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Abstract

Graph contrastive learning (GCL) has recently emerged as a
new concept which allows for capitalizing on the strengths
of graph neural networks (GNNs) to learn rich representa-
tions in a wide variety of applications which involve abundant
unlabeled information. However, existing GCL approaches
largely tend to overlook the important latent information on
higher-order graph substructures. We address this limitation
by introducing the concepts of topological invariance and ex-
tended persistence on graphs to GCL. In particular, we pro-
pose a new contrastive mode which targets topological repre-
sentations of the two augmented views from the same graph,
yielded by extracting latent shape properties of the graph
at multiple resolutions. Along with the extended topologi-
cal layer, we introduce a new extended persistence summary,
namely, extended persistence landscapes (EPL) and derive its
theoretical stability guarantees. Our extensive numerical re-
sults on biological, chemical, and social interaction graphs
show that the new Topological Graph Contrastive Learning
(TopoGCL) model delivers significant performance gains in
unsupervised graph classification for 11 out of 12 considered
datasets and also exhibits robustness under noisy scenarios.

Introduction

In the last couple of years self-supervised contrastive learn-
ing (CL) has emerged as a new promising trend in graph
learning which has brought the power of Graph Neural Net-
works (GNNs) to a broad range of applications without an-
notated supervisory data, from prediction of molecular prop-
erties in biochemistry to discovery of new crystalline mate-
rials (Koker et al. 2022; Xu et al. 2021; Fang et al. 2022;
StÈark et al. 2022). Indeed, until very recently GNNs have
been limited in their representation learning capabilities due
to the over-reliance on the existence of task-dependent la-
bels. However, such supervisory information is often hand-
crafted and may be both scarce and notoriously hard to ob-
tain in many real-life applications of graph learning. For in-
stance, labeling e-crime activity on blockchain transaction
graphs typically involves a highly resource-intensive pro-
cess of manual annotation by the law enforcement agencies,
while in bioinformatics and material research graph labeling
requires costly and time-consuming wet-lab experiments.
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The emerging GCL paradigm rests on the two major com-
ponents: 1) augmentation which constructs multiple views
of the graph by exploiting invariance under various transfor-
mations such as subgraph sampling, perturbations of nodes
and edges, and attribute masking (You et al. 2020; Zeng
and Xie 2021); and 2) contrastive learning (CL) itself which
maximizes mutual information (MI) among the views gen-
erated from the resulting graph augmentations, such that
positive pairs are contrasted with their negative counter-
parts (Sun et al. 2019; Velickovic et al. 2019; Hassani and
Khasahmadi 2020). The CL step is performed by contrasting
node-level representations and graph-level representations,
and the three traditional contrasting modes are local-local
CL, global-local CL, and global-global CL. However, since
the agreement analysis among representations is typically
assessed using cosine similarity of the related embeddings,
these contrasting approaches cannot systematically account
for similarity of higher-order graph properties, for instance,
simultaneous matching among subgraphs of varying sizes
and orders. In turn, such polyadic node interactions, includ-
ing various network motifs and other multi-node graph sub-
structures, often play the key role in graph learning tasks, es-
pecially, in conjunction with prediction of protein functions
in protein-protein interactions and fraud detection in finan-
cial networks (Benson, Gleich, and Leskovec 2016; Chen,
Gel, and Poor 2022). Interestingly, as shown by (You et al.
2020), subgraphs also tend to play the uniformly consistent
role in the data augmentation step of GCL across all types
of the considered graphs, from bioinformatics to social net-
works.

Motivated by the recent success of the computational al-
gebraic topology in graph representation learning, we intro-
duce the concepts of topological representation invariance
and extended persistent homology (PH) to GCL. In par-
ticular, PH is a tool in computational topology which re-
trieves evolution of the shape patterns in the observed data
along various user-defined geometric dimensions (Hofer,
Kwitt, and Niethammer 2019; Edelsbrunner, Letscher, and
Zomorodian 2000; Zomorodian and Carlsson 2005). By
ªshapeº here, we broadly refer to the data properties which
are invariant under continuous transformations such as bend-
ing, stretching, and twisting. PH tools, often in a form of a
fully trainable topological layer (Carrière et al. 2020; Chen,
Coskunuzer, and Gel 2021; Yan et al. 2021; Horn et al.



2022), have proliferated into a wide range of graph learning
tasks, from node and graph classification to anomaly detec-
tion to link prediction, often resulting not only in bolstering
GNN performance but also in enhancing robustness against
random perturbations and adversarial attacks. Nevertheless,
despite the well-documented PH utility in semi-supervised
graph learning and the intuitive premise of topological in-
variance to better assess similarity among graph augmen-
tations (see a visual experiment with proteins in Figure 4
and Appendix D.2), PH concepts have never been explored
in conjunction with GCL. Here we bridge this gap and in-
troduce the new contrastive mode which targets topological
representations of the two augmented views from the same
graph. We specifically focus on the notion of extended per-
sistence (EP) which, despite being under-explored in ML
applications, has been shown to retrieve a richer topologi-
cal structure from the observed data and, hence, be particu-
larly suitable for shape matching within GCL. Furthermore,
we introduce a new EP summary, extended persistence land-
scapes (EPL) and prove its stability guarantees. We also con-
trast theoretical and numerical properties of EPL with re-
spect to another EP summary, extended persistence images
(EPI). While EPI has been used in applications before (Yan
et al. 2021), it has neither been formally defined for the
EP case nor its properties have been evaluated. Armed with
EPL, EPI and the associated extended topological layer,
we develop a new Topological Graph Contrastive Learning
(TopoGCL) model, equipped with contrastive mode on ex-
tended topological representations (topological-topological
CL (aka topo-topo CL)) that allows us to capture not only
the critical topological and geometric graph information but
also to enhance its latent representation learning.

Significance of our contributions can be summarized as
follows:

• TopoGCL is the first approach introducing the concepts
of persistent homology to graph contrastive learning.

• We propose a new summary of extended persistence,
namely, extended persistence landscapes, and prove its
theoretical stability guarantees.

• We validate the utility of TopoGCL in conjunction
with unsupervised graph classifications on 12 benchmark
datasets from biology, chemistry, and social sciences.
Our findings indicate that in addition to outperforming
state-of-the-art baselines on 11 out of 12 benchmarks and
delivering (statistically) significant gains on 8 datasets,
TopoGCL also yields highly promising results in terms
of robustness to noise.

