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Abstract. Common random string model is a popular model in classi-
cal cryptography. We study a quantum analogue of this model called the
common Haar state (CHS) model. In this model, every party participat-
ing in the cryptographic system receives many copies of one or more i.i.d
Haar random states.

We study feasibility and limitations of cryptographic primitives in this
model and its variants:
– We present a construction of pseudorandom function-like states with

security against computationally unbounded adversaries, as long as
the adversaries only receive (a priori) bounded number of copies. By
suitably instantiating the CHS model, we obtain a new approach to
construct pseudorandom function-like states in the plain model.

– We present separations between pseudorandom function-like states
(with super-logarithmic length) and quantum cryptographic primi-
tives, such as interactive key agreement and bit commitment, with
classical communication. To show these separations, we prove new
results on the indistinguishability of identical versus independent
Haar states against LOCC (local operations, classical communica-
tion) adversaries.

1 Introduction

In classical cryptography, the common random string and the common refer-
ence string models were primarily introduced to tackle cryptographic tasks that
were impossible to achieve in the plain model. In the common reference string
model, there is a trusted setup who produces a string that every party has
access to. In the common random string model, the common string available
to all the parties is sampled uniformly at random. Due to the lack of structure
required from the common random string model, it is in general the more desir-
able model of the two. There have been many constructions proposed over the
years in these two models, including non-interactive zero-knowledge [BFM19],
secure computation with universal composition [CF01,CLOS02] and two-round
secure computation [GS22,BL18].

It is a worthy pursuit to study similar models for quantum cryptographic
protocols. In the quantum world, there is an option to define models that are
intrinsically quantum in nature. For instance, we could define a model wherein
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a trusted setup produces a quantum state and every party participating in the
cryptographic system receives one or more copies of this quantum state. Indeed,
two works by Morimae, Nehoran and Yamakawa [MNY23] and Qian [Qia23]
consider this model, termed as the common reference quantum state model
(CRQS). They proposed a construction of unconditionally secure commitments
in this model. Quantum commitments is a foundational notion in quantum
cryptography. In recent years, quantum commitments have been extensively
studied [AQY22,MY21,AGQY22,MY23,BCQ23,Bra23] due to its implication to
secure computation [BCKM21,GLSV21]. The fact that information-theoretically
secure commitments are impossible in the plain model [LC97,May97,CLM23]
renders the contributions of [MNY23,Qia23] particularly interesting.

Common Haar State Model. While CRQS is a quantum analogue of the com-
mon reference string model, in a similar vein, we can ask if there is a quantum
analogue of the common random string model. We consider a novel model called
the common Haar state model (CHS). In this model, every party in the system
(including the adversary) receives many copies of many i.i.d Haar states. We
believe that the CHS model is more pragmatic than the CRQS model owing to
the fact that we do not require any structure from the common public state. This
raises the possibility of avoiding a trusted setup altogether and instead we could
rely upon naturally occuring physical processes to obtain the Haar states. This
model was also recently introduced in an independent and concurrent recent
work by Chen, Coladangelo and Sattath [CCS24] (henceforth, referred to as
CCS).

There are three reasons to study this model. Firstly, this model allows us
to bypass impossibility results in the plain model. For instance, as we will see
later, primitives that require computational assumptions in the plain model,
can instead be designed with information-theoretic security in the CHS model.
Second, perhaps a less intuitive reason, is that the constructions proposed in
this model can, in some cases, be adopted to obtain constructions in the plain
model by instantiating the Haar states either using state designs or pseudoran-
dom state generators (PRSGs) [JLS18]. This leads to a modular approach of
designing cryptographic primitives from PRS: first design the primitive in the
CHS model and then instantiate the common Haar state using PRS. Finally, this
model can be leveraged to demonstrate separations between different quantum
cryptographic primitives.

1.1 Our Results

We explore both feasibility results and black-box separations in the CHS model.

Feasibility Results.

Pseudorandom Function-like States with Statistical Security. We study the possi-
bility of designing pseudorandom function-like state generators (PRFSGs), intro-
duced by Ananth, Qian and Yuen [AQY22], with statistical security in the CHS
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model. Roughly speaking, a PRFSG is an efficient keyed quantum circuit that
can be used to produce many pseudorandom states. We refer the reader to
Appendix A of the full version [AGL24] for a detailed discussion on the different
notions of pseudorandomness in the quantum world.

We are interested in designing (λ,m, n, t)-PRFSGs in the setting when n ≥ λ
and m = Ω(log(λ)), where λ is the key length, m is the input length, n is the
output length (and also the number of the qubits in the common Haar state)
and t is the maximum number of queries that can be requested by the adversary.
However, in the CHS model, we can in fact achieve statistical security.

We show the following.

Theorem 1 (Informal). There is a statistically secure (λ,m, n, #)-PRFSG in
the CHS model, for m = λc, n ≥ λ and # = O

(
λ1−c

log(λ)1+ε

)
, for any constant

ε > 0 and for all c ∈ [0, 1).

CCS is the only other work that has studied pseudorandomness in the CHS
model. There are a few advantages of our result over CCS:

– Our theorem subsumes and generalizes the result of CCS who showed (λ, n, t)-
PRSGs exists in their model, where the output length is larger than the key
length, i.e., n > λ and moreover, when t = 1 with t being the number of
copies of the PRS state given to the adversary.

– Our construction, when restricted to the case of PRSGs, is slightly simpler
than CCS: in CCS, on a subset of qubits of the Haar state, a random Pauli
operator is applied whereas in our case a random Pauli Z operator is applied.
Our construction of PRFSG uses the seminal Goldreich-Goldwasser-Micali
approach [GGM86] to go from one-query security to many-query security.

– They propose novel sophisticated tools in their analysis whereas our analysis is
arguably more elementary using well known facts about symmetric subspaces.

– Finally, we can achieve arbitrary stretch whereas it is unclear whether this is
also achieved by CCS.

As a side contribution, the proof of our PRSG construction also simplifies the
proof of the quantum public-key construction of Coladangelo [Col23]; this is due
to the fact the core lemma proven in [Col23] is implied by the above theorem.

Interestingly, the above theorem has implications for computationally secure
pseudorandomness in the plain model. Specifically, we obtain the following corol-
lary by instantiating the CHS model using stretch PRSGs:

Corollary 1. Assuming (λ, n, #)-PRSGs, there exists (λ′,m, n, t)-PRFSGs,
where n > λ′ > λ, m = λc and # = O

(
λ1−c

log(λ)1+ε

)
, for any constant ε > 0

and c ∈ [0, 1).

Prior to our work, stretch PRFSGs for super-logarithmic input length, even in
the bounded query setting, was only known from one-way functions [AQY22].
This complements the work of [AQY22] who showed a construction of PRFSGs
for logarithmic input length from PRSGs.



Cryptography in the Common Haar State Model 97

Interestingly, the state generators in both works (CCS and ours) only con-
sume one copy of a single Haar state. In this special case, it is interesting to
understand whether we can extend our result to the setting when the adversary
receives λ

log(λ) copies or more. We show this is not possible.

Theorem 2 (Informal). There does not exist a secure (λ,m, n, #)-PRFSG, for
any m ≥ 1, in the CHS model, where n = ω(log(λ)) and # = Ω

(
λ

log(λ)

)
.

CCS also proved a lower bound where they showed that unbounded copy pseu-
dorandom states do not exist. Their negative result is stronger in the sense that
they rule out PRSGs who use up many copies of the Haar states from the CHRS
and thus, their work gives a clean separation between 1-copy stretch PRS and
unbounded copy PRS which was not known before. On the other hand, for the
special case when the PRFSG takes only one copy of the Haar state, we believe
our result yields better parameters.

Commitments. In addition to pseudorandomness, we also study the possibility
of constructing other cryptographic primitives in the CHS model. We show the
following:

Theorem 3 (Informal). There is an unconditionally secure bit commitment
scheme in the CHS model.

Both our construction and the commitments scheme proposed by CCS are
different although they share strong similarities.

Black-Box Separations

LOCC Indistinguishability. We separate pseudorandom function-like states and
quantum cryptographic primitives with classical communication using a vari-
ant of the CHS model. At the heart of our separations is a novel result that
proves indistinguishability of identical versus independent Haar states against
LOCC (local operations, classical communication) adversaries. More precisely,
(A,B) is an LOCC adversary if A and B are quantum algorithms who can
communicate with each other via only classical communication channels. It
is important that A and B do not share any entanglement. Moreover, we
restrict our attention to LOCC distinguishers which are LOCC adversaries
of the form (A,B) where A does not output anything whereas B outputs
a single bit. We say that a LOCC distinguisher (A,B) can distinguish two
states ρAB and σAB with probability at most ε, referred to as ε-LOCC indis-
tinguishability, where A receives the register A and B receives the register B, if
|Pr [1 ← (A,B)(ρAB)] − Pr [1 ← (A,B)(σAB)] | = ε. Of particular interest is the
case when

ρAB = E
|ψ〉←Hn

[
(|ψ〉⊗t)A ⊗ (|ψ〉⊗t)B

]
, σAB = E

|ψ〉←Hn,
|φ〉←Hn

[
(|ψ〉⊗t)A ⊗ (|φ〉⊗t)B

]
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Here, Hn denotes the Haar distribution on n-qubit quantum states and t is
polynomial in n. A couple of works by Harrow [Har23] and Chen, Cotler, Huang
and Li [CCHL22] prove that the LOCC indistinguishability of ρAB and σAB is
negligible in n in the case when t = 1. In this work, we extend to the case when
t is arbitrary.

