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Abstract—Today’s data centers often need to run various
machine learning (ML) applications with stringent SLO (Service-
Level Objective) requirements, such as inference latency. To
that end, data centers prefer to 1) over-provision the number
of servers used for inference processing and 2) isolate them
from other servers that run ML training, despite both use
GPUs extensively, to minimize possible competition of computing
resources. Those practices result in a low GPU utilization and
thus a high capital expense. Hence, if training and inference
jobs can be safely co-located on the same GPUs with explicit
SLO guarantees, data centers could flexibly run fewer training
jobs when an inference burst arrives and run more afterwards
to increase GPU utilization, reducing their capital expenses.

In this paper, we propose GPUColo, a two-tier co-location
solution that provides explicit ML inference SLO guarantees for
co-located GPUs. In the outer tier, we exploit GPU spatial sharing
to dynamically adjust the percentage of active GPU threads
allocated to spatially co-located inference and training processes,
so that the inference latency can be guaranteed. Because spatial
sharing can introduce considerable overheads and thus cannot be
conducted at a fine time granularity, we design an inner tier that
puts training jobs into periodic sleep, so that the inference jobs
can quickly get more GPU resources for more prompt latency
control. Our hardware testbed results show that GPUColo can
precisely control the inference latency to the desired SLO, while
maximizing the throughput of the training jobs co-located on the
same GPUs. Our large-scale simulation with a 57-day real-world
data center trace (6500 GPUs) also demonstrates that GPUColo
enables latency-guaranteed inference and training co-location.
Consequently, it allows 74.9% of GPUs to be saved for a much
lower capital expense.

I. INTRODUCTION

In the past decade, Machine Learning (ML), as well as
Deep Learning (DL), has been successfully applied in a
wide variety of applications. To facilitate ML computing, new
cloud services have been generated, such as ML-as-a-Service
(MLaaS) or more generally AI-as-a-Service (AIaaS). For those
new cloud services, service providers (e.g., Google, Amazon,
or Microsoft) often need to help customers perform both model
training and inference processing on large numbers of GPUs
and servers. Model training is often conducted in an offline
matter and may take a long time to finish without strict latency
requirements [1], [2], [3], [4], [5]. On the other hand, inference
requests must be processed online in real time with stringent
timeliness requirements (e.g., hundreds of milliseconds per
request) [6], [7], [8], [9], [10]. Such requirements are often
referred to as the Service-Level Objectives (SLOs) in terms of
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processing latency [11]. Violating SLOs can result in undesired
customer and financial loss and severely hurt the service
provider’s reputation.

Online ML inference requests are bursty by nature. A
large number of inference requests (as workload bursts) may
often need to be simultaneously handled by an entire data
center (i.e., the computing infrastructure behind the cloud). For
example, during a large sports event like the FIFA world cup,
ML inference requests, such as image recognition (for security
or admission), can increase sharply right before the beginning
of the games and decrease quickly after the games. More
recently, due to the rapidly increasing attention and request
bursts, ChatGPT [12] is often found to be “at capacity”, which
can be frustrating to its users. Despite existing research on
ML acceleration [13], [14], [15], [16], [17], [18], how to
handle the burstiness of ML requests in a cost-efficient way
remains an open research problem for data center operators.
Currently, in order to deal with such bursty workloads with
latency guarantees, a data center often has to over-provision
their inference servers, just to prepare for the worst cases that
only occur occasionally. Such over-provisioning can result in
an unnecessarily high capital expense (CapEx) for data centers
and is highly undesirable.

In addition to server over-provisioning, data centers often
like to use separate server clusters for ML training and
inference [19], despite both use GPUs extensively. The key
reason is to minimize the risk of inference SLO violation
caused by the GPU resource competition from training. For
example, a recent study [19] reports that a major online
service provider currently runs more than 10K GPUs for
training, and at least 5 times as many GPUs for inference.
Because of the burstiness of the inference workloads observed
by this provider, they do not want to risk sharing servers
between training and inference, which results in a low GPU
and server utilization. In another empirical study [20], their
analysis of 6000 GPUs in a production MLaaS cluster for
two months show that most inference servers have low GPU
utilization (less than 18% on average). Hence, if training and
inference workloads could be safely co-located on the same
GPUs and servers with explicit SLO guarantees, data centers
could flexibly run more/fewer training jobs when the demands
for inference become lower/higher. Then, when a burst of
inference requests arrives, more GPU resources on the same
servers can be dynamically allocated to inference jobs for
ensuring latency. As a result, data centers would not need to



purchase an unnecessarily large number of GPUs and servers
and thus can have a much lower CapEx.

How to effectively co-locate multiple processes (e.g., infer-
ence and training) on the same GPU is non-trivial, because
today’s GPUs are mostly designed to exclusively run a single
process at any give time. There are currently two different
ways to share GPU resource between different processes: 1)
temporal sharing and 2) spatial sharing. Traditional temporal
sharing refers to the serialization of different processes on the
GPU. For example, after an ML training process is finished,
we can start to run another training process on the same
GPU by loading its DNN models into the GPU memory.
The second way, spatial sharing, refers to running multiple
processes simultaneously on the same GPU. Examples are
Nvidia’s Multi-Process Service (MPS) [21] and AMD’s CU
Masking [22]. For instance, MPS facilitates the compute
kernels submitted from different CPU processes to execute
on the same GPU at the same time, thus allowing GPU
sharing and better GPU utilization. Specifically, within one
Nvidia GPU, the computation resources are represented as
threads scheduled by Streaming Multiprocessors (SMs). MPS
provides a way to provision the maximum percentage of active
threads of each CUDA context, which is created when the
workload process starts. Compared with temporal sharing, a
recent study shows that spatial sharing can lead to higher GPU
utilization [7]. However, though MPS has facilitated GPU
spatial sharing, co-locating inference and training processes
remains challenging due to the risk of inference SLO violation,
because MPS itself is not designed to be aware of any SLO
for any latency guarantees.

In this paper, in order to provide explicit SLO guarantees for
ML inference requests, we propose GPUColo, a two-tier co-
location solution that dynamically adjusts the GPU resources
allocated to co-located inference and training processes. In
the outer tier, if the measured inference latency becomes
longer than the SLO, we exploit existing spatial GPU sharing
techniques (e.g., MPS) to dynamically reduce the percentage
of active GPU threads allocated to the co-located training
processes, so that the inference process can get more GPU
resources and run faster to shorten its latency. However,
for dynamic GPU resource re-allocation, spatial sharing, like
MPS, can often introduce considerable overheads (i.e., seconds
of process restarting time) and so cannot be conducted at a
fine time granularity. Thus, we design an inner tier that puts
training jobs into periodic sleep, so that the inference jobs
can quickly get more GPU resources for more prompt latency
control. But, as shown later in Section IV-B, periodic sleep
can result in lower GPU utilization and has a limited adaption
range, so MPS still needs to be performed over a longer time
period for better GPU resource utilization. Both our hardware
testbed and trace-driven large-scale simulation results show
that GPUColo can enable latency-guaranteed inference and
training co-location and thus significantly reduces CapEx.

