
Systematic Use of Random Self-Reducibility in Cryptographic
Code against Physical A�acks

Ferhat Erata
Yale University

New Haven, Connecticut, USA

TingHung Chiu
Virginia Tech

Blacksburg, Virginia, USA

Anthony Etim
Yale University

New Haven, Connecticut, USA

Srilalith Nampally
Virginia Tech

Blacksburg, Virginia, USA

Tejas Raju
Virginia Tech

Blacksburg, Virginia, USA

Rajashree Ramu
Virginia Tech

Blacksburg, Virginia, USA

Ruzica Piskac
Yale University

New Haven, Connecticut, USA

Timos Antonopoulos
Yale University

New Haven, Connecticut, USA

Wenjie Xiong
Virginia Tech

Blacksburg, Virginia, USA

Jakub Szefer
Yale University

New Haven, Connecticut, USA

ABSTRACT
This work presents a novel, black-box software-based countermea-
sure against physical attacks including power side-channel and
fault-injection attacks. The approach uses the concept of random
self-reducibility and self-correctness to add randomness and re-
dundancy in the execution for protection. Our approach is at the
operation level, is not algorithm-speci�c, and thus, can be applied
for protecting a wide range of algorithms. The countermeasure is
empirically evaluated against attacks over operations like modular
exponentiation, modular multiplication, polynomial multiplication,
and number theoretic transforms. An end-to-end implementation
of this countermeasure is demonstrated for RSA-CRT signature al-
gorithm and Kyber Key Generation public key cryptosystems. The
countermeasure reduced the power side-channel leakage by two
orders of magnitude, to an acceptably secure level in TVLA analy-
sis. For fault injection, the countermeasure reduces the number of
faults to 95.4% in average.

CCS CONCEPTS
• Security and privacy! Hardware attacks and countermea-
sures; Side-channel analysis and countermeasures; • Software and
its engineering! Software fault tolerance.

KEYWORDS
RandomSelf-Reducibility, Fault InjectionAttacks, Power Side-Channel
Attacks, Countermeasure, NTT, PQC, RSA-CRT

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICCAD ’24, October 27–31, 2024, New York, NY, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1077-3/24/10
https://doi.org/10.1145/3676536.3689920

ACM Reference Format:
Ferhat Erata, TingHung Chiu, Anthony Etim, Srilalith Nampally, Tejas
Raju, Rajashree Ramu, Ruzica Piskac, Timos Antonopoulos, Wenjie Xiong,
and Jakub Szefer. 2024. Systematic Use of Random Self-Reducibility in
Cryptographic Code against Physical Attacks. In IEEE/ACM International
Conference on Computer-Aided Design (ICCAD ’24), October 27–31, 2024, New
York, NY, USA. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3676536.3689920

1 INTRODUCTION
Smart devices and IoT devices with sensors, processing capability,
and actuators are becoming ubiquitous today in consumer elec-
tronics, healthcare, manufacturing, etc. These devices often collect
sensitive or security-critical information and need to be protected.
However, when deployed in the �eld, such devices are vulnerable
to physical attackers who can have direct access to the devices.

Physical attacks can be categorized as passive attacks or active
attacks. In passive attacks, such as Side-Channel Attacks (SCA), the
attackers do not tamper with the execution, but can collect power
traces, electromagnetic (EM) �eld traces, or traces of acoustic sig-
nals, and analyze the signals to learn information that is processed
on the device. In active attacks, such as Fault Injection (FI) attacks,
the attackers can inject faults through a voltage glitch, clock glitch,
EM �eld, or laser to cause a malfunction in the processing unit
or memory to tamper with the execution to obtain desired results.
It has been shown that both types of physical attacks have been
able to break cryptography implementations to leak secret keys,
for example [10, 46].

Even though the assumptions on the attacker’s capability are
similar for SCA and FI, the existing mitigation techniques treat
the two types of attacks separately. For side-channel attacks, the
mitigation techniques usually use randomness or noise to decouple
the signal observable by the attacker from the data value [24, 50].
For fault injection attacks, there are typically two solutions: one is
attack detection and one is to have redundancy in the execution
for error correction. The detection will detect when the execution

https://orcid.org/0000-0001-6305-4266
https://orcid.org/0009-0002-5369-1290
https://orcid.org/0009-0001-5932-9199
https://orcid.org/0009-0001-3465-9642
https://orcid.org/0009-0003-4286-4341
https://orcid.org/0009-0000-7050-7542
https://orcid.org/0000-0002-3267-0776
https://orcid.org/0000-0002-9654-4090
https://orcid.org/0000-0002-7626-2651
https://orcid.org/0000-0001-9721-3640
https://doi.org/10.1145/3676536.3689920
https://doi.org/10.1145/3676536.3689920
https://doi.org/10.1145/3676536.3689920

ICCAD ’24, October 27–31, 2024, New York, NY, USA Erata et al.

has abnormal behavior, and then handle it as an exception. The
error correction uses redundancy in the execution and uses the
redundancy to correct execution error if there is [36]. However,
when we consider both SCA and FI attacks in the same system,
separate mitigation for the two does not protect both attacks e�-
ciently. For example, existing work [14] showed that instruction
duplication as a fault tolerance mechanism ampli�es the informa-
tion leakage through side channels. Detection methods such as full,
partial, encrypt-decrypt duplication & comparison of a cipher [28]
produce repetitions of intermediate values that are exploitable by
the side-channel adversary.

In this work, we propose a joint solution for both SCA and FI at-
tacks.With a combination of random obfuscation using the Random
Self-Reducibililty (RSR) property and redundancy for error correc-
tion, our proposed countermeasure is particularly e�ective against
FI outperforming traditional redundancy-based methods. The ran-
domness disrupts the attacker’s observation of the statistics in fault
attacks, thereby nullifying the e�ectiveness of statistical analysis
as a tool for security compromise. This aspect is crucial in the face
of increasingly sophisticated FI analysis techniques. In addition to
its e�ectiveness against FI, the countermeasure also resists SCA,
by rendering power consumption variations less useful to attack-
ers. The countermeasure signi�cantly enhances system security,
particularly in environments where physical attacks are prevalent.

The proposed countermeasure o�ers signi�cant bene�ts as a
black box operation-level solution to both SCA and FI attacks, and it
is independent of the implementation of the target algorithm being
protected. This means there is no need for detailed knowledge of the
implementation. The basis for the solution is to implement protection
at low-level of operations such as modular exponentiation, modu-
lar multiplication, polynomial multiplication, and number theoretic
transforms. Also, we assume a generic fault model, and thus, there
is no special fault pro�ling of a targeted device necessary. There-
fore, the proposed protection techniques can be applied directly
in software without extensive system-speci�c adjustments. In our
evaluation, we showcase how the proposal protection techniques
can be adopted to protect two di�erent cryptosystems.

