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Abstract

Machine learning models now automate decisions in appli-
cations where we may wish to provide recourse to adversely
affected individuals. In practice, existing methods to provide
recourse return actions that fail to account for latent character-
istics that are not captured in the model (e.g., age, sex, marital
status). In this paper, we study how the cost and feasibility of
recourse can change across these latent groups. We introduce
a notion of group-level plausibility to identify groups of indi-
viduals with a shared set of latent characteristics. We develop a
general-purpose clustering procedure to identify groups from
samples. Further, we propose a constrained optimization ap-
proach to learn models that equalize the cost of recourse over
latent groups. We evaluate our approach through an empirical
study on simulated and real-world datasets, showing that it
can produce models that have better performance in terms of
overall costs and feasibility at a group level.

Introduction
Machine learning models now automate decisions that affect
individuals – be it to provide a loan (Siddiqi 2012), a job
interview (Ajunwa et al. 2016), or a public service (Choulde-
chova et al. 2018). Models in such settings should provide
recourse (Ustun, Spangher, and Liu 2019) – i.e., actions that
let individuals overturn their decisions through changes in
feature spaces.
Existing methods for recourse provision may output ac-

tions that exhibit biases across groups in a target population.
Such biases may affect the difficulty or feasibility of recourse.
For example, research (Espinosa et al. 2019) suggests that
race has a profound correlation with the level of education
a person has access to. In the context of a lending model,
this relationship would imply that actions that are identical
may have diverging “actionability" across protected racial
groups. In practice, they may arise due to historical biases
within the training data (see e.g., Khosla et al. 2012) or due
to the underlying model(see e.g., DeBrusk 2018; Mehrabi
et al. 2021).
Some existing literature seeks to address these issues

through interventions at the group level. For example,
Von Kügelgen et al. (2022) considers an individual’s hidden
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feature(s) in recourse generation, using group-level infor-
mation to provide subsidies. Likewise, Madras et al. (2019)
identify hidden confounders, which are unobserved factors
that alter the cost and feasibility of recourse at an individual
level.
Gupta et al. (2019) argues that negatively impacted indi-

viduals from different groups should have equal chances of
obtaining recourse, seeking to equalize the distance from the
decision boundary across groups.
This study aims to consider the actionability at the group

level instead of relying on a universal cost function. Consider
an individual who applies for a loan and gets denied; we
answer:
“What actions can I take to be part of the approved sub-
group of people with my socioeconomic background?”
The difference between the notion of group-level fair

actionability and fair recourse is demonstrated using Fig-
ure 1 (a). Here, feature distribution for working hours
follows a high variance unimodal distribution for group A0,
whereas we notice bimodal distribution for group A1, imply-
ing that higher plausibility regime (of recourses) for group
A0 is closer to the decision boundary compared to A1. Ad-
ditionally, Figure 1 (b) shows the decision boundary using
a scatter plot. Low density of individuals near the decision
boundary for A1, makes the recourse a(1)1 predominantly un-
desirable in comparison with a(1)0 for A0. Alternatively, a

(2)
0

and a(2)1 from Figure 1 (c) shows post action features which
fall within the corresponding high-density regions.

Group-level recourse plausibility of a post-action feature is
defined as its believability or realizability with respect to the
distribution of the group-specific approved sub-population.
Given the spatial proximity nature (Gustafson and Parker
1994) of plausibility, we observe that: “plausibility of post-
action features is proportional to the density of the resulting
region and similarity with the resulting region of approved
profiles.”
This study leverages the group-level approved sub-

population signals to understand actionability and thereby
train a fair actionable model. Here, a group can be any im-
mutable categorical feature in your dataset. We argue that a
recourse a0 for an individual x0 ∈ H− has higher chances of
actionability if x0 + a0 ∈ H+, where H+ is the distribution
of the approved group to which x0 belongs.
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