Specifically, this paper makes the following contributions:
• We observe that the current practice uses isolated server

clusters for ML inference and training jobs, due to the

concerns of inference SLO violation. Thus, we propose to
dynamically co-locate inference and training on the same
GPUs and servers, in order to increase GPU utilization
for reducing data center CapEx.

• In order to provide the desired SLO guarantees, we
design GPUColo, a two-tier inference latency control
solution that dynamically increases the GPU resource
allocated to inference processes when a burst of inference
requests arrives and decreases it afterwards to allow a
better throughput of ML training. GPUColo conducts
both spatial sharing for more efficient co-location and
lightweight sleep interval adaption for more prompt la-
tency control with negligible overheads. The trade-offs
and design choices are discussed in Section IV.

• We perform experiments on a hardware testbed to show
that GPUColo provides the desired inference latency con-
trol and achieves higher inference and training throughput
than the state-of-the-art solutions and other well-designed
baselines. Our large-scale simulation with a 57-day real-
world trace from a major cloud service provider also
shows that GPUColo outperforms the baselines by saving
74.9% of GPUs for a much lower CapEx.

II. RELATED WORK

MLaaS and AIaaS are becoming more and more widely
adopted in the recent years. In the industry, TensorRT [23],
TensorFlow Serving [24], and Amazon SageMaker [25] are
currently among the major ML model serving systems, but
they do not provide any mechanisms to meet the application
SLOs. Instead, they require users to self-tune the ML model
parameters (e.g., batch size) and configure the hardware to
meet the SLOs, which can be difficult for some users.

Latency of training jobs. A lot of recent research studies
have tried to address the ML latency issues [1], [3], [4], [18],
[17], [9], [26], [5]. Many of those studies focus on accelerating
the training processes. For example, Optimus [17] presents an
online fitting method to allocate resources based on the speed
of ML training jobs. Hypersched [4] increases the training job
accuracy within a deadline using automatic hyperparameter
search and dynamic resource allocation. SLAQ [18] allocates
more CPU-based cluster resources to ML training jobs whose
loss convergence rates are higher. Tiresias [1] schedules dis-
tributed deep learning jobs on a GPU cluster to reduce job
completion time and increase GPU utilization. Themis [3]
presents a two-level scheduling algorithm that allows ML
workloads to bid on GPU resources based on finish-time
fairness. In contrast to those studies, GPUColo focuses on co-
location and meeting the inference latency SLOs, while also
maximizing the training throughput.

Inference latency SLO has also been studied in some
recent research [8], [6], [27], [10], [7], [28], [19], [29]. For
example, Nexus [8] allocates ML inference workloads in a
GPU cluster for SLO control. Lyra [29] proposes cluster-level
capacity loaning to reduce ML job completion time (JCT).
Clipper [6] changes the batch size of ML inference workloads
using a fixed percentage in each step until the SLO is met.



DART [27] schedules DNN inference workloads on a hetero-
geneous multi-core system for latency guarantees. LaLaRAND
[10] is a layer-by-layer resource allocation scheme for DNNs
to meet inference latency requirements. OptimML [28] tries to
meet both ML inference latency and server power constraints.
GPUColo differs significantly from those studies that focus
only on inference jobs, because we co-locate both inference
and training jobs and control the inference latency on co-
located GPUs.

ML job co-location has recently received increasing re-
search attention [2], [9], [19], [26], [29], [7], but existing stud-
ies co-locate either inference or training jobs, in a separate
manner. For training co-location, Gandiva [2] designs a cluster
scheduling framework to co-locate training jobs on GPUs, with
the considerations of memory and communication intensity, to
minimize the interference among different jobs. For inference
co-location, PipeSwitch [19] uses a pipeline to schedule model
transmission and execution on a GPU to co-locate inference
jobs with temporal sharing for fast context switch. Choi et
al. [26] have applied MPS to co-locate inference workloads
spatially on a GPU based on offline profiling data of ML
models. However, all those studies do not provide explicit
inference SLO guarantees. The most closely related work is
GSLICE [7], which co-locates only inference jobs and meets
the inference SLO by dynamic GPU resource allocation. To
our best knowledge, GPUColo is the first study that proposes
to co-locate both inference and training jobs on the same
GPUs for significantly reducing CapEx. GPUColo is also the
first to use periodic sleep of training jobs with MPS for a
two-tier control solution with acceptable runtime overheads.

III. MOTIVATION

To motivate the proposed GPU co-location and control solu-
tion, we conduct some experiments with a simple example on
our hardware testbed (detailed in Section VI), to demonstrate
the problems of existing solutions and how the proposed co-
location solution can improve them. Our simple example has
two inference jobs and two training jobs that are released at the
beginning. Our first inference job I1 emulates the cloud-based
speech-to-text conversion application in [30] with a typical
latency (i.e., duration when running alone) of 31s and an SLO
of 56s, while the second inference job I2 emulates the online
video moderation application in [31] with a latency of 36s and
an SLO of 61s. Usually, training jobs can last for hours and
require much more memory than inference jobs. However, to
keep the example simple, we configure each training job to
run about 52s and require a memory size about 3 times that
of inference. The detailed memory size and GPU utilization of
each job are listed in Table I. We assume two GPUs, each of
which has 24GB of memory. We now introduce four baselines.

No Co-location is a state-of-the-practice solution used in
today’s data centers. It first divides all the GPUs and servers
into an inference cluster and a training cluster. Because GPUs
are traditionally designed to run a single process, each GPU is
used to run only a single job at any given time with traditional
temporal sharing. Based on this policy, we use GPU1 to run the

TABLE I: Job details in the simple motivation example.
Job type Inference Training
Job name I1 I2 T1 T2
Needed GPU utilization (%) 50 50 50 50
Needed memory size (GB) 2.5 2.5 7 7
Duration when running alone (s) 30 35 52 52
Inference latency SLO (s) 56 61 N/A N/A
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Fig. 1: No co-location (upper left) and Separate co-location
(upper right) both need to use two GPUs. Simple co-location
(lower left) uses one GPU but misses the inference SLO.
Conservative co-location (lower right) uses one GPU and
meets the SLO, but leads to long training time.

two inference jobs sequentially, resulting in a 67s total running
time. We use GPU2 to run the two training jobs sequentially,
and so the total duration is 104s. This result is shown in Figure
1 (upper left).

