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Hydrodynamic and continuum traffic flow models usually require that 
traffic states are stationary for the model assumptions to hold. The 
reproducibility of a concave fundamental diagram, FD, is typically 
assumed to also demonstrate that the underlying states are sufficiently 
near stationary. This paper uses loop detector data from five locations to 
empirically demonstrate that the microscopic traffic dynamics giving rise 
to a concave FD can also invalidate the stationarity assumptions required 
by the traffic flow models. Specifically, this work develops the 
exclusionary vehicle aggregation, EVA, method to evaluate conditions 
underlying conventional fixed time average state measurements. The 
shape of the FD is shown to be highly correlated with the standard 
deviation of headways, stdev(h), within the underlying samples: low 
stdev(h) corresponding to triangular FD and high stdev(h) to concave FD. 
Furthermore, high stdev(h) is shown to correspond to the presence of 
large voids within the given sample. These voids are inherently non-
stationary because different regions of the sample are perceptively 
distinct. With these new insights in mind, a review of the earliest FD 
literature reveals evidence supporting the loop detector-based findings. 
Collectively, the loop detector and historical FD results span over 75 
years of empirical traffic data. Meanwhile, a driver behind a large void 
can act independent of their leader. From the kinematic wave, KW, 
perspective, a void creates an ill posed problem: if a driver acts 
independent of their leader there are no KW from the boundaries that 
reach the driver during their independence, and thus, there is no way to 
predict how the driver should act. Generally, this type of ill posed 
problem is avoided in theoretical developments by requiring stationary 
conditions for the given model, but as this paper shows, real traffic does 
not necessarily provide stationary conditions. Although the voids are 
large enough to disrupt stationarity, their duration remains far below the 
resolution of fixed time averaging to be perceived. As a result, whenever 
a traffic flow model depends on stationarity and the shape of the FD, it is 
imperative to check the data to make sure they support the assumptions 
placed on the FD, e.g., via the EVA method developed herein. Finally, the 
empirical results in this paper should facilitate the development of 
macroscopic models that better capture the dynamics of real traffic. 
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1 Introduction 
Hydrodynamic traffic flow models (HdTFM) and many of the related continuum traffic flow models 
postulate that the shape of the fundamental diagram (FD) determines the velocity at which signals and 
characteristics propagate through the traffic stream as kinematic waves (KW). There are surprisingly few 
empirical studies that have examined signals in traffic flow with sufficient precision to support or refute 
HdTFM, we are only aware of two such studies, both of which suggest that signals do not propagate in 
accordance with HdTFM (Edie and Baverez, 1967; Coifman et al., 2023).  

Most of these traffic flow models are predicated on an assumption that the traffic states come from 
stationary conditions. Where a stationary traffic state is defined to be homogeneous traffic conditions 
throughout the entire time-space region of interest, e.g., q and v do not perceptively change at a 
subsample timescale for the entire duration of a macroscopic sample from a loop detector station (see, 
e.g., Cassidy, 1998). By requiring stationarity in the theoretical development of the model it precludes 
various conditions where the model might otherwise be invalid. 

Starting with the earliest HdTFM and continuing to this day, the reproducibility of a concave 
fundamental diagram, FD, is typically assumed to demonstrate that the underlying states are sufficiently 
near stationary. This paper empirically explores macroscopic traffic data that gives rise to a smooth, 
reproducible FD and shows the macroscopic data can obscure microscopic dynamics that invalidate the 
stationarity assumptions required by HdTFM. 

To study the microscopic dynamics, this paper develops the Exclusionary Vehicle Aggregation 
method (EVA), a new approach to aggregate traffic data in a manner that eliminates major sources of 
noise (inhomogeneous vehicle lengths, partial headways) while still grouping many successive vehicles 
together using a fixed time sampling strategy. It is shown that when a sample's headway variance is low 
the resulting data exhibit a triangular shaped FD. When the sample's headway variance increases, the 
resulting data shows increasing curvature, consistent with a concave FD. The headway variance is shown 
to be strongly correlated with the maximum headway in the sample, i.e., the presence or absence of a 
large void ahead of a long headway vehicle. These voids are inherently non-stationary because different 
regions of the sample are perceptively distinct. Although conditions are non-stationary within a 
macroscopic sample containing a void, if the FD is constructed from samples that contain voids then the 
emergent trend from the macroscopic data can still yield a smooth, reproducible, concave FD that masks 
the underlying conflicts with HdTFM. 

1.1 Hydrodynamic flow 
Let us begin with a few finer points of basic traffic flow theory to clarify the range of conditions where 
certain theories hold and to emphasize a few key assumptions that are commonly employed but are not 
always valid. Before there were HdTFM there was shockwave analysis, SwA. In the purest form SwA 
does not require a FD, it only requires distinct stationary states to exist. When two stationary traffic states 
abut there must be an interface between them, Wardrop (1952) developed SwA showing that the velocity 
of the interface, u, between abutting states G and H is given by Equation 1. This outcome arises as a 
direct result of vehicle conservation, i.e., SwA is simply one manifestation of vehicle conservation 
between stationary states. 

 

𝑢 = !!"!"
#!"#"

 (1) 
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Table 1, Glossary of terms and variables. 

all_lanes Denotes the case when individual vehicle measurements are combined across all 
lanes before finding the macroscopic q, k and v. 

BHL Berkeley Highway Laboratory 
c Velocity at which characteristic signals travel via LWR 
EVA Exclusionary vehicle aggregation method for aggregating vehicle detector data 
FD Fundamental diagram 
FTS Fixed Time Sampling- the conventional method for aggregating vehicle detector 

data 
ℎ!  Headway of i-th passing vehicle 
HdTFM Hydrodynamic traffic flow models 
HOV lane High occupancy vehicle lane 
k Density (veh/mi) 
kj Jam density (veh/mi) 
KW Kinematic waves 
𝐿!  Effective vehicle length of the i-th passing vehicle- sum of the physical vehicle 

length and the size of the detection zone 
LHV Long headway vehicle 
LWR Lighthill Whitham and Richards HdTFM 
max(h) Maximum headway in an EVA sample 
occ Occupancy (% time that a detector is occupied) 
𝑜𝑛!  Detector "on-time" for i-th passing vehicle 
q Flow (vph) 
Q(k) The FD curve expressed in terms of q as a function of k 
s Spacing between the leading edges of the two loops in a dual loop detector 
SHV Short headway vehicle 
Stationary Homogeneous traffic conditions throughout the entire macroscopic sample, 

thus, q and v do not perceptively change at a subsample timescale. 
SVP Single vehicle passage method for aggregating vehicle detector data 
SwA Shockwave analysis 
𝜎"  Standard deviation of headways in an EVA sample 
T Fixed sampling period in FTS and used for grouping vehicles in EVA. For FTS 

used as denominator of q and occ in FTS.  
𝑇#  Dynamic sample duration in EVA method, 𝑇# = ∑𝑟𝑒𝑡𝑎𝑖𝑛𝑒𝑑_ℎ used as 

denominator of q and occ in EVA, and usually differs from T. 
𝑡𝑡!  Vehicle i's traversal time between the paired loops in a dual loop detector 
u Velocity at which an interface travels via SwA 
v Space mean speed (mph) 
𝑣$  Free speed (mph) 

 
If the traffic exhibits a reproducible FD between speed, v, flow, q, and density, k, it becomes 

possible to use SwA to model the evolution of the traffic state over time and space. Where the resulting 
FD curve in the flow-density plane is typically defined as: 𝑞 = 𝑄(𝑘), while 𝑣 = 𝑞/𝑘. There is no 
universal shape of Q(k), but many researchers employ a concave Q(k), $

#%(#)
$##

< 0, which ensures $%(#)
$#

<
𝑣 and other desirable properties (e.g., Whitham, 1974; Del Castillo and Benitez, 1995, Li and Zhang, 
2011).  

Taking SwA, restricting the set of feasible traffic states to a concave Q(k), and employing an 
implicit assumption that all of the states on Q(k) are stationary, gives rise to Lighthill Whitham and 
Richards theory, LWR. Lighthill and Whitham (1955) surmised that when $%(#)

$#
< 𝑣, drivers must always 

respond to their leader. They take great care to make clear that their model does not apply to vehicles 
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traveling at free speed, and that it only applies when a driver must adjust their speed in response to the 
vehicles ahead, or at a macroscopic scale, "that slight changes in flow are propagated back through the 
stream of vehicles along ‘kinematic waves’, whose velocity relative to the road is the slope of the graph 
of flow against concentration." Meanwhile, Richards (1956) asserted that at any instant and every 
location the velocity of individual cars depends on car-spacing, i.e., all drivers must respond to their 
leader via what is now commonly called car following. Under these conditions, following the same 
conservation principles underlying SwA, as the state evolves it does so by progressing along Q(k) (except 
during shocks). As a result, the state at any given point in space should be dictated by a KW. If Q(k) is 
the same over all time and space, then the KW propagate at velocity c given by Equation 2. 

 

𝑐 = $%(#)
$#

 (2) 

 
In this way, LWR is an extension of SwA. Bringing in other constraints or relationships gives rise to 

more sophisticated HdTFM, most of which also employ the conservation principles underlying SwA. 
Thus, any traffic flow model that depends on the conservation principles of SwA are similarly limited to 
stationary states as required by SwA. 

