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Abstract. As the developers of malware continuously evolve their
attacks and infection methods, so to must bot detection methods
advance. Graph Neural Networks (GNNs) have emerged as a promis-
ing detection method. However, in most cases communications graphs
reflecting bot-infected networks are plagued with class imbalance and
a high level of heterophily. Graph oversampling techniques employed
to tackle class imbalance on graphs have drawbacks, such as introduc-
ing noisy topological structures or exacerbating heterophily within the
graph. Out-of-distribution detection (ODD) is considered as an alter-
native solution to address data imbalance issues, but when applied to
graphs, it assumes that the underlying graph structure does not interfere
with the learning of data distributions. In this paper, we present the first
application of ODD methods for bot detection in a network. We propose
a new energy-based ODD model, which surpasses existing ODD methods,
including those tailored for ODD on graph data, and effectively mitigates
performance degradation caused by graph heterophily. We substantiate
our claims through extensive experiments on the TON IoT dataset, which
comprises real captured bot data. The experimental results demonstrate
that our model achieves state-of-the-art performance in bot detection on
graphs with high graph heterophily and extreme class imbalance.

Keywords: Bot Detection · Out-of-distribution Detection · Class
Imbalance · Graph Heterophily

1 Introduction

Malicious bots are compromised victim computers or IoT devices, infiltrated
by automated malware programs that perform predefined assignments, which
can infect a system, steal data, or commit other malicious activities [5,28]. As
these bots generally reside in a network by communicating in peer-to-peer (P2P)
structures [37], graph neural networks (GNNs) have emerged as one of the most
effective bot detection methods [22,36,39], due to their graph learning capabili-
ties [7], where GNN models [17] are devised to perform neighborhood aggregation
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and label propagation through graph structure. For example, Zhao et al. [39] cus-
tomized GNNs to detect botnet nodes within Internet communication graphs by
identifying their topological patterns. Lo et al. [22] built a graph isomorphism
network (GIN) with grouped reversible residual connections to handle perfor-
mance degradation on botnet communication graphs.

Communication graphs often exhibit a natural imbalance among labeled
nodes due to the inherent rarity of bots. We calculate the imbalance ratios
(as defined in Sect. 2) over TON IoT networks [1,26], a dataset widely used
for bot detection, where in most cases the imbalance ratios are below 0.03.
This indicates a significant disparity where malicious bots are greatly out-
numbered by benign devices. When the GNN model is trained on such class-
imbalanced graphs, it is difficult to accurately identify bots [2,14]. Unfortu-
nately, though class imbalance is prevalent in communication graphs for bot
detection, existing graph-based bot detection methods have rarely explored this
issue. To mitigate the impact of class imbalance on GNN models, oversampling
has recently been generalized to imbalanced graphs [2,38]. This line of research
synthesizes nodes in the embedding space and then generates edges to connect
them with existing nodes, or removes selected edges to refine the node embed-
ding to exclusively synthesizes nodes that balance class distribution. Either way
may significantly disrupt graph structural semantics, resulting in noisy or incom-
plete neighborhoods for message passing. For instance, GraphSMOTE [38] gen-
erates edges using weighted inner products of node embeddings, which may not
represent real-world relations between devices only enabled by TCP; HOVER
[2] removes edges that satisfy heuristic criteria to prevent node oversmoothing,
which may in turn conceal bots from their exploitation of other devices.

Out-of-distribution detection (ODD) [8] has been introduced to empower
models with an introspective capability to recognize samples that deviate from
the training data used for model preparation, and reject data for which they
exhibit low confidence [18]. This becomes particularly advantageous in security-
critical applications where anomalous or malicious samples are often limited in
representation [4]. This feasibility inspires us to cast bot detection as an ODD
problem, which aims at discriminating bots (out-of-distribution) from benign
devices (in-distribution). While a surge of ODD methods have been developed
[3,12,30], their effectiveness hinges on the assumption of independently sampled
inputs which disables them from generalizing with graph data. Such a premise
propels ODD exploration extended to graph data [24,32,34]. Addressing dis-
tribution shifts in an inter-dependence graph is more challenging, which often
requires graph-specific technical innovations. For example, Li et al. [16] intro-
duced a generative framework that incorporates node features, labels, and graph
structures to derive a posterior distribution for ODD. Stadler et al. [29] explored
uncertainty quantification by proposing Graph Posterior Network (GPN) to per-
form Bayesian posterior updates for predicting out-of-distribution nodes.