Our protection requires a small number of steps to implement.
It can be implemented at C or high-level and is independent of the
compiler or underlying architecture; assuming the compiler. First,
target software is identi�ed. Second, we locate low-level operations
such as modular exponentiation, modular multiplication, polyno-
mial multiplication, or number theoretic transforms. These opera-
tions can be protected with the idea of Random Self-Reducibility
(RSR). Each instance of the low-level operation is replaced with an
equivalent RSR operation. Each RSR operation requires querying
a randomness source and then executing the low-level operations
multiple times with original input values modi�ed with the ran-
dom values. Typically, multiple RSR operations are instantiated
and majority voting is performed on the output of RSR operations.
Because the protection works at the low-level operations such as
modular exponentiation, modular multiplication, polynomial mul-
tiplication, or number theoretic transforms, it is independent of the
higher-level algorithm or application. Since it does not rely on any
hardware tricks, it is independent of the architecture and agnostic
to the underlying compiler.

Our protection can be applied to any program or algorithm that
uses modular exponentiation, modular multiplication, polynomial
multiplication, and number theoretic transforms to process secret
or sensitive information. This encompasses major cryptogrpahic
algorithms from ElGamal [18] and RSA [43] to post-quantum cryp-
tography such as Kyber [5] and Dilithium [17]. In our evaluation,
we show how our protection can be applied to RSA-CRT and Ky-
ber’s Key Generation algorithms. Our contributions are summarized
as follows:

• We propose a new software-based countermeasure against power
side-channel (Section 3.2) and fault injection (Section 3.3) attacks,
by randomizing the intermediate values of the computation using
the notion of random self-reducibility (Section 3).

• We formalize the security of the countermeasure in relation to an
attacker’s fault injection capability, parameterize it, and quantify
its e�ectiveness against fault-injection attacks (Section 3.4).

• End-to-end implementation of the countermeasure for RSA-CRT
and Kyber’s Key Generation public key cryptosystems (Section 4).

• Emprical evaluation of the countermeasure against power side-
channel and fault-injection attacks over modular exponentiation,
modular multiplication operations, polynomial multiplication,
number theoretic transform (NTT) operations, RSA-CRT, and
Kyber’s Key Generation (Section 5).

2 BACKGROUND AND THREAT MODEL
Computing devices today are vulnerable to physical attacks such as
side-channel and fault injection attacks to leak critical information.
It is a well-known fact that the power consumption during certain
stages of a cryptographic algorithm exhibits a strong correlation
with the Hamming weight of its underlying variables, i.e., Ham-
ming weight leakage model [11, 25]. This phenomenon has been
widely exploited in the cryptographic literature in various attacks
targeting a broad range of schemes, particularly post-quantum cryp-
tographic implementations [3, 20, 22, 47, 51]. Therefore, we use the
Hamming weight leakage model in the evaluation of the robustness
of the countermeasure.

Test Vector Leakage Assessment (TVLA) [21] identi�es if two sets
of side channel measurements are distinguishable by computing
the Welch’s t-test for the two sets of measurements. It is being
used in the literature to con�rm the presence or absence of side-
channel leakages for power traces, and has become the de facto
standard in the evaluation of side-channel measurements [42, 45].
In side-channel analysis, the recommended thresholds for t-values
are speci�cally tailored to detect potential information leakage in
cryptographic systems. A t-value threshold of ±4.5 or ±5 is often
considered in side-channel analysis. This threshold corresponds to
a very high con�dence level, rejecting the null hypothesis with a
con�dence greater than 99.999% for a signi�cantly large number of
measurements. The null hypothesis typically being that all samples
are drawn from the same distribution, a t-value outside this range
indicates distinguishable distributions of the two sets and thus
the existence of side-channel leakage [49]. The choice of these
thresholds is in�uenced by the need to balance the risk of false
positives (incorrectly identifying information leakage when there
is none) against the risk of false negatives (failing to detect actual
information leakage).

Systematic Use of Random Self-Reducibility in Cryptographic Code against Physical A�acks ICCAD ’24, October 27–31, 2024, New York, NY, USA

In the real world, there is a possibility that the devices will mal-
function or be damaged, resulting in generating the error output,
and wemay ignore it. However, if the attacker intentionally induced
the fault during the device operation, e.g., cryptographic calcula-
tion, he or she can recover the secret by analyzing the original
and fault outputs. Most of the classical cryptographic algorithms
can be attacked by fault injection attacks [33, 37]. Even the post-
quantum cryptographic algorithms [39], which can protect against
quantum computing, can be vulnerable to fault attacks. Therefore,
it is necessary to have e�cient FI attack protections that can be
easily deployed.

On embedded processors, a fault model in which an attacker can
skip an assembly instruction or equivalently replace it by a nop
has been observed on several architectures and for several fault
injection means [32]. Moro et al. in [31] assume that the e�ect of
the injected fault on a 32-bit microcontroller leads to an instruc-
tion skip. Moro et al. [32] and Barenghi et al. [7] have proposed
implementations of the Instruction Redundancy technique as a coun-
termeasure against this fault model. Instruction skips correspond
to speci�c cases of instruction replacements: replacing an instruc-
tion with another one that does not a�ect any useful register has
the same e�ect as a nop replacement and so is equivalent to an
instruction skip.

In our threat model, we consider an attacker with physical ac-
cess to a device, capable of injecting faults such as voltage glitches
during the computation of a critical function like the number theo-
retic transform. These faults can corrupt or skip instructions and
happen anywhere multiple times but does not crash the device. Fur-
thermore, the model permits the attacker to perform basic power
side-channel analysis, collecting power trace samples. By correlat-
ing data-dependent power consumption with the Hamming weight
leakage model, the attacker can expose vulnerabilities in crypto-
graphic computations. This underscores the crucial need for robust
defenses against both fault injection and side-channel attacks.

3 OVERVIEW OF THE COUNTERMEASURE
We use the notion of random self-reducibility [8, 44] to develop a
new software-based countermeasure against fault-injection attacks
and simple power side-channel attacks. Therefore, in this section,
we provide the necessary background on random self-reducibility.
Since we apply our countermeasure to number-theoretic opera-
tions, we also provide the necessary background on number theo-
retic transforms.

3.1 Random Self-Reducibility
Informally, a function 5 is random-self-reducible if the evaluation
of 5 at any given instance G can be reduced in polynomial time to
the evaluation of 5 at one or more random instances.

