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Abstract

Large-scale neural network models combining

text and images have made incredible progress

in recent years. However, it remains an open

question to what extent such models encode

compositional representations of the concepts

over which they operate, such as correctly iden-

tifying red cube by reasoning over the con-

stituents red and cube. In this work, we fo-

cus on the ability of a large pretrained vision

and language model (CLIP) to encode com-

positional concepts and to bind variables in

a structure-sensitive way (e.g., differentiating

cube behind sphere from sphere behind cube).

To inspect the performance of CLIP, we com-

pare several architectures from research on

compositional distributional semantics models

(CDSMs), a line of research that attempts to

implement traditional compositional linguistic

structures within embedding spaces. We bench-

mark them on three synthetic datasets – single-

object, two-object, and relational – designed to

test concept binding. We find that CLIP can

compose concepts in a single-object setting, but

in situations where concept binding is needed,

performance drops dramatically. At the same

time, CDSMs also perform poorly, with best

performance at chance level.

1 Introduction

Good semantic representations are generally as-

sumed to require, at a minimum, compositionality

and groundedness. That is, meanings of sentences

should be functions of the words they contain and

the syntax via which those words are combined

(Partee, 1995) (compositionality), and such mean-

ings should be at least in part responsible for ref-

erence to the real world, e.g., via truth conditions

(groundedness). The current state-of-the-art of se-

mantic representation consists of vectors extracted

from very large neural networks trained either on

text alone (Devlin et al., 2019; Brown et al., 2020;

∗Equal contribution

Touvron et al., 2023) or a mix of text and images

(Radford et al., 2021; OpenAI, 2023). It remains

a wide-open question whether such models consti-

tute good semantic representations (Pavlick, 2022),

with empirical evidence and in-principle arguments

simultaneously supporting claims that models are

and are not compositional (Marcus and Millière,

2023), and that they are and are not grounded (Pi-

antadosi and Hill, 2022; Bender and Koller, 2020;

Mollo and Millière, 2023).

In this paper, we focus on vision-and-language

models1 (specifically CLIP and fine-tuned vari-

ants of CLIP), and seek to answer, in a controlled

setting, whether such models meet basic tests of

grounded compositionality. Specifically, we con-

sider three basic types of linguistic compositions:

combining a single adjective and noun (red cube),

combining two adjectives with respective nouns

(red cube and blue sphere), and relating two nouns

(cube behind sphere). All three of these settings re-

quire some degree of compositionality and ground-

edness, with the latter two exemplifying a more

abstract type of compositionality (pervasive in lan-

guage) which depends not only on recognizing a

conjunction of constituents but an ability to bind

meaning representations to abstract syntactic roles.

Recently, there has been a significant interest in the

community to benchmark the compositional capa-

bilities of CLIP and other VLMs (Ma et al., 2022;

Yuksekgonul et al., 2023; Thrush et al., 2022).

However, Hsieh et al. (2023a) shows that these

datasets are ‘hackable’ as the incorrect labels may

not be meaningful and do not require the image to

predict the correct label. For example, an image

1There is significant debate about whether text-only lan-
guage models can be considered “grounded”. It is often as-
sumed that models trained on multimodal data will circumvent
this debate, but this should not be taken for granted. Our find-
ings add to work which shows that VLMs don’t necessarily
learn a grounded semantics of the type traditionally sought
in linguistics; further work and debate is necessary to make
normative claims about the representations that VLMs learn.
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of a horse eating the grass can have the distractor

the grass eating a horse. In contrast, we are less

prone to such “hackable” artifacts as we include

meaningful distractors that require both the image

and the labels for the final prediction. We there-

fore provide a controlled setting for benchmarking

compositionality in CLIP.

We situate our work within the tradition of re-

search on compositional distributional semantics

models (CDSMs) (Erk and Padó, 2008; Mitchell

and Lapata, 2010; Baroni and Zamparelli, 2010;

Coecke et al., 2010; Boleda, 2020), which seek to

bridge the gap between distributional models and

formal semantics by building architectures which

operate over vectors yet still obey traditional theo-

ries of linguistic composition.

Formal semantics approaches such as Montague

(1973) describe how the meaning of a sentence can

be built from its component parts. This approach

to meaning representation accounts for how a wide

variety of expressions can be produced by speak-

ers, and how we can understand sentences that we

have never heard before by composing their com-

ponent parts. Phenomena such as inference are

also easily accounted for – although there are still

difficulties (Partee, 1995).

Distributional semantics approaches represent

word meanings according to their distribution in

large text corpora. These have been extremely suc-

cessful in encoding lexical meaning (Landauer and

Dumais, 1997; Mikolov et al., 2013), as well as in

a variety of applications (Turney and Pantel, 2010).

CDSMs unify these approaches by representing

the symbolic, compositional structure of formal

semantic models within vector spaces. This al-

lows for the principled compositional approaches

seen in formal semantics to be applied within the

distributional setting, using lexical meaning repre-

sentations from the latter arena.

CDSMs are intrinsically compositional, and be-

cause of this, they have the potential to model con-

cept binding effectively. CDSMs also have the

capacity to capture a range of linguistic and cogni-

tive phenomena (Smolensky, 2012), and lend them-

selves to modeling the truth value as well as the

meaning of sentences (Emerson and Copestake,

2016), or accounting for polysemy (Boleda, 2020).