In this paper, we investigate how to leverage ODD for bot detection on
graphs. More specifically, our model proceeds by learning node embeddings that
encode both node features and graph structure for representation and prediction;
these node embeddings are then fed to energy-based supervised classification
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loss that is regulated by semi-supervised energy propagation for optimization.
Recent work GNNSafe [32] utilizing energy function to handle ODD focuses on
energy formulation and transformation across different nodes, which, however,
is encumbered with the same drawbacks that plague GNNs - over-smoothing
and reliance on the presence of homophily [40]. As discussed in Section 3.1,
GNNSafe surprisingly underperforms on graphs when imbalance exists between
in-distribution and out-of-distribution nodes, due to its extracted energies being
degraded by the GNN’s message passing and energy propagation. In commu-
nication graphs for bot detection, class imbalance is often accompanied by a
high degree of heterophily [2], where bots tend to massively connect with benign
devices. To address this issue, we propose a simple yet effective method to miti-
gate over-smoothing on node embeddings caused by heterophily. Our method
treats node neighborhood as structural features of nodes, embedding both
structural and semantic features separately, which are then integrated to learn
the final node embeddings. These embeddings enable subsequent homophily-
augmented energy propagation to amplify the extracted energies for effective
out-of-distribution (i.e., bot) detection. In summary, our major contributions
are listed as follows:

– We cast bot detection on graphs as an ODD problem to discriminate bots
(out-of-distribution) from benign devices (in-distribution).

– We design a new energy-based ODD framework, which can better deal with
graph data with extreme low imbalance ratio and high heterophily level.

– Extensive experiments are conducted on TON IoT networks, demonstrating
our model can achieve state-of-the-art bot detection performance on graphs.

2 Preliminaries and Problem Statement

Notations. We represent a communication graph for bot detection as G =
(V, E ,X), where V(n = |V|) is the set of devices, E is the set of edges indicating
communication between devices, and X ∈ R

n×d is the feature matrix. Edges E
can be organized as an adjacency matrix A ∈ R

n×n and Aij = {0, 1} [15]. Each
labeled node has a ground truth y ∈ Y = {benign, bot}. Bot detection learns
a model fW : (A,X) → y in a semi-supervised manner. The node embeddings
Z = fW(A,X) are used to formulate loss function for model optimization.

Class Imbalance. We define imbalance ratio to quantify the nature of class
imbalance in communication graphs as follows: given a graph G where #m is the
number of malicious bots and #b is the number of benign devices, the imbalance
ratio is represented as ri = #m

#b .

Homophily and Heterophily. This paper focuses on homophily in class
labels, where a graph with high homophily suggests that connected nodes share
the same label with a high probability across an entire graph. Homophily ratio
can thus be defined: given a graph G, the homophily ratio is measured as a ratio
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of homophilic edges to all edges rh = 1
|E|

∑
(vi,vj)∈E 1(yvi

= yvj
). Heterophily

is the opposite of homophily to describe the status of heterophilic edges that
connect nodes belonging to different labels. Graphs with high homophily have
rh → 1, while graphs with high heterophily exhibit low homophily with rh → 0.

Energy-based Out-of-Distribution Detection. In this paper, we explore
out-of-distribution detection to identify bots using energy-based models (EBMs)
[20]. An EBM defines an energy function that maps any input x to a single scalar
value E(x) : RD → R. This non-probabilistic scalar is called energy, which can
be expressed as the negative of the log partition function:

E(x) = − log
∑

y′
e−E(x,y′) (1)

A collection of energy values can be converted to a probability density p(x)
through Gibbs distribution as:

p(y|x) =
e−E(x,y)

∑
y′ e−E(x,y′) =

e−E(x,y)

e−E(x)
(2)