D��������� 1 (R����� S����R������������ (RSR) [8, 44]). Let
G 2 D and 2 > 1 be an integer. We say that 5 is 2-random self-
reducible if 5 can be computed at any particular input G via:

� [5 (G), 5 (01) , . . . , 5 (0:) ,01, . . . ,0:] = 0 (1)

where � can be computed asymptotically faster than 5 and the 08 ’s
are uniformly distributed, although not necessarily independent; e.g.,
given the value of01 it is not necessary that02 be randomly distributed

in D. This notion of random self-reducibility is somewhat di�erent
than other de�nitions given by [9, 19], where the requirement on � is
that it be computable in polynomial time.

It is shown by Blum et al. [8] that self-correctors exist for any
function that is random self-reducible. A self-corrector for 5 takes a
program % that is correct on most inputs and turns it into a program
that is correct on every input with high probability.

We have incorporated the concept of self-correctness to safe-
guard against fault-injection attacks, and the principles of random
self-reducibility and randomly-testable functions to defend against
power side-channel attacks. These notions are investigated and ap-
plied as a countermeasure against physical attacks in the literature.

3.2 RSR against Power Side Channels
At the heart of this method is the generic, randomized Algorithm 1,
which is founded on the principle described in De�nition 1. Addi-
tionally, Algorithm 2 boosts the e�ectiveness of the randomized
Algorithm 1 through majority voting and probability ampli�ca-
tion [48]. Consider a correct program % that has an associated ran-
dom self-reducible property, which takes the form of a functional
equation ? . This property is deemed satis�ed if, in the equation ? ,
we can substitute % for the function 5 and the equation remains true.

Algorithm 1: 2-secure-countermeasure PSCA (%, G, 2).
Input :Program: % , Sensitive input: G , Security: 2
Output :% (G)

1 Randomly split 01, . . . ,02 based on G .
2 for 8 = 1, . . . , 2 do
3 U8 % (08)
4 return � [G,01, . . . ,02 ,U1, . . . ,U2]

Generic 2-secure-countermeasure PSCA (%, G, 2) de�ned Algo-
rithm 1 takes a program % , a sensitive input G , and a security pa-
rameter 2 . The algorithm randomly splits G into 2 shares 01, . . . ,02
such that G = 01 + · · · + 02 , and calls % on each share 08 to obtain
U8 = % (08). Finally, the algorithm returns the result of the function
� on G,01, . . . ,02 ,U1, . . . ,U2 . The function basis � is de�ned based
on the random self-reducible property of the function 5 that %
implements (cf. De�nition 1).

To ensure minimum security, splitting the secret input into two
shares would su�ce. However, for enhanced security, the secret in-
put can be divided into additional shares. It’s important to view the
security parameter 2 as an invocation to % , especially in the context
of bivariate functions, rather than merely the number of shares.

Masking with Random Self-Reducibility. If a cryptographic
operation has a random self-reducible property, then it is possible
to protect it against power side-channel attacks by masking with
arithmetic secret sharing.

3.3 Self-Correctness against Fault Injections
Fault injection attacks rely on obtaining a faulty output or correlat-
ing the faulty output with the input or secret-dependent interme-
diate values. By introducing redundancy and majority voting, we
can obtain correct results even if some results are incorrect due to
injected faults.

ICCAD ’24, October 27–31, 2024, New York, NY, USA Erata et al.

In Algorithm 2, we show how to apply the fault injection coun-
termeasure approach on top of the power side-channel counter-
measure. To protect a program % that implements a function 5
having a random self-reducible property, the algorithm calls % ’s
2-secure-countermeasure = times and returns the majority of the
answers. The function 2-secure-countermeasure takes a program % ,
a sensitive input G , and a security parameter 2 .

Algorithm 2: =-secure countermeasure FIA (%, G,=, 2).
Input :Program: % , Sensitive input: G , Security: =, 2
Output :% (G)

1 for< = 1, . . . ,= do
2 answer< call 2-secure-countermeasure(%,G, 2)

3 return the majority in {answer< :< = 1, . . . ,=}

Note that 2 and = are independent security parameters. The secu-
rity parameter 2 represents the number of calls to the unprotected
program used in the PSCA countermeasure, whereas = signi�es
the number of iterations in the FIA countermeasure. The security
parameter = is associated with the attacker’s capability to inject
e�ective faults. Owing to redundancy, an increase in the security
parameter 2 results in a decreased likelihood of the attacker suc-
cessfully injecting a fault.

Algorithm 3: (2 , =)-secure mod operation (%,', G, 2,=).
Input :Program: % , Sensitive input: G , Security: =, 2
Output :% (G)

1 for< = 1, . . . ,= do
2 G1,G2, . . . ,G2 $ Random-Split('2=,G)
3 answer< % (G1,') +' % (G2,') . . . +' % (G2 ,')
4 return the majority in {answer< :< = 1, . . . ,=}

Algorithm 3 presents an example of a combined and con�gurable
countermeasure, e�ective against both PSCA and FIA, applied to the
modular multiplication operation. In Line 2, the algorithm divides
the input G into 2 shares G1, G2, . . . , G2 , satisfying G = G1+G2+· · ·+G2 .

Self-CorrectnesswithMajority Voting. Fault injection attacks
rely on faulty output. By majority voting, we can obtain correct
results even if some results are incorrect.

3.4 n and attacker’s probability of success
Fault injection occurs at the hardware level and is both challenging
and unpredictable to control. When a successful fault is induced, it
transforms a previously correct victim program into an incorrect
one. Consequently, the essence of a fault injection attack is its
probabilistic nature. This concept is abstracted in terms of the
attacker’s probability of success in our work.

D��������� 2 (Y������ ���������). Let Y be the upper bound
on the attacker’s probability of injecting a fault successfully at an
unprotected program % that correctly implements a function 5 . Say
that the program % is Y-fault tolerant for the function 5 provided
% (G) = 5 (G) for at least 1 � Y of any input G . We assume each fault
injection is independent of the others: Pr5 0D;C [% (G) < 5 (G)] < Y .

Algorithm 1 is a randomized algorithm and Algorithm 2 is also
a randomized algorithm that repeats the computation = times by
calling Algorithm 1 and uses majority voting to pick the correct

answer. Therefore, we can use Cherno� bounds [48] to show that
the probability of getting the correct answer is at least 1 � X .

A simple and common use of Cherno� bounds is for "boosting" of
randomized algorithms. If one has an algorithm that outputs a guess
that is the desired answer with probability ? > 1/2, then one can get
a higher success rate by running the algorithm= = log(1/X)2?/(?�
1/2)2 times and outputting a guess that is output by more than
=/2 runs of the algorithm. Assuming that these algorithm runs
are independent, the probability that more than =/2 of the guesses
is correct is equal to the probability that the sum of independent
Bernoulli random variables -: that are 1 with probability ? is
more than =/2. This can be shown to be at least 1 � X via the
multiplicative Cherno� bound (` = =?) [15]: Pr [- > =/2] � 1 �
4�= (?�1/2)

2/(2?) � 1 � X .