Theorem 4. ρAB and σAB (defined above) are ε-LOCC indistinguishable, where
ε = O

(
t2

2n

)
.

We also show that the above bound is tight by demonstrating an LOCC distin-
guisher whose distinguishing probability is Θ( t2

2n ).
Recently, Ananth, Kaleoglu and Yuen [AKY24] prove the indistinguishability

of ρAB and σAB in the dual setting, against non-local adversaries that can share
entanglement but cannot communicate.

The above theorem can easily be extended to the multi-party setting where
either all the parties get (many copies of) the same Haar state or they receive
i.i.d Haar states.

Separations. We use Theorem 4 to show that some quantum cryptographic prim-
itives with classical communication are impossible in the CHS model. Let us
develop some intuition towards proving such a statement. Suppose there are two
or more parties participating in a quantum cryptographic protocol with classical
communication in the CHS model. By definition, all the parties would receive
many, say t, copies of |ψ〉, where |ψ〉 is sampled from the Haar distribution. Since
the parties can only exchange classical messages, thanks to Theorem 4, without
affecting correctness or security we can modify the protocol wherein for each
party, say Pi, a Haar state |ψi〉 is sampled and t copies of |ψi〉 is given to Pi.
From this, we can extract a quantum cryptographic primitive in the plain model
since each party can sample a Haar state on its own. In conclusion, quantum
cryptographic primitives with classical communication in the CHS model can be
turned into their counterparts in the plain model.

This gives a natural recipe for proving impossibility results in the CHS model.
We apply this recipe to obtain impossibility results for interactive key agreements
and interactive commitments.

Theorem 5. Interactive quantum key agreement and interactive quantum com-
mitment protocols, with classical communication, are impossible in the CHS
model.

We extend the above theorem to separate interactive quantum key agree-
ment and interactive quantum commitments from pseudorandom function-like
state generators. The separations are obtained by considering a variant of
the CHS model where the adversary does not get access to many copies of
one Haar state but instead gets access to infinitely many input-less oracles1

1 We note that [Kre21] made similar use of infinitely many oracles to prove a separation
between pseudorandom states and one-way functions.
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{
{Gk,x}k,x∈{0,1}λ

}
λ∈N such that each Gk,x produces a copy of a Haar state

|ψk,x〉. In this model, it is easy to construct pseudorandom function-like states.
However, an extension of Theorem 5 rules out the possibility of interactive quan-
tum key agreement and quantum commitments with classical communication in
this variant. Thus, we have the following.

Theorem 6. There does not exist a black-box reduction from interactive quan-
tum key agreement and quantum commitments with classical communication to
pseudorandom function-like states.

Prior work by Chung, Goldin and Gray [CGG24] extensively studies the separa-
tions between quantum cryptographic primitives with classical communication
and different quantum pseudorandomness notions. However, their framework did
not capture the above result.

Prior works by [ACC+22,CLM23,LLLL24] ruled out quantum key agree-
ments and non-interactive commitments with classical communication from post-
quantum one-way functions. However, their separation was either based on a
conjecture or in a restricted setting whereas our result is unconditional. This
makes our result incomparable with the results from [ACC+22,CLM23,LLLL24].
Our work follows a long line of recent works [HY20,ACC+22,AHY23,CLM23,
ACH+23,BGVV+23,BM+24,CM24] that make progress in understanding the
landscape of black-box separations in quantum cryptography.

2 Technical Overview

2.1 Pseudorandomness in the CHS Model

Warmup: Pseudorandom State Generators (PRSGs). As a warmup, we first
study 1-copy PRSG in the CHS model. Consider the following construction:
Gk(|ϑ〉) := (Zk ⊗ In−λ)|ϑ〉, where Zk = Zk1 ⊗ · · · ⊗ Zkλ , k = k1 · · · kλ ∈ {0, 1}λ

and In−λ is an identity operator on n − λ qubits. In other words, Gk applies a
random Pauli Z operator only on the first λ qubits and does not touch the rest.
Note that this construction already satisfies the stretch property (i.e. the output
length is larger than the key length).

Let us consider the case when the adversary receives just one copy of |ϑ〉
and is expected to distinguish Gk(|ϑ〉) versus an independent Haar state |ϕ〉.
Formally, we would like to argue that the following states are close.

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[Gk(|ϑ〉) ⊗ |ϑ〉〈ϑ|] and σ :=
I

2n
⊗ I

2n
.

By the properties of the symmetric subspace, the following holds:

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗2] ≈ε E

x,y←[2n],x1 $=y1

[
1
2
(|xy〉〈xy|+ |xy〉〈yx|+ |yx〉〈xy|+ |yx〉〈yx|)

]
,
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where ε is negligible in n and the notation x1 (respectively, y1) denotes
the first λ bits of x (respectively, y). Now, applying a random Z oper-
ator on the first λ qubits tantamounts to measuring the first λ qubits
in the computational basis. Given the fact that x1 (= y1, this measure-
ment unentangles the last n qubits. Thus, the result is a state of the form
Ex,y←[2n],x1 (=y1

[
1
2 |x〉〈x| ⊗ |y〉〈y|+ 1

2 |y〉〈y| ⊗ |x〉〈x|
]
. This state is in turn close

to I
2n ⊗ I

2n .

Generalizing to Many Copies of the CHS. Next, we to generalize the
above approach to even when polynomially many copies of the CHS are provided.
Formally, we would like to argue that the following two states are close.

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
Gk(|ϑ〉) ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ| ⊗ |ϑ〉〈ϑ|⊗t

]
,

where t is some polynomial of n. Note that, by the property of the Haar distri-
bution, we can simplify σ to

σ =
I

2n
⊗ E

T←[0:t]N
|T 〉〈T |,

where |T 〉 is a type state2 and N = 2n. Note that by the properties of the
symmetric subspace,

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t+1

]
≈ε E

T←[0:t+1]N

T is λ-prefix collision-free

|T 〉〈T |,

where ε is negligible in n and T is λ-prefix collision-free if T ∈ {0, 1}N and for any
x, y ∈ T 3 with x (= y implies x1 (= y1, where the notation x1 (respectively, y1)
denotes the first λ bits of x (respectively, y). Note that, any λ-prefix collision-free
type T ,

|T 〉 = 1√(t+1
t

)
∑

x∈T

|x〉|T \ {x}〉.

Again, applying a random Z operator on the first λ qubits tantamounts to
measuring the first λ qubits in the computational basis. Given the fact that T
is λ-prefix collision-free, this measurement unentangles the first n qubits. Thus,
the result is a state of the form

E
T←[0:t+1]N

T is λ-prefix collision-free
x←T

[|x〉〈x| ⊗ |T \ {x}〉〈T \ {x}|] .

This state is in turn close to I
2n ⊗ ET←[0:t]N |T 〉〈T |.

2 We encourage readers unfamiliar with type states to refer to Definition 7.
3 Since T ∈ {0, 1}N , we can treat it as a set, in particular the set associated to T is
{i : T [i] = 1}.
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Generalizing to #-Copy PRSG. Finally, we generalize this #-copy PRSG.
Formally, we would like to argue that the following two states are close.

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
Gk(|ϑ〉)⊗' ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ|⊗' ⊗ |ϑ〉〈ϑ|⊗t

]
,

where #, t is some polynomial of n. Note that, by the property of the Haar
distribution, we can simplify σ to

σ = E
T1←[0:']N

|T1〉〈T1| ⊗ E
T2←[0:t]N

|T2〉〈T2|,

where |T1〉, |T2〉 are type states and N = 2n. Note that, similar to the last case,
we can still write,

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t+'

]
≈ε E

T←[0:t+']N

T is λ-prefix collision-free

|T 〉〈T |,

and any λ-prefix collision-free type T ,

|T 〉 = 1√(t+'
'

)
∑

T1⊂T
|T1|='

|T1〉|T \ T1〉.

Ideally, we would want the application of (Zk ⊗ In−λ)⊗' to unentangle |T1〉 from
|T \ T1〉. This is equivalent to measuring the first # registers in the type basis.
This is in general not true, not true. Hence, we settle for the next best thing,
which is finding a “dense-enough”4 subset of λ-prefix collision-free type such that
(Zk⊗In−λ)⊗' to unentangle |T1〉 from |T \T1〉. We find this subset to be “λ-prefix
#-fold collision-free” types.