When connecting the EBM with a discriminative neural classifier f(x) that maps
the input x to k-dimensional logits (k is the number of classes), we can define
an energy for a given input x with a given class label y as E(x, y) = −fy(x). In
this respect, the energy function can be further derived as:

E(x; f) = − log
k∑

i

efi(x) (3)

Due to the intrinsic characteristics of the energy E(x; f) that the extracted
energy values for in-distribution samples tend to be lower than those of out-of-
distribution samples, E(x; f) can be effectively used to facilitate ODD [20,32]
with a pre-specified threshold τ :

g(x; τ, f) =

{
0, if E(x; f) ≤ τ,

1, if E(x; f) > τ
(4)

In this paper, we designate positive (1) as the prediction of out-of-distribution
(bots), while negative (0) signifies the declaration for in-distribution (benign).

3 Proposed Model

In this section, we present our proposed model to leverage ODD for bot detec-
tion. We first analyze our motivation to better understand the impacts of graph
structure on in-distribution learning before diving into technical details. Figure 1
depicts the overview of our complete model.
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3.1 Impacts of Graph Structure on In-Distribution Learning
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Fig. 1. Overview of our proposed model.

When extending energy-based ODD to graph data, the reliance on GNN back-
bones may result in these models inheriting heterophiliy, oversmoothing, and
imbalance problems that are known to degrade GNN performance [33]. To
demonstrate the impacts less-than-favorable graph conditions can have on graph-
based ODD, we replicate GNNSafe [32], which is a recent state-of-the-art ODD
model for graphs, with out-of-distribution exposure and belief propagation to
work on imbalanced versions of the Cora dataset [35] by varying the number of
in-distribution classes between six and three, and inversely adjusting the number
of out-of-distribution classes between one and three. A more detailed descrip-
tion of the data configurations can be found in Table 1. Each adjustment to
the dataset impacts which edges are homophilic, which edges are heterophilic,
and the number of homophilic edges present in the in-distribution classes. This
is significantly relevant due to the presence of the graph structure nullifies the
independent and identically distribution (i.i.d.) assumption that regular machine
learning-based ODD models (defined in Sect. 2) rely on, making the learning pro-
cess sensitive to topological features of the graph [24].

Table 1. Data configurations on Cora dataset for graph structure analysis.

In-dist classes In-dist Nodes OOD Classes OOD Nodes

6 2,140 1 568

5 1,722 2 986

4 904 3 1,804

We report the learned energy distributions in Fig. 2, with in-distribution
nodes highlighted in blue and out-of-distribution nodes in orange. Notably,
there is an observable trend of increased overlap between in-distribution
and out-of-distribution energy values as the class imbalances between them
grow, which implies a greater number of misclassifications. This phenomenon can
be attributed to the fact that while shifting a single Cora class does not notably
affect the overall number of heterophilic edges throughout the entire graph,
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2,140 In-distribution Nodes 1,722 In-distribution Nodes 904 In-distribution Nodes

Fig. 2. Impacts of varying the number of in-distribution classes on energy distribution.

it does influence specific edges, potentially leading to the formation of het-
erophilic neighborhoods around individual nodes. Nodes with heterophilic neigh-
borhoods tend to contribute to their over-smoothed embeddings and predicted
logits; this results in less differentiable energy values that impact on subsequent
energy propagation, ultimately leading to the observed overlap. Figure 2 pro-
vides insight into the graph-based ODD detection capability and its potential
improvement by mitigating the impacts of heterophilic graph structure.

3.2 Heterophily-Wise Node Embedding Learning

To generalize GNNs to heterophilic graphs, the prevalent methods attend to
refine neighborhood aggregation to adaptively exploit homophilic and het-
erophilic information [21,23,27], which improve the learning performance. How-
ever, these approaches not only complicate the models with extra computational
cost, but also unstable generalization with high variance across diverse graphs
[19]. In this paper, we take a different direction to formulate a learning-effective
yet cost-efficient node embedding method to mitigate the impact of heterophily.
Considering that heterophily impacts on node embeddings through neighbor-
hood aggregation mechanism [25], we treat graph structure encoded as adjacency
matrix A as structural features of nodes indicating inter-dependence with other
nodes and their label distribution, instead of using it as low-pass filter to perform
neighborhood aggregations. More specifically, we extract structural information
from adjacency matrix A and semantic information from feature matrix X,
and then integrate them to learn the final node embeddings, which encode both
node features and graph structure without excessive smoothing or compromise.