T������ 1 (D������ ���� T������ 3.1 �� [26]). Suppose that 5
is randomly self-reducible and that % is Y-fault tolerant for the function
5 . Consider a 2-secure countermeasure e⇠ (G) (Line 4 in Algorithm 1):

return � [G,01, . . . ,02 , % (01), . . . , % (02)]

Then, for any G, e⇠ (G) is equal to 5 (G) with probability at least 1� Y2 .

P����. Fix an input G . Clearly, the probability that e⇠ (G) is cor-
rect is at least the probability that for each 8, % (08) = 5 (08). This
follows since 5 is random self-reducible with respect to the number
of calls to % is done. It therefore follows that e⇠ returns correct
results at least 1 � Y2 of the time. É

In the next sections, we will present a number of examples of
2-secure countermeasures whose security parameter is mostly 2 = 2.
Thus, for these functions, Theorem 1 says that, for Y equal to 1/100,
the probability that e⇠ returns correct results is at least 0.98. We can
amplify the probability of success by repeating the computation =
times and using majority voting. In addition, we can select a bigger
= by adjusting X as the con�dence parameter:

Lower bound for n. The attacker’s probability of success is
Y, and for a 2-secure countermeasure, the lower bound for =
is de�ned as: = = log(1/X)2(1 � Y2)/(Y2/2)2, where X is the
con�dence parameter.

Algorithm 1 makes calls to a program % that implements a func-
tion 5 having a random self-reducible property. However, we do
not need to know the implementation of the function 5 , we just
need to know the mathematical de�nition of the function 5 to con-
�gure the Algorithm 1 and 2. Therefore, one further advantage of
our countermeasure is that it follows “black-box” approach. The
fault injection attacks are hardware attacks, and the attacker does
not have access to the software implementation of the function.
Therefore, the attacker can only observe the input and output of
the function. By using the black-box approach, we basically make
the countermeasure robust at the hardware level.

Black-box. If we replace the 5 function with a program % that
computes the function 5 , then our countermeasure e⇠ access %
as a black-box and computes the function 5 using the random
self-reducible properties of 5 .

Systematic Use of Random Self-Reducibility in Cryptographic Code against Physical A�acks ICCAD ’24, October 27–31, 2024, New York, NY, USA

4 END-TO-END IMPLEMENTATIONS
In this section, we introduce implementations of the RSA-CRT
signature algorithm and Kyber’s key generation algorithm, detailing
existing vulnerabilities and how we can protect them against them
using our methods.

4.1 Securing RSA-CRT Algorithm.
RSA is a cryptographic algorithm commonly used in digital sig-
natures and SSL certi�cates. Due to the security of RSA, which
relies on the di�culty of factoring the product of two large prime
numbers, the calculation of RSA is relatively slow. Therefore, it is
seldom used to encrypt the data directly.

For e�ciency,many popular cryptographic libraries (e.g., OpenSSL)
use RSA based on the Chinese remainder theorem (CRT) for encryp-
tion or signing messages. Algorithm 4 is the RSA-CRT signature
generation algorithm. With the private key, we pre-calculate the
values 3? = 3 mod (? � 1), 3@ = 3 mod (@ � 1) and D = @�1

mod ? , then generate the intermediate value B? = <3? mod ? ,
B@ = <3@ mod @. Finally, combine two intermediate value B? , B@
with the Garner’s algorithm (= B@ + (((B? �B@) ·D) mod ?) ·@ The
RSA based on CRT is about four times faster then classical RSA.

Algorithm 4: RSA-CRT Signature Generation Algorithm
Input: A message" to sign, the private key (?,@,3) , with ? > @,

pre-calculated values 3? = 3 mod (? � 1) , 3@ = 3
mod (@ � 1) , and D = @�1 mod ? .

Output: A valid signature (for the message" .

1 < Encode the message" in< 2 Z#

2 B? <3? mod ? ù Protection with Alg. 5
3 B@ <3@ mod @ ù Protection with Alg. 5
4 C B? � B@
5 if C < 0 then C C + ?

6 (B@ + ((C · D) mod ?) · @
7 return (as a signature for the message"

However, using CRT to improve RSA operation e�ciency makes
RSA vulnerable. For instance, in [4], Aumüller et al. provided the
fault-based cryptanalysis method of RSA-CRT that the attacker
can intentionally induce the fault during the computation, which
changes B? to faulty ˆB? , to obtain the faulty output and factorize #
by using the equation @ = 623 ((B04 �<) mod # ,#) to recover the
secret key. Sung-Ming et al. provided another equation that can
factorize # with faulty signature in [53]. There are two scenarios
that the attacker can break the RSA-CRT. If the attacker knows the
value of the message and faulty output, they can factorize # with
the previous equation. On the other hand, if the attacker knows the
value of correct and faulty signatures, they can factorize # with
the equation @ = 623 ((B̂ � B) mod # ,#) .

We protect modular exponentiation at Line 2 and Line 3 of Al-
gorithm 4 using the proposed countermeasure against the attack
introduced in [4]. Its self-correcting program is very simple to code.
The hardest operation to perform is the modular multiplication
% (0, G1,') ·' % (0, G2,').

The self-correcting program can compute this multiplication
directly without using random self-reducible property, however,

Algorithm 5: 2-secure mod. exponentiation (%,',0, G)
1 G1,G2 $ Random-Split(q (')2=,G)
2 return % (0,G1,') ·' % (0,G2,') ù calls Alg. 6

for extra protection, 2-secure modular multiplication can be used
(cf. Algorithm 6). Let’s consider multiplication of integers mod '
for a positive number '. In this case, 5 (G,~,') = G ·' ~. Suppose
that both G and ~ are in the range Z'2= for some positive integer
=. Algorithm 6 shows a possible implementation for the protected
modular multiplication with a 2 security parameter set to 2.

Algorithm 6: 2-secure mod. multiplication (%,', G,~)
1 G1,G2 $ Random-Split(' ⇥ 2=,G)
2 ~1, ~2 $ Random-Split(' ⇥ 2=, ~)
3 return % (G1, ~1,') +' % (G2, ~1,') +' % (G1, ~2,') + % (G2, ~2,')

4.2 Securing Kyber Key Generation Algorithm.
The NIST standardization process for post-quantum cryptogra-
phy [34] has �nished its third round, and provided a list of new
public key schemes for new standardization [2]. While implementa-
tion performance and theoretical security guarantees served as the
main criteria in the initial rounds, resistance against side-channel
attacks (SCA) and fault injection attacks (FIA) emerged as an im-
portant criterion in the �nal round, as also clearly stated by NIST
at several instances [40].