Consider the strictly concave FD in Fig. 1D, with stationary states G and H highlighted. If these data 
come from a single lane, the trajectories from state H must be evenly spaced and travel at the same speed, 
𝑣(, as per Fig. 1A. If the traffic state transitions via SwA between states G and H on the concave FD, the 
resulting interface 𝑢)( must travel slower than the traffic in ether state G or H. So, vehicles catch up to 
the interface and change state as they pass it. Whereas LWR predicts that the KW within state H should 
travel at velocity 𝑐(, where 𝑐( < 𝑣(. So, in this case vehicles always overtake the KW and as they do, 
they adjust their state to match the characteristic at the given point in time and space. 

1.2 Assumptions and failures 
In their empirical study of tunnel traffic, Edie and Baverez (1967) observed that, "small changes in flow 
may not propagate at a speed equal to the slope of the tangent to a steady-state q-k curve as suggested by 
the hydrodynamic wave theories of traffic flow. Instead, they are carried along at about stream speed or 
only slightly less than stream speed right up to saturation flows, at which level they suddenly reverse 
direction." However, Edie and Baverez did not offer any explanation for the unexpected discrepancy 
between conventional theory and their empirically observed dynamics. 

Naturally, LWR and SwA are among the simplest continuum traffic flow models; however, the 
present work is potentially applicable to any such model where either the velocities of KW are 
determined by the shape of the FD or the model requires stationary conditions. While most HdTFM 
(sometimes implicitly) assume that all drivers are constrained by their leader, we speculate that in real 
traffic there could be a few drivers who choose their own speed independent of their leader (see, e.g., 
Ponnu and Coifman, 2017). The voids ahead of these drivers acting independent of their leader creates an 
ill posed problem where the traffic state over all time and space is no longer defined strictly by the 
boundary conditions, or alternatively, the independent driver forms a new independent boundary that 
emanates new KW from within the region of interest. Although SwA covers a broader set of conditions 
than HdTFM, like LWR, SwA can fail when applied at the macroscopic scale to a concave Q(k) if the 
macroscopic concavity is due to unaccounted for microscopic voids in the underlying data. 

It terms of the underlying data, most traffic monitoring relies on point detectors at fixed locations in 
space, such as dual loop detectors that can measure macroscopic flow, occupancy and space mean speed. 
Usually, these detectors collect the average traffic state over fixed sampling periods that typically range 
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from 20 sec to 15 min. Conventionally, one then must assume (often implicitly) that the state in a given 
sample is sufficiently near stationary so that SwA holds across successive macroscopic samples, and by 
extension, the HdTFM that build off the conservation constraint in SwA should also hold. The trouble is, 
in reality the aggregate states from point detector data are not always stationary, and sometimes they may 
even be chronically non-stationary. 

 
Figure 1, A hypothetical example showing vehicle trajectories (A) underling a stationary traffic state, (B) non-

stationary conditions that yield downstream moving signals that could yield the same macroscopic state 
as part A, and (C) non-stationary conditions that yield upstream moving signals. (D) A concave FD 
commonly assumed to hold for HdTFM and the states associated with part A, (B) a concave FD that 
emerges as the average of two underlying and distinct vehicle groups, each with their own FD, along 
with the states from part B, and (F) the FD and states associated with part C. 

Along these lines, Coifman et al. (2023) studied a high occupancy vehicle (HOV) lane that exhibited 
a concave Q(k) in the free flow regime. Examining data locally at individual loop detector stations, 
Coifman et al. found that while the macroscopic data yields a smooth, reproducible Q(k), similar to Fig. 
1D, the underlying traffic composition appears to be made up of a mix of long headway vehicles (LHV) 
that act independent of their respective leaders (thus, being able to travel at their preferred speeds) 
followed by brief queues of short headway vehicles (SHV) that act as if they are strictly operating in the 
queued regime of a triangular FD. Although across all vehicles the average state resulted in a concave 
FD, the two distinct populations exhibited their own separate trends, as shown by 𝑄*(+(𝑘) and 𝑄,(+(𝑘) 
in Fig. 1E. As the traffic speed drops, fewer drivers can maintain their preferred speed, so the percentage 
of LHV drops and the number of SHV in the moving queues increases. When taking the two groups 
together, the Q(k) from all vehicles shifts from being close to the LHV trend at high speed towards the 
SHV trend at lower speeds, giving rise to the concave Q(k), even though the curve is far from 
representative of either group of vehicles taken individually. The study then measured the velocity at 
which signals in v and q propagate between successive detector stations and found that although the 
traffic state fell in the free flow regime of the concave Q(k) the dominant signals appear to travel with the 
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traffic at v, rather than $%(#)
$#
 of LWR or ∆!

∆#
 of SwA. The trend of the measured signal velocities is similar 

to the observations of Edie and Baverez (1967). Unlike Edie and Baverez, Coifman et al. offers an 
explanation for the discrepancy between theory and observation, namely, that the microscopic voids 
ahead of the LHV (bold trajectories in Fig. 1B) and moving queues arising from the moving bottlenecks 
(lighter trajectories in Fig. 1B) are typically too short to be perceptible in macroscopic data even though 
the impacts violate the stationarity assumptions. In this way, the state transitions from state L on the LHV 
curve to state S on the SHV curve and back again in Fig. 1E, where the dominant state boundaries in Fig. 
1B are defined by and travel with the vehicles. But the duration of states L and S are too short to be 
isolated in the aggregate data, only the average state H is recorded at the macroscopic scale, occluding 
the non-stationary subsample dynamics that violate SwA and LWR.1 In this case the voids ahead of the 
LHV are long-lived, which is why their signals are seen and correlated between successive stations. We 
suspect that small disturbances form in the moving queues of SHV and propagate upstream, but usually 
these disturbances are short-lived, dissipating upon reaching the next LHV. 

To be clear, the general concept of moving bottlenecks is well established in the literature (e.g., 
Newell, 1998; Munoz and Daganzo, 2002, Leclercq et al., 2004; Logghe and Immers, 2008; Laval, 2009; 
Duret et al., 2010; Leclercq et al., 2016; Chen and Ahn, 2018). In turn, drivers exhibiting a range of 
preferred speeds could potentially be modeled as if traffic were comprised of different vehicle classes, as 
has been done in theoretical and simulation studies (e.g., Daganzo, 2002; Wong and Wong, 2002; Zhang 
and Jin, 2002; Chanut and Buisson, 2003; Benzoni-Gavage and Colombo, 2003; Logghe and Immers, 
2003; Ngoduy and Liu, 2007; Logghe and Immers, 2008; van Lint et al., 2008; van Wageningen-Kessels 
et al., 2014; Qian et al., 2017). But beyond Coifman et al. (2023), we are not aware of any empirical work 
that explored how different vehicle classes could come together to form a concave FD in such a way that 
violates stationarity. 

The moving bottleneck example from Coifman et al. (2023) that was repeated in Fig. 1B&E is just 
one example where the macroscopic measurements obscure the non-stationary microscopic dynamics. A 
vehicle exiting a lane is another example that creates a void, and if the prevailing speed is slower than 
free speed, it is likely that the void will be short-lived as the following vehicles close the gap. This 
process is illustrated in Fig. 1C, after a vehicle exits the lane (shown with a star) the following vehicle is 
briefly unconstrained (as shown with a bold trajectory) as it closes the gap represented by state Y. The 
gap underlying state Y shrinks as the gap closes, so State Y is shown with an open circle in the flow 
density plane, Fig. 1F, to indicate the point is not fixed, although speed is constant, the flow 
progressively increases until the gap disappears. Wang and Coifman (2008) empirically studied these 
maneuvers in vehicle trajectory data and concluded that the exiting vehicle induced an upstream moving 
disturbance as the upstream vehicles followed the trajectory of the first vehicle behind the exit, as shown 
with state X in Fig. 1C&F. They found a median lifetime of 5 sec while the voids are perceptible. But the 
dominant speeds in that study were below 20 mph. Xuan and Coifman (2012) undertook a similar study 
using instrumented probe vehicle data and found the median lifetime of 14 sec for a gap behind a 
departing vehicle, where that study was limited to maneuvers at speeds below 44 mph. At higher speeds 
it is likely that the lifetimes are longer. In aggregate data, the presence of these short-lived voids will 
place the average state somewhere in the E-X-Y triangle of Fig. 1F. When 𝑣. > 40	𝑚𝑝ℎ the voids could 
take conditions from the high flow congested region of an underlying triangular FD and give average 
states that appear to come from the free flow regime of a concave FD while masking the underlying non-

 
1 Throughout this paper, almost all references SwA are in the macroscopic context, i.e., as applied to conventional fixed time averages, and 
this application can fail if the fixed time average is non-stationary. SwA should still hold when correctly applied at the microscopic scale, as 
follows: In the presence of a void, instead of transitioning directly from state G to H, SwA transitions from state G to the origin of the flow-
density plane and then from the origin to state H, yielding to two signals that travel with the vehicles at the different speeds on either side of 
the void, rather than the single signal predicted by macroscopic SwA that travels slower than any of the vehicles. 
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stationary dynamics of the distinct states at the microscopic scale (similar to the preceding argument 
regarding Fig. 1E). While the moving bottleneck example resulted in signals moving downstream faster 
than predicted by SwA or LWR, in this case the dominant signals should propagate upstream, in the 
opposite direction that would be predicted by SwA or LWR fort the free flow regime, still in conflict with 
the traffic flow models that assume the sampled states are stationary. 