Because of their formal background, they are also

potentially more interpretable than current large

language models.

We adapt several CDSMs to the grounded lan-

guage setting, and compare the performance of

CLIP’s text encoder (tuned in various settings) to

the performance of these explicitly compositional

models. Overall, we see that on single adjective-

noun compositions (red cube), CLIP performs bet-

ter than any of the more explicitly compositional

CDSMs. In the other settings, which rely on the

ability to bind variables, we see that using CDSMs

for the text encoder sometimes improves perfor-

mance, but not always, and that, across all models,

performance is essentially at chance in the best case.

These results suggest that CLIP’s representation of

the visual world is poorly suited for compositional

semantics, and suggest that future work on improv-

ing these representations is a necessary next step in

advancing work on grounded compositional distri-

butional semantics.

In summary, we make the following contribu-

tions:

• We provide a controlled analysis of the ability

of CLIP and fine-tuned variants to perform

compositional visual reasoning tasks.

• We adapt a variety of traditional composi-

tional distributional semantics (CDS) archi-

tectures to the grounded language setting.

• We show that all our models perform poorly

on generalization settings that require abstract

variable binding, suggesting major limitations

in the way CLIP represents the visual world.

2 Models

In this work, we are interested in comparing con-

temporary “end to end” methods for training neural

networks with explicitly compositional models of

the type developed in compositional distributional

semantics (Erk and Padó, 2008; Mitchell and La-

pata, 2010; Baroni and Zamparelli, 2010; Coecke

et al., 2010; Boleda, 2020) (henceforth CDSMs for

“compositional distributional semantics models”).

Below, we describe the models we compare, in-

cluding baselines, explicitly compositional models,

and contemporary vision-and-language models.

2.1 Setup

We describe a unified setup that we use to repre-

sent compositions in CLIP-based models as well

as in CDSMs. For each compositional task, we

are given a dataset S = {(x1, y1), . . . , (xN , yN )}
where x is the image and y ∈ Y is a phrase which
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correctly describes the image where Y is the set of

all phrases. We use CLIP (Radford et al., 2021) to

get image embeddings for all input images. Em-

beddings for the phrases are generated either using

the text encoder in CLIP (possibly fine-tuned) or

using CDSMs.

We train different CLIP variants and CDSMs

in order to encode each of the phrases. We

deal with two types of phrases, namely, adjective-

noun and subject-relation-object phrases. Let

A = {a1, . . . , an} be the adjectives and N =
{n1, . . . , nm} be the nouns in an adjective-noun

phrase. The models produce the adjective-noun

phrase embedding T (a, n) in the joint semantic

space where a ∈ A and n ∈ N. Letting R =
{R1, . . . ,Rn} be the relations, the model gener-

ates the relational phrase embedding T (s,R, o)
where the subject is s ∈ N, the relation is R ∈ R,

and the object is o ∈ N. All models, with the excep-

tion of frozen CLIP, are trained to update phrase

embeddings based on the training data. For the

compositional models, the word embeddings that

are composed to form the phrase embedding are

updated. For more details, see Section 4.

2.2 CLIP and Variants

We examine the performance of CLIP (Radford

et al., 2021), fine-tuned CLIP, and a compositional

variant (Nayak et al., 2023) on the tasks.

CLIP CLIP (Radford et al., 2021) is a pretrained

vision-and-language model trained with a con-

trastive loss objective on 400 million image-text

pairs. The architecture includes two key compo-

nents: an image encoder and a text encoder that pro-

duce vector representations for images and texts in

the joint semantic space. The text encoder accepts

prompts in natural language to produce zero-shot

classifiers. We get the final prediction by taking the

cosine similarity between the image and the text

vectors and choosing the text with the highest sim-

ilarity score. This ability enables us to test CLIP

out-of-the-box on compositional tasks. We set the

following prompt templates for the adjective-noun

and subject-relation-object setting:

T (a, n) = φ(a photo of adj noun)

T (s,R, o) = φ(a photo of sub rel obj)

where φ is the CLIP pretrained text encoder, adj

noun is replaced with the adjective and noun pairs,

and sub rel obj is replaced with nouns and rela-

tions from the dataset. We consider frozen CLIP

and a fine-tuned variant CLIP-FT (Section 4).

Compositional Soft Prompting CSP or compo-

sitional soft prompting (Nayak et al., 2023) is a

parameter-efficient learning technique designed to

improve the compositionality of large-scale pre-

trained models like CLIP. They focus on real-world

adjective-noun datasets which contain images of

a single object associated with an adjective. They

fine-tune embeddings of tokens corresponding to

adjective and object concepts on a set of seen

classes while keeping other parameters of the text

and the image encoders frozen. During inference,

they recompose adjective and object tokens in new

concatenations for zero-shot inference. In this

work, we systematically evaluate CSP on different

types of compositional tasks (Section 4). We set the

following prompt templates for the adjective-noun

and subject-relation-object setting:

T (a, n) = φ(a photo of [adj] [noun])

T (s,R, o) = φ(a photo of [sub] [rel] [obj])

where φ is the pretrained text encoder in CLIP,

[adj] [noun] are the fine-tuned token embed-

dings for adjectives and nouns and [sub] [rel]

[obj] are the fine-tuned token embeddings for

nouns and relations in the dataset.