Transforms used in signal processing such as the Fast Fourier
Transform (FFT) or Number Theoritic Transform (NTT) or their
inverse can be protected with our countermeasure. NTT over an =
point sequence is performed using the well-known butter�y net-
work, which operates over several layers/stages. The atomic op-
eration within the NTT computation is denoted as the butter�y
operation. A butter�y operation takes as inputs (0,1) 2 Z2@ and a
twiddle constantF , and produces outputs (2,3) 2 Z2@ .

Consider a transformation) (G1, . . . , G=) where the values G8
are �xed point numbers, i.e., 2-complement’s arithmetic of some
�xed size. This follows since the transformation is linear. Thus,
) (G1, . . . , G=) =) (G1 + Ã1, . . . , G= + Ã=) �) (Ã1, . . . , Ã=).

Algorithm 7: 2-secure NTT (%, G1, . . . , G= 2 Z2@).
1 Choose Ã1, . . . , Ã= 2U Z2

@

2 return NTT (G1 + Ã1, . . . ,G= + Ã=) � NTT (Ã1, . . . , Ã=)

The key point here is that since �xed-point values are a group
under addition, the value G8 + Ã8 is a uniform random value. The
countermeasure for NTT is given in Algorithm 7.

They typically operate over polynomials in polynomial rings,
and notably, polynomial multiplication is one of the most computa-
tionally intensive operations in practical implementations of these
schemes. Among the several known techniques for polynomial mul-
tiplication such as the schoolbook multiplier, Toom-Cook [52] and

ICCAD ’24, October 27–31, 2024, New York, NY, USA Erata et al.

Algorithm 8: CPA Secure Kyber PKE (CPA.KeyGen)

1 B443� Sample* ()
2 B443⌫ Sample* ()
3 �̂ NTT(�)
4 B Sample⌫ (B443⌫, 2>8=BB)
5 4 Sample⌫ (B443⌫, 2>8=B4)
6 B̂ NTT(B) ù Protection with Algorithm 7
7 4̂ NTT(4)
8 Ĉ �̂ � B̂ + 4̂

9 return ?: = (B443�, Ĉ), B: = (B̂)

Karatsuba [23], the Number Theoretic Transform (NTT) based poly-
nomial multiplication [16] is one of the most widely adopted tech-
niques, owing to its superior run-time complexity. Over the years,
there has been a sustained e�ort by the cryptographic community
to improve the performance of NTT for lattice-based schemes on a
wide-range of hardware and software platforms [1, 13]. As a result,
the use of NTT for polynomial multiplication yields the fastest
implementation for several lattice-based schemes. In particular, the
NTT serves as a critical computational kernel used in Kyber [6]
and Dilithium [29], which were selected as the �rst candidates for
PQC standardization [41].

A recent fault injection attack [41] that exposes a signi�cant
vulnerability in NTT-based polynomial multiplication, allowing
the zeroization of all twiddle constants through a single targeted
fault. This vulnerability enables practical key/message recovery
attacks on Kyber KEM and forgery attacks on Dilithium. Moreover,
the proposed attacks are also shown to bypass most known fault
countermeasures for lattice-based KEMs and signature schemes.

To safeguard polynomial multiplication, we can protect indi-
vidual NTT operations using Algorithm 7. In this paper, we focus
on securing the NTT operation targeted by Ravi et al.[41] using
Algorithm7. Consequently, we reinforce Line 6 of Algorithm 8 with
our proposed countermeasure against the attack delineated in [41].

5 EVALUATION
We conducted three experimental sets to assess our countermea-
sure’s e�ectiveness against fault injection and power side-channel
attacks. Initially, we evaluated protected operations individually,
including modular multiplication, modular exponentiation, and
NTT. Subsequently, we assessed our countermeasure’s robustness
within RSA-CRT and Kyber key generation algorithms. Finally, we
examined the latency overhead introduced by our countermeasure.

To capture power traces, for our experimentswe use anATSAM4S-
based target board. SAM4S is a microcontroller based around the
32-bit ARM cortex-m4 processor core, which is commonly used in
embedded systems such as IoT devices. The speci�c target board
comes with the ChipWhisperer Husky [35], which is the equipment
that we used for power trace collection.

The voltage fault injection test bed is created using Riscure’s VC
Glitcher product1 that generates an arbitrary voltage signal with a
pulse resolution of 2 nanoseconds. We use a General Purpose Input
Output (GPIO) signal to time the attack which allows us to inject

1https://www.riscure.com/products/vc-glitcher/

a glitch at the moment the target is executing the targeted code.
The target’s reset signal is used to reset the target prior to each
experiment to avoid data cross-contamination. All fault injection
experiments are performed targeting an o�-the-shelf development
platform built around an STM32F407 MCU, which includes an ARM
Cortex-M4 core running at 168 MHz. This Cortex-M4 based MCU
has an instruction cache, a data cache and a prefetch bu�er.

In power side-channel evaluation, we use the Hamming Weight
leakage model and the Test Vector Leakage Assessment (TVLA) [21]
to evaluate the e�ectiveness of our countermeasure. The instanta-
neous power consumption measurement corresponding to a single
execution of the target algorithm is referred to as power trace. Each
power trace is therefore a vector of power samples, and the t-test
has to be applied sample-wise. The obtained vector is referred to
as t-trace.

To detect Points-of-Interest, we employ the Sum of Squared pair-
wise T-di�erences (SOST) [12] method, setting the threshold at
20% of the maximum. The t-test window size is uniformly set to
±8 for all operations. We de�ne the power side-channel security
parameter as 2 = 2 in the 2-secure countermeasure in Algorithm 1
applicable to all operations. In the mod operation and modular
multiplication, the entire operation is targeted, while in modular
exponentiation and NTT, attacks are focused on the constant-time
Montgomery ladder [27, 30] modular exponentiation function. For
TVLA analysis, two sets of test vectors were created: one with
random numbers of Hamming weight 12 and another with a Ham-
ming weight of 4, using 1000 random numbers for each. These
vectors were used for evaluating both protected and unprotected
cryptographic operations.

In our study, we also evaluated the distinguishability of total
power consumption in modular operations and modular multipli-
cation. For modular multiplication, we maintained one operand’s
value constant while varying the other operand among numbers
with di�erent HammingWeights. This approach enables a compara-
tive analysis of power consumption patterns in modular operations,
particularly between unprotected and protected versions, o�ering
insights into how variations in Hamming Weight in�uence power
consumption in these protected cryptographic operations.

Our evaluation indicates that the RSR countermeasure signi�-
cantly reduced t-test results, bringing them into acceptable regions.
For example, in the mod operation, the maximum t-test result de-
creased from 415.7 to 4.12, and for NTT, it dropped from 417.7 to
7.69. These results, which are detailed in Table 1, demonstrate an
average reduction of two orders of magnitude, highlighting the
e�ectiveness of the RSR countermeasure in enhancing the security
of cryptographic operations against side-channel attacks.

