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Abstract— We consider a large-scale multi-robot path plan-
ning problem in a cluttered environment. Our approach
achieves real-time replanning by dividing the workspace into
cells and utilizing a hierarchical planner. Specifically, we
propose novel multi-commodity flow-based high-level planners
that route robots through cells with reduced congestion, along
with an anytime low-level planner that computes collision-
free paths for robots within each cell in parallel. A highlight
of our method is a significant improvement in computation
time. Specifically, we show empirical results of a 500-times
speedup in computation time compared to the baseline multi-
agent pathfinding approach on the environments we study.
We account for the robot’s embodiment and support non-stop
execution with continuous replanning. We demonstrate the real-
time performance of our algorithm with up to 142 robots in
simulation, and a representative 32 physical Crazyflie nano-
quadrotor experiment.

I. INTRODUCTION

Large fleets of robots, such as those used in warehouse
operations [1], disaster response [2], and delivery [3], de-
mand coordination solutions that adjust in real time to
changing goals. In this work, we present a real-time lifelong
hierarchical method for navigating a large team of robots
to independent goals in a large, cluttered environment that
guarantees collision avoidance. By lifelong, we mean robots
can enter and exit the space, and can receive another goal
at any time, as they would in a warehouse or delivery
problem. Our approach partitions the space into disjoint cells,
allowing planning algorithms to run concurrently in parallel
within each cell. A novel high-level planner routes robots
through the partition, while a low-level anytime multi-agent
pathfinding (MAPF) algorithm navigates robots to local goals
within each cell in parallel. The real-time property holds as
long as there are not too many cells or robots in a workspace;
the limits for real-time operation are empirical and problem-
specific, however, we demonstrate real-time performance for
142 robots in simulation with a 25-cell partition.

We are primarily interested in unmanned aerial vehicles
(UAVs) operating in 3D space, such as in city-scale on-
demand UAV package delivery; however, our approach ap-
plies to robots operating in 2D as well. We present two ap-
proaches for high-level planning depending on the problem’s
requirements: 1) an egocentric greedy approach that always
operates in real-time and 2) a novel high-level planner that
routes robots through the partition using multi-commodity
flow (MCF) [4]. There are tradeoffs between these two
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Fig. 1: Long exposure of 32 quadrotors navigating a cluttered environment.

approaches. The egocentric greedy planner operates in real-
time regardless of the number of cells; however, it has
no mechanism for distributing robots, thus it can result in
congestion and longer low-level planning times within some
cells. On the other hand, the MCF-based approach eases cell
congestion by regulating the flow of robots into each cell
while ensuring bounded-suboptimal inter-cell routing; thus,
it can be useful in environments such as urban UAV package
delivery, where different types of cells (e.g., residential vs.
highway) may have different limits on the influx of robots.
The MCF-based planners can operate in real-time under
certain conditions, thus allowing for lifelong replanning
while reducing congestion, which leads to faster, real-time
low-level planning within each cell.

The low-level planner prohibits collisions while respecting
the robots’ geometric shapes. A novel cell-crossing protocol
allows robots to transition between cells without stopping in
midair. Combined with the MCF-based planner, this allows
real-time computation and safe, non-stop execution of multi-
robot plans. The contributions of this work are:
• a hierarchical framework for large-scale multi-robot

real-time coordination that significantly reduces com-
putation time compared to the baseline MAPF solver,
while resulting in a moderately suboptimal solution; and

• novel multi-commodity flow-based high-level planners,
MCF/OD and one-shot MCF, that reduce congestion by
regulating the influx of robots to each cell.

We demonstrate the algorithm in simulation with up to 142
robots and in physical robot experiments with 32 nano-
quadrotors in cluttered environments, shown in Fig. 1.

II. RELATED WORK

Centralized approaches to multi-robot planning [5], [6]
face substantial computational challenges due to their the-
oretical hardness [7], prohibiting real-time replanning for
many-robot systems. Decentralized online approaches, on the
other hand, can result in deadlocks, livelocks, congestion,
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Fig. 2: The user inputs a map, start, and goal locations. Our approach
generates a geometric partition, distributes robots among cells (hierarchical
planner), and coordinates them within each cell in parallel.

collision, and reduced efficiency. RLSS [8] generates trajec-
tories based on a single-robot planner without a deadlock-
free guarantee. Furthermore, control barrier functions [9], or
reactive control synthesis methods, are prone to deadlocks.
Distributed MPC [10] results in deadlocks when narrow
corridors are present. In cluttered environments, a buffered
Voronoi cell-based algorithm [11] also suffers from potential
deadlocks, and an algorithm using relative safe flight corri-
dor [12] leads to collisions. In the present work, we aim to
address these problems and facilitate real-time MAPF at the
discrete planning phase.