Separate Co-location is a state-of-the-art solution that
is similar to the co-location strategy proposed in [7]. As
mentioned before, spatial sharing can result in better GPU
utilization than temporal sharing. Hence, jobs can be co-
located with spatial sharing on separate inference and training
GPU clusters. In the process of co-location, the total memory
size and GPU utilization should not exceed the capacities of
a single GPU (i.e., 24GB memory, 100% utilization). The
utilization of each GPU is divided evenly among all the co-
located jobs. For example, in the simple example, the two
inference jobs can each have 50% on GPU1, while the two
training jobs can also each have 50% on GPU2. Because each
job only needs 50% of GPU utilization, the two jobs on either
GPU can run concurrently with spatial sharing without being
slowed down due to resource competition. As a result, the jobs
can finish much earlier than No Co-location. Specifically, the
two inference jobs finish by 46s (31% improvement) and the
training jobs finish by 65s (37% improvement), as shown in
Figure 1 (upper right). Note that the actual duration of each
job is longer than their duration numbers in Table I due to the
overhead of MPS spatial sharing.

It can be observed that both No Co-location and Sepa-
rate Co-location keep inference GPUs separate from train-
ing GPUs, because they try to minimize the GPU resource
competition from training that might impact the inference
latency. However, such a limitation always results in that both
GPUs must be used. If we could co-locate both inference
and training jobs on the same GPU, we may be able to use



just one GPU instead of two for a lower capital expense.
Unfortunately, doing so is non-trivial because sophisticated
designs are needed to control the inference latency while
maximizing the training throughput. In the following, we test
two other baselines that rely on fixed GPU resource allocation
for inference and training co-location, to demonstrate common
strategies would not result in desired co-location.

Simple Co-location represents a common strategy that
mixes inference and training jobs and evenly divides the
GPU resource among all co-located jobs on the same GPU.
Although Separate also evenly divides GPU resource, it does
that separately to inference and training jobs in their respective
clusters. For the simple example, because the aggregated
memory size of all the 4 jobs is smaller than 24GB, Simple
tries to co-locate all the jobs on one single GPU and evenly
allocates 25% GPU utilization to each job. However, since
each job demands for 50% GPU utilization, such a co-location
would slow down every job. As shown in Figure 1, Simple
has missed the SLO requirements of 56s for I1 and 61s for
I2 because of its strategy of giving each co-located job an
equal share of the GPU resource. One might argue that we
could favor inference jobs more by allocating them more GPU
resource in a conservative way, which should increase the
chance for inference jobs to meet their SLOs.

Conservative Co-location is similar to Simple but allocates
40% of the GPU utilization to each inference job and 10% to
each training job, totaling in 100% GPU utilization after co-
locating the four jobs in Table I. Because each job’s demanded
GPU utilization is 50%, there will also be slowdown for each
job. The result is shown in Figure 1 (lower right). We can
see Conservative Co-location has an inference latency that is
indeed shorter than the SLOs this time, but at the cost of a
long training job duration that is about twice that of Simple.
Such a long training duration is undesired because it can lead
to GPU resource waste, service fee increases (for customers),
and higher energy costs.

Both Simple and Conservative can manage to use one
GPU with spatial sharing, which helps reduce the data center
CapEx. However, a natural problem with spatial sharing is
how to properly allocate GPU resource among co-located
jobs. Both Simple and Conservative rely on fixed allocation
without considering the SLO, which results in either SLO
violation or a long training duration. Hence, we argue that
it can be commonly difficult to have a perfect fixed allocation
ahead of time, especially when new jobs can arrive later as a
burst. A better strategy should be to dynamically allocate the
GPU resource, such that the latency of inference jobs can be
controlled exactly to the SLOs, while the throughput of the
training jobs can be maximized.

SLO-aware Co-location is an ideal solution that is similar
to our proposed solution (without considering overheads). It
dynamically adjusts the GPU resource allocation based on the
measured inference latency. To facilitate latency control, the
SLO of each inference job is divided by its number of batches
to have a desired latency for each batch. For example, for I1, if
it has 100 batches, the desired batch latency SLO is 56/100 =
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Fig. 2: SLO-aware co-location features dynamic inference
latency control (precisely to the desired SLO), which can result
in a much shorter training duration.

0.56s. SLO-aware Co-location runs periodically and each of
its period includes multiple inference batches. In each period,
it measures the average batch latency and compares with the
desired batch SLO. If the measured latency is longer than
the SLO, more GPU resource is dynamically allocated to the
inference job to shorten its latency. If the measured latency
is shorter than the SLO, more GPU resource is given to the
training jobs to increase their throughput. Hence, SLO-aware
can start with any initial GPU allocation and settle to the best
allocation quickly by adjusting the allocation at runtime.

Figure 2 shows the numerical analysis result of SLO-aware
Co-location as a motivation before we actually implement
it. SLO-aware can precisely control the two inference jobs
to their respective SLOs (i.e., 56s and 61s), while having a
training duration (i.e., 96s) much shorter than that of Conser-
vative, as shown in Figure 2. Therefore, even though SLO-
aware, Simple, and Conservative all can use just one GPU
to reduce CapEx, the dynamic GPU resource adjustment
used by SLO-aware can have at least two advantages. First,
it can automatically find the best GPU resource allocation
by controlling the inference latency precisely to the SLOs.
Second, after the two inference jobs finish, SLO-aware can
dynamically increase the GPU utilization of each training job
to 50%, leading to a shorter duration (i.e., 96s). In contrast,
Simple and Conservative still keep it at the initial values of
25% and 10% for each training job, because they do not
dynamically change the GPU resource allocation, which is
why SLO-aware has even a shorter training duration than
Simple. Those observations have motivated our design of an
inference latency controller. Note that dynamic GPU resource
adjustment does have one disadvantage because such runtime
adjustment commonly has overheads, which must also be
carefully considered in our design.

IV. SYSTEM DESIGN

In this section, we provide a high-level description of
the GPUColo system architecture. As discussed before, a
significant concern of data center operators is the violation of
SLO guarantees. Thus, they tend to 1) separate server clusters
used for ML training from those used for inference in order
to minimize the competition of computing resources, and 2)
over-provision inference servers to prepare for the worst-case
scenarios where a large number of inference requests come
simultaneously as a burst. Such practices result in low GPU
and server utilization and thus a high CapEx. Hence, if training



and inference jobs could be safely co-located on the same
GPUs and servers with explicit SLO guarantees, data centers
could flexibly run more/fewer training jobs on inference GPUs
when there are fewer/more inference requests, resulting in
fewer GPUs and servers and thus a lower CapEx.