In the fault injection attack evaluation, we use the model of
injecting faults to cause changes to the desired output, comparing
the desired output to the one of the fault. We set the fault injection
security parameter as = = 10 for =-secure countermeasure 2 for
all operations.

Figure 2 presents the results of our fault attack experiment. We
employed voltage glitches for the fault injection attacks. The Glitch
O�set is the time between when the trigger is observed and when
the glitch is injected. The Glitch Length is the time for which the
Glitch Voltage is set. Glitch O�set and Glitch Length are the two pa-
rameters that we varied to inject faults, they correspond to the start

https://www.riscure.com/products/vc-glitcher/

Systematic Use of Random Self-Reducibility in Cryptographic Code against Physical A�acks ICCAD ’24, October 27–31, 2024, New York, NY, USA

(a) Unprotected Mod Operation (b) Protected Mod Operation (c) Unprotected Mod. Mult. (d) Protected Mod. Mult.

(e) Unprotected Mod. Exp. (f) Protected Mod. Exp. (g) Unprotected NTT (h) Protected NTT

Figure 1: Power Side-Channel Attack Evaluation t-tests

(a) Unprotected Mod. Mult. (b) Protected Mod. Mult. (c) Unprotected Mod. Exp. (d) Protected Mod. Exp.

(e) Unprotected Poly. Mult. (f) Protected Poly. Mult. (g) Unprotected NTT (h) Protected NTT

(i) Unprotected RSA-CRT (j) Protected RSA-CRT (k) Unprotected Kyber Key Gen. (l) Protected Kyber Key Gen.

Figure 2: Fault Injection Attack Evaluation Heatmaps

ICCAD ’24, October 27–31, 2024, New York, NY, USA Erata et al.

Table 1: Reduction in Faults for Di�erent Operations

Operation Unprotected Protected Reduction

Mod. exponentiation 165 9 94.55%

Mod. multiplication 168 1 99.4%

NTT 63 5 92.06%

Poly. multiplication 196 14 92.86%

RSA-CRT 168 7 95.83%

Kyber Key. Gen. 172 4 97.67%

time and duration of the glitch, respectively. For each combination
of start time and duration, we executed each target function �ve
times, resulting in a total of 1280 test data points for each function.
We used heatmaps to illustrate the ratio of faulty to correct outputs.
This experiment yielded three types of outputs: faulty, correct, and
board reset. In the heatmaps, colors closer to red indicate a higher
likelihood of voltage glitches causing faulty outputs (red = 100%),
whereas blue signi�es a lower likelihood (blue = 0%). Green indi-
cates instances where all test outputs resulted in the board being
reset. We treated any output that is not the correct output as a
fault, this is very conservative, as some of the outputs may not be
e�ective faults. From these heatmaps, the unprotected functions
exhibit a signi�cantly higher number of red dots, indicating more
faults. Furthermore, Table 1 demonstrates the reduction of faults
in target functions, with our protection method reducing approxi-
mately 95.4% of faulty outputs in average, up to 99.4% in modular
multiplication. Collectively, these results a�rm the e�ectiveness of
our protection method in safeguarding the functions.

We observed fault injection sometimes breaks memory alloca-
tions (malloc) without causing the target to crash. This is due to the
fact that the target is not designed to handle such faults. We believe
that this is a potential avenue for future work, as it may lead to new
types of attacks. We simply reset the target in such cases, as we
are not interested in the results of these attacks. However, in some
cases, the fault progresses to the next operation silently without
causing a crash and the target continues to operate. We registered
these cases as successful attacks in the heatmaps.

We additionally protected the fault-injection countermeasure
method (Algorithm 2) using classical techniques. After exiting the
loop, the code veri�es loop completed successfully. If not, the code
resets the target. This is a simple and e�ective way to protect the
countermeasure from fault injection attacks. This led to a reduction
in faults 4.56% in average.

6 LIMITATIONS
Our study presents a novel software-based countermeasure against
physical attacks such as power side-channel and fault-injection at-
tacks, utilizing the concept of random self-reducibility and instance
hiding for number theoretic operations. While our approach o�ers
signi�cant advantages over traditional methods, there are several
inherent limitations. Firstly, the countermeasure’s e�ectiveness
is intrinsically linked to the random self-reducibility of the func-
tion being protected. This dependency means that our approach
may not be universally applicable to all cryptographic operations.

Secondly, redundancy and randomness inevitably introduce com-
putational overhead. Nevertheless, each call to original function
% can be easily parallelized in hardware or vectorized software
implementations. This parallelization can potentially increase the
noise, and we identify this as an avenue for future work. Finally,
our approach is not tailored to defend against attacks targeting the
random number generator itself. Nevertheless, there are also simple
duplication based techniques to protect random number generators
from physical attacks. For instance, one such technique involves
comparing two successive random numbers to determine if they
are identical or not, as discussed in the work of Ravi et al. [38].

7 CONCLUSION
In this work, we show that if a cryptographic operation has a ran-
dom self-reducible property, then it is possible to protect it against
physical attacks such as power side-channel and fault-injection
attacks with a con�gurable security. We have demonstrated the
e�ectiveness of our method through empirical evaluation across
critical cryptographic operations includingmodular exponentiation,
modular multiplication, polynomial multiplication, and number the-
oretic transforms (NTT). Moreover, we have successfully showcased
end-to-end implementations of our method within two public key
cryptosystems: the RSA-CRT signature algorithm and the Kyber
Key Generation, to show the practicality and e�ectiveness of our
approach. The countermeasure reduced the power side-channel
leakage by two orders of magnitude, to an acceptably secure level
in TVLA analysis. For fault injection, the countermeasure reduces
the number of faults to 95.4% in average. Although the counter-
measures were introduced as software-based, they can be more
e�ciently implemented in hardware, particularly on FPGAs. Each
call to % can be parallelized in hardware, potentially increasing the
noise. We identify this as an avenue for future work.

ACKNOWLEDGMENTS
At Virginia Tech, this project is partially supported by 4-VA, a
collaborative partnership for advancing the Commonwealth of Vir-
ginia, Commonwealth Cybersecurity Initiative, and by the National
Science Foundation (NSF) under grant CCF-2153748. At Yale Uni-
versity, this project is partially supported by NSF under grants
CNS-2245344, CCF-2106845, CCF-2131476, CCF-2219995, and CCF-
2318974.

REFERENCES
[1] Amin Abdulrahman, Jiun-Peng Chen, Yu-Jia Chen, Vincent Hwang, Matthias J

Kannwischer, and Bo-Yin Yang. 2021. Multi-moduli NTTs for saber on Cortex-M3
and Cortex-M4. Cryptology ePrint Archive (2021).

[2] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang, John
Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Peralta, et al. 2022.
Status report on the third round of the NIST post-quantum cryptography stan-
dardization process. US Department of Commerce, NIST (2022).