Formally, given a communication graph G = (V, E ,X), we train two separate
multi-layer perceptions (MLPs) on feature matrix X and adjacency matrix A
to capture higher-level representations HX and HA. Both representations are
then concatenated as [HX;HA] and fed to a fully-connected layer to fine-tune
the presentation importance, deriving the final node embeddings H:

H = σ([MLPX(X),MLPA(A)]W), H ∈ R
n×d (5)
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The learned heterophily-wise node embeddings H will further proceed with two
operations: (1) facilitating energy calculation; and (2) improving energy propaga-
tion. These two operations are detailed in Sect. 3.3 and Section 3.4, respectively.

3.3 Energy Calculation

To map the node embeddings H to the logit matrix Z, we train another MLP
to perform Z = MLPZ(H),Z ∈ R

n×k, where k = 2 in our application scenario
since we only have two classes to predict in bot detection. In this way, given an
input node x ∈ X from the graph G and its logit z ∈ Z, the energy function can
be calculated as follows:

E(x,Gx; f) = − log
k∑

i

ez[i] (6)

Since z is derived from node embeddings h ∈ H that encodes the graph structure,
the energy function E(x,Gx; f) indicates the energy information of the node itself
and other nodes that share potential dependencies within the graph structure.

3.4 Homophily-Augmented Energy Propagation

Inspired by label propagation, our model further elaborates a non-parametric
energy propagation to aggregate energy values from neighboring nodes and takes
advantage of unlabeled nodes across graph structure to enhance the generaliza-
tion ability. A general edge propagation can be implemented as follows:

E(l) = αE(l−1) + (1 − α)D−1AE(l−1) (7)

where E
(l)
x = E(l)(x,Gx; f) ∈ E(l) at step l, and α is a balance parameter in

the range of [0, 1] to adjust the relative weight on the energy of the node itself
and its neighboring nodes. Such a formulation implicitly relies on a high degree
of graph homophily, where connected nodes tend to be sampled from similar
distributions, such that the propagation will push energy towards the majority
of neighbored nodes. Unfortunately, the given assumption does not hold under
heterophilic conditions, leading to the failure of the propagation in Eq. (7). Based
on this observation, we assert the following lemma:

Lemma 1. Nodes with a heterophilic neighborhood, identified by a homophily
ratio rh < 0.5, will not trend towards the mean energy level of the distribution
within which the node is contained.

Proof of Lemma 1. For ODD to succeed, two distributions must be consid-
ered, one containing in-distribution data, Din, and another containing out-of-
distribution data, Dout. Each distribution has an expected value denoted as Ein

and Eout respectively, representing the average energy value of in-distribution or
out-of-distribution nodes, which can be specified as:

Etype =
∑|Vtype|

i Ei

|Vtype| , type ∈ {in, out} (8)



Homophily-Augmented Energy Propagation for Bot Detection 75

The expected energy values change during the training process. The effectiveness
of ODD depends on a sufficiently large distance ψ between these two expected
values, ensuring significant separation to minimize overlap in the tails of the
learned distributions:

ψ < ||Ein − Eout|| (9)

A node’s neighborhood can be naturally divided into homophilic edges Ehomo

and heterophlic edges Eheter. During a given training epoch l, E
(l)
i is expected

to approach a weighted average of the expected value of its neighbors. For an
in-distribution node, this approximation can be expressed as:

E
(l)
i ≈ |Ehomo,i|Ein + |Eheter,i|Eout∑

j Aij
(10)

In homophilic neighborhoods, |Ehomo,i| > |Eheter,i| holds true and E
(l)
i approaches

the current Ein, maintaining the desired relationship with ψ. In heterophilic
neighborhoods where |Ehomo,i| < |Eheter,i|, E

(l)
i approaches the current Eout.