The scenario in Fig. 1C is true of both vehicles departing to an off ramp and departing in lane 
change maneuvers. Wang and Coifman (2008) showed that in the case of a lane change maneuver, the 
corresponding entrance to an adjacent lane should yield supersaturated conditions in the entered lane. 
However, the accommodation time was found to be faster behind an entrance and thus, when averaging 
across lanes the lane change maneuver should still give rise to a perceptible upstream moving ripple in 
the average state across lanes. 

Fig. 1A&D show how the macroscopic dynamics should progress under stationary conditions. The 
remaining subplots in this figure illustrate scenarios that can give rise to a concave FD from non-
stationary dynamics. There are undoubtedly many other ways for systematic microscopic events to distort 
the macroscopic states into a reproducible concave FD. What matters is that those microscopic events 
also violate the necessary assumptions of stationarity in the macroscopic states because of the ill posed 
problem from the voids. The LHV driver upstream of a void has a choice between options that change 
how the traffic state evolves. The driver could maintain the gap resulting in signals moving downstream 
with their vehicle (e.g., Fig. 1B) at the risk of attracting another vehicle to enter the lane in the gap (more 
uncertainty), or the driver could close the gap resulting in upstream moving signals (e.g., Fig. 1C) while 
choosing to do so either quickly or slowly (further uncertainty). Some of the possible outcomes might be 
in line with the predictions of a given HdTFM, but a pure HdTFM is deterministic and cannot capture the 
uncertainty in terms of which outcome the driver will choose. Then there is the matter of scale, in the 
case of a true liquid with enough particles that they are effectively uncountable, the macroscopic solution 
can use the average behavior. Whereas in traffic, there might be at most hundreds of voids generated per 
hour in a systematic process (e.g., vehicles departing to an off ramp), the number of events remains small 
enough that you cannot assume all voids will yield the same outcome. In theoretical HdTFM 
development these ill posed problems are avoided by requiring stationary conditions, but as this paper 
will show empirically, real traffic does not necessarily provide stationary conditions. 

1.3 Overview 
Based on Section 1.2, one might be tempted to conclude that traffic monitoring should use microscopic 
data, and indeed that could prevent the non-stationary states going undetected. But microscopic vehicle 
trajectories are prohibitively expensive to collect across all time and space. As the remainder of this paper 
will illustrate, there is a simple way to detect the non-stationary conditions from conventional point 
detector data. To set the stage, Section 2 reviews both conventional fixed time aggregation and the single 
vehicle passage methodologies for aggregating loop detector data, then develops the EVA method that 
incorporates different strengths from the two earlier methods. This section also presents the five dual 
loop detector data sets used in the analysis. Section 3 uses the EVA method to first explore how the shape 
of the emergent FD varies in response to the standard deviation of the headways in a given sample, 𝜎/. 
Next, it is shown that 𝜎/ is strongly correlated with the maximum headway in the given sample i.e., the 
presence or absence of a large void. Finally, the paper closes in Section 4 with conclusions. 

2 Methodology and Data Sets 
This research uses dual loop detector data, and this section presents the details of dual loop detector data 
aggregation. It begins by reviewing two existing data aggregation methods for context. Section 2.1 covers 
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conventional Fixed Time Sampling and highlights how this method is deficient for developing traffic 
flow theory. Section 2.2 covers the Single Vehicle Passage method to show how taking a deliberate 
approach to aggregating the individual vehicle actuations can yield informative insights into traffic 
dynamics, but these insights come at the cost of taking the vehicles out of sequence and discarding any 
temporal information.  

Section 2.3 develops the new Exclusionary Vehicle Aggregation method, which borrows concepts 
from the other two aggregation methods to gain additional insights into traffic dynamics and serves as the 
basis of the analysis in this research. Meanwhile, Appendix A presents some of the finer details of dual 
loop detector measurements that are not critical to understanding the rest of the paper, but these subtle 
details are very important for anyone who wishes to reproduce or extend this work. Finally, Section 2.4 
presents a brief review of the five loop detector data sets used in this research. 

2.1 Conventional fixed time sampling 
Most loop dual loop detector stations are configured to collect conventional fixed time sampling, FTS. 
FTS dates back to Gazis and Foot (1969) if not earlier. The sampling strategy was developed for real time 
operations, where small sampling errors are not critical, e.g., often an operating agency simply wants to 
know whether speeds are low or high to produce a three color congestion map. Coifman (2014a) goes 
into detail as to why FTS is not ideal for advancing traffic flow theory, but usually the individual vehicle 
actuations are discarded after being aggregated to FTS, leaving no alternatives to FTS in most cases. All 
of the detector stations used in this study collected the individual vehicle actuations, allowing us to also 
use the alternative aggregation schemes discussed below. 

At any rate, in the FTS scheme, all samples have the same fixed duration time. Fig. 2 shows a 
hypothetical example to explain the individual vehicle measurements. Generally, each vehicle is counted 
in exactly one sample and each speed measurement is attributed to exactly one sample. Ideally both the 
arrival time and speed measurements from a given vehicle are assigned to the same sample, as will be the 
case in the present study, but that is not necessarily the case for all dual loop detector deployments. 
Speed, flow and occupancy are then calculated, e.g., via Equations 3-5, where n vehicles are counted in 
the given sample.  

 

𝑞 = 0
1
 (3) 

𝑜𝑐𝑐 = ∑ 3456_89:9;:<=_>??@A46$
1

∙ 100% (4) 

𝑣 = 0
∑B/D$

 (5) 

 
It is important to note that there is no universal standard for calculating FTS, e.g., some operating 

agencies might calculate time mean speed or truncate occupancy in ways that undermine using the data to 
understand traffic dynamics (Coifman, 2001). So, care should be taken to understand the specific FTS 
used in a given data set. 

Meanwhile, two of the biggest problems of FTS come from splitting a given vehicle's observations 
across different samples. Usually, the headway for the first vehicle in a given sample will fall partially in 
the previous sample, e.g., vehicle 12 in Fig. 2 arrives in sample IV, but the portion of its headway that 
falls in sample III is allocated to sample III rather than allocating the entire headway to sample IV in 
which vehicle 12 is counted. This fractional headway can significantly degrade the fidelity of q for the 
two samples. On average, the missing fraction of a headway at the start of a sample will be balanced by 
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the added fraction of a headway at the end of the sample, but in any given sample the offset could be far 
from neutral, leading to considerable noise in q. The second problem comes from splitting a vehicle's on-
time across samples. Vehicle 6 in Fig. 2 straddles the boundary between samples II and III. In 
conventional FTS, the portion of the on-time falling in a given sample is allocated to that sample. In this 
way, the on-time can be split across samples while the count and speed are allocated to a single sample. 
As a result, during low flow a sample can have q=0 and occ>0. Additional measurement noise comes 
from aggregating vehicles of different lengths together, e.g., a truck will contribute a much larger on-time 
than a passenger vehicle traveling at the same speed (see, e.g., Coifman and Neelisetty, 2014).  

 

 
Figure 2, A hypothetical example showing 17 vehicles passing over a dual loop detector during the span of five 

fixed time sample periods, numbered I-V. The two loop detectors are shown as horizontal stripes in the 
time space plane while the vehicle trajectories are plotted to show the physical length of the individual 
vehicles. The vehicles are numbered from left to right. Veh 3 is a single unit truck (SUT), veh 9 is a 
motorcycle (MC), veh 13 is a multi-unit truck (MUT), and the remaining 14 veh are passenger cars 
(PV). For a given vehicle its arrival time is the instant the leading edge enters the upstream detector 
zone; on-time is the amount of time the vehicle occupies the upstream detector; headway is the time 
difference between when the vehicle departs the upstream detector and the time the previous vehicle 
departed the upstream detector; and speed is the quotient of the detector spacing, s, and the traversal 
time, tt, that it takes the vehicle to travel between the paired detectors. 

2.2 Single vehicle passage methodology 
The Single Vehicle Passage, SVP, methodology for aggregating dual loop detector data was developed 
over the past decade to isolate and extract finer details of traffic dynamics. The SVP method was 
designed to minimize the sampling errors from FTS and ensure large samples of homogeneous vehicles. 
For each single vehicle passage, the flow, qsvp, occupancy, occsvp, speed, vsvp, and effective length, Lsvp, 
are calculated via Equations 6-9 (Coifman, 2014b). Where h is the headway of the vehicle measured rear 
bumper of the previous vehicle to the rear bumper of the current vehicle to ensure that the gap ahead of 
the current vehicle is associated with that vehicle since ultimately a given driver controls the gap ahead of 
themself. On-time, on, is the time for which the vehicle occupied the upstream detector; detector spacing, 
s, is the distance between the leading edge of each loop of the dual loop detector; and the traversal time, 
tt, is the difference between the actuation times at the downstream and upstream detectors. Thereby 
avoiding the split headways and on-times of FTS. To ensure homogeneous vehicle samples, instead of 
grouping vehicles based on their arrival order, SVP bins vehicles by their length and then their speed. At 
this point, any individual bin with fewer than 100 vehicles is discarded to ensure the sample sizes are 
sufficiently large enough to be representative. For the remaining bins the median speed, flow and 
occupancy are found. Because the samples have homogeneous vehicle length, the measurements can also 
be used to calculate density for the given bin via the fundamental equation, 𝑘 = 𝑞/𝑣, and average vehicle 
spacing from the reciprocal of k (Coifman, 2015).  