We focus on a typical scenario where a data center with
mostly ML or DL workloads needs to run both training and
inference jobs. Training jobs can be scheduled at any time
by the data center operator and do not have strict timeliness
requirements, though a high throughput is preferred. Inference
requests have stringent SLO requirements and can also be
continuously received online. The number of requests can
vary significantly at different times. A job dispatcher is used
to dynamically distribute the incoming training and inference
jobs to the GPUs on different servers in the data center, as
shown in Figure 3. We adopt a simple first-fit bin packing
scheme for dynamic job dispatching, which packs each new
job based on its demanded GPU and memory utilization and
the available resources of the GPUs. It is important to note that
job dispatching is not the focus of this paper and our solution
can work with other dispatching algorithms as well (which is
our future work). The main design contribution of our work is
to ensure that the co-located inference jobs meet their latency
SLOs even when a burst of requests may arrive at any time,
because this is one of the most important concerns of today’s
data center operators.

At any time, each GPU in the data center can be running
three types of job combination: 1) both inference and training,
co-located together, 2) either inference or training, alone, and
3) idling or turned off, without any jobs. The proposed latency
control solution will be invoked only on those GPUs with co-
located jobs. On such GPUs, computing resources are shared
between the ML inference and training processes. Because
spatial sharing has better GPU utilization [7], we assume that
inference and training are co-located with spatial sharing.

A. Overall Architecture

The design objective of GPUColo is to dynamically control
the ML inference latency for SLO guarantees on those GPUs
that have training and inference jobs co-located. Specifically,
GPUColo monitors the average latency of online ML inference
requests and compare it with the desired SLO. If the measured
latency is longer than the SLO, GPUColo will dynamically
allocate more GPU resources to those co-located inference
jobs such that they can run faster to have a shorter latency.
If the measured latency is shorter than the SLO, more GPU
resources are allocated to training jobs for a higher throughput.
In the extreme cases, when a huge burst of inference requests
arrives, GPUColo can flexibly turn all the GPUs in the
data center to run just inference jobs. When no inference
request arrives, all the GPUs can run just training jobs. Such
a flexibility allows GPUs to be shared for a much higher
utilization, resulting in a lower CapEx.

In GPUColo, we deploy one controller on every co-located
GPU for the consideration of scalability in a large data center.
In this strategy, one controller monitors the average latency
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Fig. 3: System Architecture. GPUColo features a two-tier
control design. The inner loop controls the inference latency
by adjusting the sleep interval of training jobs, while the outer
loop optimizes the GPU resource utilization with MPS.

of all the inference tasks on one GPU and adjusts the GPU
resource allocated to all the co-located jobs on the same GPU.
The GPUColo controller on a GPU is dynamically created
whenever the GPU becomes a co-located GPU, i.e., dispatched
with both inference and training jobs. It runs periodically
to monitor the average latency of all the inference jobs (as
controlled variable) on this co-located GPU. The controller
dynamically adjusts the GPU resources allocated to both
inference and training jobs (as manipulated variable), so that
the average latency can converge to the desired SLO.

Note that GPUColo can be applied to GPUs that run dis-
tributed training and need synchronization between different
GPUs. In that case, if a distributed training task is slowed
down by GPUColo, other GPUs that need to synchronize with
this task can have their distributed training tasks temporarily
suspended. Consequently, those GPUs may be dispatched with
more inference tasks or other training tasks.

B. Knobs for GPU Resource Allocation

An important design choice is how to dynamically adjust
the computing resources of a GPU. In this paper, we adopt
Nvidia’s MPS for spatial sharing as an example due to its
reported better GPU utilization, but it is important to know
that GPUColo can also be applied to other spatial sharing
techniques like AMD’s CU Masking [22], which performs
similarly to MPS. As mentioned before, MPS provisions the
maximum percentage of active threads of a GPU process when
the process starts. In other words, MPS is not designed to
dynamically adjust the GPU resource of a process in the
middle of its running. Hence, if MPS must be used to make
adjustment at runtime for a process, the process has to be
stopped and restarted with the new MPS percentage. Due to
required data copying when a process restarts, dynamically
adjusting MPS can introduce an overhead of 5-15 seconds
based on our testbed measurements. Therefore, in order not to
interrupt any inference jobs that have relatively short durations,



we choose to keep the MPS percentage of inference jobs
fixed at 100% and adjust the MPS of co-located training jobs
between 1-100%, because training can take hours to finish.
Note that MPS allows each process to individually have an
MPS cap up to 100%. When the aggregated MPS caps of
all jobs exceed 100%, the GPU is oversubscribed, which can
result in slowdown of every process. Hence, MPS caps are
relative among processes and increasing the cap of a process
can help it get more GPU resource, as to be discussed later.

Due to the considerable overhead of MPS adjustment, we
propose another lightweight method to promptly adjust the
GPU resource among co-located concurrent inference and
training jobs. The second knob we choose is to put the
training jobs into periodic sleep. For example, after each
iteration of a training process (approximately 0.4 to 0.8s for
most workloads), the training process can be put into sleep
for about 0.2 to 0.8 seconds. Based on our studies, when
training jobs are put into sleep, GPU thread resources can be
temporarily released and allocated to the spatially co-located
inference jobs for a shorter latency. Periodic sleep can be
implemented in practice in different ways. If the byte code
of the training workload is available, a sleep function can be
inserted as part of instrumentation. If the byte code is not
available, a more general way is to pause the training process
using signal SIGSTOP and resume it after the sleep interval
using signal SIGCONT. Such a general method takes less than
5ms to pause/resume a GPU process based on our testbed
measurements.

In order to fully understand the differences between MPS
and periodic sleep, we now perform the following experiments
on our hardware testbed (setup introduced in Section VI). To
our best knowledge, our study is the first detailed comparison
between MPS and periodic sleep. In this experiment, we
launch two concurrent tasks on a Nvidia RTX3090 GPU. The
inference task runs ResNet-50 while the second task runs an
ML training workload. The purpose is to examine the impacts
on the inference latency if we use MPS or sleep interval
to adjust the GPU resources allocated to training. We test a
typical scenario where we reduce the GPU resource of training
jobs in the middle of an experiment and increase it back
later. The inference latency and the number of active training
SMs are measured to show how they change when MPS or
sleep interval is adjusted. Note that the number of active SMs
is blocked by the PyTorch framework, so we emulate DNN
training using some matrix computations in CUDA and any
needed data copying is emulated too. The SM numbers are
sampled in each training iteration using the smid function
provided in the Nvidia PTX library.