Adjustments to Ei impact the expected value of Din, potentially reducing the
distance between expected values and violating the desired relationship with ψ.

To counter the negative impact of heterophily on energy propagation, we
propose to empower our model to identify homophilic and heterophilic edges.
This capability facilitates adjusting the energy propagation accordingly, ensuring
a sufficiently large distance between Ein and Eout.

Identification of Homophilic and Heterophilic Edges. We assess the like-
lihoods of edges being homophilic by examining the similarity of the connected
node embeddings H, as learned in Sect. 3.2. This is achieved through the appli-
cation of two similarity measures:

– Cosine Similarity. Cosine similarity is used to evaluate the angle between two
vectors, or in this case, node embeddings, which is calculated as:

cos(hi,hj) =
hi · hj

||hi||||hi|| (11)

To predict homophilic and heterophilic edges, we consider a cosine similarity
> 0 as homophilic and ≤ 0 as heterophilic.

– Euclidean Distance. We first calculate Euclidean distance between the con-
necting node embeddings to obtain distances for all edges:

di,j = ||hi − hj ||2, ∀(vi, vj) ∈ E (12)

Subsequently, each distance di,j is normalized as follows:

norm(di,j) = 1 +
dmin − di,j
dmax − dmin

(13)

where dmin and dmax are the minimal and maximal distances among all
edges. The normalized output falls within the range [0, 1], where we consider
norm(di,j) ≤ 0.5 as heterophilic and norm(di,j) > 0.5 as homophilic.
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Both similarity metrics can serve as either a binary or a fractional belief assess-
ment of homophily. Here we use a binary assessment to improve energy propa-
gation. Their effectiveness in edge identification will be evaluated in Sect. 4.2.

Use of Homophily-Augmented Adjacency Matrix. To incorporate the
identification of heterophilic and homophilic edges into downstream tasks, we
create an altered adjacency matrix Â, which is defined as the edges believed
to be homophilic in the graph, with belief determined by one of the two similarity
measures described in Sect. 3.4. Â replaces the original adjacency matrix in the
energy propagation, explicitly discouraging the propagation of energy across
heterophilic edges. The energy propagation can be accordingly updated as:

E(l) = αE(l−1) + (1 − α)D̂−1ÂE(l−1) (14)

The original normalization term D−1 is also replaced in our improved belief
scheme with D̂−1, which is the inverse diagonal degree matrix of Â. This replace-
ment is required to account for instances where a high-degree node contains a
very small number of homophilic edges, ensuring energy being propagated as a
proportion of homophilic edges and not restricted by a high degree. After L-step
propagation, the energy values will be fed to the loss function for optimization,
or used to make final out-of-distribution (bot) prediction using Eq. (4).

3.5 Loss Function

Our model utilizes both a supervised loss and a regularization loss for optimiza-
tion. The supervised loss Lsup is a modified negative log-likelihood of the labeled
training data designed to accommodate energy values:

Lsup = E(x,Gx,y)∼Din(− log p(y|x,Gx)) =
∑

i∈Vin

(−zi,[yi] + log
k∑

j

ezi,[j]) (15)

where Din is the in-distribution data where the labeled nodes (i.e., benign nodes)
of the training data are sampled. Inspired by the bounding constraints for abso-
lute energy [20], we further add a regularization loss Lreg to constrain the energy
gap, bounding the energy for in-distribution data [32], and also expose a frac-
tion of out-of-distribution data (i.e., bot nodes) to training that gives the model
the opportunity to learn how to discriminate against known out-of-distribution
nodes and assists in fine-tuning the model:

Lreg =
1

|Vin|
∑

i∈Vin

(ReLU(E(xi,Gxi
; f) − tin))2

+
1

|Vout|
∑

j∈Vout

(ReLU(tout − E(xj ,Gxj
; f)))2

(16)

Lreg will push energy values in [tin, tout] to be lower for in-distribution and higher
for out-od-distribution nodes. The final loss function for optimizing our model
is L = Lsup + λLreg, where λ is a balance parameter.
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Table 2. Statistics of bot detection datasets.