2.3 Compositional Distributional Semantics

Models (CDSMs)

We consider a number of compositional distribu-

tional semantics models, which have been pro-

posed in past work but have not been applied to a

grounded language setting. Each of these models

trains embeddings (vectors, matrices, or tensors)

for each word in the class, and then composes them

together to produce a compositional phrase embed-

ding. All models are trained to learn the phrase

embeddings by aligning them with the frozen im-

age embeddings from CLIP.

Syntax Insensitive Models (Add, Mult, Conv)

We consider three simple compositional models

that are insensitive to order. The first two are

Add, consisting of combining word vectors by ad-

dition, and Mult, where word vectors are combined

by pointwise multiplication (Mitchell and Lapata,

2010; Grefenstette and Sadrzadeh, 2011). Lastly,

we use circular convolution (Conv) (Plate, 1995).

For a, b, c ∈ R
n, c = Conv(a, b) = a» b means

that ci =
∑n−1

j=0
ajbi−j where i− j is interpreted

as modulo n.
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(a) Single-object dataset. Example true
label and distractors are: {blue cube,
yellow sphere, gray cube, purple cylin-
der, cyan cylinder}

(b) Two-object dataset. Example true
label and distractors are: {yellow
sphere, yellow cube, red sphere, blue
cube, purple cylinder}. yellow cube
and red sphere are ‘hard’ distractors.

(c) Relational dataset. Example true
label and distractors are: {cylinder left
of cube, cube left of cylinder, cylinder
right of cube, sphere left of cube, cylin-
der left of sphere}.

Figure 1: Example images and label sets from each dataset. The texts in Green are the true classes and Red are the

distractors. Unlike the two-object and relational datasets, the single-object dataset does not require concept binding.

Train Validation Generalization

Dataset # Examples # Classes # Examples # Classes # Examples # Classes

Single-object 5598 14 799 2 3195 8

Two-object 20000 14 20000 2 20000 8

Relational 40000 20 20000 2 20000 2

Table 1: Summary of the statistics of the datasets in the concept binding benchmark.

Type-logical model (TL) Type-logical ap-

proaches to distributional semantics map

grammatical structure into vector space seman-

tics (Baroni and Zamparelli, 2010; Coecke et al.,

2010). Concretely, we represent the nouns as vec-

tors, adjectives as matrices, and the composition of

an adjective and a noun is given by matrix-vector

multiplication. Following Kartsaklis et al. (2012),

we represent transitive verb or relation as a matrix,

and the composition of the noun-relation-noun is

given by matrix-vector multiplication followed by

pointwise vector multiplication, i.e.:

T (a, n) = A · n, T (s,R, o) = s» (R · o)

where n, s, and a are learnable embeddings, A and

R are learnable weight matrices, · is matrix-vector

multiplication and » is pointwise multiplication .

Role-filler model (RF) Introduced in Smolensky

(1990), role-filler-based representations provide a

means of representing structure using vectors. A

symbolic structure can be represented as a collec-

tion of role-filler bindings, instantiated within a

vector space. Consider red cube which is rendered

as red » adj. + cube » noun where adj. and

noun are role vectors, red and cube are filler

vectors, and circular convolution » is a binding

operator (Plate, 1995). Formally, we learn an em-

bedding for each filler, of type noun, adjective, or

relation, and another set of embeddings for each

role:

T (a, n) = a» ra + n» rn

T (s,R, o) = s» rs +R» rR + o» ro

where all of a, n, s, R, o, ra, rn, rs, rR, and

ro are learnable embeddings and » is the circular

convolution operation.

3 Concept Binding Benchmark

We introduce the concept binding benchmark to

evaluate the compositional generalization capabil-

ities of VLMs. In this benchmark, we introduce

three datasets: single-object, two-object, and re-

lational (see Figure 1). Following Johnson et al.

(2017), we use Community (2018) to generate syn-

thetic datasets with objects of simple shapes and

colors. Each dataset contains train, validation, and

generalization sets with no overlap in the true class

labels. Class labels are of the form adjective-noun

or subject-relation-object. All individual nouns,

adjectives, and relations are included in the train-

ing sets such that we can train models on the train-

ing set and test for compositional generalization on
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held-out classes in the validation and generalization

set. Unlike prior work that introduces datasets with

a focus on concept binding (Yuksekgonul et al.,

2023; Ma et al., 2022; Thrush et al., 2022), our

synthetically generated datasets contain both se-

mantically meaningful and hard labels and provide

a controlled setting to evaluate the compositional

capabilities of VLMs. Table 1 shows the statistics

of the datasets.

Single-object dataset The dataset consists of im-

ages of exactly one object of a given shape and

color (see Figure 1a). We consider the follow-

ing shapes and colors: cubes, spheres, and cylin-

ders and blue, gray, yellow, brown, green, purple,

red, and cyan with a total of 24 possible combina-

tions. The validation set includes brown cube and

green cylinder and the generalization set includes

green cube, purple cube, red cube, cyan cube, blue

cylinder, gray cylinder, yellow cylinder, and brown

cylinder. The remainder of the combinations are in-

cluded in the training set. The correct label for the

image is an adjective-noun label. Four distractors

are sampled from the other possible adjective-noun

combinations.

Two-object dataset The dataset contains images

with two objects of different shapes each associ-

ated with a different color (see Figure 1b). Fol-

lowing the single object experiments, we use the

same shape-color combinations in the train, val-

idation, and generalization split. A correct label

for a given image is again an adjective-noun label.