Related Work

Graph Representation Learning and Graph Contrastive
Learning. Recently, inspired by the success of convolu-
tional neural networks (CNN) on image-based tasks, graph
neural networks (GNNs) have emerged as a powerful tool
for graph representation learning. Based on the spectral
graph theory, (Bruna et al. 2014) introduces a graph-based
convolution in Fourier domain. However, the complexity of
this model is very high since all Laplacian eigenvectors are

needed. To tackle this problem, ChebNet (Defferrard, Bres-
son, and Vandergheynst 2016) integrates spectral graph con-
volution with Chebyshev polynomials. Then, Graph Convo-
lutional Networks (GCNs) of (Kipf and Welling 2017) sim-
plify the graph convolution with a localized first-order ap-
proximation. More recently, there have been proposed var-
ious approaches based on accumulation of the graph infor-
mation from a wider neighborhood, using diffusion aggrega-
tion and random walks. Such higher-order methods include
approximate personalized propagation of neural predictions
(APPNP) (Klicpera, Bojchevski, and GÈunnemann 2019),
and higher-order graph convolutional architectures (Mix-
Hop) (Abu-El-Haija et al. 2019). Moreover, other recent
approaches include GNNs with the attention mechanism
(GAT, SPAGAN) (VeličkoviÂc et al. 2018; Yang et al. 2019),
and GNNs based on graph diffusion convolution (Gasteiger,
Weiûenberger, and GÈunnemann 2019; Zhao et al. 2021).
Furthermore, there has appeared a number of approaches
introducing a pooling mechanism into GNNs to capture
graph (sub)structural information (Cangea et al. 2018; Gao
and Ji 2019; Lee, Lee, and Kang 2019; Du et al. 2021).
However, such tools mainly focus on supervised and semi-
supervised settings and differ from our unsupervised repre-
sentation learning scheme. Graph contrastive learning is a
self-supervised learning approach to learn an encoder (e.g.,
GNNs without the final classifier) for extracting embeddings
from the unlabeled input data. Existing graph contrastive
learning approaches mainly focus on three modes, i.e., local-
local CL (Zhu et al. 2021; Thakoor et al. 2021), global-local
CL (Velickovic et al. 2019; Sun et al. 2019), and global-
global CL (You et al. 2020; Li et al. 2022). For instance,
GCC (Qiu et al. 2020) proposes a pretraining framework
based on local-local CL which constructs multiple graph
views by sampling subgraphs based on random walks. For
global-local CL, the works (Velickovic et al. 2019; Has-
sani and Khasahmadi 2020; Asano, Rupprecht, and Vedaldi
2020; Hassani and Khasahmadi 2020) follow the InfoMax
principle (Linsker 1988) to maximize the Mutual Informa-
tion (MI) between the representation of local features and
global features. Moreover, another graph contrastive learn-
ing mode, i.e., global-global CL (You et al. 2020; Fang et al.
2022) studies the relationships between the global context
representations of different samples, which performs better
on graph-level tasks. Different from these methods, we pro-
pose a novel model Topological Graph Contrastive Learn-
ing with the topo-topo CL contrasting mode that not only
captures crucial topological and geometrical information but
enhances the latent graph representation learning.

Extended Persistence for Machine Learning. Extended
persistence (EP) has been introduced by (Cohen-Steiner,
Edelsbrunner, and Harer 2009) who show that, by assessing
the evolution of shape properties in both upward and down-
ward filtration direction, EP allows us to capture some im-
portant topological properties of the underlying object that
ordinary persistence cannot. This makes EP particularly at-
tractive for shape matching and CL. However, EP remains
substantially less explored in the ML literature, compar-
ing with the ordinary persistence (Carlsson and Vejdemo-
Johansson 2021; Adams and Moy 2021; Pun, Lee, and Xia



2022). Some prominent applications of EP in graph learn-
ing include link prediction (Yan et al. 2021), node classifica-
tion (Zhao et al. 2020; Yan et al. 2022), and graph classifi-
cation (Carrière et al. 2020). To our best knowledge neither
EP, nor ordinary persistence or any other tools of computa-
tional topology have been ever applied in conjunction with
contrastive learning. TopoGCL is the first approach to bridge
this knowledge gap.

Notations and Preliminaries
Let G = (V, E ,X) be an attributed graph, where V is a set
of nodes (|V| = N ), E is a set of edges, and X ∈ R

N×F

is a node feature matrix (here F is the dimension of node
features). Let A ∈ R

N×N be a symmetric adjacency matrix
such that Auv = ωuv if nodes u and v are connected and
0, otherwise (here ωuv is an edge weight and ωuv ≡ 1 for
unweighted graphs). Furthermore, D represents the degree
matrix with Duu =

∑

v Auv , corresponding to A.
Preliminaries on Extended Persistent Homology. PH is

a subfield in computational topology whose main goal is to
detect, track and encode the evolution of shape patterns in
the observed object along various user-selected geometric
dimensions (Edelsbrunner, Letscher, and Zomorodian 2000;
Zomorodian and Carlsson 2005; Carlsson and Vejdemo-
Johansson 2021). These shape patterns represent topologi-
cal properties such as connected components, loops, and, in
general, n-dimensional ªholesº, that is, the characteristics of
the graph G that remain preserved at different resolutions un-
der continuous transformations. By employing such a multi-
resolution approach, PH addresses the intrinsic limitations
of classical homology and allows for retrieving the latent
shape properties of G which may play the essential role in
a given learning task. The key approach here is to select
some suitable scale parameters ν and then to study changes
in shape of G that occur as G evolves with respect to ν. That
is, we no longer study G as a single object but as a filtration
Gν1

⊆ . . . ⊆ Gνn
= G, induced by monotonic changes of

ν. To ensure that the process of pattern selection and count-
ing is objective and efficient, we build an abstract simplicial
complex K (Gνj

) on each Gνj
, which results in a filtration of

complexes K (Gν1) ⊆ . . . ⊆ K (Gνn
). For example, for an

edge-weighted graph (V, E , w), with the edge-weight func-
tion w : E → R, we can set G≤νj

= (V, E , w−1(−∞, νj ])
for each νj , j = 1, . . . , n, yielding the induced sublevel
edge-weighted filtration. Similarly, we can consider a func-
tion on a node set V , for example, node degree, which results
in a sequence of induced subgraphs of G with a maximal de-
gree of νj for each j = 1, . . . , n and the associated degree
sublevel set filtration. We can then record scales bi (birth)
and di (death) at which each topological feature first and
last appear in the sublevel filtration Gν1 ⊆ Gν2 ⊆ Gν3 . . ..
However, in such sublevel filtration, some topological fea-
tures may never disappear (i.e., persist forever), resulting in
a loss of the important information on the underlying latent
topological properties of G and, hence, making it more dif-
ficult to use the extracted topological information for shape
matching among objects. An alternative approach is to com-
plement the sublevel filtration by its superlevel counterpart,
that is, to consider also the sequence of superlevel subgraphs

G≤νj = (V, E , w−1[νj ,∞)) for each νj , j = 1, . . . , n.
That is, we know simultaneously assess evolution of topo-
logical features of G observed over filtrations in both up-
ward and downward directions. This mechanism results in
the extended persistence, which encompassed information
obtained both from sublevel and superlevel filtrations, and
the death times can be now also defined as indices at which
the topological feature reappears in the superlevel sequence
of graphs G≤νj . The extracted extended topological infor-
mation can be then summarized as a multiset in R called ex-
tended persistence diagram (EPD) EDg = {(bρ, dρ) ∈ R

2}.
(For further details, see Appendix C.) Note that the ex-
tended persistence ensures that no topological feature per-
sist forever and is hence particularly suitable for latent shape
matching, opening new perspectives for topological con-
trastive learning.