 



 
 
 
 

  ISTTT25 Coifman – Microscopic Discontinuities Disrupting Traffic Flow Models  

 

10 

𝑞EDA =
B
/
 (6) 

𝑜𝑐𝑐EDA =
>0
/
∙ 100% (7) 

𝑣EDA =
E
33

 (8) 

𝐿EDA = 𝑣EDA ∙ 𝑜𝑛 (9) 

 
The SVP method is very different from FTS, the SVP data are collected over an extended period 

(typically ranging from one day to several months) and it is only after all of the data have been binned 
that any aggregation is done. In the case of SVP, Fig. 2 would represent a very small portion of a given 
sample. Since all vehicles are binned by length the two trucks and one motorcycle would be sorted into 
their respective length bins. If one wants to study these less common vehicle lengths the data set needs to 
be very large to ensure the respective speed bins are above the 100 observation threshold. Assuming the 
remaining 13 vehicles all have lengths falling in the 18 to 22 ft range, they all go into the same length 
class and then are sorted by speed into their respective bins. In this way, to achieve homogeneous vehicle 
lengths and speeds the arrival order and times are completely discarded. The SVP provides a low noise 
measure of the central tendency of the vehicle data, often the data yields well defined curves for a given 
vehicle length bin without any smoothing across the independent speed bins. 

Various studies have extended the SVP to compare different conditions by adding another dimension 
to the binning, e.g., adjacent lane speed, time of day, flow, and headway (Ponnu and Coifman, 2015 & 
2017; Coifman and Ponnu, 2020). These comparison studies have revealed previously unknown 
dependencies, e.g., adjacent lane speed modulating driver behavior and the FD in the ego lane. 

2.3 Exclusionary vehicle aggregation methodology 
Both FTS and SVP predate this work. To capture the temporal evolution of the traffic state from FTS 
with the noise suppression of SVP, this paper introduces the Exclusionary Vehicle Aggregation, EVA, 
methodology. Like SVP, the traffic state is measured for each vehicle as it passes the dual loop detector: 
speed; headway, h (rear bumper to rear bumper); detector on-time, on; and vehicle length via Equations 
6-9. But like FTS, the vehicles are binned into successive fixed time sample periods (successive T=30 sec 
in this study). Unlike conventional fixed time sampling, the vehicle brings its entire headway. So, the 
observation time allotted to a given sample is dynamic and will vary from the FTS window used to assign 
vehicles to samples. By definition the sample will have an integer number of headways, and all of the 
measurements from a given vehicle are allocated to a single sample. For this work each vehicle is 
assigned to the sample in which it first enters the upstream loop detector.2 Next, recognizing that the 
different vehicle lengths have different dynamics (Coifman, 2015), only passenger vehicles are retained 
for this study (18-22 ft veh, which comprise roughly 70% of the passing vehicles in the data sets used 
herein), with all other vehicles excluded from the aggregated state calculation (hence the name EVA).3 
Note that the headways for the retained vehicles do not change, the aggregation simply skips over the 
excluded vehicles. The discarded trucks and motorcycles reduce the number of vehicles in the sample but 
since their positions in the sequence of vehicles are random, the impact of their removal should be 
unbiased. In this manner the EVA method can be applied to an individual lane or all lanes combined at a 
given detector station. The latter condition is henceforth denoted "all_lanes," where all vehicles that pass 
during the given sample, regardless of lane, are aggregated together for that sample.  

 
2 The specific event used for assigning vehicles to samples is not critical as long as it is consistent across all vehicles, e.g., one could just as 
easily use the time a vehicle departs the downstream loop detector to assign all vehicles to a given sample period. 
3 Obviously, the range of retained vehicle lengths may need to be adjusted when applying EVA to a different data set,  
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In each sample speed, flow and occupancy are calculated using only the N retained vehicles (i.e., 
those with 18 ≤ 𝐿EDA ≤ 22 ft) via Equations 10-15 for the given fixed sample period using a dynamic 
sampling duration 𝑇$ via Equation 11. In this way, 𝑇$ is the sum of the headways from all of the retained 
vehicles in the sample and thus, 𝑇$ varies on a sample by sample basis. Meanwhile, for the first and last 
vehicles in the sample a portion of their ℎ4 and 𝑜𝑛4 used in the EVA calculations might occur outside of 
sampling period T.4 So in the EVA method traffic is still sampled every fixed T, but the actual time 
allotted to the calculations for that sample is dynamic 𝑇$, where 𝑇$ could be smaller or larger than T, 
depending on the passage times of the vehicles bounding the start and end of T and the lengths of the 
observed vehicles. Like the SVP method, because the samples have homogeneous vehicle length, the 
EVA measurements can also be used to calculate density via Equation 15 (Coifman, 2015).5 

 

𝑁 = 𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	18 ≤ 𝐿EDA ≤ 22	ft	𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠	𝑝𝑎𝑠𝑠𝑖𝑛𝑔	𝑑𝑢𝑟𝑖𝑛𝑔	𝑇 (10) 

𝑇$ = ∑ ℎ4F
4GB   (11) 

𝑞 = F
1%

 (12) 

𝑜𝑐𝑐 = ∑ <H&'
&()
1%

∙ 100% (13) 

𝑣 = F
∑ B/D$'
$()

 (14) 

𝑘 = 𝑞/𝑣 (15) 

 
In this paper we use EVA to generate Q(k). To remove the impacts of low flow free flow conditions 

(where HdTFTM do not apply), in this paper all samples with fewer than five retained vehicles are also 
excluded to minimize the noise from small samples.6 Whereas in other applications (e.g., time series 
analysis) one would likely want to keep those samples. Also note that throughout this paper we exclude 
samples with speeds below 10 mph. The conventional speed-trap measurement of Equation 8 assumes 
acceleration is negligible, but as per Wu and Coifman (2014), for measured speeds below 10 mph one 
can no longer ignore the impacts of acceleration. 

To illustrate the basic EVA approach using the hypothetical example in Fig. 2, vehicles 1-6 are 
assigned to sample II, vehicles 7-11 are assigned to sample III, and vehicles 12-15 are assigned to sample 
IV. In the process, vehicles 3, 9 and 13 are discarded because they fall outside of the passenger vehicle 
length range. Using the minimum number of five vehicles per sample, only sample II would be retained 
as having enough vehicles, with N = 5. The resulting state for sample II is given by Equations 16-19, note 
that vehicle 3 (a long truck) has been excluded from all of the calculations. 

 

𝑇$ = ℎB + ℎI + ℎJ + ℎK + ℎL (16) 

𝑞 = K
1%

 (17) 

 
4 An extreme example often occurs during the early morning hours, where it is possible for a vehicle to have ℎ! ≫ 𝑇. 
5 In the case of EVA, Equation 15 only applies when the traffic state in the sample is stationary, but as will be shown in Section 3.1, the 
presence of microscopic voids can disrupt stationarity. As is commonly employed in the literature, the equation should become 
approximately equal when the traffic state is sufficiently near-stationary. 
6 Although not shown in the paper, the analysis was repeated without the five vehicle per sample threshold and the general trends seen in 
Section 3.1 are similar. 
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𝑜𝑐𝑐 = >0)M>0#M>0*M>0+M>0,
1%

∙ 100% (18) 

𝑣 = K
B/D)MB/D#MB/D*MB/D+MB/D,

	 (19) 

 

 
Figure 3, Curves showing the median EVA (q,k,v) in each speed bin for each lane and all_lanes for the BHL eb 

2000 data set, (A) in the flow-density plane, and (B) the speed-flow plane. Throughout, dashed curves 
are shown for reference across the plots at constant v = 10, 40 and 65 mph, and u = -10 and -18 mph. 

To illustrate the methodology using real data, we apply EVA to the individual loop detector 
actuation data set from Coifman (2015) using a 30 sec sampling period. For each lane the resulting 
scatter plot of the individual measurements is a large cloud in the flow-density plane, qk (not shown). For 
each lane taken individually we bin all of the EVA samples by speed, find the median q, k and v across 
all of the EVA samples in a given speed bin and then connect the results from the independent speed bins 
into a curve without any smoothing between bins. This process is then repeated for all five lanes taken 
together. Any bin with fewer than 50 observations is discarded, the remaining bins are retained and used 
as the resulting Q(k), as shown in Fig. 3A. Note that no smoothing has been applied to the curves and the 
samples underlying any point in a given curve is independent of the samples underlying any other point 
in that curve. Unfortunately, the qk plane visually compresses higher speeds in a small area, so Fig. 3B 
projects these curves into the speed-flow plane, vq. It is clear from Fig. 3B that the curves span the range 
of speeds from 10 to 70 mph, with the excluded 0 to 10 mph taking up roughly half of the physical space 
in Fig. 3A. For reference, these plots (and most other plots in this paper) show dashed curves for 
reference at constant v for 10, 40 and 65 mph, and for u emanating from kj at -10 and -18 mph. Lane 1 is 
a time of day HOV lane, and so it exhibits two separate peak flows in Fig. 3B: the higher speed peak 
coming from non-HOV hours and the lower speed peak during HOV hours.7 All other lanes exhibit a 
well-defined concave Q(k), with flows peaking between 40 and 50 mph in most lanes, the same is true 
for the case of all_lanes combined. As Section 3.1 will show, the concave Q(k) is typical of the sites 
studied in this work.8 

While the general concepts underlying EVA are straight forward, the success of the method depends 
on the quality of the raw data. To this end, Appendix A presents some of the finer details of dual loop 

 
7 See Ponnu and Coifman (2015) and Coifman et al. (2023) for details on how HOV operations impact the FD at this site. 
8 Note that the FD generated by EVA method might differ significantly from the FD generated by the SVP method as applied to the same 
data set, e.g., Fig. 3 shows a concave FD via EVA but using the same data Coifman (2015) generated a triangular FD via SVP. If there is a 
minority of LHV in the traffic stream, the SVP will be insensitive to their presence because it finds the median from hundreds or thousands of 
vehicles in a single bin whereas the EVA finds the average in each sample. Since a given sample might only include a few vehicles just one 
LHV in an EVA sample could have a large impact on the sample's average. 
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detector measurements that are not critical to understanding the rest of the paper, but these subtle details 
are very important for anyone who wishes to reproduce or extend this work. 

