qnaar-secure
pseudorandom isometry, mapping n qubits to n+m qubits, and classical-
accessible selectively-secure (£,n)-PRFSG, there exists an classical-accessible
selectively-secure (¢,m + m)-PRFSG.

Theorem 14 (Another Length Extension Theorem). Let {F)}xen
be an (n,n +m)-PRI, t = t(A),

pi= B (@100 (I e FD®'],
[6) oy ,ke{0,1}*

where Fy, means Fx\(k,-) and I, is the identity operator on n qubits, and

o= E [m0l®].
[Y) ¢ Fontm

Then any non-uniform QPT adversary has at most O(t1t* /2" ™ 42 /2™)
advantage in distinguishing p from o.
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