Figure 4 shows the results of three experiments, where
MPS, sleep interval, and both MPS and sleep interval are
tested as “MPS”, “Sleep”, and “Sleep+MPS”, respectively.
For “MPS” (blue curves with square markers), spatial sharing
is used for the two tasks with the same 80% MPS thread
percentage. When the MPS for training is reduced to 20% at
20s, the training SM percentage is then reduced from 38.15%
to 1.128%. As a result, more GPU resource is allocated to the
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Fig. 4: MPS has a larger inference latency adaption range
but a much higher overhead than sleep interval. Sleep+MPS
provides a good trade-off to have better GPU co-location.

inference task whose latency is then reduced from 15.1ms to
5.62ms. It is important to note that MPS has an overhead of
7s in this case to stop and restart the training process with the
new MPS value, as discussed before. That is why there are
no readings of training SM percentage between 20s and 27s,
but the inference process is still running in the meantime and
its latency can be measured. Hence, MPS adaption cannot be
conducted at a fine time granularity. When the training MPS is
increased back to 80% at 40s, more GPU resource is allocated
back to training, resulting in the increase of inference latency
back to 15.1ms.

For “Sleep” (orange curves with circles), temporal sharing
is used without MPS. At the beginning, a sleep interval of 0.2s
is used, which means that the training process is put into sleep
for 0.2s after every iteration. Since each iteration lasts about
0.2s, it is equivalent to 50% of sleeping time. At time 20s,
the sleep interval is increased to 0.8s, causing the training SM
percentage to reduce from 32.8% to 15.8% and the inference
latency to reduce from 6.68 ms to 5.52 ms. There are two
important observations: 1) The overhead of periodic sleep is
almost negligible (about 2ms) and much shorter than the 7s
MPS overhead. 2) The impact of sleep interval on inference
latency is much smaller (with a 6.68-5.52=1.16ms difference)
than that of MPS (15.1-5.62=9.48ms). This indicates that 1)
sleep interval has a much smaller latency adaption range than
MPS, and 2) the efficiency of temporal sharing may not be as
high as spatial sharing, because the inference job runs faster
only by 1.17ms when the training job sleeps 4X time.

We then test “Sleep+MPS” (green curves with stars), where
MPS spatial sharing is enabled for concurrent tasks, but only
sleep interval is used for GPU resource adjustment. Similar to
MPS alone, both jobs start with the same 80% MPS percentage
and a sleep interval of 0.2s is initially used. We can see that
the inference latency is slightly longer than “Sleep” because
only 80% MPS is allocated to the inference job. At time 20s,



the sleep interval is increased to 0.8s with MPS unchanged.
Consequently, the SM percentage reduces from 26.3% to
2.89% and the latency is reduced from 7.95 ms to 6.2 ms.
Compared with “Sleep”, “Sleep+MPS” has a bigger latency
adaption range because MPS is more efficient in co-location.

From this set of comparison, we can conclude that MPS has
considerable overhead and so cannot be used for fine-grained
GPU resource adjustment. Sleep interval has negligible over-
head but has a much smaller latency adaption range and is not
as efficient as MPS in GPU utilization. Sleep+MPS offers a
good trade-off to have a much smaller overhead and a larger
range than Sleep for better GPU co-location. Its adaption range
can be even larger when MPS is adjusted together with sleep
interval (over a long time period). Those observations motivate
us to design a two-tier control solution with sleep interval as
the inner loop and MPS as the outer loop.

C. Two-tier Control Solution

As shown in Figure 3, our proposed GPUColo two-tier
design has 1) an inner-loop inference latency controller that
adjusts the sleep interval of the training jobs to dynamically
control the latency of the co-located inference jobs, and 2)
an outer-loop GPU resource optimizer that changes the MPS
thread percentage of the training jobs, at a much coarser time
granularity, to optimize GPU resource allocation. The control
period of the inner loop is chosen as follows: 1) It is long
enough to process multiple ML inference requests within one
period for an averaged latency sample to avoid any outliers. 2)
It is short enough for timely reaction to any inference bursts.
3) The actuation overhead is acceptable. Based on the average
inference request duration and the 2ms overhead of adjusting
sleep interval, we use 4s in our testbed as an example. Note
that the control period is configurable based on the typical
inference lengths of a data center. Because the two loops both
monitor and control the same inference latency, the period
of the outer loop should be chosen to ensure: 1) The MPS
overhead is acceptable. 2) The inner loop can settle down
within one period of the outer loop, such that the two loops
are decoupled and can be designed independently [32]. We use
100s in our experiments based on the analysis of settling time
of the inner loop. In practice, those periods should be chosen
based on the workload analysis and overhead measurements
of a target data center.

For the inner loop, the following steps are invoked at the
end of each control period: 1) The Inference Latency Monitor
in Figure 3 measures the average inference latency in the last
control period and sends it to the Inference Latency Controller.
Note that in order to allow fine-grained latency control, we
measure the average latency of each batch in the inference
requests. For example, if the inference SLO is 5s and it has
100 batches, we control the latency of each batch to 50ms. 2)
The controller compares the measured batch latency with the
desired SLO. Based on the difference, the controller calculates
the new sleep interval to be used for the training jobs in the
next control period. 3) Finally, the new sleep interval value is
enforced by adjusting either the parameter of the sleep function
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Fig. 5: GPUColo has testbed results similar to SLO-aware in
Figure 2. Its two-tier design reduces the MPS overheads.

inserted in the byte code or the time interval between calling
the SIGSTOP and SIGCONT signals.

The Outer-loop GPU Resource Optimizer is also invoked
periodically but at a much coarser time granularity (e.g.,
every 25 periods of the inner loop on our testbed), due to
the considerable overhead of MPS. The following steps are
invoked at the end of every period: 1) The optimizer receives
the measured average batch latency from the Inference Latency
Monitor in the last period after the inner loop settles down.
Note the two loops are monitoring the same variable. 2) The
optimizer compares the measured latency with the desired
SLO. Then, it computes the new MPS percentages to be used
for the training jobs in the next period, based on the difference.
Because MPS has a high overhead as discussed before, in
order to minimize the system actuation overhead, the optimizer
computation is invoked only when the difference is bigger than
a configurable threshold (e.g., 2%). 3) The new MPS value is
sent to the GPU MPS Actuator to enforce in the next period.
See Section VII for the MPS implementation in our testbed.

In GPUColo, both the inference latency controller and
the GPU resource optimizer are designed based on well-
established feedback control theory. There are several advan-
tages for such a control-theoretic methodology. For example,
the designed system can have guaranteed system stability, bet-
ter control accuracy, as well as faster convergence and smaller
overshoot. Furthermore, the control parameters can be chosen
analytically based on control theory, such that the exhaustive
manual tuning and testing used in traditional heuristic-based
solutions can be avoided. More importantly, when the system
models vary online due to workload variations, we can conduct
quantitative analysis to ensure stability and control accuracy.