[3] Amund Askeland and Sondre Rønjom. 2021. A Side-Channel Assisted Attack on
NTRU. Cryptology ePrint Archive, Report 2021/790. https://ia.cr/2021/790.

[4] Christian Aumüller, Peter Bier, Wieland Fischer, Peter Hofreiter, and J-P Seifert.
2003. Fault attacks on RSA with CRT: Concrete results and practical counter-
measures. In Cryptographic Hardware and Embedded Systems (CHES). Springer,
260–275.

[5] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
2017. CRYSTALS-Kyber algorithm speci�cations and supporting documentation.
Technical Report. NIST PQC Round.

https://ia.cr/2021/790

Systematic Use of Random Self-Reducibility in Cryptographic Code against Physical A�acks ICCAD ’24, October 27–31, 2024, New York, NY, USA

[6] Roberto Avanzi, Joppe W. Bos, Leo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim
Lyubashevsky, John Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé.
2020. CRYSTALS-Kyber (version 3.0): Algorithm speci�cations and supporting
documentation. Technical Report. Submission to the NIST post-quantum project.
October 1, 2020.

[7] Alessandro Barenghi, Luca Breveglieri, Israel Koren, and David Naccache. 2012.
Fault injection attacks on cryptographic devices: Theory, practice, and counter-
measures. Proc. IEEE 100, 11 (2012), 3056–3076.

[8] Manuel Blum, Michael Luby, and Ronitt Rubinfeld. 1990. Self-testing/correcting
with applications to numerical problems. In Proceedings of the twenty-second
annual ACM symposium on Theory of computing. 73–83.

[9] Manuel Blum and Silvio Micali. 2019. How to generate cryptographically strong
sequences of pseudo random bits. In Providing Sound Foundations for Cryptogra-
phy: On the Work of Sha� Goldwasser and Silvio Micali. 227–240.

[10] Claudio Bozzato, Riccardo Focardi, and Francesco Palmarini. 2019. Shaping the
glitch: optimizing voltage fault injection attacks. IACR transactions on crypto-
graphic hardware and embedded systems (2019), 199–224.

[11] Eric Brier, Christophe Clavier, and Francis Olivier. 2004. Correlation power anal-
ysis with a leakage model. In International workshop on cryptographic hardware
and embedded systems. Springer, 16–29.

[12] Suresh Chari, Josyula R Rao, and Pankaj Rohatgi. 2002. Template attacks. In Inter-
national Workshop on Cryptographic Hardware and Embedded Systems. Springer,
13–28.

[13] Chi-Ming Marvin Chung, Vincent Hwang, Matthias J Kannwischer, Gregor Seiler,
Cheng-Jhih Shih, and Bo-Yin Yang. 2021. NTT multiplication for NTT-unfriendly
rings: New speed records for Saber and NTRU on Cortex-M4 and AVX2. IACR
Transactions on Cryptographic Hardware and Embedded Systems (2021), 159–188.

[14] Lucian Cojocar, Kostas Papagiannopoulos, and Niek Timmers. 2018. Instruction
duplication: Leaky and not too fault-tolerant!. In Smart Card Research and Ad-
vanced Applications: 16th International Conference, CARDIS 2017, Lugano, Switzer-
land, November 13–15, 2017, Revised Selected Papers. Springer, 160–179.

[15] Wikipedia contributors. 2023. Cherno� bound — Wikipedia, The Free Encyclo-
pedia. https://en.wikipedia.org/wiki/Cherno�_bound#Applications [Online;
accessed 7-September-2023].

[16] James W Cooley and John W Tukey. 1965. An algorithm for the machine cal-
culation of complex Fourier series. Mathematics of computation 19, 90 (1965),
297–301.

[17] Léo Ducas, Eike Kiltz, Tancrede Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. 2018. Crystals-dilithium: A lattice-based digital
signature scheme. IACR Transactions on Cryptographic Hardware and Embedded
Systems (2018), 238–268.

[18] Taher ElGamal. 1985. A public key cryptosystem and a signature scheme based
on discrete logarithms. IEEE transactions on information theory 31, 4 (1985),
469–472.

[19] Joan Feigenbaum and Lance Fortnow. 1993. Random-self-reducibility of complete
sets. SIAM J. Comput. 22, 5 (1993), 994–1005.

[20] Aymeric Genêt, Natacha Linard de Guertechin, and Novak Kaluđerović. 2021.
Full key recovery side-channel attack against ephemeral SIKE on the Cortex-M4.
Cryptology ePrint Archive, Report 2021/858. https://ia.cr/2021/858.

[21] Benjamin Jun Gilbert Goodwill, Josh Ja�e, Pankaj Rohatgi, et al. 2011. A testing
methodology for side-channel resistance validation. In NIST non-invasive attack
testing workshop, Vol. 7. 115–136.

[22] Emre Karabulut, Erdem Alkim, and Aydin Aysu. 2021. Single-Trace Side-Channel
Attacks on l-Small Polynomial Sampling: With Applications to NTRU, NTRU
Prime, and CRYSTALS-DILITHIUM. In 2021 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST). IEEE, 35–45. https://ia.cr/2022/494.

[23] Anatolii Karatsuba. 1963. Multiplication of multidigit numbers on automata. In
Soviet physics doklady, Vol. 7. 595–596.

[24] Paul Kocher, Joshua Ja�e, Benjamin Jun, and Pankaj Rohatgi. 2011. Introduction
to di�erential power analysis. Journal of Cryptographic Engineering 1 (2011),
5–27.

[25] Moritz Lipp, Andreas Kogler, David Oswald, Michael Schwarz, Catherine Easdon,
Claudio Canella, and Daniel Gruss. 2021. PLATYPUS: Software-based power
side-channel attacks on x86. In IEEE Symposium on Security and Privacy (SP).

[26] Richard Lipton. 1991. New directions in testing. Distributed computing and
cryptography 2 (1991), 191–202.

[27] Zhe Liu, Johann Großschädl, and Ilya Kizhvatov. 2010. E�cient and side-channel
resistant RSA implementation for 8-bit AVR microcontrollers. In Workshop on
the Security of the Internet of Things-SOCIOT, Vol. 10.

[28] Victor Lomné, Thomas Roche, and Adrian Thillard. 2012. On the need of ran-
domness in fault attack countermeasures-application to AES. In 2012 Workshop
on Fault Diagnosis and Tolerance in Cryptography. IEEE, 85–94.

[29] Vadim Lyubashevsky, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Peter Schwabe,
Gregor Seiler, Damien Stehlé, and Shi Bai. 2017. Crystals-Dilithium. Submission
to the NIST Post-Quantum Cryptography Standardization.