However, we manually choose “harder” distractors

by switching the adjective and object compositions.

For example, in Figure 1b we have two classes

red cube and yellow sphere. When red cube is the

positive label, we set two of the four distractors

to be red sphere and yellow cube. The other two

distractors are randomly sampled from the pool of

negative labels, say blue sphere and red cylinder.

We follow the same procedure when yellow sphere

is the positive example.

Relational dataset This dataset contains im-

ages with two objects. A correct label for

an image is given by a phrase of the form

subject relation object. We consider the following

objects and relations: cube, sphere, and cylinder

and left, right, front, and behind. This means there

are 24 possible combinations of spatial relations of

the form aRb where {a, b} are objects and a ̸= b
and R is the relation. For each image, the distractor

Model Train Val Gen

CLIP 94.23 97.75 92.39

CLIP-FT 98.98 1.02 89.06 5.84 78.54 4.41

CSP 94.98 0.45 84.58 0.16 88.74 0.34

Add 99.77 0.03 44.98 1.32 85.16 0.96

Mult 43.27 13.9 4.48 4.08 5.38 2.66

Conv 41.10 14.3 7.33 2.90 4.11 1.53

TL 99.98 0.02 1.08 0.44 0.92 0.24

RF 98.87 0.11 59.52 6.12 80.64 1.36

Table 2: Results for all models on single adjective-noun

composition, training epoch chosen by performance on

validation set. We report the average accuracy for all

the methods on 5 random seeds and the standard error.

labels are constructed as {bRa, aSb, aRc, cRb}
where c /∈ {a, b} is an object type other than a or b
and S is the relation opposite to R. The validation

set includes images of cubes in front of spheres

(equivalently, spheres behind cubes), and the gen-

eralization set includes images of cylinders in front

of cubes (equivalently, cubes behind cylinders). All

the other 20 image types are seen in the training

set, and note that shapes can appear on either side

of the image. Figure 1c shows an example from

the training set with a cylinder behind cube.

4 Experiments and Results

To understand the compositional capabilities of

CLIP, we benchmark CLIP and the compositional

models from Section 2 on the three datasets de-

scribed in Section 3. Detailed training setup and

parameters are given in Appendix A. We have re-

leased code and datasets for all experiments.2

4.1 Single Adjective-Noun Composition

We test the ability of our models to correctly clas-

sify the composition of objects with properties (e.g.,

“red cube”) in the single-object dataset.

Results In Table 2, we see that frozen CLIP out-

performs all the models. CLIP achieves 97.75% on

the validation set and 92.39% on the generalization

set. After fine-tuning, CLIP’s performance drops

to 89.06% on the validation set and 78.54% on

the generalization set. We observe a similar trend

in CSP, i.e., the performance on the validation set

reduces to 84.58% but achieves slightly better per-

2
https://github.com/marthaflinderslewis/

clip-binding
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Model Adj Noun Both

CLIP 83.47 14.87 1.65

CLIP-FT 0.12 0.12 92.95 4.09 6.94 3.98

CSP 85.19 0.72 12.57 0.72 2.24 0.05

Add 94.85 0.51 1.13 0.22 4.02 0.43

Mult 33.47 3.17 14.70 2.62 51.84 5.75

Conv 29.59 3.19 13.12 1.84 57.29 4.25

TL 39.18 0.72 21.64 0.27 39.17 0.50

RF 64.01 2.70 10.99 1.08 24.99 2.50

Table 3: Percentages assigned to each type of error for

the single-object color task, generalization split. Here,

Adj means the model predicted the adjective incorrectly

but the noun correct; Noun means the opposite error;

and Both means the model predicted neither the adjec-

tive nor the noun correctly. We report the average error

proportions for all the methods on 5 random seeds and

the standard error.

formance on the generalization set with 88.74%.

We suspect this drop is because the model overfits

to the true compositions in the training set.3 Out

of the CDSMs, Add and RF both perform well on

training and generalization sets, achieving 80.64%

and 85.16% on the generalization set respectively.

We see that Conv, Mult, and TL are unable to gen-

eralize to the validation and the generalization sets.

These three models can achieve high performance

(high 90s) on the training set after several epochs

but at the expense of performance on the validation

set (not included in Table 2 as we report accuracy

based on best performance on the validation set).

A breakdown of errors on the generalization set

is reported in Table 3. We see that CSP, Add, and

RF have similar types of errors, i.e., these mod-

els often predict the incorrect adjective but predict

the correct noun. CLIP-FT, however, predicts the

adjective (color) correctly but gets the noun wrong.

4.2 Two-Object Adjective-Noun Binding

In this task, we test whether CLIP can bind con-

cepts together. Given two objects, can CLIP bind

adjectives to correct objects as opposed to merely

representing the image as a “bag of concepts”? For

3Calibrating predictions on the validation set is a common
practice in zero-shot learning to reduce bias towards seen
classes. We find calibration improves CSP from 88.74% to
96.31% on the single-object setting. This shows fine-tuned
variants of CLIP can generalize better than frozen CLIP. How-
ever, calibration in the two-object setting does not improve
generalization accuracy suggesting this setting is harder as it
requires binding adjectives to objects. Details in Appendix C.