We now compare GPUColo with the ideal solution SLO-
aware in Section III that does not consider overheads. To
reduce the overheads of MPS adjusting and process restarting,
GPUColo adopts the aforementioned two-tier control design.
Figure 5 shows that GPUColo has slightly higher overheads
than SLO-aware but indeed can optimize GPU utilization with
dynamic GPU resource adjustment.

In the next section, we introduce the design details of the
inner loop latency controller. The design of the outer loop is
similar and so omitted due to space limitation.

V. INFERENCE LATENCY CONTROLLER

To design the inner-loop inference latency controller, we
first need to formulate the control problem. We then establish
a mathematical model for the target system between the con-
trolled variable (i.e., inference latency) and the manipulated
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Fig. 6: System model between inference latency and training
sleep interval under different training MPS values.

variable (i.e., sleep interval of training jobs). Based on the
system model, we then design the controller and analyze its
system stability when the actual model varies due to runtime
workload variations.

We first introduce the notation used in this section. T is the
control period. Lref is the ML inference latency set point (i.e.,
SLO). l(k) is the measured average ML inference latency (for
a batch) in the kth control period. e(k) is the control error:
e(k) = l(k) − Lref . s(k) is the sleep interval used for the
training jobs in the kth control period. u(k) is the difference
between s(k+1) and s(k), i.e., u(k) = s(k+1)− s(k). The
goal is to guarantee that the controlled variable l(k) converges
to the set point Lref within a finite settling time.

A. System Modeling

It is important to model the dynamics of the controlled
subsystem for an effective controller design. Unfortunately,
a well-established physical equation is usually unavailable for
computer systems. Hence, we use a standard approach called
system identification [33]. Specifically, we run the testbed
described in Section VI with different values of s(k) (also
under different MPS values), and record the value of l(k) after
each control period. Figure 6 plots the relationship between
the inference latency and the training sleep interval. We can
see that a linear model fits reasonably well for all cases.
Based on system identification, we also generate a sequence of
pseudo-random digital white noise as control input (i.e., s(k))
to stimulate the system and measure the output (i.e., l(k)) in
each control period.

Figure 7 shows the comparison results between the actual
system outputs and the predicted outputs of the linear model.
The standard metric R2 > 79% indicates that the predicted
data is close enough to the measured data from the real system.
Note that the controller stability and control accuracy can
be guaranteed due to its feedback nature, even if the real
system model deviates from the linear model within a certain
range. Control-theoretic design methodologies can allow us
to analytically derive this range and choose the controller
parameters accordingly. Therefore, our system model of ML
inference latency is: l(k) = m × s(k) + n, where m and n
are the parameters determined by system identification. We
can also derive the dynamic model of the inner loop as a
difference equation:

l(k + 1) = l(k) +m× u(k) (1)
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Fig. 7: Comparison between predicted and measured inference
latency shows the model is sufficiently accurate.

B. Controller Design and Analysis

Based on the system model (1), we now apply control theory
[33] to design the controller. The design needs to meet the
following criteria: 1) Stability: The latency should settle into
a bounded range around the SLO set point. 2) Zero steady
state error: The latency should be controlled accurately to the
SLO. 3) Short settling time: The latency should converge to
the SLO within a small number of control periods.

We choose a Proportional controller instead of a more com-
plex PID (Proportional-Integral-Derivative) controller because
of two reasons: 1) The new training sleep interval to be used
in the next control period is s(k+1) = u(k)+ s(k), which is
already an integral function that helps achieve a zero steady-
state error. 2) The derivative term may amplify the noise in
ML inference latency. Hence, the time domain form of the
designed controller is: u(k) = 1

m (Lref − l(k)). It is easy to
prove that the controller is stable and has zero steady-state
error. Due to page limitations, we skip the detailed proofs that
can be found in a control textbook [33].

A key advantage of having control theory as a foundation
is the analytic assurance of stability and control performance.
For example, the real system model can become different from
the nominal model (1) used to design the controller, due to
workload/hardware variations. Based on the observations of all
the possible model variations, we can mathematically analyze
the impacts on system stability and control performance by
modeling the actual system with variations. Specifically, we
first derive the control inputs from the designed controller
that use the nominal model. We then build the closed-loop
system model by substituting the control inputs into the actual
system model. Finally, we can derive a stability condition of the
closed-loop system. Our results show that the system is guar-
anteed to be stable even when the actual workload/hardware
varies within a wide range.

VI. EXPERIMENTAL SETUP

Hardware Testbed. Our testbed includes two servers, each
with an Intel Xeon R Gold 5215 processor and an Nvidia
RTX 3090 GPU. The frequency of the CPU is set at 3.7 GHz,
while that of the GPU is set to 2.1 GHz (with a 350W power
limit). The server OS is Ubuntu 20.04 LTS with CUDA Toolkit
11.6. The ML framework is PyTorch 1.12.1. and the ML
workload used for inference and training is Resnet50 and Wide
Resnet101, respectively, which are widely adopted in image



classification applications. The inference workloads are config-
ured to a batch size that can vary from 105 to 115. We follow
the tutorial in [34] to run the training workload. Each training
workload has 100 iterations to run on the testbed. To imple-
ment the MPS Actuator, we can configure an environment vari-
able CUDA MPS ACTIVE THREAD PERCENTAGE, based
on the value calculated by the GPU resource optimizer, which
is limited between 1% and 100%. The training workload is
then restarted to enforce the new MPS percentage.

Real-world ML Trace. The PAI trace from Alibaba [20]
contains a hybrid of training and inference jobs running the
ML algorithms. It is collected from a cluster with over 6500
GPUs in July and August of 2020. Each job record in the
trace includes its unique ID, start time, duration, requested
GPU memory, requested GPU utilization, and its job status.
To facilitate simulation, we filter out jobs whose status is failed
or whose GPU memory/utilization is zero. For jobs that have
GPU utilization over 100% or GPU memory over 32GB, we
follow the common way to split them into sub-tasks with
up to 100% utilization and up to 32GB for each sub-task.
Because training jobs commonly have higher utilization, larger
memory, and longer duration, we use those factors to help
define a job as training job, if it is not already marked so in
the trace. The PAI trace has been widely used in related work
[35], [36], [37], [38], [39], [40].