We say that a λ-prefix collision-free type T is “λ-prefix #-fold collision-free”
if for all pairs of # sized subsets T1, T2 ⊂ T , ⊕x∈T1x = ⊕x∈T2x only if T1 = T2.
We start by noting that this subset is only “dense-enough” if # = O

(
λ

log(λ)1+ε

)
,

for any constant ε > 0.5
Next, we show that for these λ-prefix #-fold collision-free types states, apply-

ing a random (Zk ⊗ In−λ)⊗' is equivalent to measuring the first # registers in
the type basis. This is because (Zk ⊗ In−λ)⊗' on a type state |T1〉 is equivalent
to adding a phase of (−1)k·(⊕x∈T1x). Hence,

E
k

[
(Zk ⊗ In−λ)⊗' ⊗ Itn|T 〉〈T |(Zk ⊗ In−λ)⊗' ⊗ Itn

]

= E
k




1
(t+'

'

)
∑

T1,T2⊂T
|T1|=|T2|='

(−1)k·(⊕x∈T1x
⊕

⊕y∈T2y)|T1〉|T \ T1〉〈T2|〈T \ T2|



 ,

4 Here, by dense-enough, we mean when picking a random type from λ-prefix collision-
free, it lies in this subset with probability 1 − negl.

5 Later, in the impossibility result, we show that this is in fact the best we can hope
for as a larger subset would bypass the impossibility result.
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which for λ-prefix #-fold collision-free types states is non-zero only if T1 = T2,
giving us

E
k

[
(Zk ⊗ In−λ)

⊗$ ⊗ Itn|T 〉〈T |(Zk ⊗ In−λ)
⊗$ ⊗ Itn

]
= E

T1⊂T
|T1|=$

[|T1〉〈T1| ⊗ |T \ T1〉〈T \ T1|] .

Over expectation over all λ-prefix #-fold collision-free types states, this state is
close to ET1←[0:']N |T1〉〈T1| ⊗ ET2←[0:t]N |T2〉〈T2|.

Limitations. To complement our result, we show that a t-copy PRSG is impos-
sible in the CHS model, for # = O

(
λ

log(λ)

)
(for a restricted class of PRSG

constructs which only takes one copy of the common Haar state). We show this
by showing that the rank of σ grows much faster than the rank of ρ, hence, a
simple distinguisher is a projector on the eigenspace of ρ. In particular, let G̃k(ϑ)
be the PRSG. Then define

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
G̃k(|ϑ〉)⊗' ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ|⊗' ⊗ |ϑ〉〈ϑ|⊗t

]

Now since G̃k(|ϑ〉) is a PRSG, its output is negligibly close to a pure state.
This means that the rank of ρ ≤ 2λ

(2n+t+'−1
t+'

)
. In contrast, the rank of σ =(2n+'−1

'

)(2n+t−1
t

)
. Note that, for t = λ3 and # = λ/ log(λ), rank(ρ)/ rank(σ) =

negl. Hence, we can find a distinguisher. Here the distinguisher just projects
onto the eigenspace of ρ, ρ gets accepted with probability 1 but σ gets accepted
with probability negl, hence giving a disguisher. Since PRFSs imply PRSs (by
setting c = 0), achieving an #-query statistical PRFS in the CHS model for
# = Ω(λ/ log(λ)) is impossible.

Pseudorandom Function-like State Generators. Next we extend this idea
from PRSGs to achieve PRFSGs. We take inspiration from the seminal
Goldreich-Goldwasser-Micali approach [GGM86]. In particular, on the key K =
(k01, . . . , k0m, k11, . . . , k

1
m) ∈ {0, 1}2λ′m and the input x = (x1, . . . , xm) ∈ {0, 1}m,

define the PRFSG GK(x, |ϑ〉) as follows: GK(x, |ϑ〉) = (Z
⊕m

i=1 k
xi
i ⊗ In−λ′)|ϑ〉.

Formally, the following two states are close:

ρ := E
K←{0,1}2mλ′

|ϑ〉←Hn

[
⊗q

i=1GK(xi, |ϑ〉)⊗'i ⊗ |ϑ〉〈ϑ|⊗t
]
,

and
σ := E

∀i∈[q],|ϕi〉←Hn

|ϑ〉←Hn

[
⊗q

i=1|ϕi〉〈ϕi|⊗'i ⊗ |ϑ〉〈ϑ|⊗t
]
,

for all x1, . . . ,xq ∈ {0, 1}m and #1, . . . , #q such that
∑q

i=1 #i = #, for # =
O
(

λ1−c

log(λ)1+ε

)
and m = λc, for any constant ε > 0 and c ∈ [0, 1).
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Just as before, we can write σ as follows:

σ =
q⊗

i=1

E
Ti←[0:'i]N

|Ti〉〈Ti| ⊗ E
T̃←[0:t]N

|T̃ 〉〈T̃ |,

where Ti’s and T̃ are type states and N = 2n. Note that, similar to the last case,
we can still write,

E
|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t+'

]
≈ε E

T←[0:t+']N

T is λ-prefix '-fold collision-free

|T 〉〈T |,

and any λ-prefix #-fold collision-free type T ,

|T 〉 = 1√(t+'
'

)
∑

T1⊂T
|T1|='

|T1〉|T \ T1〉.

Now, after application of one layer of (Zk⊗In−λ)⊗', we know that |T1〉 unentagles
from |T \ T1〉. We extend this idea to show that even for a tensor of type states,
applying (Zk ⊗ In−λ)⊗'̃i on parts of each type state still unentangles each of
them as long as all the type states are λ-prefix #-fold collision-free type and
their combined set is still λ-prefix #-fold collision-free. Formally, we show the
following: Let #̃1, . . . , #̃q ∈ N, and t1, . . . , tq ∈ N such that

∑q
i=1 #̃i = #̃ and∑q

i=1 ti = t. Then for any λ-prefix #̃-fold collision-free type T and any mutually
disjoint sets T1, . . . , Tq satisfying

⋃q
i=1 Ti = T and |Ti| = ti + #̃i for all i ∈ [q],

E
k←{0,1}n

[
q⊗

i=1

((
Zk ⊗ Im

)⊗'i ⊗ I⊗ti
n+m

)
|Ti〉〈Ti|

((
Zk ⊗ Im

)⊗'̃i ⊗ I⊗ti
n+m

)]

=
q⊗

i=1

E
Xi⊂Ti

|Xi|='̃i

[|Xi〉〈Xi| ⊗ |Ti \Xi〉〈Ti \Xi|] .

Hence, applying each layer (Zkb
i ⊗ In−λ) unentagles all type states into two

halfs. Hence, by repeated application, we get

ρ ≈ε E
T←[0:t+']N

T is λ-prefix '-fold collision-free

E
(T1,T2,...,Tq,T̂ )

[
q⊗

i=1

|Ti〉〈Ti| ⊗ |T̂ 〉〈T̂ |
]
,

where (T1, T2, . . . , Tq, T̂ ) are sampled as follows: for i = 1, 2, . . . , q, sample an #i-
subset from T \(

⋃i−1
j=1 Tj) uniformly and let T̂ := T \(

⋃q
j=1 Tj). Over expectation

over all λ-prefix #-fold collision-free types states, this state is close to σ.

2.2 Quantum Bit Commitments

With t-copy PRSG in hand, we construct a statistically-hiding, statistically-
binding commitment scheme in the CHS model. Our scheme draws inspira-
tion from the quantum commitment scheme introduced in [MY21,MNY23] that
builds quantum bit commitments from t-copy PRSG.
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In particular, to commit to b = 0, the committer creates a superposition
over all keys of the PRSG in the decommitment register and runs the PRSG
in superposition over this register. The committer sets this as the commitment
register. To commit to b = 1, the committer creates a maximally entangled state
over the commitment and the decommitment register. Formally,

|ψ0〉CiRi :=
1√
2λ

∑

k∈{0,1}λ

Gk(|ϑ〉)Ci |k||0n−λ〉Ri

and
|ψ1〉CiRi :=

1√
2n

∑

j∈{0,1}n

|j〉Ci |j〉Ri ,

where, (C1, . . . ,Cp) is the commitment register and (R1, . . . ,Rp) is the reveal
register.

To achieve hiding, our scheme relies on the pseudorandomness property of
the PRSG. In particular, the commitment is very close to one where the keys are
distinct for all (Ci,Ri), in this case, one copy of PRS is indistinguishable from a
maximally mixed state.6

Unlike the approach in [MY21], our construction is not of the canonical
form [Yan2]. To achieve binding, the receiver performs multiple SWAP tests.
In particular, we show that since the rank of the commitment registers is expo-
nentially separated, multiple SWAP tests can distinguish between the two.

2.3 Black-Box Separations

LOCC Indistinguishability. The notion of LOCC indistinguishability is well-
studied and is referred to as quantum data hiding by quantum information theo-
rists [BDF+99,DLT02,EW02,Gea02,HLS05,MWW09,CLMO13,PNC14,CH14,
CLM+14,HBAB19]. In this setting, there is a challenger, two (possibly entan-
gled and mixed) bipartite quantum states ρAB and σAB, and a computationally
unbounded, two-party distinguisher (Alice, Bob) who are spatially separated
and without pre-shared entanglement. The challenger picks a quantum state
from {ρAB,σAB} uniformly at random and sends register A to Alice and regis-
ter B to Bob respectively. The task of Alice and Bob is to distinguish whether
they are given ρAB or σAB by performing local operations and communicating
classically. We call such distinguishers LOCC adversaries.