File 1 2 3 4 5 6 7 8 9 10

#Bots 19 35 32 38 41 39 49 57 57 56

#Benigns 1,534 1,563 1,604 1,623 1,638 1,654 1,688 2,304 2,043 2,048

Imb. Ratio 0.012 0.022 0.020 0.023 0.024 0.023 0.028 0.027 0.027 0.027

#Edges 8,264 9,296 9,492 9,644 9,716 9,812 10,016 11,816 11,880 11,928

Homo. Ratio 0.300 0.264 0.651 0.270 0.269 0.660 0.272 0.668 0.668 0.668

4 Experimental Results and Analysis

4.1 Experimental Setup

Datasets. We perform our experiments using the TON IoT dataset which is
an assortment of recorded Industry 4.0/IoT and IIoT network traffic [1,26].
Each network is recorded in an individual capture file that is translated into an
undirected communication graph, where protocol used, packet size, and amount
of data transmitted and received are used as node features. To represent unique
graph constructs, we select capture files with high heterophily (rh < 0.4), high
homophily (rh > 0.6), and extreme class imbalance (ri < 0.03) respectively.
Table 2 details the data statistics. We separate nodes in each graph into an 80-
10-10 split for training, testing, and validation.

Baselines. We select 11 different models as our baselines, which include three
traditional GNNs (GCN [13], GAT [31], and GraphSAGE [9])), three graph-
based oversampling models (SMOTE [6], GraphSMOTE [38], and HOVER [2]),
and five ODD models (MSP [10], MSP with outlier exposure (OE) [11], and and
three variants of GNNSafe [32]).

Implementation Details. We implement our model as described in Sect. 3
using the following hyperpameter settings: hidden size in MLPA = {128, 256};
hidden size in MLPX = {24, 48, 64, 128}; output size is {1x, 2x, 4x, 8x, 64x} per
number of classes x. In addition to these adjustable parameters, we use the
following fixed configurations: layers in MLPA = {2} and MLPX = {2}; prop-
agation layer number L = 2; balance parameter α = 0.5; we select the values
tin = −5 and tout = −1 used in the regularization term of our loss function.

4.2 Effectiveness of Edge Prediction

We initiate our experimentation by assessing our model’s ability to differenti-
ate between homophilic and heterophilic edges. We perform this experiment by
training our model on capture files 1, 3, 5, and 6 from TON IoT, due to their
inclusion of both high and low levels of heterophily. During every training epoch,
we generate and store improved node embeddings, and feed them into our edge
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High Heterophily Low Heterophily

Fig. 3. Effectiveness of edge identification by comparing cosine similarity and Euclidean
distance across different training epochs.

prediction module. The module assesses if an edge is homophilic or heterophilic
according to cosine similarities and normalized Euclidean distances. We com-
pare the edge prediction outputs with the true edge type as determined by node
labels, and calculate the accuracy of both predictions at every epoch. Our model
learns only from a loss function quantifying the quality of node classifications.

The edge prediction performance is recorded in Fig. 3. From this figure,
we can see that our model’s edge identification approach is capable of making
highly accurate assessments of edge predictions, exceeding 80% accuracy dur-
ing the training process. Both cosine similarity and Euclidean distance similarity
approaches display generally stable behaviour. However, Euclidean distance out-
performs cosine similarity almost universally. As such, we conclude that we can
identify homophilic edges in heavily heterophilic graphs using heterophily-wise
embeddings learned from node features and graph structure.

4.3 Comparison with Baselines for Bot Detection

We compare our model against multiple baselines, including basic GNN models:
GCN [13], GAT [31], and GraphSage [9], oversampling approaches: SMOTE
(applied on node embeddings learned by GCN) [6], GraphSMOTE [38], and
HOVER [2], and ODD methods: MSP [10], MSP with outlier exposure [11], and
three variants of GNNSafe [32]. We report the performance of each model and
our proposed model as measured by F-1 (%) in Table 3.

Our model shows substantial performance over existing baselines with lim-
ited exceptions. Traditional GNN models fall inline with the expected behavior
under heterophilic and extremely class-imbalanced conditions, which cannot gen-
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Table 3. Comparison of our model with different baselines in terms of F-1 (%).