What New Does Topological Invariance Bring to
GCL? Figure 4 in Appendix D.2 shows 4 networks PRO-
TEINS dataset, along with their corresponding EPDs. These
protein networks are hard to discern visually and their tradi-
tional network summaries are also virtually indistinguish-
able. Furthermore, the state-of-the-art CL models also do
not correctly classify these 4 proteins. However, we find that
the Wasserstein distances between two EPDs of protein net-
works are always very high if the two protein networks do
not belong to the same class and low, otherwise. This phe-
nomenon underlines that persistence and topological invari-
ance play important roles in CL. (For more details see Ap-
pendix D.2.)

Topological Graph Contrastive Learning
We now introduce our topological graph contrastive learn-
ing (TopoGCL) model which incorporates both graph and
topological representations learning into the CL module. In
this section, we first briefly recap graph contrastive learning
(GCL). Then we discuss the details of the proposed topolog-
ical contrastive learning (TopoCL). The overall architecture
is demonstrated in Figure 1. To facilitate the reading, the
frequently used mathematical notations are summarized in
Table 4 in Appendix A.1.

Graph Contrastive Learning

Consider a set of graphs G = {G1, . . . ,GΥ}. Following
the InfoMax principle (Linsker 1988), GCL aims to per-
form pre-training through maximizing the mutual informa-
tion between two augmented views of the same graph via
a contrastive loss in the learned latent space (Hassani and
Khasahmadi 2020; You et al. 2020). For a better illustra-
tion, let us start, as an example, with a case of one graph Gi,
where i ∈ {1, . . . ,Υ}. That is, given Gi = {Vi, Ei,Xi},
we first corrupt the original Gi by an explicit corruption
pipeline T (·) (e.g., node perturbation, edge perturbation,
or node feature shuffling) to convert the graph into the

two perturbed versions G̃i = Ti(Gi) = {Ṽi, Ẽi, X̃i} and

G̃′
i = T ′

i (Gi) = {Ṽ ′
i, Ẽ

′
i , X̃

′

i}. Then, both G̃i and G̃′
i are fed

into a shared fENCODER(·) for graph representation learning

(see the blue box in Figure 1). Here H̃i = fENCODER(G̃i)

and H̃
′

i = fENCODER(G̃
′
i) are the learned representations



of the two augmented views of the original graph Gi. The
contrastive loss function for the positive pair of samples

ℓG(G̃i, G̃
′
i) is formulated as:

ℓi,G(G̃i, G̃
′
i) = − log

exp (sim(H̃i, H̃
′

i)/ζ)
∑2Υ

γ,γ ̸=i exp (sim(H̃i, H̃γ)/ζ)
, (1)

where sim(H̃i, H̃
′

i) = H̃
⊤

i H̃
′

i/||H̃i||||H̃
′

i||, H̃γ =

fENCODER(G̃γ) denotes the graph representation of G̃γ , and
ζ is the temperature hyperparameter.

Topological Contrastive Learning

The ultimate goal of TopoCL is to contrast latent shape prop-
erties of the two augmented views from the same graph,
assessed at different resolution scales, by contrasting their
respective extended topological representations. Below we
introduce the two key components of our method, i.e., ex-
traction of the extended topological features and extended
topological representation learning. We focus our discussion

on a perturbed graph G̃ for the sake of simplicity (omitting
the subscript i). Since an extended persistence diagram EDg
is a multiset in R

2, it cannot be directly used as an input
into ML models. To facilitate effective and flexible down-
stream applications, we utilize the representations of EPD
in a functional Hilbert space, i.e., the extended persistence
landscape (EPL) and the extended persistence image (EPI).
We also design a novel extended topological layer based on
the given EDg. As such, broadly speaking, TopoCL consists
of three steps: (i) extracting the latent shape properties of the
graph using extended persistence in a form of extended per-
sistence diagram EDg and then converting EDg into either
EPL or EPI, (ii) constructing the extended topological layer,
and (iii) then contrasting the derived topological representa-
tions.

Extended Persistence Vectorization. Here we focus on
two summaries for EP, Extended Persistence Landscapes
and Extended Persistence Images. Both of them are moti-
vated by their respective counterparts as summaries of or-
dinary persistence. However, while EPI has appeared in ap-
plications before (Yan et al. 2021), it has not been formally
defined. EPL is a new summary, and we derive its theoretical
stability guarantees and discuss its properties in comparison
with EPI.

Extended Persistence Landscape (EPL). Inspired by
persistence landscapes for ordinary persistence of (Bubenik
2015), we propose a new computationally efficient EP sum-
mary called Extended Persistence Landscape. Consider the
generating functions Λi for each (bi, di) ∈ EDg, i.e., Λi :
R → R is the piecewise linear function obtained by two line
segments starting from (bi, 0) and (di, 0) connecting to the

same point ( bi+di

2 , di−bi
2 ) and 0 in R \ [bi, di]. Please see

Appendix C for an extended exposition on Extended Ho-
mology.

Definition 0.1 (Extended Persistence Landscape). Decom-
pose extended persistence diagram EDg as

EDg = EDg+ ∪ EDg−,

where the + and − sets contain the points (bi, di) with
bi < di and di < bi, respectively. Define the kth land-
scape function λk(G)(t) as the kth largest value of {Λi(t) :
(bi, di) ∈ EDg+}. Similarly, define the (−j)th landscape
function λ−j(G)(t) as the jth smallest value of {Λi(t) :
(bi, di) ∈ EDg−}. Then the Extended Persistence Land-
scape is the set of landscape functions

λ(G) = {λk(G)} ∪ {λ−j(G)}.

Considering the piecewise linear structure of the function
λk(G), it is completely determined by its values at 2τ − 1
points, i.e., (di ± bi)/2 ∈ {ϵ1, ϵ1.5, ϵ2, ϵ2.5, . . . , ϵτ}, where
ϵk.5 = (ϵk + ϵk+1)/2. Hence, a vector of size 1× (2τ − 1)
whose entries the values of this function would suffice to
capture all the information needed, i.e., {bi, di, (bi + di)/2}

Definition 0.2 (Distances between EPLs). Let EDg1 and
EDg2 be two EPDs with corresponding extended persis-
tence landscapes λ(G1) and λ(G2). For 1 ≤ p ≤ ∞, the
p-landscape distance between EDg1 and EDg2 is defined as

Λp(EDg1,EDg2) = ∥λ(G1)− λ(G2)∥p,

where ∥·∥p is a ℓp-norm. Analogously, if EM1 and EM2 are
the persistence modules corresponding to EDg1 and EDg2,
the p-landscape distance (1 ≤ p ≤ ∞) between EM1 and
EM2 is defined as

Λp(EM1,EM2) = ∥λ(G1)− λ(G2)∥p.

