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The automorphism group of the
in�nite-rank free group is coarsely bounded

George Domat, Hannah Hoganson
and Sanghoon Kwak

A�������. We prove that the full automorphism group and the outer au-
tomorphism group of the free group of countably in�nite rank are coarsely
bounded. That is, these groups admit no continuous actions on ametric space
with unbounded orbits and have the quasi-isometry type of a point.
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1. Introduction
Classical geometric group theory concerns itself with �nitely generated and

then compactly generated groups. In these settings, groups have a well-de�ned
quasi-isometry type that allows one to study them froma geometric perspective.
Recent work of Roe and Rosendal [4, 3] has expanded the tools of coarse geom-
etry to the broader class of non-compactly generated Polish groups. They intro-
duce a generalization of compactness called coarse boundedness. Groups that
have a coarsely bounded generating set admit a well-de�ned quasi-isometry
type. Globally coarsely bounded groups are quasi-isometric to a point, so fail to
admit any interesting geometry.
These advances have coincided with a recent burst of interest in big mapping

class groups, that is, mapping class groups of in�nite-type surfaces. Unlike their
�nite-type analogues, these groups are uncountable, non-compactly generated,
Polish groups. Mann–Ra� [2] began the study of the coarse geometry of these
groups using the framework of coarse boundedness.
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In the �nite-type setting, the study of mapping class groups and the outer
automorphism groups of free groups,Out(��), are closely intertwined. Indeed,
the fundamental group of a punctured surface is a free group and the mapping
class group acts faithfully on it. This gives an injective map from the mapping
class group to Out(��) for an appropriate �. This raises two natural questions:
What is the “big” analogue ofOut(��) and how does it connect to the mapping
class group?
The fundamental group of any in�nite-type surface with in�nite genus is

the free group of countably in�nite rank, ��. So, a natural �rst guess is that
Out(��) serves as the “big” analogue of Out(��). Indeed, big mapping class
groups do still have injective maps into Out(��). In this paper, we prove the
following.

MainTheorem. The groupsAut(��) andOut(��) are both coarsely bounded.

This theorem states that each of these two groups fails to admit any con-
tinuous action on a metric space with unbounded orbits, and in fact each is
quasi-isometric to a point. This is in sharp contrast with the groups Aut(��)
and Out(��), which are not coarsely bounded for any � � 2. Given the the-
orem above one may be tempted to ask about Aut(��) for � an uncountable
cardinal. We will not consider these groups because the natural topologies that
we de�ne in Section 2.2 are not �rst countable and thus not metrizable.
Mann–Ra� [2] proved that a large class of in�nite-typemapping class groups

are in fact not coarsely bounded. This suggests that the whole group Out(��)
is “too big” to serve as a satisfying analogue of Out(��) for these surfaces. Re-
cent work of Algom-K�r–Bestvina [1] proposed a di�erent analogue via groups
of proper homotopy equivalences of in�nite-type graphs. In [5] we proved
that some of these new groups are also not coarsely bounded. Section 1, to-
gether with those results, gives further evidence that groups of proper homo-
topy equivalences are the “correct” analogues of big mapping class groups.

2. Preliminaries
2.1. The countably in�nite rank free group. Let �� denote the free group
of countably in�nite rank. A presentation for �� is given by the generators
{��}��� with no relations. We call the {��}��� the standard basis of ��.
De�nition 2.1. A subgroup � of �� is a free factor if there is another sub-
group � such that �� = � � �.

We use �� to denote the subgroup generated by {��}��=1. Each subgroup ��
is a free factor of ��, and we use �� to denote the complementary free factor.
That is, �� = ������=�+1.
We study the group of automorphisms, Aut(��), of �� and the group of

outer automorphisms,Out(��). These groups �t into the following short exact
sequence, where Inn(��) is the group of automorphisms given by conjugation
actions.



1508 G. DOMAT, H. HOGANSON AND S. KWAK

1� Inn(��)� Aut(��)� Out(��)� 1.

2.2. Topologies on ���(��). The action of Aut(��) on �� allows us to de-
�ne two natural topologies on Aut(��). Equipping �� with the discrete topol-
ogy, we can de�ne the compact-open topology on Aut(��) via the sub-base
given by the sets of the form

��,� =
�
� � Aut(��)

�����(�) � �
�
,

where � is any �nite subset of �� and � is any subset of ��.
We can also consider the permutation topology on Aut(��) arising from this

action. Basis elements for this topology are given by the sets of the form

��,� =
�
� � Aut(��)

������� = ���
�
,

where � is a �nite subset of �� and � � Aut(��). This topology is second-
countable and supports a complete metric so that Aut(��) has the structure of
a Polish group.

Proposition 2.2. The compact-open topology on Aut(��) is equivalent to the
permutation topology on Aut(��).