Trace-driven Simulation. Due to limited size of our hard-
ware testbed, we have developed a simulator in Python to
evaluate GPUColo in large scale with the real-world traces.
The simulation accuracy is verified by having the same re-
sults with our testbed for those smaller-scale experiments.
Specifically, the simulator includes a simulated clock module,
a job dispatcher, a GPU manager, and a controller. The main
framework is a for loop that simulates 1 second in the trace in
one iteration. Before launching, the simulator first sorts all
jobs in the trace based on the start time in the ascending
order. In each loop, the job dispatcher checks the start time of
each job and dispatches the job if its start time is equal to or
later than the current simulated time. The jobs are dispatched
to existing GPUs using the first-fit bin packing algorithm
under two constraints: GPU utilization and memory size. If
a fit cannot be found, a new GPU is created by the GPU
manager to host this job. The duration of each dispatched
job is deducted in each loop based on its current speed that
is determined by its allocated GPU utilization (see Section
III for examples), which is in turn decided by the simulated
solution. The speed of each training job is also impacted by
its sleep interval if the interval is not 0. A finished job is then
removed from the job list of the host GPU. Different GPUs can
be assigned a different frequency/speed and memory size to
simulate a data center with heterogeneous GPUs. To simulate
GPUColo, its inner loop algorithm (with a period of 4s) is
invoked every 4 iterations to perform the control computation
in Section V. The outer loop is invoked every 100 iterations.

Baselines. In addition to the baselines introduced in Section
III, i.e., No Co-location, Separate Co-location, Simple Co-
location, and Conservative Co-location, we also compare

GPUColo against a state-of-the-art solution GSLICE [7],
which co-locates only inference jobs and meets the inference
SLO by dynamically allocating more GPU resource to a job
that violates its SLO. GSLICE differs from GPUColo in two
major ways: 1) GSLICE keeps inference GPUs separated from
training GPUs and so it cannot flexibly use training GPUs for
inference when a burst arrives, 2) it relies an ad-hoc method
to adapt only MPS, while GPUColo is a control-theoretic
solution that features a two-tier design to reduce adaption
overheads by putting training tasks into periodic sleep.

The inner loop of GPUColo puts training jobs into periodic
sleep with negligible overhead, so it can be invoked every 4s
(or shorter) for a prompt response to any workload variations.
The outer loop (MPS) has a period of 100s due to the MPS
overhead. Both periods are configurable based on the typical
workloads. However, GSLICE relies only on MPS, which has
an overhead of 5-15s due to the required process restarting.
Hence, we cannot run GSLICE every 4s. To determine an
appropriate control period for GSLICE, we compute its MPS
overhead for different periods from 10s to 100s. We find a pe-
riod of 91s would give GSLICE and GPUColo approximately
the same overheads. However, 91s can be too long a period
for ML inference jobs, so we choose 25s that allows GSLICE
to respond more promptly.

VII. HARDWARE TESTBED EVALUATION

We first compare GPUColo against the baseline GSLICE.
We then evaluate GPUColo with real-world trace samples.
A. GPUColo Two-tier Control vs. GSLICE

In this experiment, we compare GPUColo and GSLICE
when they are used to control one single GPU that co-locates
one training job and one inference job. Although GSLICE
actually does not co-locate training and inference, one might
argue that GSLICE could be extended to control a training
job just like an inference job. Specifically, GSLICE keeps the
total MPS of both jobs at 100% and increases the inference
MPS (so reduces the training MPS) if the measured latency
becomes longer than the SLO using the algorithm in [7]. In
contrast, GPUColo keeps the inference MPS always at 100%
and adjusts only the training sleep interval and MPS. The
inference latency SLO is set to 90ms for both solutions.

To emulate a typical scenario where the inference workload
suddenly increases, the inference batch size is increased from
105 to 115 at 90s and changed back to 105 at 290s. Note that
such an increase degree is configured based on the observed
workload variations in the PAI traces [20]. As shown in Figure
8a, the open-loop system without any control (i.e., Open) has
undesired latency increase as a result of inference request surge
and violates the 90ms SLO immediately, until the surge ends
at 290s. In contrast, GPUColo reacts by increasing the sleep
interval of the training job, as shown in Figure 8c, such that
the inference job can promptly get more GPU resource to run
faster. Then, at 100s, the outer loop of GPUColo is invoked to
optimize the GPU resource by lowering the training MPS from
80% to 30%. As a result of the two-tier control, GPUColo is
able to quickly lower the inference latency back to the SLO.



(a) Latency. (b) Throughput.

(c) GPUColo Knobs. (d) GSLICE Knobs.
Fig. 8: During an emulated inference request burst (90s-
290s), GPUColo outperforms extended GSLICE by its two-
tier control that results in smaller overheads, better control
accuracy, and higher inference and training throughput.

In contrast to GPUColo that adjusts only the training MPS,
GSLICE adjusts the inference MPS too, causing the inference
job to restart every 25s. As a result, it can be observed in
Figure 8a that GSLICE has fragmented inference latency val-
ues with no latency readings during its restarting times. When
the workload increases at 90s, GSLICE reacts by increasing
the inference MPS and so decreasing the training MPS, as
shown in Figure 8d. GSLICE responds slower than GPUColo
because it has a much longer period due to its overhead (25s
vs. 4s). As a result of the decreased training MPS, the training
throughput is decreased too. Figure 8b shows that, on average,
GPUColo has 36.1% higher inference throughput and 51.5%
higher training throughput than GSLICE, for two reasons: 1)
GSLICE has a much higher overhead because it relies only
on MPS, while GPUColo features a two-tier control whose
inner loop conducts periodic sleep with negligible overheads.
2) GSLICE adjusts MPS for both inference and training jobs,
while GPUColo adjusts only the training job so that the
inference throughput is not impacted by restarting.

Fig. 9: GPUColo has better latency control accuracy and
higher throughput than GSLICE under different SLOs.

To further examine the control accuracy and throughput
of the two solutions, we test different SLOs from 75ms
to 95ms with a step size of 5ms. We run this experiment
with an inference batch size of 105 for 400s and collect
the average values of each run by excluding any transient
periods. Figure 9 shows that GPUColo accurately controls the
latency at the required SLOs, except that its latency is 1ms
higher when the SLO is 75ms. In this case, both the training
sleep interval and MPS have already been increased to their
upper bounds (e.g., 1s and 100%), so the controller saturates
and loses its adaption capacity. In contrast, GSLICE often
stays unnecessarily lower than the SLO due to its restarting
overheads. At 75ms, GSLICE has an even longer latency than
GPUColo because it relies only on MPS and so has a smaller
adaption range. Figure 9 shows that GPUColo has much higher
inference and training throughput than GSLICE due to its two-
tier control that has smaller overheads. For example, when
the SLO is 80ms, the training throughput of GPUColo is 2.8
times that of GSLICE. Note again that GSLICE is not actually
designed to control co-located inference and training jobs. It
is evaluated here just to show that even an extended GSLICE
would not work as well as GPUColo.