We focus on the case where Alice and Bob each receive t = poly(λ) copies of
|ψ〉A and |φ〉B, where |ψ〉 and |φ〉 are either two identical or i.i.d. Haar states of
length n = ω(log(λ)). Explicitly, the two input states are

ρAB = E
|ψ〉←Hn

[
|ψ〉〈ψ|⊗t

A ⊗ |ψ〉〈ψ|⊗t
B

]
,

6 Note that this still needs multi-key security which is not trivial in the CHS model,
since all the PRS generators share the same Haar state for randomness. But we prove
that our construction satisfies multikey security.
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σAB = E
|ψ〉←Hn

[
|ψ〉〈ψ|⊗t

A

]
⊗ E

|φ〉←Hn

[
|φ〉〈φ|⊗t

B

]
.

Note that if global measurements are allowed, performing SWAP tests can easily
distinguish them. As one of our main technical contributions, we show that for
any LOCC adversary, the advantage of distinguishing ρAB from σAB is negligi-
ble in λ. Before we explain the proof, we compare our theorem with [Har23,
Theorem 8]. In short, the theorems are incomparable. Our setting is stronger in
the sense that the LOCC adversary both obtain polynomial copies of the input,
while [Har23, Theorem 8] studies the single-copy setting. However, [Har23, The-
orem 8] is more general since it holds for a family of input states, whereas the
input in our setting is fixed to ρAB and σAB, which are belong to the family.

Toward the proof, we start by using the following common technique in prov-
ing LOCC indistinguishability: the set of LOCC measurements is a (proper) sub-
set of the set of all positive partial transpose (PPT) measurements [CLM+14].
Hence, it is sufficient to upper bound the maximum distinguishing advan-
tage over two-outcome PPT measurements, i.e., {MAB, IAB − MAB} such that
0 . MAB . IAB and 0 . MΓB

AB . IAB, where MΓB
AB denote the partial transpose

of MAB with respect to B. Next, from the basic properties of partial transpose
and trace norm, we show that the distinguishing advantage is bounded by the
trace norm between ρΓB

AB and σΓB
AB.

The most technical part of the proof is to upper bound the quantity∥∥∥ρΓB
AB − σΓB

AB

∥∥∥
1
. We point out that the partial transpose of a density matrix might

not be a positive semidefinite matrix. Our first step is to expand ρAB and σAB

in the type basis as follows:

ρAB = E
T←[0:2t]d

[|T 〉〈T |AB] ,

σAB = E
SA←[0:t]d

[|SA〉〈SA|A] ⊗ E
SB←[0:t]d

[|SB〉〈SB |B] ,

where d := 2n. Next, we further conditioned on the events that (1) T, SA and SB

each have no repeated elements (2) SA and SB have no identical elements. From
the collision bound, doing so only incurs an additional error of O(t2/d) = negl(λ).
Therefore, we can now treat T, SA and SB as sets. It suffices to prove that∥∥∥ρ̃ΓB

AB − σ̃ΓB
AB

∥∥∥
1
is negligible in λ, where

ρ̃AB := E
T←([d]2t)

[|T 〉〈T |AB] ,

σ̃AB := E
SA,SB←([d]t ):
SA∩SB=∅

[|SA〉〈SA|A ⊗ |SB〉〈SB |B] .

Observe that the σ̃ΓB
AB = σ̃AB. To obtain a simpler expression of ρ̃ΓB

AB , we rely on
the following useful identity for bi-partitioning the type states:

|T 〉AB =
∑

X∈(Tt)

1√(2t
t

) |T \X〉A ⊗ |X〉B.
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Hence, the partial transpose of ρ̃AB can be written as

ρ̃ΓB
AB = E

T←([d]2t)




1(2t
t

)
∑

X,Y ∈(Tt)
|T \X〉〈T \ Y |A ⊗ |Y 〉〈X|B



 .

If X = Y , then the term is the tensor product of two disjoint sets |T \X〉〈T \
X|A ⊗ |X〉〈X|B. Such a term will be canceled out by the corresponding term in
σ̃ΓB
AB since they have equal coefficients. Therefore, the difference between them is

the following matrix with mismatched X and Y :

ρ̃ΓB
AB − σ̃ΓB

AB = E
T←([d]2t)




1(2t
t

)
∑

X,Y ∈(Tt):X (=Y

|T \X〉〈T \ Y |A ⊗ |Y 〉〈X|B



 .

We continue to simplify it by applying a double-counting argument. Every
tuple of sets (T,X, Y ) uniquely determines a tuple of mutually disjoint sets
(C, I,X ′, Y ′) satisfying C = T \ (X ∪ Y ) (C for the complement of X ∪ Y ),
I = X∩Y (I for intersection), X ′ = X \I and Y ′ = Y \I. Hence, T \X = C1Y ′,
Y = I1Y ′, T \Y = C1X ′, andX = I1X ′ where 1 denotes the disjoint union. By
further classifying the summands according to s := |C| = |I| ∈ {0, 1, . . . , t − 1}
(note that then |X ′| = |Y ′| = t − s), we have

∥∥∥ρ̃ΓB
AB − σ̃ΓB

AB

∥∥∥
1

=
1

( d
2t

)(2t
t

)

∥∥∥∥∥∥∥∥∥∥

t−1∑

s=0

∑

C∈
(
[d]
s

)

∑

I∈
(
[d]\C

s

)

∑

X′,Y ′∈
(
[d]\(C$I)

t−s

)
:

X′∩Y ′=∅

|C % Y ′〉A|I % Y ′〉B〈C % X′|A〈I % X′|B

∥∥∥∥∥∥∥∥∥∥
1

≤
1

( d
2t

)(2t
t

)
t−1∑

s=0

∑

C∈
(
[d]
s

)

∑

I∈
(
[d]\C

s

)

∥∥∥∥∥
∑

X′,Y ′∈
(
[d]\(C$I)

t−s

)
:

X′∩Y ′=∅

|C % Y ′〉A|I % Y ′〉B〈C % X′|A〈I % X′|B

︸ ︷︷ ︸
=:KC,I

∥∥∥∥∥
1

,

where the inequality follows from the triangle inequality. We observe that the
matrix KC,I has the same structure as the adjacency matrix of Kneser graphs.
Here, we recall the definition of Kneser graphs. For v, k ∈ N, the Kneser graph
K(v, k) is the graph whose vertices correspond to the k-element subsets of the
set [v], and two vertices are adjacent if and only if the two corresponding sets
are disjoint. Therefore, for every (C, I), the matrix KC,I is isospectral to the
adjacency matrix of the Kneser graph K(d− |C|− |I|, t− |I|). Finally, we employ
the well-studied spectral property of Kneser graphs as a black box to obtain an
O(t2/d) = negl(λ) upper bound for

∥∥∥ρ̃ΓB
AB − σ̃ΓB

AB

∥∥∥
1
.

Furthermore, we show the tightness of the theorem by constructing an opti-
mal LOCC distinguisher that achieves the same advantage. The strategy is sim-
ple: Alice and Bob each individually measure every copy of their input in the
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computational basis and obtain a total of 2t outcomes. Then, they output 1 if
there is any collision among these 2t outcomes.

Impossibility Results in the CHS Model. With the LOCC Haar indistinguisha-
bility theorem in hand, we investigate the limits of the CHS model when the
communication between the parties is classical. We show that the several impos-
sibility results of information-theoretically secure schemes in the plain model
can be generically lifted to the CHS model, even when the adversary does not
receive any common Haar state. We emphasize that there is no classical coun-
terpart in the CRS model. If the adversary is not given the CRS, then many
information-theoretically secure schemes do exist, such as key agreements.

As common in proving impossibilities, our approach is to convert schemes
in the CHS model to those in the plain model. The transform is simple: in the
new scheme, the parties each sample polynomially many copies of the Haar state
independently and run the original scheme. Crucially, despite the inconsistency
in their Haar states, the new scheme still satisfies completeness thanks to the
LOCC Haar indistinguishability. A caveat is that sampling Haar states is time-
inefficient. However, since the impossibilities in the plain model are still valid if
the (honest) algorithms in the scheme are time-inefficient, doing so is acceptable
for the sake of showing impossibilities.

Separation Results. We separate many important primitives from (λ,ω(log(λ)))-
PRSG. Since (λ,ω(log(λ)))-PRSGs do not exist in the CHS model, we need to
“strengthen” the oracle in order to prove separations. For every security param-
eter λ ∈ N, we define the oracle as {Gk}k∈{0,1}λ where each Gk is an isometry
that takes no input and outputs an i.i.d. Haar state |ψk〉.

Relative to this oracle, the implementation of the PRSG is straightforward:
the output on k of any length λ ∈ N is |ψk〉. The security directly follows
from the hardness of unstructured search. To prove the non-existence of QCCC
schemes, we employ a two step approach. First, showing that a scheme with
respect to this oracle can be transformed to schemes with respect to a much
weaker oracle. Second, showing that this much weaker oracle does not give much
extra power over the plain model. Formally: First, similar to the previous section,
we show that due to the LOCC indistinguishability, the parties can sample all
“large” quantum states on their own, and the correctness and security is only
“polynomially” affected7. This means that any scheme with respect this oracle
can be turned into a scheme with respect to an oracle with only short (constant
times logarithmic) Haar states. Second, for short (constant times logarithmic)
quantum states, we show that this oracle does not give much extra power since
an adversary can learn the oracle completely. This is because for short-enough
states, the adversary can run tomography on polynomial queries and learn the
state with up to inverse polynomial error. Hence, the adversary can simulate

7 Since the Haar indistinguishability has a factor of O(t2/d), as long as t2/d is inverse-
polynomial, we do not incur a lot of loss.
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both parties post-selecting on a transcript to learn any secret8. This means that
any scheme secure in the presence of this oracle can be transformed into another
scheme that is secure in the plain model.