2.4 Empirical dual loop detector data sets 
The first data set comes from seven dual loop detector stations in the eastbound lanes of I-80 in 
Emeryville and Berkeley, CA in the Berkeley Highway Laboratory, BHL (Coifman et al., 2000). These 
data were collected over 29 days in April 2000, they include over 21 million vehicle passages, and will 
be called BHL eb 2000.9 For this research we studied: (i) each lane at each of the stations individually, 
(ii) all_lanes at each station combined, (iii) each lane at all stations pooled, and (iv) all_lanes at all 
stations pooled. As per above, at a given station, for all_lanes combined: all vehicles that pass in any lane 
during the given sample are aggregated together, whereas for all stations pooled each station is processed 
independently and then all of the station results are collected into a single pool. 

While the results differed by lane, the general trends were similar across each station taken 
individually. So for brevity we present the BHL eb 2000 results from iii & iv. We have already presented 
some of the results from this data set in Fig. 3. The second data set comes from seven stations in the 
westbound lanes of the BHL over 31 days in October 2003, and will be called BHL wb 2003. Like the 
first data set, we present the results from iii & iv. The third data set comes from westbound station 103 on 
I-70/71 in Columbus, Ohio, consists of 67 days between August 2008 and November 2011, and will be 
called CMFMS wb 2008.10 Since only one station is used, we present the results from i & ii. The fourth 
data set comes from one station on eastbound I-80 in Pinole, CA. These data were collected over 97 days 
between November 2010 and March 2011 and will be called Pinole eb 2010. Once more, because only 
one station is used, we present the results from i & ii. The final data set comes from the Freeway Service 
Patrol study (Skabardonis et al., 1996) at seven dual loop detector stations11 along southbound I-880 in 
Hayward, California over 49 days between February and October 1993, and will be called FSP sb 1993. 
Like the first data set, we present the results from iii & iv. Collectively, these loop detector data sets were 
collected over a span of more than 18 years.  

For all of the data sets lane 1 is the inside or passing lane on the left and the numbering increases 
successively as one moves to the shoulder on the right. At all sites except CMFMS wb 2008, the speed 
limit is 65 mph and lane 1 is a time of day HOV lane that aside from the HOV diamond markings and 
signage was marked as if it were a normal general purpose lane. Meanwhile, at CMFMS wb 2008 the 
speed limit is 55 mph and all of the lanes there are strictly general purpose lanes. At all of the sites the 
legal rule of the road is for slower traffic to keep right, so the effective free speed exhibited by the traffic 
drops in each successive lane as one moves from lane 1 to lane 5. 

Typically, the free flow regime at a given location exhibits a roughly constant free speed over a wide 
range of flow. This fact can undermine the results when binning by speed. So for the loop detector data 
we will exclude the highest speeds from the calculations, as follows. First, it is recognized that the free 
speed, 𝑣N, varies by lane. In the fast lane 𝑣N likely exceeds the speed limit while in the slowest lane it 
might fall below the speed limit. Lee and Coifman (2012b) showed that the daily median speed provides 
a good measure of 𝑣N in a given lane. For the present study, in each lane we set 𝑣N to either the speed 
limit or the daily median speed, whichever is lower. Then, we exclude all speed bins where 𝑣 > 𝑣N −
5𝑚𝑝ℎ. 

 
9 These data are from Coifman (2015) and are available at Coifman (2024) 
10 A portion of this data set was released with Wu and Coifman (2019). 
11 Specifically, the seven successive stations in the four lane segment: 19, 13, 12, 4, 17, 15, 5. 
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3 Analysis 
It is difficult to derive to a clean Q(k) from empirical traffic detector data due to sampling errors 
(Coifman, 2014a) and the fact that real traffic exhibits a wide range of behavior. No matter how 
individual measurements of q and k (or occ) are made, a scatter plot of the individual measurements 
result in a large cloud of points in the qk plane (e.g., the outer envelope of points in Fig. 4C). As a result, 
many different curve shapes can be fit to the data with similar levels of error (see Coifman and Kim, 
2011 for further discussion). As per Section 2.3, in using the EVA method to establish the FD we take 
each lane individually, bin all of the EVA samples by speed, find the median q, k and v across all of the 
EVA samples in a given speed bin and then connect the results from the independent speed bins into a 
curve without any smoothing between bins. This process is then repeated for all_lanes combined. Section 
3.1 extends the EVA method to explore how the FD shape changes in response to the underlying 
headways. With these new insights in mind, Section 3.2 reviews the earliest FD literature and reveals 
evidence in these classic papers that supports our findings from the loop detector data. Collectively, the 
loop detector and historical FD results span over 75 years of empirical traffic data. 

3.1 Results from EVA 
As noted previously, stationarity is defined as homogeneous traffic conditions throughout the entire 
macroscopic sample, thus, q and v do not perceptively change at a subsample timescale. Like the SVP 
method, the EVA method can be extended to bin by additional dimensions. In this work, recognizing the 
impact of voids on the stationarity of a macroscopic sample, the EVA method is extended to classify each 
sample by the standard deviation of the headways that were included in the sample, 𝜎/, thereby 
quantifying the homogeneity of the sample's underlying vehicle headways. In this way, the extended 
EVA first bins the samples into four successive ranges of 𝜎/ before binning each of them by speed.  
 

 
Figure 4, Extended EVA results for Lane 3 in the BHL eb 2000 data set. First in the flow-density plane with the 

raw EVA measurements and a curve showing the median (q,k,v) for each speed bin for (A) 𝜎- < 0.6	𝑠, 
(B) 𝜎- > 1.2	𝑠, and (C) both combined. Bins above 25 mph shown with a thicker line. The same data 
presented in the speed-flow plane, (D) 𝜎- < 0.6	𝑠, (E) 𝜎- > 1.2	𝑠, and (F) both combined. Throughout, 
dashed curves are shown for reference across the plots at constant v or u. 
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Returning to the BHL eb 2000 data set (previously seen in Fig. 3), we now apply the extended EVA 
with 𝜎/ thresholds at 0.6, 0.9 and 1.2 sec to sort the data into four 𝜎/ bins. The cloud of points in Fig. 4A 
shows the resulting EVA flow-density measurements from lane 3 at all seven stations for all samples 
with 𝜎/ < 0.6	𝑠. The curve shows the median q and k for each 2 mph speed bin between 12 and 60 mph, 
and any bin with fewer than 50 samples is excluded. The curve shows the median for each bin, without 
any smoothing between bins, and traces out an almost textbook example of a triangular Q(k).12 Fig 4B 
repeats the comparison, only now using strictly the samples with 𝜎/ > 1.2	𝑠. For the higher 𝜎/ a concave 
Q(k) emerges. The flow-density plane visually compresses the speed range over which the transition 
occurs. To highlight how the qk plane compresses higher speeds, a thin curve is used for speeds below 25 
mph and a thicker curve for speeds above 25 mph, showing that the lowest 1/3 range of speeds consumes 
more than 1/2 of the physical length of the curve. As before, the plots show dashed curves for reference 
at constant v for 10, 40 and 65 mph, and for u emanating from kj at -10 and -18 mph.  

Fig. 4D-E show the same data in the speed-flow plane, and it is evident that for the FD created 
from the samples with 𝝈𝒉 > 𝟏. 𝟐	𝒔, q decreases with v for speeds above 40 mph, i.e., the free flow 
regime spans v > 40 mph. Whereas, for the FD created from the samples with 𝝈𝒉 < 𝟎. 𝟔	𝒔, q 
continues to increase with v throughout the entire range, i.e., the free flow regime does not begin 
until some point above 60 mph.  
Of course, binning by speed like this eliminates any meaningful insights for the free flow regime of a 
triangular Q(k) since all q at free flow should have roughly the same v, which is why we terminate the 
curves when 𝑣 > 𝑣N − 5𝑚𝑝ℎ. Fig. 4C&F superimpose the previous plots to facilitate comparison. In the 
process, these plots demonstrate the benefit of presenting the data in the speed-flow plane: the divergence 
between the curves becomes much clearer in Fig. 4F where the higher speeds are not compressed relative 
to lower speeds. Meanwhile, Fig. 4C also illustrates the importance of binning by speed rather than 
density: when k falls between 20 and 50 veh/mi a density bin can include both high flow congestion (Fig. 
4A around 60 mph) and low flow free flow states (Fig. 4B around 40 mph).  