Model Train Val Gen

CLIP 27.02 7.17 31.40

CLIP-FT 86.91 8.15 6.31 3.31 0.25 0.10

CSP 37.59 1.54 20.98 0.22 11.15 2.03

Add 32.46 0.11 15.38 0.89 21.37 0.60

Mult 86.65 8.93 4.66 1.35 0.13 0.03

Conv 46.26 0.53 7.11 2.18 0.28 0.14

TL 99.41 0.17 21.23 4.08 0.08 0.07

RF 25.23 1.08 25.13 3.99 20.36 1.36

Table 4: Results for all models on adjective-noun bind-

ing task, training epoch chosen by performance on val-

idation set. We report the average accuracy for all the

methods on 5 random seeds and the standard error.

Model Adj Noun Both

CLIP 53.08 45.40 1.51

CLIP-FT 47.63 0.26 46.89 1.20 5.48 1.01

CSP 49.22 0.54 48.25 0.72 2.53 0.17

Add 53.57 0.16 44.32 0.25 2.11 0.23

Mult 48.51 0.03 46.43 1.13 5.06 1.15

Conv 44.27 0.19 38.20 0.35 17.53 0.43

TL 48.76 0.03 47.85 0.12 3.39 0.15

RF 50.64 0.91 41.32 1.26 8.04 1.46

Table 5: Percentages assigned to each type of error for

the two-object setting. Here, Adj means the model pre-

dicted the adjective incorrectly but the noun correct;

Noun means the opposite error; and Both means the

model predicted neither the adjective nor the noun cor-

rectly. We report the average error proportions for all

the methods on 5 random seeds and the standard error.

example, in Figure 1b, can CLIP predict that the im-

age contains a red cube rather than a yellow cube?

Results This task is more challenging for all mod-

els (Table 4). Frozen CLIP performs at a level close

to chance. After fine-tuning, we see that CLIP-FT

overfits to the training set, achieving good train-

ing accuracy (86.91%), but falling much lower on

validation and generalization (6.31% and 0.25%

respectively). At the epoch with the best accuracy

on the validation set, CSP has a lower performance

on the training set and slightly higher on the vali-

dation and generalization sets compared to CLIP-

FT. However, as training progresses, we observe

that CSP also overfits to the training set (not re-

ported in the table). We see that Conv, Mult and

TL also exhibit the same pattern of overfitting to
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the training data, with high training accuracy and

low validation and generalization accuracy. The

additive models, Add and RF, underfit the training

set and show random accuracy on validation and

generalization sets.

Table 5 shows that the errors are similar across

the models. For most models, the errors are evenly

split between the adjectives and the nouns while

only a small proportion of the errors get both in-

correct. However, we find that Conv incorrectly

predicts both the adjective and noun. For the best

performing models, Add and RF, there is a slight

bias towards getting the adjective wrong rather than

the noun.

4.3 Relational Composition

In this task, we test understanding of spatial re-

lationships between objects, i.e., can our models

bind objects to positions? This task requires the

models to encode an order or relation between

two arguments. For example, in Figure 1c, can

CLIP differentiate between cube behind cylinder

and cylinder behind cube, even though they have

the same words?

Results Frozen CLIP performs slightly better

than chance on the training set, but worse on the

validation and generalization sets, indicating that

these may be more difficult (Table 6). After fine-

tuning, CLIP-FT improves to around 50% on the

training set, but is completely unable to general-

ize. This pattern is also seen for CSP and TL. All

the other CDSMs perform slightly above chance.

This is to be expected for Add, Mult, and Conv

because they are commutative. Surprisingly, RF

is unable to perform better than chance in this set-

ting. We suspect that RF has a lower capacity as RF

only fine-tunes the role and filler parameters. Fine-

tuning the image encoder along with the role and

filler parameters will increase the complexity of the

model and potentially improve the performance on

the various splits.

Table 7 gives a breakdown of errors. Recall that

the distractors have a specific structure: if a cor-

rect caption for the image is aRb, then the given

distractors are: bRa, aSb, aRc, cRb. We note

that CLIP, CSP, and TL have a very similar pat-

tern of errors: each model is able to distinguish

objects perfectly, and almost all errors are split be-

tween bRa and aSb - tuples that have been seen

in training. The three commutative models, Add,

Mult, and Conv, also have a distinctive error pat-

Model Train Val Gen

CLIP 26.80 14.99 0.00

CLIP-FT 49.59 0.44 0.00 0.00 0.00 0.00

CSP 30.40 0.11 0.12 0.01 0.03 0.00

Add 25.41 0.13 26.03 0.07 25.47 0.18

Mult 25.67 0.12 25.95 0.09 25.78 0.09

Conv 24.83 0.06 26.36 0.55 24.95 0.11

TL 67.19 0.26 0.00 0.00 0.00 0.00

RF 25.18 0.28 24.89 0.73 22.78 0.20

Table 6: Results for all models on relational composi-

tion. We report the average accuracy for all the methods

on 5 random seeds and the standard error.