Lastly, we observe that by considering a generalized oracle, namely
{Gk,x}k,x∈{0,1}λ , we can show that (classically accessible) PRFSGs with super-
logarithmic input length exist. We can extend the impossibility of QCCC com-
mitments to hold in the presence of the generalized oracle as well. Thus, we can
separate PRFS and QCCC commitments.

3 Preliminaries

We denote the security parameter by λ. We assume that the reader is familiar
with the fundamentals of quantum computing covered in [NC10].

3.1 Notation

– We use [n] to denote {1, . . . , n} and [0 : n] to denote {0, 1, . . . , n}.
– For any finite set T and any integer 0 ≤ k ≤ |T |, we denote by

(T
k

)
the set of

all k-size subsets of T .
– For any finite set T , we use the notation x ← T to indicate that x is sampled
uniformly from T .

– We denote by St the symmetric group of degree t.
– For any set A and t ∈ N, we denote by At the t-fold Cartesian product of A.
– For σ ∈ St and v = (v1, . . . , vt), we define σ(v) := (vσ(1), . . . , vσ(t)).
– We denote by D(H) the set of density matrices in the Hilbert space H.
– Let ρAB ∈ D(HA ⊗ HB), by TrB(ρAB) ∈ D(HA) we denote the reduced
density matrix by taking partial trace over B.

– We denote by TD(ρ, ρ′) := 1
2‖ρ − ρ′‖1 the trace distance between quantum

states ρ, ρ′, where ‖X‖1 = Tr(
√
X†X) denotes the trace norm.

– For any matrices A,B, we write A . B to indicate that B − A is positive
semi-definite.

– For any Hermitian matrix O, the trace norm of O has the following variational
definition:

‖O‖1 = max
−I.M.I

Tr(MO).

Furthermore, if Tr(O) = 0 then ‖O‖1 = 2 ·max0.M.I Tr(MO).
– We denote the Haar measure over n qubits by Hn.
– For any matrix MAB =

∑
i,j,k,' αijk'|i〉〈j|A ⊗ |k〉〈#|B on registers (A,B), by

MΓB
AB we denote its partial transpose with respect to register B, i.e., MΓB

AB =∑
i,j,k,' αijk'|i〉〈j|A ⊗ |#〉〈k|B.9

8 Note that since the adversary does not need to be efficient, as long as they have the
description of this oracle, they can post-select on the transcript.

9 Note that the (partial) transpose operation needs to be defined with respect to to
an orthogonal basis. Throughout this work, it is always defined with respect to to
the computational basis.
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3.2 Common Haar State Model

The Common Haar State (CHS) model is related to the Common Reference
Quantum State (CRQS) model [MNY23]. In this model, all parties receive poly-
nomially many copies of a single quantum state sampled from the Haar distri-
bution. Recently, another work of Chen et al. [CCS24] studied a similar model
called the Common Haar Random State (CHRS) model. In the CHRS model,
every party receives polynomially many copies of polynomially many i.i.d. Haar
states.

We define another variant of the CHS model called the Keyed Common
Haar State Model. In this model, all parties (once the security parameter is set
to λ) have access to the oracle (called the Keyed Common Haar State Oracle)
Gλ := {Gk}k∈{0,1}λ as follows. For every k ∈ {0, 1}λ, the oracle Gk is a Haar
isometry that maps any state |ψ〉 to |ψ〉|ϑk〉, where |ϑk〉 is a Haar state of length
n(λ) = ω(log(λ)).

While the above variant is harder to instantiate (hence not useful for con-
structions), is a natural candidate for black-box separations as seen is Sect. 9.

Pseudorandom State (PRS) Generators in the CHS Model

Definition 1 (Statistically Secure (λ, n, #)-Pseudorandom State Gener-
ators in the CHS Model). We say that a QPT algorithm G is a statistically
secure (λ, n, #)-pseudorandom state generator (PRSG) in the CHS model if the
following holds:

– State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where
Gk denotes G(k, ·)) is a quantum channel such that for every n(λ)-qubit state
|ϑ〉,

Gk(|ϑ〉〈ϑ|) = |ϑk〉〈ϑk|,
for some n(λ)-qubit state |ϑk〉. We sometimes write Gk(|ϑ〉) for brevity.10

– #-copy Pseudorandomness: For any polynomial t(·) and any non-uniform,
unbounded adversary A = {Aλ}λ∈N, there exists a negligible function negl(·)
such that:
∣∣∣∣∣ Pr
k←{0,1}λ

|ϑ〉←Hn(λ)

[
Aλ

(
Gk(|ϑ〉)⊗'(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)

)
= 1
]

− Pr
|ϕ〉←Hn(λ)
|ϑ〉←Hn(λ)

[
Aλ

(
|ϕ〉〈ϕ|⊗'(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)

)
= 1
] ∣∣∣∣∣ ≤ negl(λ).

10 More generally, the generation algorithm could take multiple copies of the common
Haar state as input or output a state of different size compared to the common Haar
state. Here, we focus on a restricted class of generators that only require a single
copy of the common Haar state as input, and the output of the generator matches
the size of the common Haar states.
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If G satisfies #-copy pseudorandomness for every polynomial #(·) then we drop #
from the notation and simply denote it to be a (λ, n)-PRSG.
We define a stronger definition below called multi-key #-copy PRS generators.
Looking ahead, our construction of PRS in Sect. 4.2 satisfies this definition.

Definition 2 (Multi-key Statistically Secure (λ, n, #)-Pseudorandom
State Generators in the CHS Model). We say that a QPT algorithm G
is a multi-key statistically secure (λ, n, #)-pseudorandom state generator in the
CHS model if the following holds:
– State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where

Gk denotes G(k, ·)) is a quantum channel such that for every n(λ)-qubit state
|ϑ〉,

Gk(|ϑ〉〈ϑ|) = |ϑk〉〈ϑk|,
for some n(λ)-qubit state |ϑk〉. We sometimes write Gk(|ϑ〉) for brevity.

– Multi-key #-copy Pseudorandomness: For any polynomial t(·), p(·) and
any non-uniform, unbounded adversary A = {Aλ}λ∈N, there exists a negligible
function negl(·) such that:
∣∣∣∣∣ Pr
k1,...,kp(λ)←{0,1}λ

|ϑ〉←Hn(λ)



Aλ




p(λ)⊗

i=1

Gki(|ϑ〉)⊗'(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)



 = 1





− Pr
|ϕ1〉,...,|ϕp(λ)〉←Hn(λ)

|ϑ〉←Hn(λ)



Aλ




p(λ)⊗

i=1

|ϕi〉〈ϕi|⊗'(λ) ⊗ |ϑ〉〈ϑ|⊗t(λ)



 = 1




∣∣∣∣∣ ≤ negl(λ).

If G satisfies multi-key #-copy pseudorandomness for every polynomial #(·) then
we drop # from the notation and simply denote it to be a multi-key (λ, n)-PRSG.

Remark 1. Note that in the plain model, PRS implies multi-key PRS because
the pseudorandom state generator does not share randomness for different keys.
It is not clear whether this holds in the CHS model as the different executions
of the pseudorandom state generator share the same common Haar state.

Pseudorandom Function-like State (PRFS) Generators in the CHS
Model
Definition 3 (Statistical Selectively Secure (λ,m, n, #)-PRFS Genera-
tors). We say that a QPT algorithm G is a statistical selectively secure
(λ,m, n, #)-PRFS generator in the CHS model if the following holds:
– State Generation: For any λ ∈ N, k ∈ {0, 1}λ and x ∈ {0, 1}m(λ), where

m(λ) is the input length, the algorithm Gk,x (where Gk,x denotes G(k, x, ·))
is a quantum channel such that for every n(λ)-qubit state |ϑ〉,

Gk,x(|ϑ〉〈ϑ|) = |ϑk,x〉〈ϑk,x|,

for some n(λ)-qubit state |ϑk,x〉. We sometimes write Gk,x(|ϑ〉) or Gk(x, |ϑ〉)
for brevity.
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– #-query Selective Security: For any polynomial t(·), any non-uniform,
unbounded adversary A = {Aλ}λ∈N, and any tuple of (possibly repeated)
m(λ)-bit indices (x1, . . . , x'(λ)), there exists a negligible function negl(·) such
that for all λ ∈ N,

∣∣∣∣∣ Pr
k←{0,1}λ,|ϑ〉←Hn(λ)



Aλ



x1, . . . , x$(λ),

$(λ)⊗

i=1

G(k, xi, |ϑ〉) ⊗ |ϑ〉〈ϑ|⊗t(λ)



 = 1





− Pr
∀x∈{0,1}m(λ), |ϕx〉←Hn(λ),

|ϑ〉←Hn(λ)



Aλ



x1, . . . , x$(λ),

$(λ)⊗

i=1

|ϕxi 〉〈ϕxi | ⊗ |ϑ〉〈ϑ|⊗t(λ)



 = 1




∣∣∣∣∣

≤ negl(λ).