Now consider the case that we have piecewise linear
functions f and g inducing filtrations on the simplicial
complex K and taking values in R. Functions f and g
define extended persistence modules EM1 and EM2, ex-
tended persistence diagrams EDg1 and EDg2, as well as
extended landscapes λ(G1) and λ(G2), respectively. Stabil-
ity of EPD (Cohen-Steiner, Edelsbrunner, and Harer 2009)
holds in the following sense:

dB(EDg1,EDg2) ≤ ∥f − g∥∞, (2)

where dB is the bottleneck distance. In particular, after ex-
tending the notion of ϵ-interleaving to the case of extended
persistence, it is also true that

Λ∞(EM1,EM2) ≤ dI(EM1,EM2), (3)

where dI is the interleaving distance (Bubenik 2015).
Armed with these results, we state the stability guarantees
for EPL.

Proposition 0.3 (Stability of EPL). Let EDg1 and EDg2 be
EPDs for the piecewise linear functions f, g : K → R re-
spectively, then their corresponding ∞-landscape distance
satisfies

Λ∞(EDg1,EDg2) ≤ dB(EDg1,EDg2) ≤ ∥f − g∥∞.

Proof of Proposition 0.3 is in Appendix B.
Extended Persistent Image (EPI). Similarly, the ex-

tracted EP information can be encoded in a form of the
Extended Persistence Image (EPI), which is an analogue of
the ordinary persistence image proposed by (Adams et al.



2017). EPI has been used in graph learning before, for ex-
ample, in conjunction with link prediction (Yan et al. 2021),
but has not been formally defined.

EPL is as a finite-dimensional vector representation de-
rived by the weighted kernel density function and can be
formulated via the following two steps: Step 1: mapping the
EDg to an integrable function ρEDg : R → R

2, which is
called a persistence surface. The persistence surface ρEDg is
given by sums of weighted Gaussian functions that are cen-
tered at each point in EDg and Step 2: integrating the persis-
tence surface ρEDg over each grid box to obtain EPI. Specif-
ically, the value of each pixel z within the EPI is formed as:

EPI(z) =

∫∫

z

∑

µ∈I

f(µ)

2πσxσy

e
−

(

(x−µx)2

2σ2
x

+
(y−µy)2

2σ2
y

)

dydx,

where f(µ) is a weighting function (where mean µ =
(µx, µy) ∈ R

2), and σx and σy are the standard deviations
in x and y directions.

Remark 0.4 (On theoretical properties of EPI and relation-
ships to EPL). There are differences in theoretical proper-
ties between the two extended persistence summaries pre-
sented in the present work, namely, EPL and EPI. As shown
by Proposition 4.3, EPLs are stable under the ∞-landscape
distance and, furthermore, the distance between two EPIs
is bounded by the bottleneck distance among the respective
EPDs. On the contrary, similar stability result does not hold
for EPIs. Indeed, as shown by (Adams et al. 2017), PIs for
ordinary persistence are stable only with respect to the 1-
Wasserstein distance. However, at this point there exists a
result on stability of EPDs with respect to the bottleneck dis-
tance only (Cohen-Steiner, Edelsbrunner, and Harer 2009)
and, hence, nothing can be said on stability of EPIs. Nev-
ertheless, stability and the associated universal distances for
extended persistence is an active research area in algebraic
topology (Bauer, Botnan, and Fluhr 2022). We then leave
this fundamental result as a future fundamental research di-
rection.

Multiple Filtrations. To gain a better understanding of
the complex representations of graph data, instead of a
single filtration, we hypothesize that learning topological
representations via multiple filtrations can benefit neural
network framework in gaining both generalization and ro-
bustness. Hence, here we consider Q sublevel filtration
functions F = {F1, . . . ,Fq, . . . ,FQ} defined on nodes
of G (where q ∈ [1,Q] and Q ≥ 1). For each filtra-
tion Fq , we obtain an extended persistence diagram de-
noted by EDgq . Then, by using Q different filtration func-
tions, we can generate a set of persistence diagrams, i.e.,
EDgQ = {EDg1, . . . ,EDgQ}. Through the extended per-
sistence vectorization methods above, we can have EPIQ =
{EPI1, . . . ,EPIQ} and EPLQ = {EPL1, . . . ,EPLQ}. For
the sake of simplicity, we denote EPIQ/EPLQ as Ξ in the
following discussion.

Extended Topological Layer. To learn critical informa-
tion on the extended topological features, we propose the
extended topological layer (ETL) denoted by Ψ. ETL is a ex-
tended topological representation learning layer, illustrated
in Figure 1 (see the orange box). Given extended topological

features Ξ̃, the ETL operator will output the latent extended

topological representation Z̃ with shape dc as follows (dc is
the number of channels in output):

Z̃ = Ψ(Ξ̃) =

{

ϕMAX

(

f
(ℓ)
CNN(Ξ̃)

)

, Ξ̃ = ˜EPI

MLPs(Ξ̃), Ξ̃ = ˜EPL
, (4)

where f
(ℓ)
CNN is the convolutional neural network (CNN)

in the ℓ-th layer, ϕMAX denotes global max-pooling layer,
and MLPs denotes multi-layer perceptrons. Specifically, the
ETL provides two types of topological signature embedding
functions, i.e., (i) if the input is in the form of an extended
persistence image, we use a CNN-based model (e.g., resid-
ual networks) to learn the corresponding topological features
and employ global max-pooling layer to obtain the image-
level feature, and (ii) if the input is the form of extended
persistence landscape, we can use MLPs to generate latent
topological representation.

Contrastive Learning on Topological Representations.
Using the above Equation 4, we generate latent extended

topological representations Z̃i = Ψ(Ξ̃i) and Z̃
′

i = Ψ(Ξ̃
′

i)

from two perturbed graphs G̃i and G̃′
i (i.e., two augmented

views from the same graph G), respectively. Following the
previous results of (You et al. 2020), for every latent ex-

tended topological representation Z̃i being the anchor in-
stance, its positive sample is the latent extended topologi-

cal representation Z̃
′

i of the another augmented view. Natu-
rally, negative pairs are latent extended topological represen-

tations (e.g., Z̃γ) generated from other augmented graphs

(e.g., G̃γ ∈ G̃ \ {G̃i, G̃
′
i}, where G̃γ is an augmented graph

of Gγ and G̃ is a set of 2Υ augmented graphs). Then the
loss of function is defined to enforce maximizing the consis-

tency between positive pairs (Z̃i, Z̃
′

i) compared with nega-
tive pairs, which is formulated as:

ℓi,T(G̃i, G̃
′
i) = − log

exp (sim(Z̃i, Z̃
′

i)/ζ)
∑2Υ

γ,γ ̸=i exp (sim(Z̃i, Z̃γ)/ζ)
, (5)

where sim(Z̃i, Z̃
′

i) = Z̃
⊤

i Z̃
′

i/||Z̃i||||Z̃
′

i|| and Z̃γ is the la-

tent extended topological representation of G̃γ learnt by our
proposed ETL. Intuitively, the final training objective func-

tion ℓ combines Equations 1 and 5, i.e., ℓ = α×
∑Υ

i=1 ℓi,G+

β ×
∑Υ

i=1 ℓi,T, where α and β are hyperparameters which
balance the contribution of two contrastive losses.