[30] Peter L Montgomery. 1985. Modular multiplication without trial division. Math-
ematics of computation 44, 170 (1985), 519–521.

[31] Nicolas Moro, Karine Heydemann, Amine Dehbaoui, Bruno Robisson, and Em-
manuelle Encrenaz. 2014. Experimental evaluation of two software counter-
measures against fault attacks. In Hardware-Oriented Security and Trust (HOST).
112–117.

[32] Nicolas Moro, Karine Heydemann, Emmanuelle Encrenaz, and Bruno Robisson.
2014. Formal veri�cation of a software countermeasure against instruction skip
attacks. Journal of Cryptographic Engineering 4 (2014), 145–156.

[33] Koksal Mus, Yarkın Doröz, M Caner Tol, Kristi Rahman, and Berk Sunar. 2023.
Jolt: Recovering tls signing keys via rowhammer faults. In 2023 IEEE Symposium
on Security and Privacy (SP). IEEE, 1719–1736.

[34] NIST. 2016. Submission Requirements and Evaluation Criteria for the Post-
Quantum Cryptography Standardization Process.

[35] Colin O’Flynn and Zhizhang (David) Chen. 2014. ChipWhisperer: An Open-
Source Platform for Hardware Embedded Security Research. Cryptology ePrint
Archive, Report 2014/204. https://ia.cr/2014/204.

[36] Conor Patrick, Bilgiday Yuce, Nahid Farhady Ghalaty, and Patrick Schaumont.
2017. Lightweight fault attack resistance in software using intra-instruction
redundancy. In Selected Areas in Cryptography–SAC 2016: 23rd International Con-
ference. Springer, 231–244.

[37] Gilles Piret and Jean-Jacques Quisquater. 2003. A di�erential fault attack tech-
nique against SPN structures, with application to the AES and KHAZAD. In
Cryptographic Hardware and Embedded Systems-CHES 2003: 5th International
Workshop, Cologne, Germany, September 8–10, 2003. Proceedings 5. Springer, 77–
88.

[38] Prasanna Ravi, Anupam Chattopadhyay, Jan Pieter D’Anvers, and Anubhab
Baksi. 2022. Side-channel and fault-injection attacks over lattice-based post-
quantum schemes (Kyber, Dilithium): Survey and new results. ACM Transactions
on Embedded Computing Systems (2022).

[39] Prasanna Ravi, Mahabir Prasad Jhanwar, James Howe, Anupam Chattopadhyay,
and Shivam Bhasin. 2019. Exploiting determinism in lattice-based signatures:
practical fault attacks on pqm4 implementations of NIST candidates. In Proceed-
ings of the 2019 ACM Asia Conference on Computer and Communications Security.
427–440.

[40] Prasanna Ravi and Sujoy Sinha Roy. 2021. Side-channel analysis of lattice-based
PQC candidates. Round 3 Seminars, NIST Post Quantum Cryptography.

[41] Prasanna Ravi, Bolin Yang, Shivam Bhasin, Fan Zhang, and Anupam Chattopad-
hyay. 2023. Fiddling the Twiddle Constants-Fault Injection Analysis of the
Number Theoretic Transform. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2023), 447–481.

[42] Oscar Reparaz, Benedikt Gierlichs, and Ingrid Verbauwhede. 2017. Fast Leakage
Assessment. Cryptology ePrint Archive, Report 2017/624. https://ia.cr/2017/624.

[43] Ronald L Rivest, Adi Shamir, and Leonard Adleman. 1978. A method for obtaining
digital signatures and public-key cryptosystems. Commun. ACM 21, 2 (1978),
120–126.

[44] Ronitt Rubinfeld. 1994. Robust functional equations with applications to self-
testing/correcting. Technical Report. Cornell University.

[45] Tobias Schneider and Amir Moradi. 2015. Leakage Assessment Methodology - a
clear roadmap for side-channel evaluations. Cryptology ePrint Archive, Report
2015/207. https://ia.cr/2015/207.

[46] Bodo Selmke, Johann Heyszl, and Georg Sigl. 2016. Attack on a DFA protected
AES by simultaneous laser fault injections. In 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC). IEEE, 36–46.

[47] Bo-Yeon Sim, Aesun Park, and Dong-Guk Han. 2021. Chosen-ciphertext Clus-
tering Attack on CRYSTALS-KYBER using the Side-channel Leakage of Barrett
Reduction. Cryptology ePrint Archive, Report 2021/874. https://ia.cr/2021/874.

[48] Alistair Sinclair. 2011. Class notes for the course "Randomness and Computation".
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf.

[49] Petr Socha, Vojtěch Miškovskỳ, and Martin Novotnỳ. 2022. A Comprehensive
Survey on the Non-Invasive Passive Side-Channel Analysis. Sensors 22, 21 (2022),
8096.

[50] Raphael Spreitzer, Veelasha Moonsamy, Thomas Korak, and Stefan Mangard.
2017. Systematic classi�cation of side-channel attacks: A case study for mobile
devices. IEEE communications surveys & tutorials 20, 1 (2017), 465–488.

[51] Hauke Malte Ste�en, Lucie Johanna Kogelheide, and Timo Bartkewitz. 2021. In-
depth Analysis of Side-Channel Countermeasures for CRYSTALS-Kyber Message
Encoding on ARM Cortex-M4. Cryptology ePrint Archive, Report 2021/1307.
https://ia.cr/2021/1307.

[52] Andrei L Toom. 1963. The complexity of a scheme of functional elements simu-
lating the multiplication of integers. In Doklady Akademii Nauk, Vol. 150. Russian
Academy of Sciences, 496–498.

[53] Sung-Ming Yen, Sangjae Moon, and Jae-Cheol Ha. 2003. Hardware fault attack
on RSA with CRT revisited. In Information Security and Cryptology—ICISC 2002:
5th International Conference Seoul, Korea, November 28–29, 2002 Revised Papers 5.
Springer, 374–388.

https://en.wikipedia.org/wiki/Chernoff_bound#Applications
https://ia.cr/2021/858
https://ia.cr/2022/494
https://ia.cr/2014/204
https://ia.cr/2017/624
https://ia.cr/2015/207
https://ia.cr/2021/874
http://www.cs.berkeley.edu/~sinclair/cs271/n13.pdf
https://ia.cr/2021/1307

	Abstract
	1 Introduction
	2 Background and Threat Model
	3 Overview of the Countermeasure
	3.1 Random Self-Reducibility
	3.2 RSR against Power Side Channels
	3.3 Self-Correctness against Fault Injections
	3.4 n and attacker's probability of success

	4 End-to-End Implementations
	4.1 Securing RSA-CRT Algorithm.
	4.2 Securing Kyber Key Generation Algorithm.

	5 Evaluation
	6 Limitations
	7 Conclusion
	Acknowledgments
	References