If G satisfies #-query selective security for every polynomial #(·), we drop # from
the notation and say that G is a (λ,m, n)-PRFS generator.

Quantum Commitments in the CHS Model

Definition 4 (Quantum Commitments in the CHS Model). A (non-
interactive) quantum commitment scheme in the CHS model is given by a tuple
of the committer C and receiver R parameterized by a polynomial p(·), both of
which are uniform QPT algorithms. Let |ϑ〉 be the n(λ)-qubit common Haar
state. The scheme is divided into two phases: the commit phase, and the reveal
phase as follows:

– Commit phase: C takes |ϑ〉⊗p(λ) and a bit b ∈ {0, 1} to commit as input,
generates a quantum state on registers C and R, and sends the register C to
R.

– Reveal phase: C sends b and the register R to R. R takes |ϑ〉⊗p(λ) and (b,C,R)
given by C as input, and outputs b if it accepts and otherwise outputs ⊥.

Definition 5 (Poly-Copy Statistical Hiding). A quantum commitment
scheme (C,R) in the CHS model satisfies poly-copy statistical hiding if for any
non-uniform, unbounded malicious receiver R∗ = {R∗

λ}λ∈N, and any polynomial
t(·), there exists a negligible function negl(·) such that
∣∣∣∣∣Pr
[
R∗

λ(|ϑ〉⊗t(λ),TrR(σCR)) = 1 : |ϑ〉←Hn(λ),

σCR←C,(|ϑ〉⊗p(λ),0)

]

− Pr
[
R∗

λ(|ϑ〉⊗t(λ),TrR(σCR)) = 1 : |ϑ〉←Hn(λ),

σCR←C,(|ϑ〉⊗p(λ),1)

]∣∣∣∣∣ ≤ negl(λ),

where C, is the commit phase of C.

Definition 6 (Statistical Sum-Binding). A quantum commitment scheme
(C,R) in the CHS model satisfies statistical sum-binding if the following holds.
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For any pair of non-uniform, unbounded malicious senders C∗
0 and C∗

1 that take
|ϑ〉⊗T (λ) for arbitrary large T (·) as input and work in the same way in the commit
phase, if we let pb to be the probability that R accepts the revealed bit b in the
interaction with C∗

b for b ∈ {0, 1}, then we have

p0 + p1 ≤ 1 + negl(λ).

3.3 Symmetric Subspaces, Type States, and Haar States

The proofs of facts and lemmas stated in this subsection can be found in [Har13].
Let v = (v1, . . . , vt) ∈ At for some finite set A. Let |A| = N . Define type(v) ∈ [0 :
t]N to be the type vector such that the ith entry of type(v) equals the number of
occurrences of i ∈ [N ] in v.11 In this work, by T ∈ [0 : t]N we implicitly assume
that

∑
i∈[N ] Ti = t. For T ∈ [0 : t]N , we denote by mset(T ) the multiset uniquely

determined by T . That is, the multiplicity of i ∈ mset(T ) equals Ti for all i ∈ [N ].
We write T ← [0 : t]N to mean sampling T uniformly from [0 : t]N conditioned
on
∑

i∈[N ] Ti = t. We write v ∈ T to mean v ∈ At satisfies type(v) = T .
In this work, we will focus on collision-free types T which satisfy Ti ∈ {0, 1}

for all i ∈ [N ]. A collision-free type T can be naturally treated as a set and we
write v ← T to mean sampling a uniform v conditioned on type(v) = T .

Definition 7 (Type States). Let T ∈ [0 : t]N , we define the type states:

|T 〉 :=

√∏
i∈[N ] Ti!
t!

∑

v∈T

|v〉.

If T is collision-free, then it can be simplified to

|T 〉 = 1√
t!

∑

v∈T

|v〉.

Furthermore, it has the following useful expression

|T 〉〈T | = 1
t!

∑

v,u∈T

|v〉〈u| = E
v←T

[
∑

σ∈St

|v〉〈σ(v)|
]
. (1)

Lemma 1 (Average of Copies of Haar-Random States). For all N, t ∈ N,
we have

E
|ϑ〉←H(CN )

|ϑ〉〈ϑ|⊗t = E
T←[0:t]N

|T 〉〈T |.

11 We identify [0 : t]N as [0 : t]A.
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3.4 Quantum Black-Box Reductions

We recall the definition of fully black-box reductions [RTV04,BBF13] and their
quantum analogue. The definitions below are taken verbatim from [HY20].

Definition 8 (Quantum Primitives). A quantum primitive P is a pair
(FP ,RP), where FP is a set of quantum algorithms I, and RP is a relation
over pairs (I,A) of quantum algorithms I ∈ FP and A. A quantum algorithm
I implements P or is an implementation of P if I ∈ FP . If I ∈ FP is efficient,
then I is an efficient implementation of P. A quantum algorithm A P-breaks
I ∈ FP if (I,A) ∈ RP . A secure implementation of P is an implementation
I of P such that no efficient quantum algorithm P-breaks I. The primitive P
quantumly exists if there exists an efficient and secure implementation of P.

Definition 9 (Quantum Primitives Relative to Oracle). Let P =
(FP ,RP) be a quantum primitive, and O be a quantum oracle. An oracle quan-
tum algorithm I implements P relative to O or is an implementation of P rela-
tive to O if IO ∈ FP . If IO ∈ FP is efficient, then I is an efficient implementa-
tion of P relative to O. A quantum algorithm A P-breaks I ∈ FP relative to O
if (IO,AO) ∈ RP . A secure implementation of P is an implementation I of P
relative to O such that no efficient quantum algorithm P-breaks I relative to O.
The primitive P quantumly exists relative to O if there exists an efficient and
secure implementation of P relative to O.

Definition 10 (Quantum Fully Black-Box Reductions). A pair (C,S) of
efficient oracle quantum algorithms is a quantum fully-black-box reduction from
a quantum primitive P = (FP ,RP) to a quantum primitive Q = (FQ,RQ) if
the following two conditions are satisfied:

1. (Correctness.) For every implementation I ∈ FQ, we have CI ∈ FP .
2. (Security.) For every implementation I ∈ FQ and every quantum algorithm

A, if A P-breaks CI , then SA,I Q-breaks I.

4 Warmup: Statistical Stretch PRS Generators inthe
CHS Model

We present a construction of multi-key PRS generator with statistical security
in the CHS model.

Theorem 7. There exists a multi-key (λ, n, #)-statistical PRS generator in the
CHS model, where n ≥ λ and # = O(λ/ log(λ)1+ε) for any constant ε > 0.

The proof can be found in Sect. 4.2. Later, we prove the optimality of our con-
struction in Sect. 4.3. Specifically, we show that any (λ, n, #)-statistical PRS gen-
erator cannot simultaneously satisfy n = ω(log(λ)) and # = Ω(λ/ log(λ)).
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4.1 Useful Lemmas

At a high level, the proof follows the template of [AGQY22,AGKL23]: we do
the analysis in the symmetric subspace. First, we identify a nice property of
type vectors such that (1) a randomly sampled type satisfies this property with
overwhelming probability and (2) the PRS generation algorithm behaves well
on every type state having this property. We identify these type vectors as #-
fold collision-free types (which are a generalization of distinct types [AGQY22,
AGKL23]).

Definition 11 (#-Fold n-Prefix Collision-Free Types). Let n,m, t, # ∈ N
such that t ≥ # and T ∈ [0 : t]2

n+m

is a type vector. We say that T is #-fold n-
prefix collision-free if for all pairs of #-subsets12 S, T ⊆ mset(T ), the first n bits
of
⊕

x∈S x ∈ {0, 1}n+m is identical to that of
⊕

y∈T y ∈ {0, 1}n+m if and only if
S = T . We define I(')

n,m(t) := {T ∈ [0 : t]2
n+m

: T is #-foldn-prefix collision-free}
as the set of all #-fold n-prefix collision-free type vectors.

When t > #, one can easily verify that #-fold n-prefix collision-freeness implies the
standard collision-freeness. Also note that when t > 2#, #-fold n-prefix collision-
freeness implies i-fold n-prefix collision-freeness for all i ≤ #.

Next, we show that a random type is #-fold n-prefix collision-free with high
probability.

Lemma 2. PrT←[0:t]2n+m [T ∈ I(')
n,m(t)] = 1 − O(t2'/(2n − 2#)).

Proof. First, sampling T ← [0 : t]2
n+m

uniformly is O(t2/2n+m)-close to sam-
pling a uniform collision-free T from [0 : t]2

n+m

by the collision bound.
Furthermore, sampling a uniform collision-free T from [0 : t]2

n+m

is equivalent
to sampling t elements x1, x2, . . . , xt one by one from {0, 1}n+m conditioned on
them being distinct and setting T such that mset(T ) = {x1, . . . , xt}. Hence, it
suffices to show that sampling t elements x1, x2, . . . , xt one by one from {0, 1}n+m

conditioned on them being distinct results in an #-fold n-prefix collision-free set
with probability 1 − O(t2'/2n).
For any two distinct #-subsets of indices S (= T ⊆ [t], let BadS,T denote the
event that the first n bits of

⊕
i∈S xi is the same as that of

⊕
j∈T xj . Then the

following holds:

Pr
[
BadS,T : x1,x2,...,xt←{0,1}n+m

x1,x2,...,xt are distinct

]
= O(1/(2n − 2#)).