B. Evaluation of Real-world Trace Samples

We now test a larger ML job set with 12 jobs sampled
from the real-world trace [20] based on their demanded GPU
utilization and memory size: 6 inference {I1, I2, 3, I4, I5, I6}
and 6 training {T1, T2, T3, T4, T5, T6}. We emulate a typical
scenario where inference jobs can dynamically arrive as bursts.
As shown in Figure 10, in Burst Stage 1, at time 0s, three
training jobs T1, T2, T3 and one inference job I1 arrive.
In Burst Stage 2, at 1800s, an inference burst is created by
launching four inference jobs I2−I5 and one training job T4.
In Burst Stage 3, at 3400s, training jobs T5, T6 and inference
job I6 arrive.

Figure 11 presents the average values of inference latency,
duration of inference jobs, duration of training jobs, and train-
ing job throughput of the examined solutions, all normalized
to the results of GPUColo. Similar to the motivation example,
No co-location and Separate must use two GPUs because they
keep inference and training jobs separate on different GPUs.
Hence, they both have a shorter inference batch latency and
a higher training throughput than GPUColo (at the cost of
2X CapEx). No co-location has a much longer duration for
both inference and training because it must run those jobs
sequentially without any spatial sharing. GSLICE must use
two GPUs too, because it co-locates only inference jobs and
runs training jobs sequentially on separate GPUs. GSLICE
can control the inference latency to the SLO but has a longer
duration than GPUColo due to its MPS overheads.

Simple, Conservative, and GPUColo all use only one GPU
for a lower CapEx. Among the three, GPUColo controls the
inference latency to the desired SLO with dynamic GPU
resource adjustment. Simple has much longer inference latency
that violates the SLO, because it equally divides the GPU
resource in a fixed way. Conservative tries to give more GPU
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Fig. 11: No Co-location, Separate, and GSLICE must use two
GPUs (2X CapEx), while Simple, Conservative, and GPUColo
all use just one GPU for co-location. Simple misses the SLO,
while Conservative has a lower training throughput.

resource to inference jobs, resulting in a shorter latency but a
much lower training throughput. Again, fixed GPU resource
allocation can neither lead to good GPU utilization nor adapt
to possible inference bursts. Those results are consistent with
our motivation example in Section III.

VIII. LARGE-SCALE SIMULATION WITH TRACE

As introduced before, due to the risk of violating the
inference latency SLO, data centers do not co-locate inference
and training jobs. Now, with the SLO guarantees provided by
GPUColo (as shown in Section VII-A), we perform large-
scale simulation to test how many GPUs can be safely saved
by GPUColo, with the 57-day real-world trace introduced in
Section VI. We compare against No Co-location, Separate
Co-location, and GSLICE here because they are the state-of-
the-art solutions. Simple and Conservative are not practical
because they rely on fixed GPU resource allocation. Hence,
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Fig. 12: Large-scale simulation with a 57-day real-world trace
shows that GPUColo can save 74.9% of GPUs.

(a) Entire trace. (b) Different job ratios.
Fig. 13: GPUColo has much lower SLO violation rates because
it co-locates inference and training jobs.

Simple can violate the SLO, while Conservative can have
much lower training throughput, as shown in Section VII-B.
For Separate, we follow the setup of a real data center [19]
to have the inference GPUs as 5 times the training GPUs
(i.e., 5:1), as discussed in Section I. The initial job ratio of
inference:training of the trace is 3:1. To simulate an inference
request burst, we double the number of inference jobs by
duplicating them between days 20 and 40.

Figure 12 presents the daily average number of GPUs used
by each solution. GPUColo uses an average of 766 GPUs
(over 57 days) to safely co-locate all the jobs in the trace with
SLO guarantees. In contrast, No Co-location only allows one
job to run on any GPU without spatial sharing, resulting in
an average of 3059 GPUs. Separate 5:1 must keep the ratio
between inference and training GPUs as 5:1 and it cannot use
inference GPUs to run training jobs or vice versa. As a result, it
can demand for a lot of unused inference GPUs when the ratio
of actually used GPUs is smaller (e.g., 3:1). Hence, it requires
even more GPUs than No Co-location with an average of
3625 GPUs. GSLICE only co-locates inference jobs, resulting
in an average of 1538 GPUs. During the inference job burst
between days 20 and 40, No Co-location has to use many
more GPUs to process the increased inference jobs. GSLICE
has smaller GPU increase because it co-locates those inference
jobs. GPUColo is not impacted much because GPUColo is the
only solution that co-locates inference and training jobs on the
same GPUs. Overall, GPUColo saves 74.9% and 50.2% of
GPUs on average (i.e., 2293 and 772 GPUs), if we compare it
with the state-of-the-practice/art solutions No Co-location and
GSLICE, respectively. If we assume the Nvidia A100 GPU
whose price is approximately $10,000, GPUColo can safely
reduce $22.9M CapEx for this data center with 6500 GPUs.

To test the SLO guarantees of GPUColo and GSLICE,
we also measure the SLO violation by setting the SLO of
each task as 0.96 of its length in the trace. Figure 13a
shows that GPUColo successfully keeps the SLO violation
rate low at 1.1% on average, but GSLICE has 27.2%. During
the inference job burst, the violation of GSLICE becomes
28.4% on average. The key reason is that GSLICE co-locates
only inference jobs on GPUs separated from training jobs.
As a result, when all the inference jobs need to speed up,
they compete for GPU resources with each other, resulting
in SLO violations. In sharp contrast, GPUColo co-locates
inference and training jobs together. Hence, if inference jobs
need more GPU resources, the training jobs co-located on
the same GPUs can be slowed down. We then test different



inference:training ratios. Figure 13b shows that the SLO
violation rate of GSLICE does decrease when there are fewer
inference jobs, due to decreasing GPU resource competition
among inference jobs. This result clearly demonstrates that
safely co-locating inference and training jobs with latency
control can significantly increase GPU resource utilization and
reduce CapEx.

IX. CONCLUSION

The concern of inference latency SLO violation has pre-
vented data centers from co-locating ML inference and train-
ing jobs on the same GPUs. In this paper, we have presented
GPUColo, a two-tier co-location solution that provides explicit
SLO guarantees. In the outer tier, we exploit GPU spatial
sharing (e.g., MPS) to dynamically adjust the percentage of
active GPU threads allocated to spatially co-located inference
and training processes, such that the inference latency can be
guaranteed. Because MPS can introduce considerable over-
heads and so cannot be conducted at a fine time granularity, we
design an inner tier that puts training jobs into periodic sleep,
so that the inference jobs can quickly get more GPU resources
for more prompt latency control. Our hardware testbed results
show that GPUColo can precisely control the inference latency
to the desired SLO, while maximizing the throughput of
the training jobs co-located on the same GPUs. Our large-
scale simulation with a 57-day real-world data center trace
also demonstrates that GPUColo enables latency-guaranteed
inference and training co-location. Consequently, it allows
74.9% of GPUs to be saved for a much lower capital expense.
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