Model File 1 File 2 File 3 File 4 File 5 File 6 File 7 File 8 File 9 File 10

GCN 00.75 06.09 03.95 04.85 08.51 04.62 01.46 07.37 09.95 01.19

GAT 00.00 01.09 03.75 04.75 04.68 08.51 08.84 07.37 01.01 08.82

GraphSage 03.13 01.54 05.41 08.70 02.22 05.41 02.58 01.69 01.80 07.92

SMOTE 02.28 02.13 01.23 01.57 07.75 01.10 08.04 02.89 01.24 02.81

GraphSMOTE 66.74 55.10 49.50 64.21 54.28 58.10 57.00 56.00 56.00 49.33

HOVER 60.45 33.33 80.00 74.16 66.67 66.67 60.00 69.21 71.78 66.67

MSP 07.27 06.00 06.67 06.15 05.46 05.71 04.00 04.00 05.00 04.29

OE 06.67 05.46 06.67 05.72 05.46 05.33 03.81 03.81 04.44 04.44

GNN-ODD w/o Reg 75.00 66.67 60.00 61.54 57.14 50.00 53.33 35.29 31.58 42.11

GNNSafe 85.71 66.67 60.00 66.67 61.54 54.55 57.14 35.30 35.29 42.11

GNNSafe++ 02.14 01.60 01.31 01.47 01.53 01.39 01.73 01.70 02.90 01.65

Our model 88.89 72.22 71.43 80.00 88.89 85.71 75.00 83.33 73.68 70.00

erate enough discriminative information to separate bots in the learned embed-
ding space. Oversampling approaches provide a good improvement over the
traditional GNN models but all have their flaws: SMOTE does not synthe-
size structural information, resulting in oversampled nodes being disjoint from
the rest of the graph with very limited contribution to the learning process;
GraphSMOTE addresses the structural limitations of SMOTE by creating syn-
thetic edges, which, however, does not consider the impact of heterophily present
in the graph, limiting its classification performance; HOVER periodically shows
very good performance but performance is inconsistent, and it requires multiple
training cycles, modifies the semantics of the graph structure, and is sensitive
to hyperparameter selection. ODD methods provide far more completion for our
model. An interesting point is the negative impact that belief propagation has
when graph heterophily is high. A comparison of GNNSafe and GNNSafe++
quantifies this observation, where in all data cases, the addition of belief prop-
agation to GNNSafe hurts the detection performance. The cause of this is the
nature of bot graphs. The out-of-distribution nodes, or bots, have a high local
heterophily ratio regardless of the heterophily ratio of the entire graph. Naively,
applying belief propagation to heterophilic graphs will pull bot samples toward
the mean of non-bot samples. Bot nodes are then masked by benign nodes after
energy values are calculated and propagated.

Our model outperforms all models in the tradition and ODD categories, with
only one exception that our model performs second to HOVER. A direct com-
parison of our model to the various flavors of GNNSafe demonstrates the bene-
fit of our heterophily-wise node embedding learning and homophily-augmented
energy propagation scheme. The addition of edge prediction to energy propaga-
tion reduces the influence heterophily has on ODD.

4.4 Case Study: ODD for Bot Detection

We dig deeper into the performance of our model and the performance of a
selection of baselines with a case study. Specifically, in this section, we look at
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GCN GNNSafe++ Our model

Fig. 4. Energy distributions learned by GCN, GNNSafe++, and our model. The upper
row contains the distributions learned on capture file 3, while the lower row contains
the distributions learned on capture file 5.

the learned energy distributions from GCN, GNNSafe++, and our model. We
select two capture files for use in this case study: File 3 has low heterophily, File
5 has high heterophily, and both files has extremely low imbalance ratio.