This is because we can first sample |S ∪ T | − 1 elements (in S ∪ T ) except one
with indices in S \ T . Then BadS,T occurs only if the first n bits of the last
sample is equal to the first n bits of the bitwise XOR of all other elements in S
with all elements in T , which happens with probability at most O(1/(2n − 2#)).

By a union bound, we have T ∈ I(')
n,m(t) with probability at least 1 −

(O(t2/2n+m) +
(t
'

)2 ·O(1/(2n − 2#))) = 1 − O(t2'/(2n − 2#)). 56
12 Here we allow the subsets to contain duplicate elements.
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Finally, the following two lemmas show that applying random Pauli-Z on any
#-fold n-prefix collision-free type state is equivalent to a “classical” probabilistic
process13.

Lemma 3. For any v ∈ {0, 1}(n+m)(t+') such that type(v) ∈ I(')
n,m(t + #) and

σ ∈ St+', define

Av,σ := E
k←{0,1}n

[((
Zk ⊗ Im

)⊗' ⊗ I⊗t
n+m

)
|v〉〈σ(v)|

((
Zk ⊗ Im

)⊗' ⊗ I⊗t
n+m

)]
.

Then Av,σ = |v〉〈σ(v)| if σ maps [#] to [#]; otherwise, Av,σ = 0.

Proof. Suppose v = (v1||w1, . . . , vt+'||wt+') ∈ {0, 1}(n+m)(t+') with vi ∈ {0, 1}n
and wi ∈ {0, 1}m for all i ∈ [t]. First, a direct calculation yields:

((
Zk ⊗ Im

)⊗' ⊗ I⊗t
n+m

)
|v〉〈σ(v)|

((
Zk ⊗ Im

)⊗' ⊗ I⊗t
n+m

)

= (−1)〈k,
⊕#

i=1(vi⊕vσ(i))〉|v〉〈σ(v)|.

Therefore, after averaging over k,

Av,σ = E
k←{0,1}n

[
(−1)〈k,

⊕#
i=1(vi⊕vσ(i))〉

]
|v〉〈σ(v)|

=

{
|v〉〈σ(v)| if

⊕'
i=1(vi ⊕ vσ(i)) = 0

0 otherwise.

Since type(v) ∈ I(')
n,m(t + #), the condition

⊕'
i=1 vi =

⊕'
i=1 vσ(i) holds if and

only if the two sets {1, 2, . . . , #} and {σ(1),σ(2), . . . ,σ(#)} are identical. 56

The following lemma lies at the technical heart of this section. It states that
the action of applying random Zk on #-fold n-prefix collision-free types T 14

has the following “classical” probabilistic interpretation: the output is identically
distributed to first uniformly sampling an #-subsetX from T and then generating
|X〉〈X| ⊗ |T \X〉〈T \X|.

Lemma 4. For any T ∈ I(')
n,m(t+ #),

E
k←{0,1}n

[((
Zk ⊗ Im

)⊗' ⊗ I⊗t
n+m

)
|T 〉〈T |

((
Zk ⊗ Im

)⊗' ⊗ I⊗t
n+m

)]

= E
X←(T#)

[|X〉〈X| ⊗ |T \X〉〈T \X|] .

13 We say that this is a “classical” probabilistic process because we can write the result-
ing density matrix as direct sum of matrices with classical descriptions with weights
chosen by a completely classical process. This means that we can simualte this
process by first doing a completely classical sampling process followed by a state
preparation.

14 Since T is collision-free, we will treat it as a set.
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Proof. We first use the expression in Eq. (1) on the left-hand side:

E
v←T

[
∑

σ∈St

E
k←{0,1}n

[((
Zk ⊗ Im

)⊗$
⊗ I⊗t

n+m

)
|v〉〈σ(v)|

((
Zk ⊗ Im

)⊗$
⊗ I⊗t

n+m

)]]
.

(2)

Then from the previous lemma (Lemma 3)

(2) = E
v←T




∑

σ1∈S#,σ2∈St

|v〉〈σ1 ◦ σ2(v)|





= E
v←T

[
∑

σ1∈S#

|v[1:']〉〈σ1(v[1:'])| ⊗
∑

σ2∈St

|v['+1:'+t]〉〈σ2(v['+1:'+t])|
]

= E

[
∑

σ1∈S#

|v1〉〈σ1(v1)| ⊗
∑

σ2∈St

|v2〉〈σ2(v2)| :
X←(T#),
v1←X,

v2←T\X

]

= E
X←(T#)

[|X〉〈X| ⊗ |T \X〉〈T \X|] .

For the first equality, we use Lemma 3 and decompose σ = σ1 ◦ σ2 for some
σ1,σ2 such that σ1(x) = x for all x ∈ {# + 1, # + 2, · · · , # + t} and σ2(y) = y for
all y ∈ {1, 2, · · · , #}. Since all #+1, #+2, · · · , #+ t are fixed points of σ1, we can
view it as an element in S'. Similarly, we view σ2(y) as an element in St. The
second equality follows by denoting the first # part of v by v[1:'] and the last
t part of v by v['+1:'+t]. The third equality holds because sampling a tuple v
from T is equivalent to sampling an #-subset X from T followed by ordering to
elements in X and T \X. 56

4.2 Construction

In this section, we assume that the length of the common Haar state satisfies
n = n(λ) ≥ λ for all λ ∈ N. We define the construction as follows: on input
k ∈ {0, 1}λ and a single copy of the common Haar state |ϑ〉,

Gk(|ϑ〉) := (Zk ⊗ In−λ)|ϑ〉.

Lemma 5 (#-Copy Pseudorandomness). Let G be as defined above. Let

ρ := E
k←{0,1}λ

|ϑ〉←Hn

[
Gk(|ϑ〉)⊗' ⊗ |ϑ〉〈ϑ|⊗t

]
and σ := E

|ϕ〉←Hn

|ϑ〉←Hn

[
|ϕ〉〈ϕ|⊗' ⊗ |ϑ〉〈ϑ|⊗t

]
.

Then TD (ρ,σ) = O
(

('+t)2#

2λ

)
.
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Proof. We prove this via a hybrid argument:

Hybrid 1. Sample T ← [0 : #+t]2
n

. Sample k ← {0, 1}λ. Output ((Zk⊗In−λ)⊗'⊗
I⊗t
n )|T 〉.

Hybrid 2. Sample T ← [0 : # + t]2
n

uniformly conditioned on T ∈ I(')
λ,n−λ(# + t).

Sample k ← {0, 1}λ. Output ((Zk ⊗ In−λ)⊗' ⊗ I⊗t
n )|T 〉.

Hybrid 3: Sample T ← [0 : # + t]2
n

uniformly conditioned on T ∈ I(')
λ,n−λ(# + t).

Sample a uniform #-subset T1 from T . Output |T1〉 ⊗ |T \ T1〉.

Hybrid 4. Sample T ← [0 : # + t]2
n

. Sample a uniform #-subset T1 from T .15
Output |T1〉 ⊗ |T \ T1〉.

Hybrid 5. Sample a collision-free T from [0 : #+ t]2
n

. Sample a uniform #-subset
T1 from T . Output |T1〉 ⊗ |T \ T1〉.

Hybrid 6. Sample a uniform collision-free T1 from [0 : #]2
n

. Sample a uniform
collision-free T2 from [0 : t]2

n

conditioned on T1 and T2 have no common ele-
ments. Output |T1〉 ⊗ |T2〉.

Hybrid 7. Sample a uniform collision-free T1 from [0 : #]2
n

. Sample a uniform
collision-free T2 from [0 : t]2

n

. Output |T1〉 ⊗ |T2〉.

Hybrid 8. Sample T1 ← [0 : #]2
n

. Sample T2 ← [0 : t]2
n

. Output |T1〉 ⊗ |T2〉.

Indistinuishability of Hybrids.

– By Lemma 2, the trace distance between Hybrid 1 and Hybrid 2 is O((t +
#)2'/2λ).

– From Lemma 4, the output of Hybrid 2 is

E
T←[0:'+t]2

n
:

T∈I(#)
λ,n−λ('+t)

E
T1←(T#)

[|T1〉〈T1| ⊗ |T \ T1〉〈T \ T1|] .

Hence, Hybrid 2 is equivalent to Hybrid 3.
– Again by Lemma 2, the trace distance between Hybrid 3 and Hybrid 4 is
O((t+ #)2'/2λ).

– The trace distance between Hybrid 4 and Hybrid 5 is O((t + #)2/2n) by the
collision bound.

– Hybrid 5 and Hybrid 6 are equivalent.
– The trace distance between Hybrid 6 and Hybrid 7 is O(t#/2n).

15 Since T might have collisions, T1 is allowed to contain duplicate elements.
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– Finally, the trace distance between Hybrid 7 and Hybrid 8 is O((t2 + #2)/2n)
by the collision bound.