Model bRa aSb aRc cRb

CLIP 50.00 50.00 0.00 0.00

CLIP-FT 37.54 7.60 45.97 2.41 12.19 7.78 4.30 1.94

CSP 49.75 0.01 49.77 0.01 0.40 0.01 0.08 0.00

Add 34.21 0.08 65.79 0.08 0.00 0.00 0.00 0.00

Mult 34.41 0.17 65.57 0.17 0.01 0.01 0.01 0.01

Conv 32.98 0.27 66.14 0.11 0.54 0.24 0.34 0.10

TL 49.06 0.55 49.44 0.33 1.07 0.64 0.44 0.27

RF 53.09 0.46 46.18 0.32 0.48 0.14 0.26 0.08

Table 7: Percentages assigned to each type of error for

the relational task. We report the average error propor-

tions for all the methods on 5 random seeds and the

standard error.

tern. Errors are again focused on bRa and aSb,

with approximately a 1:2 split. This indicates that

the models select the relation R 50% of the time,

and S the other 50%. When R is selected, the

predictions are split again between aRb and bRa,

since these cannot be distinguished by the commu-

tative models. Although the overall performance

of RF is similar to these models, the pattern of er-

rors is more similar to that of CLIP, CSP, and TL.

Finally, CLIP-FT has another different pattern of

errors, in which more of the error is now on the

objects, rather than the relation. We also note that

these errors are much noisier than for the CDSMs.

5 Discussion

Our work highlights the limitations of CLIP as a

basis for compositional language representations.

We show that CLIP is capable of disassociating

objects and adjectives, enabling it to behave com-

positionally in the single-object setting. However,

it appears to lack a richer structure necessary for

compositions that require more abstraction, such
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as syntax-sensitive variable binding. We find that

fine-tuning CLIP or training composition-aware

models (CDSMs) does not help the model general-

ize better on the unseen classes for two-object and

relation settings. Our results show that among the

CLIP variants, CLIP-FT overfits to the training set

and achieves high training accuracy while hurting

the generalization accuracy. CSP can show im-

proved training accuracy over CLIP and sometimes

show increases in validation and generalization ac-

curacy but not always. Among the syntax insen-

sitive models, we see that Add, Mult, and Conv

improve on the training accuracy on the single-

object and the two-object settings but only Add

generalizes to held-out classes in the single-object

setting. As expected, these models cannot repre-

sent order and achieve accuracy close to chance on

the relational dataset. Our results with type-logical

models (TL) have high training accuracy but valida-

tion and generalization accuracy are usually close

to 0. Finally, RF can learn to generalize to classes

in the single-object dataset but achieves chance

on the two-object and the relational dataset. Our

experiments focus only on CLIP, and thus should

be interpreted conservatively. Newer visual en-

coders trained with different training objectives

may produce better results, even with the same text

encoders we use in the paper. Or, perhaps, progress

on compositionality both in visual and text encod-

ing will be necessary to alleviate the problems high-

lighted here. Overall, our results motivate the need

for pretraining methods in VLMs that account for

binding for better compositionality.

We also shed light on the benchmarking datasets

used in compositional zero-shot learning. Typi-

cal benchmarking datasets for this task are MIT-

States (Isola et al., 2015), UT-Zappos (Yu and Grau-

man, 2014), and C-GQA (Mancini et al., 2021).

CLIP and CSP show strong performance compared

to several existing methods on these datasets (see

Section 5 in Nayak et al. (2023)). However, these

datasets do not explicitly test for binding of adjec-

tives to nouns, i.e., they are restricted to a single-

object setting. While this setting captures one im-

portant aspect of composition, it does not require

models to encode an abstract, order-aware syntax, a

critical component of linguistic composition. In our

experiments, we find that CLIP and CSP show high

accuracy on the single-object dataset (Section 3)

but the performance drops dramatically on the two-

object dataset (Section 4.2) and relational dataset

(Section 4.3). Challenging datasets like ARO (Yuk-

sekgonul et al., 2023) show that fine-tuning CLIP

with harder negative images and captions can im-

prove CLIP’s accuracy on the relational split that

accounts for the order of objects. Our training

setup shares similarities as we include hard neg-

ative captions for each image. However, we do

not see improved performance after fine-tuning.

Recent work (Hsieh et al., 2023b) shows that the

ARO benchmark includes test examples that can

be solved without the visual encoder which could

explain the possible improvement in performance.

These findings motivate the need for more realistic

and challenging benchmarks that test for binding

and order.

6 Related Work

Compositionality in Language Our work con-

tributes to the extensive body of work in

compositionality and language spanning several

decades (Smolensky, 1990; Plate, 1995; Baroni

and Zamparelli, 2010; Coecke et al., 2010; Socher

et al., 2012; McCoy et al., 2019; Smolensky et al.,

2022). Key models of composition used in lan-

guage include simple elementwise composition

(Mitchell and Lapata, 2010), neural models of com-

position (Socher et al., 2012), type-logical models

of composition (Baroni and Zamparelli, 2010; Co-

ecke et al., 2010), and role-filler modes of composi-

tion (Smolensky, 1990; Plate, 1995; McCoy et al.,

2019). We focus on type-logical and role-filler

models of composition. In the area of type-logical

models, our work extends models from Maillard

and Clark (2015); Wijnholds et al. (2020); Nagara-

jan and Grauman (2018) to learn from both images

and text and to handle a wider range of compo-

sitions. Within the area of role-filler approaches,

recent work has looked at approaches to reason-

ing (Chen et al., 2020), mathematics (Russin et al.,

2021), and whether recurrent neural networks can

be emulated using role-filler approaches (McCoy

et al., 2019). In particular, McCoy et al. (2019)

use tensor product representations to show that sen-

tence encoders (Conneau et al., 2017; Kiros et al.,

2015) can be well approximated by a “bag of words”

model. In this work, we show that CLIP image em-

beddings behave like a “bag of concepts”.