GCN struggles to learn separated distributions for bot and benign samples.
The impacts of heterophily can be seen by comparing the GCN results of each
capture file. Capture file three, the top left of Fig. 4, contains mostly homophilic
edges. This allows the GCN to constrain bot samples to energy levels less than
the most extreme values of benign samples. In contrast, capture file five, the
bottom left of Fig. 4, contains mostly heterophilic edge which causes the benign
samples to attract bot samples. GNNSafe++ fails to separate or even constrain
bot samples. GNNSafe++ does utilize OE and regularization during training
which causes both learned distributions to be centered at approximately the
same group about the same energy value. However, regularization alone is not
capable of restraining the bot distribution. The bot distribution overlaps the
entire learned benign distribution, creating a situation when no useful division
between distributions can be found.

Our model is capable of separating the densest portions of the learned distri-
butions. Moreover, our model impacts the extremes of both distributions. The
energy values of lower tail of benign samples is pushed to extremely low energy
values, extending below the -20 and -30 values that competing models reach on
files three and five, respectively. The upper tail of the bot distribution displays
similar behavior extending into positive energy values in both instances. This
behavior allows our model to clearly separate many bots from benign samples.

4.5 Ablation Study

We conclude our experimentation with an ablation study to verify that all
aspects of our model contribute in a manner that are both beneficial and nec-
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Table 4. Ablation study to evaluate different model components in terms of F-1 (%).

Model File 1 File 2 File 3 File 4 File 5 File 6 File 7 File 8 File 9 File 10

No Independent Embedding 02.14 01.15 01.24 14.24 01.60 01.38 02.88 01.58 01.59 01.58

No Propagation 75.00 72.73 60.00 66.67 61.53 61.53 57.14 15.38 22.48 15.38

No Edge Prediction 40.00 25.00 66.67 40.00 77.78 79.99 57.14 73.68 43.90 15.85

Our model 88.89 72.22 71.43 80.00 88.89 85.71 75.00 83.33 73.68 70.00

essary to the learning and classification processes. We evaluate the necessity of
three elements to our model: (1) Independent node and structural embed-
ding: we remove the MLPs from our model and replace them with a GCN. We
refer to this experiment as “No independent embedding” in Table 4; (2) Energy
propagation: we remove energy propagation entirely, which is denoted as “No
Propagation” in Table 4, where we make a determination if a data sample is in
or out of distribution immediately following the energy calculation; (3) Edge
prediction: we repeat the experiment without using the homophily-augmented
Â adjacency matrix, but use the original adjacency matrix A, which is denoted
as “No Edge Prediction” in Table 4.

The experiment results in Table 4 allows us to draw several conclusions.
First, the fact that our model outperforms the reduced models on almost all
capture files shows that all elements of our model contribute to the overall per-
formance. File 2 in the “No Propagation” case is the lone instance where our
complete model does not exceed the performance of a reduced model. As the dif-
ference between the complete and reduced model is negligible, we do not consider
this undermines the utility of energy propagation. Moreover, as the “No Edge
Prediction” case shows dramatically reduced performance, we assess that the
anomaly speaks more to the benefit of independent representation embedding
than it implies frivolous use of energy propagation. Our model is outperformed
by “No Propagation” implying that the edge classification scheme is lacking in
this instance. We consider this a motivation to explore improved edge predic-
tion schemes in the future. A column-wise comparison of results highlights the
individual contribution of each element of our model. The addition of edge pre-
diction making arguable the biggest impact, improving performance by up to
48% on extremely heterophilic graphs and a more modest by still respectable
improvement of 10% to 30% on the homophilic graphs (Files 6, 8, 9, and 10).

5 Conclusion

In this paper, we generalize the utility of ODD to the bot detection problem
on graphs. To address over-smoothing and graph heterophily introduced by
class imbalance, we propose a new energy-based ODD model to better deal
with graph data. Our model formulates a simple yet effective node embed-
ding method to encode node features and graph structure without the need
for neighborhood aggregation. These node embeddings not only enhance energy
calculation, but also enable homophily-augmented energy propagation, which
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significantly separate energy distributions between bots and benign samples,
and thus improve the detection performance. Our experiments validate our pro-
posed model and demonstrate that independent node embedding can overcome
extreme heterophily, and the addition of edge prediction to existing energy prop-
agation approaches advances the existing state-of-the-art in graph ODD and bot
detection.
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