Experiments

Datasets and Baselines. We validate TopoGCL on unsuper-
vised representation learning tasks using the following 12
real-world graph datasets: (i) 5 chemical compound datasets:
NCI1, MUTAG, DHFR, BZR, and COX2, (ii) 4 molec-
ular compound datasets: DD, PROTEINS, PTC MR, and
PTC FM, (iii) 2 internet movie databases: IMDB-BINARY
(IMDB-B) and IMDB-MULTI (IMDB-M), and (iv) 1 Reddit
discussion threads dataset: REDDIT-BINARY (REDDIT-
B). Each dataset includes multiple graphs of each class,
and we aim to classify graph classes. The statistics of



Figure 1: The overall architecture of TopoGCL. TopoGCL consists of 4 components: (I) Calculate an extended topological

feature Ξ̃i from the perturbed graph Gi and then feed Ξ̃i into the the extended topological layer (ETL) Ψ(·) and obtain the latent

extended topological representation Z̃i. (II) Feed Gi into the GNN encoder fENCODER and generate the node embeddings H̃i.

(III) Feed G′
i into the GNN encoder fENCODER and generate the node embeddings H̃

′

i. (IV) Calculate an extended topological

feature Ξ̃
′

i from the perturbed graph G′
i and then feed Ξ̃

′

i into the the extended topological layer (ETL) Ψ(·) and obtain the

latent extended topological representation Z̃
′

i. After that, apply contrastive loss functions (i.e., Equations 1 and 5) to {H̃i, H̃
′

i}

and {Z̃i, Z̃
′

i} respectively and obtain two contrastive losses. Finally, combine two contrastive losses via ℓ = α×
∑Υ

i=1 ℓi,G +

β ×
∑Υ

i=1 ℓi,T.

Model NCI1 PROTEINS DD MUTAG DHFR BZR COX2 PTC MR PTC FM

GL N/A N/A N/A 81.66±2.11 N/A N/A N/A 57.30±1.40 N/A
WL 80.01±0.50 72.92±0.56 74.00±2.20 80.72±3.00 N/A N/A N/A 58.00±0.50 N/A
DGK 80.31±0.46 73.30±0.82 N/A 87.44±2.72 N/A N/A N/A 60.10±2.60 N/A
node2vec 54.89±1.61 57.49±3.57 N/A 72.63±10.20 N/A N/A N/A N/A N/A
sub2vec 52.84±1.47 53.03±5.55 N/A 61.05±15.80 N/A N/A N/A N/A N/A
graph2vec 73.22±1.81 73.30±2.05 N/A 83.15±9.25 N/A N/A N/A N/A N/A
InfoGraph 76.20±1.06 74.44±0.31 72.85±1.78 89.01±1.13 80.48±1.34 84.84±0.86 80.55±0.51 61.70±1.40 61.55±0.92
GraphCL 77.87±0.41 74.39±0.45 78.62±0.40 86.80±1.34 68.81±4.15 84.20±0.86 81.10±0.82 61.30±2.10 65.26±0.59
AD-GCL 73.91±0.77 73.28±0.46 75.79±0.87 88.74±1.85 75.66±0.62 85.97±0.63 78.68±0.56 63.20±2.40 64.99±0.77
AutoGCL 82.00±0.29 75.80±0.36 77.57±0.60 88.64±1.08 77.33±0.76 86.27±0.71 79.31±0.70 63.10±2.30 63.62±0.55
RGCL 78.14±1.08 75.03±0.43 78.86±0.48 87.66±1.01 76.37±1.35 84.54±1.67 79.31±0.68 61.43±2.50 64.29±0.32
GCL-TAGS71.43±0.49 75.78±0.41 75.78±0.52 89.12±0.76 N/A N/A N/A N/A N/A

TopoGCL 81.30±0.27∗∗∗77.30±0.89∗79.15±0.35∗∗∗90.09±0.93∗∗∗82.12±0.69∗∗∗87.17±0.83∗∗81.45±0.5563.43±1.13∗∗∗67.11±1.08

Table 1: Performance on molecular and chemical graphs.

the 12 graph datasets are shown in Appendix D.1, Ta-
ble 5. For all graphs, following the experimental settings
of GraphCL (You et al. 2020), we use 10-fold cross val-
idation accuracy as the classification performance (based
on a non-linear SVM model, i.e., LIB-SVM (Chang and

Lin 2011)) and repeat the experiments 5 times to re-
port the mean and standard deviation. The best results
are given in bold while the best performances achieved
by the runner-ups are underlined. We also conduct a one-
sided two-sample t-test between the best result and the



Model IMDB-B IMDB-M REDDIT-B

GL 65.87±0.98 46.50±0.30 77.34±0.18
WL 72.30±3.44 47.00±0.50 68.82±0.41
DGK 66.96±0.56 44.60±0.50 78.04±0.39
node2vec 56.40±2.80 36.00±0.70 69.70±4.10
sub2vec 55.26±1.54 36.70±0.80 71.48±0.41
graph2vec 71.10±0.54 50.40±0.90 75.78±1.03
InfoGraph 73.03±0.87 49.70±0.50 82.50±1.42
GraphCL 71.14±0.44 49.20±0.60 89.53±0.84
AD-GCL 70.21±0.68 50.60±0.70 90.07±0.85
AutoGCL 72.32±0.93 50.60±0.80 88.58±1.49
RGCL 71.85±0.84 49.31±0.42 90.34±0.58
GCL-TAGS 73.65±0.69 52.16±0.72 83.62±0.64

TopoGCL ∗∗∗74.67±0.32 52.81±0.31 90.40±0.53

Table 2: Performance on social graphs.

best performance achieved by the runner-up, where *, **,
*** are p-value < 0.1, 0.05, 0.01, i.e., significant, statisti-
cally significant, highly statistically significant results, re-
spectively. We evaluate the performances of our TopoGCL
on 12 graph datasets versus 12 state-of-the-art baselines
including: (i) Graphlet Kernel (GL) (Shervashidze et al.
2009), (ii) Weisfeiler-Lehman Sub-tree Kernel (WL) (Sher-
vashidze et al. 2011), (iii) Deep Graph Kernels (DGK) (Ya-
nardag and Vishwanathan 2015), (iv) node2vec (Grover and
Leskovec 2016), (v) sub2vec (Adhikari et al. 2018), (vi)
graph2vec (Narayanan et al. 2017), (vii) InfoGraph (Sun
et al. 2019), (viii) GraphCL (You et al. 2020), (ix) AD-
GCL (Suresh et al. 2021), (x) AutoGCL (Yin et al. 2022),
(xi) RGCL (Li et al. 2022), and (xii) GCL-TAGS (Lin, Chen,
and Wang 2022).

Experiment Settings. We conduct our experiments on
two NVIDIA RTX A5000 GPU cards with 24GB mem-
ory. TopoGCL is trained end-to-end by using Adam opti-
mizer. The tuning of TopoGCL on each dataset is done via
grid hyperparameter configuration search over a fixed set
of choices and the same cross-validation setup is used to
tune baselines. Table 6 in Appendix D.1 shows the aver-
age running time of extended persistence image (EPI) and
extended persistence landscape (EPL) generation (in sec-
onds) on all 12 graph datasets. See Appendix D for more
details. The source code of TopoGCL is publicly available
at https://github.com/topogclaaai24/TopoGCL.git. See Ap-
pendix D for more details.