Compositionality in Vision There is a grow-

ing interest in compositionality and vision (Misra

et al., 2017; Nagarajan and Grauman, 2018; Naeem

et al., 2021; Mancini et al., 2021; Lovering and
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Pavlick, 2022; Nayak et al., 2023; Yun et al.,

2022; Tull et al., 2023). Several architectures

have been proposed to improve benchmark results

on compositional zero-shot learning datasets (Yu

and Grauman, 2014; Isola et al., 2015; Mancini

et al., 2021). However, these datasets are of-

ten restricted to an adjective-noun setting, ignor-

ing concept binding. Recently, datasets such as

CREPE (Ma et al., 2022), ARO (Yuksekgonul et al.,

2023), and Winoground (Thrush et al., 2022) study

compositionality in VLMs including concept bind-

ing, but may not provide a faithful and controlled

environment benchmark (Hsieh et al., 2023b). In

contrast, we build a controlled setup without poten-

tial confounders that arise with real-world images

to carefully study compositional visual reasoning.

Concurrently, Clark and Jaini (2023) compared the

performance of frozen CLIP and Imagen, a text-to-

image model, on a task similar to our two-object

dataset. They find that Imagen, in some cases, per-

forms more strongly, suggesting that generative

models are better at binding concepts.

7 Conclusion

We investigate the ability of CLIP and variants

and CDSMs in a controlled environment to per-

form compositional visual reasoning tasks. Our

results show that CLIP performs well on the sin-

gle adjective-noun compositions but struggles on

compositional tasks that rely on the ability to bind

variables. Some of the CDSMs perform well on

single adjective-noun composition but show per-

formance closer to chance in the two-object and

relational tasks. Our work not only sheds light on

the limitations of CLIP but also suggests that the

pretraining of VLMs should account for binding

and order for better compositional generalization.

8 Limitations and Risk

8.1 Models

We run our experiments on one major VLM (CLIP)

and compare these results with a set of compo-

sitional models. Results on the benchmarking

datasets we propose may differ for other VLMs.

The compositional models we test do not include

some types of model such as Recursive Neural Net-

works (Socher et al., 2012), but we do compare key

types of model (type-logical and role-filler) from

the compositional literature.

8.2 Datasets

The Concept Binding Benchmark that we pro-

pose studies concept binding with artificially gen-

erated shapes. While the simplicity of our datasets

strengthens the findings, we suspect that the results

may differ with more realistic images.

8.3 Language

The language we look at is limited to English. For

the CLIP models that we use, we are limited to

English, however, for the compositional models, it

would be possible to use other languages, including

alternative grammatical structures and word order-

ings. The kind of language used in the labels is

very simple, and further work could include more

complicated descriptions of the images.

8.4 Risk

This research presents limited risk, due to the ab-

stract nature of the datasets and the limited domain

of investigation. All previously existing artefacts

have been used within the limits of their original

purpose.

9 Ethical Considerations

The abstract nature of the datasets we use means

that ethical implications of the type of modeling

done are minimal. We do use English as a lan-

guage, however, the methods we propose for the

CDSMs could be applied to other languages, as

in Moortgat and Wijnholds (2017). The training

methodology involves fine-tuning a VLM with a

large number of parameters (see Table 8), however

use of this model can be minimized by saving out

frozen image embeddings and using these to train

CDSMs.
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A Training Details

We provide the training details and hyperparame-

ters used in the experiments. We build the training

and evaluation pipeline in PyTorch (Paszke et al.,

2019). The models are trained on a single NVIDIA

RTX 3090, A40, or V100 GPU depending on their

availability. The models are trained for 20 epochs

which takes about 6-20 minutes per epoch depend-

ing on the dataset. Table 8 shows the number of

trainable parameters in all the models used in our

experiment.

We have three categories of models: CLIP, CLIP

variants, and CDSMs (Add, Mult, Conv, TL, RF).

All the models use pre-trained CLIP ViT-L/14 in

the experiments 4. These methods except CLIP are

trained with a cross entropy loss on the train split

using an Adam optimizer. We use frozen CLIP to

predict the classes for the images in the datasets.

During training, we set the batch size of 32 and

weight decay of 10−5. CLIP (FT) fine-tunes all

the model parameters including the vision and text

encoder with a learning rate of 10−7. In CSP, we

initialize the token embeddings by averaging the

embeddings of all the tokens in the English name

of the adjective, noun, or relation to get one initial

token embedding per concept. Then, we fine-tune

them on the training split with a learning rate of

10−6. In CDSMs, we randomly initialize the model

parameters and train them with a learning rate of

5 · 10−4. We train all our models on the train split

and use the validation split to select the final model

for testing based on accuracy.

Dataset

Method Single/Two-object Relational

CLIP-FT 429M 429M

CSP 8,448 5,376

Add 8,448 5,376

Mult 8,448 5,376

Conv 8,448 5,376

RF 9,984 7,680

TL 4.7M 2.3M

Table 8: The number of trainable parameters in each

experiment.

4https://github.com/openai/CLIP/blob/main/model-
card.md.

B Training Algorithm

We describe the algorithm used to train the models.

Models are trained to align the caption vectors with

the image vectors. Algorithm 1 shows the training

algorithm for adjective-noun phrases. We follow a

similar procedure to train relational phrases.