As 𝜎/ of the samples increases the shape of Q(k) transitions from triangular to concave. Trouble is, 
𝜎/ varies from sample to sample, so one cannot count on the state falling on Fig. 4A, Fig. 4B, or either of 
the two intermediate 𝜎/ bins (not yet shown) at any given time. These results are not limited to lane 3, 
Fig. 5 repeats the comparisons for each of the five lanes taken individually and all_lanes combined. Now 
the cloud of individual measurements has been suppressed for clarity, with only the median curves shown 
for each 𝜎/ bin but the two intermediate bins have now been added to show the progression. The subplots 
in this figure show: (A) Lane 1 to (E) lane 5 and (F) all_lanes combined. The top two rows of subplots 
denoted with .i show the qk plane while the bottom two rows of subplots denoted with .ii show the exact 
same data in the vq plane.13 These plots clearly show that the lowest 𝜎/ bin always exhibit the highest 
flow at the given v (i.e., 𝜎/ < 0.6	𝑠 is the top-most curve in the qk plane and right-most curve in the vq 
plane) and that the flow at a given speed progressively drops as one moves to the next highest 𝜎/ bin. In 
other words, Lanes 1-4 and all_lanes combined show the same trend: the FD progresses from a 
triangular shape for the samples with low 𝝈𝒉 to a concave shape from the samples with high 𝝈𝒉.  

 
12 Recall from Section 2.3 that all samples with fewer than five retained vehicles are excluded to minimize the noise from small samples. This 
decision was made in part because 𝜎" for a sample of one vehicle is zero, which has the impact of pulling the lowest 𝜎" bin to lower q at free 
flow speeds. The other 𝜎" bins were unaffected by the single vehicle samples because they have a minimum 𝜎">0. 
13 For brevity, the plots show all 7 stations pooled, when taking each station individually the general shape does not change, but noise 
increases. Two of the data sets (CMFMS and Pinole) only contain a single detector station, which in turn, shows examples of stations taken 
individually. Also note that it is rare that the all_lanes exhibit 𝜎" < 0.6	𝑠 using 2 mph bins, so in this data set for all_lanes the lowest 𝜎" bin 
only exceeds the threshold of at least 50 observations per bin between 18 and 44 mph. 
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Figure 5, Curves showing the median EVA (q,k,v) in each speed bin from the BHL eb 2000 data set for the four 

different 𝜎- bins in (A) Lane 1 to (E) lane 5, and (F) all_lanes combined. The top two rows of subplots 
denoted with .i show the flow-density plane where 𝜎- increases from the top curve to bottom, while the 
bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now 𝜎- 
increases from right to left. Throughout, dashed curves are shown for reference across the plots at 
constant v or u. 
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Figure 6, Curves showing the median EVA (q,k,v) in each speed bin from the BHL wb 2003 data set for the four 

different 𝜎- bins in (A) Lane 1 to (E) lane 5, and (F) all_lanes combined. The top two rows of subplots 
denoted with .i show the flow-density plane where 𝜎- increases from the top curve to bottom, while the 
bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now 𝜎- 
increases from right to left. Throughout, dashed curves are shown for reference across the plots at 
constant v or u. 
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Figure 7, Curves showing the median EVA (q,k,v) in each speed bin from the CMFMS wb 2008 data set for the 

four different 𝜎- bins in (A) Lane 1 to (C) lane 3, and (D) all_lanes combined. The top two rows of 
subplots denoted with .i show the flow-density plane where 𝜎- increases from the top curve to bottom, 
while the bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow 
plane, now 𝜎- increases from right to left. Throughout, dashed curves are shown for reference across 
the plots at constant v or u. 
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Figure 8, Curves showing the median EVA (q,k,v) in each speed bin from the Pinole eb 2010 data set for the four 

different 𝜎- bins in (A) Lane 1 to (D) lane 4, and (E) all_lanes combined. The top two rows of subplots 
denoted with .i show the flow-density plane where 𝜎- increases from the top curve to bottom, while the 
bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now 𝜎- 
increases from right to left. Throughout, dashed curves are shown for reference across the plots at 
constant v or u. 
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Figure 9, Curves showing the median EVA (q,k,v) in each speed bin from the FSP sb 1993 data set for the four 

different 𝜎- bins in (A) Lane 1 to (D) lane 4, and (E) all_lanes combined. The top two rows of subplots 
denoted with .i show the flow-density plane where 𝜎- increases from the top curve to bottom, while the 
bottom two rows of subplots denoted with .ii show the exact same data in the speed-flow plane, now 𝜎- 
increases from right to left. Throughout, dashed curves are shown for reference across the plots at 
constant v or u. 

 
Fig. 6 repeats the comparisons only now using the BHL wb 2003 data set and the general trends are 

unchanged. The one exception is the curve for samples with 𝜎/ > 1.2	𝑠 in lane 1, as shown in Fig. 6A.ii. 
Like the previous data set, lane 1 is a time of day HOV lane and in this case the highest 𝜎/ bin shows the 
double peaking due to combining HOV and non-HOV periods that was previously seen in lane 1 Fig. 3. 
Fig. 7 repeats the comparisons using the CMFMS wb 2008 data set. This site only has three lanes, but 
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they are all general purpose lanes (no HOV). This site sees less congestion so the retention thresholds 
were reduced for this data set (25 samples per bin instead of 50), as a result, the curves are noisier than 
the other data sets; but each lane and all_lanes combined continue to show the trend where the FD 
progresses from a triangular shape when calculated from samples with low 𝜎/ to a concave shape when 
calculated from samples with high 𝜎/. Note that because the speed limit is only 55 mph at this site the 

 
Figure 10, One row of subplots for each data set. The first column of subplots show the curves of median EVA 

(q,k,v) in flow-density plane for each speed bin for each lane and all_lanes for the given data set, 
the second column of subplots repeat these data in speed-flow plane. Throughout, dashed curves 
are shown for reference across the plots at constant v = 10, 40 and 65 mph, and u = -10 and -18 
mph. Third column of subplots show the corresponding curves of median 𝜎- in a given sample, and 
the fourth column of subplots show curves of median max(h) in a given sample. 
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curves are terminated at lower top speed than the other sites. Fig. 8 repeats the comparisons using the 
Pinole eb 2010 data set, where the speed limit is 65 mph, lane 1 is a time of day HOV lane, and there are 
only four lanes. Like the CMFMS data, there is only one detector station in this data set. Once more the 
trends are readily evident. Fig. 9 repeats the comparisons using the FSP sb 1993 data set. The speed limit 
is 65 mph, lane 1 is a time of day HOV lane, and there are only four lanes. In this case the FD from the 
samples with 𝜎/ > 1.2	𝑠 in lane 2 still exhibits a triangular shaped FD, as shown in Fig. 9B.ii. As will be 
seen in Fig. 10Q, lane 2 consistently has very high flow, this result arises because this segment is 
immediately upstream of a lane drop and during the periods of highest demand lane 1 only serves HOV 
vehicles. 

All five of the data sets show the same trend: the FD progresses from a triangular shape when 
the FD is created from samples with low 𝝈𝒉 to a concave shape when the FD is created from 
samples with high 𝝈𝒉. Recall that collectively, these data sets span over 18 years. Since the data in a 
given subplot are from the same location and lane, and successive samples will often wind up in different 
𝜎/bins, the difference between the high and low 𝝈𝒉 curves is not related to location, traffic patterns 
or time of day. 

The first two columns of subplots in Fig. 10 repeat the analysis using all of the data, without binning 
by 𝜎/. Thus, Fig. 10A-B repeat Fig. 3, while each subsequent row of subplots show the corresponding 
results for the other data sets. One small change is made in the analysis as we move to Fig. 10, now the 
data are limited to the time period of 6 am to 8 pm because the early morning hours exhibit very low 
flows.  

 

 
Figure 11, max(h) versus 𝜎- for each speed bin in the given lane or all_lanes in the given data set for (a) BHL eb 

2000, (B) BHL wb 2003, (C) CMFMS wb 2008, (D) Pinole eb 2010, and (E) FSP sb 1993. Note that the 
curves for the individual lanes generally fall on top of one another, making it difficult to distinguish the 
different curves. This similarity across lanes is a key feature that the plots seek to present. Throughout 
dashed lines are shown at the 𝜎- thresholds between successive 𝜎- bins. 
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Table 2, Results of a first order linear regression of max(h) to 𝜎- by individual lane and separately all_lanes 
combined for each station.  

data set lane intercept slope R2 
correlation 
coefficient 

# samples 
used 

BHL eb 
2000 

1 1.59 2.47 0.96 0.98 134,415 
2 1.49 2.59 0.94 0.97 296,092  
3 1.42 2.56 0.94 0.97 264,125  
4 1.41 2.56 0.93 0.97 256,630  
5 1.52 2.54 0.95 0.97 219,866  

all_lanes 1.85 3.89 0.82 0.91 310,854 
BHL wb 
2003 

1 1.68 2.52 0.95 0.98 275,943 
2 1.59 2.61 0.92 0.96 257,220  
3 1.61 2.52 0.93 0.96 264,451  
4 1.57 2.53 0.94 0.97 263,877  
5 1.57 2.53 0.95 0.98 268,266  

all_lanes 1.86 3.89 0.84 0.92 344,050 
CMFMS wb 

2008 
1 1.25 2.33 0.97 0.99 4,228 
2 1.26 2.40 0.96 0.98 16,409  
3 1.11 2.40 0.97 0.99 6,854  

all_lanes 1.35 2.58 0.94 0.97 76,825 
Pinole eb 
2010 

1 1.64 2.52 0.95 0.98 91,892 
2 1.56 2.53 0.95 0.97 130,197  
3 1.44 2.51 0.95 0.98 66,971  
4 1.55 2.51 0.95 0.98 99,464  

all_lanes 2.80 3.09 0.84 0.92 144,715 
FSP sb 1993 1 1.77 2.41 0.96 0.98 117,955 

2 1.47 2.64 0.94 0.97 261,346 

 3 1.48 2.53 0.94 0.97 263,930 

 4 1.53 2.46 0.96 0.98 161,357 

 all_lanes 0.93 4.14 0.88 0.94 301,166 

 
Every lane in every data set except lane 2 in FSP sb 1993 (Fig. 10Q) and all_lanes combined 