Experiment Results

The evaluation results on 12 graph datasets are summarized
in Tables 1 and 2. We also conduct ablation studies and ro-
bustness analysis to assess the contributions of the extended
persistence and the robustness of TopoGCL against noisy
scenarios.

Molecular, Chemical, and Social Graphs. Table 1
shows the performance comparison among 12 baselines on
NCI1, PROTEINS, DD, MUTAG, DHFR, BZR, COX2, and
two PTC datasets with different carcinogenicities on ro-
dents (i.e., PTC MR, and PTC FM) for graph classifica-
tion. Our TopoGCL is comparable with the state-of-the-art

on the NCI1 dataset, and consistently outperforms base-
line models on other 8 datasets. In particular, the average
relative gain of TopoGCL over the runner-ups is 1.25%.
The results demonstrate the effectiveness of TopoGCL. In
terms of unsupervised graph-level representation learning
baselines, e.g., node2vec only focuses on the graph struc-
ture learning and generates node embeddings through ran-
dom walks. In turn, InfoGraph works by learning graph
representation via GNNs, and taking graph representation
and patch representation as pairs for unsupervised repre-
sentation learning, hence, resulting in improvement over
random walk-based graph embedding methods. Comparing
with InfoGraph, graph contrastive learning methods such
as GraphCL and RGCL explore the view augmentations
approaches and learn representations of augmented graph
structures for graph contrastive learning. A common lim-
itation of these approaches is that they do not simultane-
ously capture both topological properties of the graph and
information from the graph structure. Hence, it is not sur-
prising that performance of our proposed TopoGCL which
systematically integrates all types of the above information
on the observed graphs is substantially higher than that of
the benchmark models. Besides, we have conducted a visual
experiment and the corresponding validity evaluation of the
extracted topological and geometric information and its role
in GCL (see Appendix D for a discussion). Table 2 shows the
performance comparison on 3 social graph datasets. Simi-
larly, Table 2 indicates that our TopoGCL model is always
better than baselines for all social graph datasets. Moreover,
we find that TopoGCL also has the smallest standard de-
viation across 3 social graph datasets, revealing that local
topological representation learning module can enhance the
model stability.

Ablation Study of the Topological Signatures. We per-
form ablation studies on MUTAG, PTC MR, and IMDB-
B to justify the following opinions: (i) the benefit of the
extended topological signatures in topological representa-
tion learning; and (ii) measuring the similarity of positive
samples and the diversity between negative samples via
both global-global CL (i.e., GCL) and topo-topo CL can
achieve better performance than only considering Global-
Global CL. For opinion (i), we compare TopoGCL (i.e., To-
poGCL + EPI/EPL) with its variant (i.e, TopoGCL + PI/PL).
Note that, for PTC MR, we use EPL/PL due to TopoGCL
based on persistence landscapes achieves better performance
than persistence images. Results are shown in Table 7, Ap-
pendix E. We observe that TopoGCL based on extended
topological signatures performs much better than the vari-
ant, demonstrating that our extended topological signatures
can capture higher-order structural and topological informa-
tion efficiently. Note that we found TopoGCL can achieve
more competitive results on PTC MR by using EPL instead
of EPI; thus we specially compare TopoGCL+EPL with To-
poGCL+PL in this ablation study. Besides, we validate To-
poGCL by comparing TopoGCL’s performance with the per-
formance of TopoGCL W/o Topo and the experimental re-
sults in Table 8 in Appendix E show that topo-topo CL can
bring performance gain since the enhancement of structural
and topological information learning.



AD-GCN RGCL TopoGCL (ours)

MUTAG 88.20±1.24 87.05±1.16 ∗∗∗89.47±1.04

PTC MR 60.88±0.92 61.10±1.47 61.63±1.09

IMDB-B 70.01±0.86 70.59±0.34 ∗∗∗72.18±0.15

Table 3: Robustness study against noise.

Robustness Study. To evaluate the robustness of our pro-
posed TopoGCL under noisy conditions, in this section, we
consider adding Gaussian noise into node features of 20%
data. Note that the added noise follows i.i.d Gaussian den-
sity, i.e., N (1, 1) (where µ = σ = 1). The performances of
TopoGCL and other baselines (i.e., AD-GCL and RGCL) on
MUTAG, PTC MR, and IMDB-B are shown in Table 3. We
observe that our TopoGCL always outperforms two state-
of-the-art baselines on all three datasets. The strong per-
formance verifies the superiority of TopoGCL and demon-
strates that TopoGCL can efficiently exploit the underlying
topological features of the input graph structure.

Conclusion

We have proposed a novel contrastive learning model, i.e.,
Topological Graph Contrastive Learning (TopoGCL). To-
poGCL adopts a new contrasting mode (topo-topo CL)
which can capture both local and global latent topologi-
cal information. Our extensive experimental results have
demonstrated that TopoGCL achieves impressive improve-
ments over the state-of-the-art GCL models in terms of ac-
curacy and enhances the robustness against noisy scenar-
ios. In the future, we will advance TopoGCL and the ideas
of extended persistence to self-supervised learning of time-
evolving graphs, with a particular focus on streaming sce-
narios.
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A. Notation and Details of TopoGCL

Architecture

A.1 Notation

Frequently used notation is summarized in Table 4.

A.2 Additional Details of TopoGCL Architecture

The overall architecture of TopoGCL contains 3 parts (see
Figure 1): (i) Given a original graph Gi, we first apply two
graph data augmentations Ti and T ′

i on Gi and obtain 2

graph views G̃i and G̃′
i. (ii) We feed G̃i and G̃′

i into both
graph and topological contrastive learning channels; more

specifically, for graph contrastive learning, we feed G̃i and

G̃′
i into the shared encoder fENCODER to extract the graph

representations H̃i and H̃ ′
i; for topological contrastive learn-

ing, we first use our extended persistence method (denoted

as Ω(·)) to extract extended topological features Ξ̃i and Ξ̃′
i

from G̃i and G̃′
i respectively; then we feed Ξ̃i and Ξ̃′

i into
the extended topological layer (ETL) Ψ(·) (see Equation 4
in the main body) and extract the topological representations

Z̃i and Z̃ ′
i. (iii) We then use Equation 1 as contrastive loss

functions to enforce maximizing the consistency between

positive pairs between H̃i and H̃ ′
i , and use Equation 5 as

contrastive loss functions to enforce maximizing the consis-

tency between positive pairs between Z̃i and Z̃ ′
i. Note that,

the final training objective function combines Equations 1
and 5.

B. Proof of Proposition 4.3

Proof. We partition extended persistent diagram EDg1 as

EDg1 = Ord(f) ∪ Ext(f) ∪Rel(f).