This completes the proof. 56

In the following, we show that our construction also satisfies multi-key #-copy
pseudorandomness using Lemma 5.

Lemma 6 (Multi-key #-Copy Pseudorandomness). Let G be defined as
above. Let

ρ :=
p⊗

i=1

E
|ϕi〉←Hn

[
|ϕi〉〈ϕi|⊗'

]
⊗ E

|ϑ〉←Hn

[
|ϑ〉〈ϑ|⊗t

]

and

σ := E
|ϑ〉←Hn

[
p⊗

i=1

E
ki←{0,1}λ

[
Gki(|ϑ〉)⊗'

]
⊗ |ϑ〉〈ϑ|⊗t

]
.

Then TD (ρ,σ) = O
(

p·(p'+t)2#

2λ

)
.

The proof of Lemma 6 can be found in the full version [AGL24].
Proof of Theorem 7. Our construction is an efficiently-implementable uni-

tary channel and thus satisfies the state generation property. Pseudorandomness
follows from Lemma 6. 56

4.3 Optimality of Our PRSG Construction

In this section, if the PRS generation algorithm uses only one copy of the com-
mon Haar state, we show that #-copy statistical PRS and multi-key #-copy sta-
tistical PRS are impossible for # = Ω(λ/ log(λ)) and n = ω(log(λ)).

Theorem 8. Statistically secure (λ, n, #)-PRS is impossible in the CHS model
if (a) the generation algorithm uses only one copy of the common Haar state,
(b) n = ω(log(λ)), (c) # = Ω(λ/ log(λ)) and, (d) the length of the common Haar
state is n = ω(log(λ)).

The proof of Theorem 8 can be found in the full version [AGL24].

5 Statistical Stretch PRFS Generators in the CHS Model

In this section, we extend our techniques from Sect. 4.2 to construct an
(λ,m, n, #)-statistical PRFS in the CHS model, where m = λc, # =
λ1−c/ log(λ)1+ε, the length of the common Haar state is n ≥ λ1−c, for any
constant ε > 0 and c ∈ [0, 1). In the case when n > λ, the construction satisfies
stretch property. We prove the following theorem in the full version [AGL24].

Theorem 9. There exists an (λ,m, n, #)-statistical selectively secure PRFS gen-
erator in the CHS model where the length of the common Haar state is n(λ),
m(λ) = λc, # = O(λ1−c/ log(λ)1+ε) and n(λ) ≥ λ1−c, for any constant ε > 0
and for any c ∈ [0, 1).
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Note that since a PRS can be used to computationally instantiate CHS in
the plain model, the above result also gives us a way to get bounded-query long-
input PRFS from PRS in the plain model. In more detail, we can start with a
PRS that has stretch (i.e. n > λ) and then we can bootstrap into a PRFS for
large input length at the cost of a reduction in stretch.16

Corollary 2. Assuming the existence of (λ, n, #)-PRS, for n > λ and # =
O(λ1−c/ log(λ)1+ε), there exists a selectively secure (2λ,m, n, #)-PRFS gener-
ator with m(λ) = λc, for any constant ε > 0 and for any c ∈ [0, 1).

Furthermore, since PRFS imply PRS, achieving an #-query statistical PRFS
in the CHS model for # = Ω(λ/ log(λ)) is impossible from Theorem 8.

Corollary 3. (λ,m, n, #)-statistical PRFS is impossible in the CHS model if
(a) the generation algorithm uses only one copy of the common Haar state,
(b) # = Ω(λ/ log(λ)), (c) the length of the common Haar state is n and, (d)
n = ω(log(λ)).

5.1 Construction

We extend the techniques used in Sect. 4.2 to construct a statistical PRFS
in Fig. 1. The construction samples a uniform key for each position of the input
being zero or one. Applying this to the common Haar state gives us the output of
the PRFS. The details can be seen in Fig. 1. Thoughout this section, one should
think of m = λc and λ′ = λ1−c for some constant c ∈ [0, 1).

Fig. 1. PRFS in the CHS model

The main property of the construction that makes it a PRFS is its ability
to disentangles any type state in I(')

λ′,n−λ′(# + t) into a probabilistic mixture of
disjoint subsets of the type.

16 Formally, let GPRS is a (λ, n, $)-PRS and G(k, x, |φ〉) is (λ,m, n, $)-statistical selec-
tively secure PRFS generator in the CHS model with n > λ, $ = O(λ1−c/ log(λ)1+ε)
and m(λ) = λc, then for K = (k1, k2) ∈ {0, 1}λ × {0, 1}λ we can define
GPRFS(k, x) := G(k1, x,GPRS(k2)) as the (2λ,m, n, $)-PRFS generator.
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6 Quantum Commitments in the CHS Model

In this section, we construct a commitment scheme that satisfies poly-copy statis-
tical hiding and statistical sum-biding in the CHS model. The scheme is inspired
by the quantum commitment scheme proposed in [MY21,MNY23]. In contrast
to the scheme in [MY21], our construction is not of the canonical form [Yan2]. To
achieve binding, similar to [MNY23], the receiver needs to perform several SWAP
tests. To achieve hiding, our scheme relies on the multi-key pseudorandomness
property in Lemma 6.

6.1 Construction

We assume that n(λ) ≥ λ+1 for all λ ∈ N. Our construction, parameterized by
the polynomial p = p(λ) := λ, is shown in Fig. 2. In the full version [AGL24], we
prove the following theorem:

Theorem 10. The construction in Fig. 2 is a quantum commitment in the CHS
model.

Fig. 2. Quantum commitment scheme in the CHS model
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7 LOCC Indistinguishability

In this section, we prove our main technical theorem for proving impossibilities
and separations in Sect. 8 and Sect. 9.

7.1 Definitions

Definition 12 (LOCC Adversaries). An LOCC adversary is a tuple (A,B),
where A and B are spatially separated, non-uniform, and computationally
unbounded quantum algorithms without pre-shared entanglement. In addition,
A and B can only perform local operations on their registers and communicate
classically.

Definition 13 (LOCC Indistinguishability). We say that two density
matrices (ρAB,σAB) are ε-LOCC indistinguishable if for any LOCC adversary
(A,B) with A taking as input register A and B taking as input register B, the
probability that B outputs 1 satisfies17

|Pr[(A,B)(ρAB) = 1] − Pr[(A,B)(σAB) = 1]| ≤ ε.

If ε(·) is negligible, then we simply say that (ρAB,σAB) are LOCC indistinguish-
able.

7.2 LOCC Haar Indistinguishability

We prove the following theorem in the full version [AGL24]:

Theorem 11 (LOCC Haar Indistinguishability). Let ρAB := E|ψ〉←Hn

|ψ〉〈ψ|⊗t
A ⊗ |ψ〉〈ψ|⊗t

B and σAB := E|ψ〉←Hn

[
|ψ〉〈ψ|⊗t

A

]
⊗ E

|φ〉←Hn

[
|φ〉〈φ|⊗t

B

]
. Then

ρAB and σAB are O(t2/2n)-LOCC indistinguishable.

7.3 An Optimal LOCC Haar Distinguisher

We present an (optimal) LOCC Haar distinguisher with advantage Ω(t2/2n) in
the full version [AGL24]. Hence, the upper bound in Theorem 11 is tight.

8 Impossibilities of QCCC Primitives in the CHS Model

In this section, we investigate the impossibility of statistically secure quantum-
computation classical-communication (QCCC) primitives in the CHS model. We
prove the following theorem in the full version [AGL24]:

Theorem 12. There does not exist primitive P in the CHS model where P ∈
{statistically secure QCCC key agreements, statistically hiding and statistically
binding QCCC interactive commitments}.
17 Since (A,B) are allowed to communicate and we do not care about communication

complexity, it is without loss of generality to assume that B outputs the bit.
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9 Quantum Black-Box Separation in the QCCC Model

9.1 The Separating Oracle

As is common in black-box impossibility results, we will define oracles relative
to which ω(log(λ))-PRSGs exist while QCCC key agreements and interactive
commitments do not. We define the oracle G := {{Gk}k∈{0,1}λ}λ∈N as follows.
For every λ ∈ N and k ∈ {0, 1}λ, the oracle Gk is a Haar isometry that maps
any state |ψ〉 to |ψ〉|ϑk〉, where |ϑk〉 is a Haar state of length n(λ) = ω(log(λ)).
The existence of ω(log(λ))-PRSGs relative to G can be proven easily.

9.2 Separating QCCC Key Agreements from (λ,ω(log(λ)))-PRSGs

In the full version [AGL24], we prove the following theorem:

Theorem 13. There does not exist a quantum fully black-box reduction (C,S)
from QCCC key agreements to (λ,ω(log(λ)))-PRSGs such that C only asks clas-
sical queries to the PRSG.

9.3 Separating QCCC Interactive Commitments
from (λ,ω(log(λ)))-PRSGs

In the full version [AGL24], we prove the following theorem:

Theorem 14. There does not exist a quantum fully black-box reduction (C,S)
from QCCC Interactive Commitments to (λ,ω(log(λ)))-PRSGs such that C only
asks classical queries to the PRSG.
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