condition in all of the data sets exhibit a concave FD when 𝜎/ is ignored. As discussed above, lane 2 in 
FSP sees high q because it is the fastest general purpose lane immediately upstream of a lane drop 
bottleneck. Looking at these data from another perspective, the third column of subplots in Fig. 10 shows 
that the corresponding median 𝜎/ for each speed bin increases with speed for v>20 mph. It is often 
assumed that when traffic exhibits a concave Q(k) like this, that the individual vehicles underlying the 
sample are roughly homogeneous, or "near stationary." But the last column of subplots show the median 
of the maximum headway, max(h), seen in the given sample for the given speed bin, and like 𝜎/, the 
max(h) generally increases with speed for v>20 mph. Taking the data from these last two columns of 
subplots, Fig. 11 plots max(h) versus 𝜎/ for each lane and all_lanes combined for each of the five data 
sets. In all cases a roughly linear relationship emerges. Returning to the raw EVA measurements for each 
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sample: q, k, v, 𝜎/, and max(h), for each lane and all_lanes combined at each station we did a first order 
linear regression of max(h) to 𝜎/. The resulting parameters are shown in Table 2. There is a strong 
correlation between max(h) and 𝜎/, in every single case the correlation coefficient is at least 0.91 
(median value of 0.97). Across the individual lanes the minimum R2 for the linear fit was 0.92 (median 
value 0.95) while dipping as low as 0.82 for all_lanes combined. Applying the fitted model to the 
threshold of the longest 𝜎/ bin, 𝜎/ = 1.2	𝑠, the smallest estimate of max(h) across all of the fittings is 4.0 
sec (median value of 4.6 sec). In short, max(h) increases roughly linearly with 𝝈𝒉, thus, as 𝝈𝒉 
increases not only does the FD become more concave, but the expected longest headway in a given 
sample also grows, i.e., the microscopic voids from LHV that are too small to be perceptible in the 
macroscopic data are large enough to disrupt assumptions of homogeneity and stationarity within 
the given sample. The last column of subplots in Fig. 10 reaffirms this outcome, the median of max(h) in 
individual lanes steadily increases from about 4 sec at 40 mph to about 6 sec at 60 mph. 

3.2 The sixth data set- the earliest empirical FD's 
Section 1.2 argued that short-duration disturbances like a void ahead of LHV are large enough to disrupt 
stationarity but these disturbances are too short to be perceptible at the resolution of conventional data 
aggregation. Section 3.1 then demonstrated that indeed, as 𝜎/ increases, the largest void in the sample 
increased (over 4 sec for 𝜎/ > 1.2	𝑠) while the shape of the FD progressed towards concave shape. As 
per Fig. 1, a FD constructed from non-stationary samples can yield a reproducible concave FD that 
mimic the appearance of a stationary concave FD. Or to put it another way, based strictly on the shape of 
the FD one cannot ascertain whether the curve is derived from stationary conditions that would support 
SwA and HdTFM or from non-stationary conditions that violate the assumptions of SwA and HdTFM. 

 

 
Figure 12, Figures from Greenshields (1934) showing (A) his linear speed spacing data and curve fit, (B) several 

speed-spacing models of the day projected into the speed-flow plane. 

With this view in mind, let us now consider the seminal concave FD from Greenshields (1935) that 
inspired LWR. We will call this curve G35. Greenshields's study sought to establish the functional 
capacity of a "two-lane highway," i.e., two way traffic with one lane in each direction. Greenshields 
ultimately used seven independent observation periods to measure q and v, from which k was then 
calculated. The result is a single measurement of the average traffic state for each of the seven samples. 
Each of the six free flow data points included at least 160 vehicles (mean size 412 vehicles) observed 
over a sample period of at least 6 min (mean duration 22.7 min). Greenshields (1935) only presents a 
small example of the individual vehicle measurements, but from the 35 successive vehicles shown in the 
paper, half of the headways are greater than 10 sec while the individual vehicle speeds ranged between 
20 and 62 mph (median 46 mph). Separately, the paper provides a distribution of speeds for a few of the 
samples, in each case the quartiles fall near 28 and 48 mph, corresponding to a factor of 1.7 across the 
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interquartile range. Given the large range of speeds, large headways are to be expected as fast vehicles 
pull away from slow vehicles behind and in turn, the slow vehicles collect many vehicles behind as the 
drivers wait for an opportunity to overtake; thus, giving rise to a succession of moving bottlenecks with 
voids ahead and moving queues behind. Notably, overtaking on a two-lane highway requires a very large 
void in the oncoming traffic and a void large enough to allow an opposing vehicle to overtake would also 
disrupt the continuum assumptions of HdTFM. Consistent with the 𝜎/ > 1.2	𝑠 FD from EVA applied to 
loop detector data, the traffic underlying each sample in G35 is non-stationary even though the 
concave FD is smooth and yields a good fit to the empirical data. 

It turns out G35 is not the first recorded FD, Greenshields (1934) undertook a related study, this 
time, to effectively find q as a function of v. Research starting in the early 1920's sought to establish a 
theoretical speed-flow relationship of a single lane (Johnson, 1921; Johnson 1926; Hamlin, 1928; 
Johnson, 1929, Dougherty, 1930; and Johannesson, 1931). Unlike the preceding studies, Greenshields 
(1934) appears to be the first FD study that sought to fit empirical data rather than starting with some 
assumed functional form. Recognizing that it is rare to find long queues moving at constant speed, 
Greenshields (1934) studied small platoons of vehicles trapped behind slow moving vehicles on two-lane 
highways. Specifically, Greenshields used a high speed camera to measure the speed and spacing of 794 
individual vehicles caught in moving queues, sorted these measurements into 2 mph bins, calculated the 
average spacing in each of the bins, and then fit a straight line to these averages. In this way, he measured 
a speed-spacing curve that he then projected into the speed-flow plane. We will call this curve G34, and 
because it strictly consists of vehicles caught inside moving queues, the sample in each bin was from 
homogeneous traffic. Reiterating the key figures from Greenshields (1934), Fig. 12A shows his speed-
spacing curve and Fig. 12B projects several of several of the preceding models into the speed-flow plane.  

 

 
Figure 13, The two models from Greenshields (A) in the flow-density plane, and (B) the speed-flow plane. Both 

curves are plotted with a bold line over the range of states Greenshields used for fitting the data: G34: 
v ≤ 50 mph, and G35: v > 25 mph & q > 400 vph. Dashed lines at 10 mph and 40 mph added for 
reference.  

The final models from the respective papers give G34 in Equation 20 and G35 in Equation 21 (in 
both equations v is in mph and k in veh/mi). Fig. 13 projects the resulting curves into the flow-density 
plane and separately into the speed-flow plane. The triangular G34 arises from homogeneous (and thus, 
stationary) samples of congested vehicles and is very similar in form to the low 𝜎/ from the loop 
detectors. Meanwhile, the concave G35 arises from non-stationary samples of whatever vehicles 
happened to pass during the observation period and is even more concave than the highest 𝜎/ from the 
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loop detectors. In this way, the very first empirical FD provide historical evidence to support our 
findings that samples of stationary traffic tend towards a triangular FD while samples of non-
stationary traffic tend toward a concave FD with lower max q, thereby adding an element of 
timelessness to the present work. 

 

G34:   𝑘 = KIPQ
IBMB.B∙D

 (20) 

G35:   𝑘 = JT.P"D
Q.IIB

 (21) 

 

4 Conclusions 
This paper studied microscopic voids in the traffic stream that are too small to be perceptible in 
macroscopic data but are large enough to disrupt assumptions of homogeneity and stationarity necessary 
for hydrodynamic and continuum traffic flow models. There are surprisingly few empirical studies that 
have examined signals in traffic flow with sufficient precision to support or refute these models, we are 
only aware of two such studies, both of which suggest that signals do not propagate in accordance with 
hydrodynamic flow (Edie and Baverez, 1967; Coifman et al., 2023). Edie and Baverez did not offer any 
explanation for the unexpected discrepancy between conventional theory and their empirically observed 
dynamics, while Coifman et al. found evidence of voids that disrupt the propagation of signals.  

To place the present work in context, it is important to understand the key assumption of stationary 
traffic states necessary for most HdTFM. Wardrop (1952) developed shockwave analysis, SwA, showing 
that the velocity of the interface between abutting stationary states is simply ∆𝑞/∆𝑘. This outcome arises 
as a direct result of vehicle conservation, i.e., SwA is simply one manifestation of vehicle conservation 
between stationary states. Shockwave analysis, SwA, is a cornerstone of many HdTFM. Taking SwA, 
restricting the set of feasible traffic states to a concave Q(k), and employing an implicit assumption that 
all of the states on Q(k) are stationary, gives rise to LWR. Bringing in other constraints or relationships 
gives rise to more sophisticated HdTFM, most of which also employ the conservation principles 
underlying SwA. Thus, any traffic flow model that depends on the conservation principles of SwA are 
similarly limited to stationary states as required by SwA. 