That is, we decompose EDg1 into its ordinary, extended and
relative subdiagrams. We can also further decompose as

Ext(f) = Ext(f)+ ∪ Ext(f)−,

where Ext(f)+ contains the points (bi, di) with bi < di
and Ext(f)− contains those points with di < bi. We then
express EM1 as the direct sum of

⊕(a,b)∈Ord(f)I(a, b),⊕(c,d)∈Rel(f)I(d, c),

⊕(x,y)∈Ext+(f)I(x, y), and ⊕(z,w)∈Ext−(f) I(w, z).

We also have a similar decomposition for EDg2.
Then, from Theorem 4.9 in Chazal et al. (2016), we have

dI(EM1,EM2) ≤ dB(EDg1,EDg2). (6)

The resulting stability of EPL then follows from combining
inequalities 2, 3 (see inequalities 2 and 3 in the main body)
and (6).

C. Background on Extended Persistent

Homology
Persistent homology (PH) is a powerful tool to extract topo-
logical and geometric structures in the observed data at var-
ious resolution scales. However, the ordinary PH has a num-
ber of shortcomings in detecting the relevant information
as we will show below, and extended persistent homology
(EPH) addresses some of these limitations. We present an
illustrative example contrasting PH and EPH in Figure 2. In
particular, suppose that a real-valued continuous function f
is defined on a graph G (the height function in Figure 2 a).
For a real-value α, the sets f−1(−∞, α] and f−1[α,+∞)
are called the sublevel and superlevel sets of f at α. After
increasing the value α, a filtration on G is produced. PH de-
tects topological features in different dimensions: connected
components (dimension 0) and loops (dimension 1). The
evolution of these topological features is summarized in a
persistence diagram (PD) (see Figure 2c), in which every
point with coordinates (b, d) represents the filtration value
at which a topological feature appears (b) and vanishes (d).
Note that in our example there are three topological features
that never vanish (i.e., the two loops in dimension 1 and the
0-dimensional one).

However, in EPH, after the filtration obtained from in-
creasing α, a filtration given by superlevel sets (decreasing
α) should be undertaken (to be more precise, this filtration
should be considered in relative homology). These two fil-
trations are schematically represented in Figure 2a. Note that
the topological features in PH (Figure 2c) vanish in EPH af-
ter going through the downwards filtration (see the second
part of diagram in Figure 2a). As a result, the lifespans for
EPH (i.e., an absolute difference between birth and death of
a topological feature) is finite. This property is very impor-
tant since the lifespans typically serve as an input to a topo-
logical layer of DL models. Clearly, infinite lifespans cannot
be input into a DL and arbitrary truncation leads to an in-
formation loss. EPH bypasses this problem. Furthermore, in
PH, only the branch pointing downwards in the graph (see
Figure 2) is detected. However, in EPH, both branches of the
graph are detected (i.e., the two points in dimension 0 with
shorter lifespan).

In summary, the two important advantages of EPH over
PH that were observed in the example are:

(i) All topological features have a finite lifespan in EPH but
not in ordinary PH. Hence, EPH is more suitable as input
to a trainable topological layer in DL.

(ii) EPH extracts more topological information than PH and
avoids loss of potentially valuable knowledge on the
graph.

We can go further to the definition of Extended Persis-
tence Landscapes (see Figure 3 for an illustrative example).
In ordinary PH, all points in a persistence diagram are above
the diagonal as can be seen in Figure 2c. In the case of EPH,
this is not always the case as you can see in Figure 2b. In or-
der to extend the classical definition of persistence diagram
to the case EPH, we distinguish between two types of land-
scape functions, those that are above the x axis and which
are bellow as in Figure 3.
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Figure 2: Comparison between traditional persistence and extended persistence on a graph.



Notation Definition

G an attribute graph
V a set of nodes
E a set of edges
X a node feature matrix
A an adjacency matrix
D a degree matrix corresponding to A

N the number of nodes
F the dimension of node features
Υ number of graphs in a set of graphs
bρ and dρ a birth time and death time for a topological feature ρ
K an abstract simplicial complex
Gνj

a subgraph with a scale parameter νj in a sequence of nested subgraphs
ω a edge-weight function
T (·)/Ti(·)/T

′
i (·) graph data augmentations

fENCODER a shared encoder for graph representation learning
sim(·, ·) a similarity function

H̃i and H̃
′

i learned representations of the two augmented graph G̃i and G̃′
i

Z̃i and Z̃
′

i latent extended topological representations of the two augmented graph G̃i and G̃′
i

Q number of sublevel filtration functions
Fq the q-th sublevel filtration
Ψ(·) a extended topological layer (ETL)

Ξ̃ extended topological features based on a augmented graph G̃
Ω(·) a function which extracts extended persistence features
fCNN the convolutional neural network
ϕMAX the global max-pooling layer
ℓi,G graph contrastive loss for a graph Gi (in Figure 1 of the main body, we use ℓG denotes ℓi,G)
ℓi,T topological contrastive loss for a graph Gi (in Figure 1 of the main body, we use ℓT denotes ℓi,T)
ℓ the final training objective function
ζ a temperature hyperparameter
α and β hyperparameters which balance the contribution of graph and topological contrastive losses
K (Gνj

) the simplicial complex associated to the graph Gνj

Λi generating function of extended persistence homology

λk(G) kth landscape fuction of graph G
Λp(EDg1,EDg2) ℓp-norm between extended persistence diagrams EDg1 and EDg2
Λp(EM1,EM2) ℓp-norm between extended persistence modules EM1 and EM2

dB(EDg1,EDg2) bottleneck distance between extended persistence diagrams EDg1 and EDg2
dI(EM1,EM2) interleaving distance between extended persistence modules EM1 and EM2

EDg extended persistence diagram
EPI extended persistence image
EPL extended persistence landscape
EM persistence module

Table 4: The main symbols and definitions in this paper.

D. Datasets, Experiment Settings, and

Additional Experiments

In this paper, we conduct extensive comparisons with state-
of-the-art baselines for graph classification tasks. Note that,
the same idea and methodology can be extended to both
node classification and link prediction tasks (Wu et al. 2021;
Liu et al. 2022), but these future directions go beyond the
scope of a single paper.

D.1. Datasets and Experiment Settings

We validate TopoGCL on unsupervised representation learn-
ing tasks using the following 12 real-world graph datasets:
(i) 5 chemical compound datasets: NCI1, MUTAG, DHFR,
BZR, and COX2; (ii) 4 molecular compound datasets: DD,
PROTEINS, PTC MR, and PTC FM; (iii) 2 internet movie
databases: IMDB-BINARY (IMDB-B) and IMDB-MULTI
(IMDB-M); and (iv) 1 Reddit (an online aggregation and
discussion website) discussion threads dataset: REDDIT-
BINARY (REDDIT-B).

Table 6 reports the average running time (seconds) of each
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Figure 3: Extended persistence landscape.

Figure 4: Proteins structures and EPDs in PROTEINS.

extended persistence image (EPI) and extended persistence
landscape (EPL) generation on all 12 graph datasets. We find
that EPL tends to be somewhat more computationally effi-
cient than EPI, while their classification performances are
comparable. This makes EPL a competitive summary for
larger scale datasets.