Proof. Let � = ��
�=1��� ,�� be a basis element for the compact-open topology

and let � � � . Then the set of the form � = ����� ,� is a basis element for the
permutation topology such that � � � � � . Thus we see that the compact-
open topology is coarser than the permutation topology.
Now let � = ��,� be a basis element for the permutation topology and let

�� � ��,�. The set of the form � = �
����

�{��},{�(��)} is a basis element for the
compact-open topology such that �� � � � � (in fact, � = �). We conclude
that the permutation topology is also coarser than the compact-open topology
and hence equivalent. ⇤

Throughout the proofs below we will think of Aut(��) equipped with the
permutation topology. Because Aut(��) is a topological group we will only
focus on neighborhood bases about the identity. Any such basis element ��,id
contains a basis element of the form �� �= �{�1,…,��},id. Indeed, as the set �
is �nite, every word within � can be written using only �nitely many of the
standard basis elements of ��. Thus �� � ��,id for su�ciently large �.
We further endow Out(��) with the quotient topology. Since the kernel,

Inn(��), is a closed subgroup of Aut(��)we have that Out(��) is again a Pol-
ish group.

2.3. Coarse boundedness. Instead of the formal de�nition of coarse bound-
edness for general coarse spaces, we only give the relevant equivalent de�ni-
tions for Polish groups. We refer the reader to [3, Chapter 2] for more details.
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De�nition 2.3 ([3, Proposition 2.15]). Let � be a subset of a Polish group �.
Then we say that � is coarsely bounded (CB) in � if one of the following
equivalent conditions is satis�ed.
(1) (Rosendal’s Criterion) For every neighborhood� of the identity in �, there

is a �nite subset � of � and some � � 1 such that � � (��)�.
(2) For every continuous action of � on a metric space � and every � � �,

diam(� � �) <�.
We say � is coarsely bounded (CB) if � is coarsely bounded in � itself.

3. Proof of main theorem
We �rst need a short lemma on free factors of free groups and will reproduce

the proof given in [5, Lemma 7.2].

Lemma 3.1. Let� be a free group and� < � < � with� a free factor of�. Then
� is also a free factor of �.
Proof. First, � contains � as a free factor, so we can realize � and � as a
pair of graphs � � �, where �1(�,�) � � for some � � �, and the isomor-
phism restricts to �1(�,�) � �. Consider the cover � � (��, ��) � (�,�)
corresponding to the subgroup � for some �� � ��. Denoting by � � � � �
the inclusion map, we have ��(�1(�,�)) = � < � = ��(�1(��, ��)), so the
inclusion lifts to �� � (�,�) � (��, ��). As ���� = � and � is injective, �� is
injective. Similarly, ��� � �1(�,�) � �1(��, ��) is injective so it follows that
�1(��(�), ��) = ���(�1(�,�)). Therefore, �� contains ��(�), a homeomorphic copy
of �, and the isomorphism �� � �1(��, ��) � � restricts to the isomorphism
�� � �1(��(�), ��) = ���(�1(�,�)) � �. Therefore, we conclude � is a free factor
of �. ⇤
Next we show that any automorphism can be approximated on a �nite rank

free factor by a “�nitely supported” automorphism. Recall �� = ������=1 and
�� = ������=�+1.
Lemma 3.2. For any � � Aut(��) and � � �, there exists � � Aut(��) and
� � � such that

(1) ���� = ���� ,
(2) ���� = id.

Proof. Let� be such that �(��) � ��. Such an� exists and is �nite because
�(��) = ��(��)���=1 and each �(��) is a �nite word. By Lemma 3.1, �(��) is a
free factor of �� and� � �. That is, �� = �(��) � � where � is a free factor
of rank � � �. Let �1 = �(�1),… , �� = �(��) be a free basis for �(��) and let
��+1,… , �� be some free basis of �. De�ne �� � �� � �� to be the change
of basis automorphism that sends the standard basis, {�1,… , ��}, of �� to the
new basis {�1,… , ��, ��+1,… , ��} of ��. Extend �� by the identity to obtain
� � �� � �� as desired. ⇤
Theorem 3.3. The group Aut(��) is coarsely bounded.
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Proof. Let � be a neighborhood of the identity in Aut(��). As discussed in
Section 2.2, we can �nd some basis element of the form �� � �. De�ne

� � ��� � ��+� if 1 � � � �,
�� � �� if � > 2�.

We will show that Aut(��) = (���)3 where � = {id,�}.
Let � � Aut(��). Apply Lemma 3.2 to ��1 to obtain � � Aut(��) and

� � � such that �� � �� and ���� = id ��� . Let�� = max{�, 2�} and de�ne

� � ��� � ����+�� if � + 1 � � � 2�,
�� � �� otherwise.

Our choice of �� ensures that � � ��. We can now check that ����� � ��.
Indeed, for any � = 1,… ,� we have

�����(��) = ���(���+�) = ��(���+�) = ��.

Since �2 = �2 = id, it follows that � � ������, so ��1 � ������ �
�������� � (���)3. Therefore, � � ��1�� � (���)3�� = (���)3, con-
cluding the proof. ⇤
Corollary 3.4. The group Out(��) is coarsely bounded.

Proof. Any continuous action of Out(��) on a metric space gives rise to an
action of Aut(��) via pre-composing with the quotient map. Since Aut(��)
surjects onto Out(��), we have that the orbit of Out(��) must have �nite di-
ameter, otherwise it would contradict Theorem 3.3. ⇤
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