Coifman et al. (2023) studied a high occupancy vehicle (HOV) lane that exhibited a concave Q(k) in 
the free flow regime. Examining data locally at individual loop detector stations, Coifman et al. found 
that while the macroscopic data yields a smooth, reproducible concave Q(k), the underlying traffic 
composition appears to be made up of a mix of long headway vehicles (LHV) that act independent of 
their respective leaders (thus, being able to travel at their preferred speeds) followed by brief queues of 
short headway vehicles (SHV) that act as if they are strictly operating in the queued regime of a 
triangular FD. These voids are large enough to disrupt assumptions of homogeneity and stationarity 
necessary for hydrodynamic and continuum traffic flow models. In this case the LHV maintained their 
voids for a long time, which in turn caused the dominant signals in the traffic to move downstream at the 
same speed as the traffic, instead of slower than the traffic as would be predicted by SwA given the shape 
of the FD. The moving bottleneck findings of Coifman et al. (2023) is just one example where the 
macroscopic measurements obscure the non-stationary microscopic dynamics. A vehicle exiting a lane is 
another example that creates a void, and if the prevailing speed is slower than free speed, it is likely that 
the void will be short-lived as the following vehicles close the gap. Wang and Coifman (2008) 
empirically studied these maneuvers in vehicle trajectory data and concluded that the exiting vehicle 
induced an upstream moving disturbance. In this case the dominant signals should propagate upstream, 
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still in conflict with the traffic flow models that assume sampled states from the free flow regime are 
stationary. There are undoubtedly many other ways for systematic non-stationary microscopic events to 
distort the macroscopic states into a reproducible concave FD. 

While the voids are large enough to impact traffic dynamics, their durations are much shorter than 
typical sampling periods, thus, their presence cannot be detected in conventional fixed time sampling. 
Yet if a void is present in a macroscopic sample the underlying traffic state is non-stationary because 
different regions of the sample are perceptively distinct. Thus, the microscopic events violate stationarity 
in the macroscopic states.  

From the KW perspective, a void creates an ill posed problem where the traffic state over all time 
and space is no longer defined strictly by the boundary conditions. If a driver acts independent of their 
leader there are no KW from the boundaries that reach the driver during their independence, and thus, 
there is no way to predict how the driver should act. Instead, the independent LHV driver forms a new 
independent boundary that emanates unaccounted KW from within the region of interest. Or more 
simply, this driver has a choice between options that change how the traffic state evolves, but a pure 
HdTFM is deterministic and cannot capture the uncertainty in terms of which outcome the driver will 
choose. Generally, this type of ill posed problem is avoided in theoretical developments by requiring 
stationary conditions for the given model, but as this paper has shown empirically, real traffic does not 
necessarily provide stationary conditions. 

The analysis develops the exclusionary vehicle aggregation (EVA) method of aggregating loop 
detector data to greatly suppress noise. Only passenger vehicles are retained by the EVA method 
(roughly 70% of the vehicles in the data sets used herein), with all other vehicles excluded from the 
aggregated state calculation (hence the name EVA). While the vehicles are assigned to the fixed sample 
period in which they arrive, each vehicle brings its entire headway with it, resulting in a dynamic sample 
period used to calculate q and occ. Next, q, v and occ are calculated for the retained vehicles and k can be 
calculated directly via the fundamental equation because the retained vehicles have a homogeneous 
vehicle length. The EVA method is then extended to use the standard deviation of headways in a sample, 
𝜎/, to categorize the measured traffic state.  

This work used loop detector data sets collected at five different sites, and these data sets were 
collected over a span of more than 18 years. All five of the data sets show the same trend: the FD 
progresses from a triangular shape when the FD is created from samples with low 𝜎/ to a concave shape 
when the FD is created from samples with high 𝜎/, e.g., Fig. 4 demonstrates that within the same traffic 
stream, the FD changes shape: when the underlying samples have 𝜎/ > 1.2	𝑠, the FD is concave with 
𝑣 ≥ 40	𝑚𝑝ℎ falling in the free flow regime, but when the underlying samples have 𝜎/ < 0.6	𝑠, the FD 
takes a triangular shape with much higher maximum throughput and 𝑣 ≤ 60	𝑚𝑝ℎ falling in the 
congested regime. Fig. 5 through Fig. 9 show that this trend occurs in each lane individually and 
all_lanes combined in each of the data sets. Since the data in a given plot are from the same location and 
lane, and successive samples will often wind up in different 𝜎/bins, the difference between the high and 
low 𝜎/ curves is not related to location, traffic patterns or time of day. For the five data sets studied, 𝜎/ is 
highly correlated with the sample's max(h), i.e., the presence or absence of LHV. Unevenly spaced 
drivers yield non-stationary samples and when these samples are used to derive a FD the resulting shape 
is concave even though the underlying states violate assumptions of stationarity. While evenly spaced 
drivers yield stationary samples and when these samples are used to derive a FD the resulting shape is 
triangular Q(k).  

While the results are shown in this rarified format, one should remember that 𝜎/ can change 
dramatically from one sample to the next, e.g., a LHV might yield a sample with high 𝜎/ while the 
moving queue behind the LHV could cause the next sample to exhibit a low 𝜎/. Because 𝜎/ changes 
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from one sample to the next, the FD should rapidly flicker from one curve to another in Fig. 5-9. It is also 
interesting to observe that the gaps that pull q down have little or no impact on the sample speed. As a 
result, at a given location the non-stationary concave FD falls inside the stationary triangular FD and the 
resulting concave shape simply reflects the presence of the microscopic non-stationary transients in the 
underlying samples used to generate the FD. 

Next, this work turned to the earliest literature on the FD to find supporting evidence of the observed 
trends. Greenshields (1935), G35, sampled all of the passing vehicles on a two-lane highway over long 
sample periods. Each sample was of non-stationary traffic, the vehicles within exhibited large variance of 
speed and headways as they yielded the well-known concave FD. The fitted model had very low 
residuals to the empirical data even though the underlying data were far from stationary. Whereas 
Greenshields (1934), G34, subsampled vehicles passing on a two-lane highway, only taking vehicles 
caught in moving queues, each sample was of homogenous (stationary) traffic, which lead to a triangular 
FD. In this way the very first empirical FD provide historical evidence to support our findings and add an 
element of timelessness to the present work and collectively, the loop detector and historical FD results 
span over 75 years of empirical traffic data.  

The application of any hydrodynamic or continuum traffic flow model needs to be cognizant of the 
underlying microscopic processes that enable the assumed macroscopic dynamics. As shown herein, 
there can be microscopic processes far below the sampling resolution that yield a reproducible concave 
FD but also violate the presumed stationarity. Whenever a model relies on the shape of the FD to 
determine the velocities at which signals and characteristics propagate through the traffic stream, one 
must be mindful of the microscopic dynamics that are necessary to give rise to a macroscopic model and 
be careful to investigate a concave FD to ensure it supports the assumptions placed upon it. To this end, 
the EVA method binned by 𝜎/ as developed in this paper offers a simple test of stationary conditions if 
the individual vehicle actuations are available. 

Appendix A 
This section presents some of the finer details of dual loop detector measurements, it is not critical to 
understanding the rest of the paper, but these subtle details are very important for anyone who wishes to 
reproduce or extend this work. The individual vehicle actuations used in this work are rarely recorded by 
operating agencies, typically they are aggregated in the field for FTS and then the individual vehicle 
actuations are discarded. So simply getting the individual vehicle actuations can be a logistical challenge. 
One should not expect consistency between operating agencies in the way detector measurements are 
calculated, in fact sometimes a given agency might calculate the measurements differently at different 
detector stations. Meanwhile, the quality of the detector data depends on how well the detectors were 
tuned in the field. Although many tuning and calibration errors cannot be corrected post hoc, a few can 
be (Lang and Coifman, 2006; Lee and Coifman, 2012b) while the presence of other chronic errors can be 
identified (Coifman, 1999; Lee and Coifman, 2011 & 2012a). Obviously, the best strategy is to work 
with the operating agency to ensure the detectors are well tuned prior to data collection, but that is not 
always feasible. 

A vehicle passing over a dual loop detector should register four events: upstream detector rising and 
falling transitions and downstream rising and falling transitions. Where a rising transition is when the 
given detector is first occupied by the vehicle and a falling transition is when the vehicle clears the 
detector. From these four events it is straight forward to measure the traversal time from either the paired 
rising transitions or paired falling transitions; and the on-time from the difference between the falling and 
rising transition times at either of the detectors. The two pairs of measurements could be combined or 
averaged in many different ways, and in fact the four transitions themselves can be aggregated in more 
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complex ways (Wu and Coifman, 2014). It should be expected that a small percentage of vehicles will 
only be detected by just one of the paired loop detectors either due to a lane change maneuver or a 
detector error. For the EVA method we exclude any unmatched actuation seen at just one of the dual loop 
detectors and then exclude the following vehicle from the EVA calculations because its true headway is 
unknown. 

For greatest fidelity, in this paper we use the paired rising transitions to measure speed because the 
rising transition is more consistent across vehicles than the falling transition (Lee and Coifman, 2011) 
because the distribution of metal tends to be greater and closer to the ground in the front of most vehicles. 
Generally, the period of time that speed and on-times are measured will not align perfectly, in which case 
vehicle acceleration might cause discrepancies between the speed and on-time measurements. To 
minimize these impacts, the upstream on-time measurement has the greater overlap with the period that 
speed is measured via the rising transitions (Wu and Coifman, 2014), so we use upstream on-time to go 
with the choice of measuring speed from the paired rising edges. Meanwhile, the vehicle arrival time 
could be anything between the upstream rising edge and downstream falling edge transition, what is 
important is that the choice is consistent across all vehicles. We arbitrarily choose the upstream detector's 
rising edge transition time for the vehicle arrival time. 
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