We conduct our experiments on two NVIDIA RTX A5000
GPU cards with 24GB memory. TopoGCL is trained end-
to-end by using Adam optimizer. The tuning of TopoGCL
on each dataset is done via grid hyperparameter configura-
tion search over a fixed set of choices and the same cross-

validation setup is used to tune baselines. In our experi-

ments, for all datasets, (i) ẼPI: we set the grid size of ẼPI

to 50× 50 (i.e., ρ = 50), and (ii) ˜EPL: we set the number of
piecewise linear functions to output and number of sample
for all piecewise-linear functions to 2 and 50 respectively.
We utilize ‘extended persistence()’ function in GUDHI to
extract extended persistence diagrams (EPDs). Regarding
the extended persistence image (EPI), we follows steps 1-
2 in Extended Persistent Image (EPI) part (see lines #235-
#238 in the main body) to build the pipeline; for the ex-
tended persistence landscape (EPL), we use the ‘Landscape’



Dataset # Graphs Avg. |V| Avg. |E| # Class

NCI1 4110 29.87 32.30 2
PROTEINS 1113 39.06 72.82 2
DD 1178 284.32 715.66 2
MUTAG 188 17.93 19.79 2
DHFR 467 42.43 44.54 2
BZR 405 35.75 38.35 2
COX2 467 41.22 43.45 2
PTC MR 344 14.29 14.69 2
PTC FM 349 14.11 14.48 2
IMDB-B 1000 19.77 96.53 2
IMDB-M 1500 13.00 65.94 3
REDDIT-B 2000 429.63 497.75 2

Table 5: Summary statistics of the benchmark datasets.

Dataset
Average Time Taken (sec)

EPI EPL

NCI1 0.0757 0.0681
PROTEINS 0.0668 0.0586
DD 1.3801 1.2640
MUTAG 0.0219 0.0201
DHFR 0.0439 0.0352
BZR 0.0390 0.0310
COX2 0.0398 0.0332
PTC MR 0.0216 0.0185
PTC FM 0.0229 0.0179
IMDB-B 0.0349 0.0333
IMDB-M 0.0220 0.0196
REDDIT-B 1.0712 0.9765

Table 6: Computational costs for generation of the extended
persistence image (EPI) and extended persistence landscape
(EPL).

function in GUDHI (from gudhi.representations). We con-
sider sublevel filtration functions based on 4 centrality mea-
sures for nodes including degree, betweenness, closeness,
and subgraph centralities, and search the optimal number
of sublevel filtration functions Q ∈ {1, 2, 3, 4}. To extract
valuable topological features for representation learning, we
consider using multifilrations, i.e., combining topological
features computed from multiple different filtration func-
tions (which can capture certain topological features from
different perspectives). Moreover, we search for the optimal
filtration functions combination through cross-validation.
From experiments, we find that node betweenness- and
node closeness-based filtration functions always play impor-
tant roles. More specifically, to evaluate the importance of
different filtration functions, we apply an attention mech-
anism on topological features of multifiltrations and find
the importance weights of topological features from node
betweenness- and node closeness-based filtration functions
are higher than others. In all experiments, we use the CNN-
based model and MLPs to learn extended persistence im-
ages and extended persistence landscapes respectively. More

specifically, the CNN-based model consists of 2 CNN layers
with number of hidden unit to 32, kernel size to 2, stride to 2,
and the global max-pooling with the pool size of 5×5; MLPs
backbone consists of 5 layers. We use node drop augmenta-
tion for graph datasets with a drop ratio of 0.1. In contrastive
loss function, we set the temperature hyperparameter ζ to be
0.2. Moreover, the backbone of fENCODER(·) consists of a
graph isomorphism networks (GINs) (Xu et al. 2018) and
a projection head. In our experiments, we perform an exten-
sive grid search for hyperparameters α and β over the search
space α, β ∈ {0.1, 0.2, . . . , 1.0}.

D.2. Additional Experiments

We have conducted a visual experiment and the correspond-
ing validity evaluation of the extracted topological and ge-
ometric information and its role in GCL. Figure 4 shows
4 protein networks (i.e., Protein 181, Protein 326, Pro-
tein 923, Protein 990 from the PROTEINS dataset), along
with their corresponding extended persistence diagrams
(EPDs). We find that it appears quite hard to identify which
protein networks belong to the same class (i.e., enzyme or
non-enzyme) from the conventional graph structure charac-
teristics. For instance,

• Average node degree scores of Protein 181, Protein 326,
Protein 923, Protein 990 are 11.47, 9.22, 11.13, and
13.50 respectively;

• Average node betweenness scores of Protein 181, Pro-
tein 326, Protein 923, Protein 990 are 0.16, 0.13, 0.09,
and 0.14 respectively.

That is, these traditional graph characteristics are virtually
indistinguishable. Furthemore, the state-of-the-art baselines
(e.g., GraphCL, AD-GCL, and AutoGCL) do not correctly
classify these 4 proteins. For instance, the AutoGCL classi-
fies Protein 181, Protein 326, and Protein 990 in the same
class, and the AD-GCL classifies Protein 181, Protein 326,
and Protein 923 in the same class.

We now turn to the extended persistence, extract EPD of
each network and compute pairwise Wasserstein distances
between EPDs (shown as follows).

• W (Protein181, Protein990) = 2.768

• W (Protein326, Protein923) = 2.578

• W (Protein181, Protein326) = 5.184

• W (Protein181, Protein923) = 4.549

• W (Protein990, Protein326) = 5.713

• W (Protein990, Protein923) = 4.887

The results suggest that Protein 181 and Protein 990 are in
the same class, and Protein 326 and Protein 923 also be-
long to the same class since they have smaller Wasserstein
distances. In general, we find the Wasserstein distances be-
tween two EPDs of protein networks are always very high if
those two protein networks do not belong to the same class
and low, otherwise. These findings underline that persistence
and topological invariance play essential roles in CL. Fi-
nally, in contrast to GraphCL, AD-GCL, and AutoGCL, To-
poGCL correctly classifies all protein networks.



D.3. Algorithm Complexity

The complexity to compute an 1-dimensional EPD is
O(|V||E|). We also note that, while not officially pub-
lished, the most recognized algorithm for EPD computation
is quasilinear, i.e., O(log(|V|)|E|) by using the data struc-
ture of mergeable trees (Georgiadis et al. 2011).

E. Additional Experiments

Architecture Accuracy (%)

MUTAG
TopoGCL + EPI 90.09±0.93
TopoGCL + PI 89.78±1.33

PTC MR
TopoGCL + EPL 63.43±1.13
TopoGCL + PL 62.78±0.87

IMDB-B
TopoGCL + EPI ∗∗∗74.67±0.32
TopoGCL + PI 70.55±0.19

Table 7: Ablation study of EPL and EPI.

Architecture Accuracy (%)

MUTAG
TopoGCL ∗∗∗90.09±0.93
TopoGCL W/o Topo. 87.85±0.79

PTC MR
TopoGCL ∗∗∗63.43±1.13
TopoGCL W/o Topo. 61.62±1.10

IMDB-B
TopoGCL ∗∗∗74.67±0.32
TopoGCL W/o Topo. 71.31±0.36

Table 8: Ablation study of contrastive modes.