Algorithm 1: Algorithm to train the model

on the adjective-noun compositions.

Input :Training dataset S, image encoder I,
composition encoder T , learnable
parameters θ, adjectives A, nouns N, λ
weight decay, number of distractors D,
number of epochs M

Output :The model parameters θ
1 for i← 1 to M do
2 foreach x, y = (a, n) ∈ S do
3 x← I(x); get the image vector

4 Y
D
neg ← sample D distractors from
Yneg = Y \ {y}

5 lpos ← x · T (a, n)
6 lneg ←

∑
yneg∈YD

neg

x · T (yneg)

7 pθ(y = (a, n)|x)←
exp (lpos)

exp (lpos+lneg)

8 L ← − log pθ(y|x) + λ||θ||2; cross
entropy loss with weight decay

9 θ ← update all learnable parameters

10 end

11 end
12 return θ; the learned model parameters

C Calibrated Stacking

Calibrated stacking is a standard practice in zero-

shot learning (Chao et al., 2016; Nayak and Bach,

2022). Zero-shot models tend to be overconfident

or biased towards seen classes because they only

see the unseen classes as negatives or they are ex-

cluded from the training altogether. We can fix

this overconfidence by simply calibrating the pre-

dictions on validation data. Following prior work

in zero-shot learning, we add a calibration coef-

ficient to lower the cosine similarity score of the

seen classes. During testing, we use the calibration

coefficient and calculate the accuracy.

Setup To test whether calibrated stacking im-

proves generalization accuracy, we experiment

with CSP on the single object dataset but mod-

ify the train set. To find a calibration coefficient,

we need a validation set to include seen and un-

seen classes. Since our validation set contains only

unseen classes as the positive labels, we need a

additional validation set with seen classes. To fix

this issue, we randomly sample 10% of the train

set and use that as the seen validation set. We train
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Single Object Two Object Relational

Model Train Val. Gen. Train Val. Gen. Train Val. Gen.

BLIP-Base 94.23 91.36 87.82 27.79 8.37 27.96 17.54 50.07 0.0

BLIP-Large 98.46 98.62 97.46 22.66 15.75 40.61 22.35 22.18 40.34

Table 9: Results for BLIP on the single-object, two-object, and the relational datasets from the concept binding

benchmark.

our model on the remaining 90% of the data with

the same training details (see Section 4). Next, we

compute the cosine similarity scores for the seen

and the unseen validation sets and search for the

calibration coefficient. Next, we get the highest co-

sine similarity lmax and vary the calibration −lmax

to +lmax with a step size of lmax/100 and choose

the coefficient with the highest harmonic mean of

the seen and the unseen accuracy. Finally, we use

the calibration coefficient on the generalization set

and report the performance.

Method Generalization

CLIP 92.39

CSP 88.74

CSP + calib. 96.31

Table 10: The results for single-object setting on the

generalization split. For CSP and CSP + calib., we

report the average accuracy on 5 random seeds.

Results Table 10 shows that CSP with calibra-

tion improves by 8 points on the generalization

split. We also see that CSP improves over CLIP

by 4 points showing that the model has learned

to generalize to unseen adjective-noun composi-

tions. This shows that fine-tuned models, includ-

ing the CSDMs, could potentially generalize bet-

ter than frozen CLIP with calibration. These re-

sults are in line with the literature in composi-

tional zero-shot learning that calibrate the predic-

tions and show improved results on the adjective-

noun datasets (Purushwalkam et al., 2019; Ruis

et al., 2021). However, we find that calibrating

the predictions in the two-object setting does not

improve the generalization performance the same

way. This may be due to the construction of the two-

object dataset. In the validation split we have the

classes brown cube and green sphere. The “hard

distractors” for these classes are brown sphere and

green cube. However, these hard distractors come

from the generalization set, i.e., they are unseen

classes. This means the calibration does not de-

crease the cosine similarity of the hard distractors,

making it difficult to calibrate the validation set.

Finally, calibration is not applicable to the rela-

tional dataset because we consider only two classes

in the generalization split, cube behind cylinder

and cylinder behind cube, that are equivalent. This

means, we only see one class at a time and simply

setting the probability of the distractors to 0, we

can get 100% accuracy on the generalization set.

For this reason, we do not calibrate on the relational

dataset and leave the experiment for the future.

D Experiments with BLIP

We further highlight the limitations of contrastive

vision-language models by evaluating BLIP (Li

et al., 2022) on the concept binding benchmark.

BLIP is a pretrained vision-language model trained

with a unimodal image encoder, unimodal text en-

coder, image-grounded text encoder, and image-

grounded text decoder. We consider two BLIP

model sizes: BLIP-Base and BLIP-Large. We fol-

low the same evaluation procedure used for CLIP.

Table 9 shows the results for BLIP on the con-

cept binding benchmark. Our results are similar to

CLIP across all the datasets. On the single object

datasets, we find that BLIP achieves good perfor-

mance on all the splits. However, we find the perfor-

mance of both the models dramatically reduces on

the two-object and relational datasets. This further

highlights the grounded compositionality problem

in vision-language models.

E License

All the code including the models and the datasets

used in this work are released under open-source

licenses. Blender is released under the GNU GPL

License, CLIP is released under the MIT license,

and CSP is released under the BSD-3 license. We

have released the code and concept binding bench-

mark dataset under the Apache 2 license.
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