Search-based MAPF solvers generate deadlock- and
collision-free paths, but the complexity of optimal solutions
scale exponentially with the number of agents [7]. Bounded-
suboptimal algorithms have been proposed to overcome this
complexity, but poor scalability still prevents their applica-
tion to real-time coordination for large teams. To address this,
partition-based MAPF [13], [14] divides the workspace into
cells, reducing the complexity in each cell. However, inter-
cell routing is either single-agent based [13] or the solution of
a multi-commodity flow problem constrained on single-robot
shortest paths [14] without congestion-awareness, leading to
hard instances within regions. Instead, we propose a novel
congestion-aware inter-cell routing algorithm to distribute
robots while maintaining bounded-suboptimality. Further-
more, the cell-crossing method in [14] is unsuitable for aerial
vehicles due to energy expenditure while stationed in hover
for the cell-crossing channel to clear. Our novel cell-crossing
protocol addresses this drawback.

III. PRELIMINARIES

A. Multi-agent Pathfinding (MAPF) on Euclidean Graph

Consider an undirected graph G=(V,E) embedded in a
Euclidean space, where each vertex v∈V corresponds to a
position in the free space F and each edge (u, v)∈E denotes
a path in F connecting vertices u and v. For N agents,
we additionally require the existence of vertices vig and vis,
corresponding to the goal and start positions, gi and si∈R3 of
robot ri (superscript i represents robot index), respectfully.
At each time step k, an agent can either move to a neighbor
vertex

(
ui
k, u

i
k+1

)
∈E or stay at its current vertex ui

k+1=
ui
k, where ui

k∈V is the occupied vertex in the i-th agent’s
path at time step k. To respect vertex conflict constraints, no
two agents can occupy the same vertex simultaneously, i.e.,

∀k, i̸=j:ui
k ̸= uj

k. To respect edge conflict constraints, no two
agents can traverse the same edge in the opposite direction
concurrently, i.e., ∀k, i ̸= j : ui

k ̸= uj
k+1 ∨ui

k+1 ̸= uj
k. The

objective is to find conflict-free paths Pi=
[
ui
0, · · · , ui

T−1
]
,

where ui
0=vis and ui

T−1=vig for all agents, and minimize
cost, e.g., the sum over the time steps required to reach the
goals of all agents or the makespan T .

B. MAPF for Embodied Agents and Conflict Annotation

Many works address MAPF for embodied agents [15]–
[17]. We adopt multi-agent pathfinding with generalized
conflicts (MAPF/C), due to its flexibility with different
shapes. Generalized conflicts, different from typical MAPF
conflicts, include the extra conflicts caused by the robot em-
bodiment [5]. To account for the downwash effect between
robots [18], we denote RR(p) as the convex set of points
representing a robot at position p, i.e., a robot-robot collision
model. We follow the conflict annotation in [5] to annotate
the graph with generalized conflicts, defined as:

conVV(v) = {u ∈ V |
RR(pos(u)) ∩RR(pos(v)) ̸= ∅}

conEE(e) = {d ∈ E | R∗R(d) ∩R∗R(e) ̸= ∅}
conEV(e) = {u ∈ V | RR(pos(u)) ∩R∗R(e) ̸= ∅} ,

where pos(u)∈R3 returns the position of vertex u. R∗R(e)
is the swept collision model representing the set of points
swept by the robot when traversing edge e.

IV. PROBLEM FORMULATION

Consider a time-varying number of homogeneous non-
point robots in workspace W , which is partitioned into
a union of disjoint convex polytopic cells. Robots must
reach specified individual goal positions, which change over
time, while avoiding collisions with robots and obstacles and
obeying maximum cell influx limits θ (influx refers to the
number of robots entering a workspace cell). A motivating
scenario is a multi-UAV package delivery system, where
the number of UAVs entering certain types of airspaces
must be limited, and UAVs exit or enter the workspace to
charge or redeploy. The problem above requires solving a
path replanning problem that obeys cell influx limits while
handling new goal positions and a varying number of robots.
While that is the general problem we aim to solve, the present
work addresses a critical subproblem: the underlying planner
that is repeatedly called to safely and efficiently route the
robots through W .

Now, consider N (fixed) homogeneous non-point robots
operating in the partitioned workspace. W contains obstacles
defined as unions of convex polytopes O1, · · · ,ONobs

. We
use a robot-environment collision model RE(p) that is
distinct from RR(p). The free space is F=W\(

⋃
h Oh) ⊖

RE(0), where ⊖ is Minkowski difference. For each robot ri

at initial position si, our algorithm finds a path to its goal
position gi such that there are no collisions (e.g., between
robots or between robots and

⋃
h Oh) and the total number

of robots that enter each cell is less than its user-defined
influx θm (influx limits can vary by cell).
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Fig. 3: (a) inter-robot collision configuration Ccol and buffered hyperplanes.
(b)-(d) vertex-vertex, edge-edge, and edge-vertex generalized conflicts
across cells.

To efficiently address the above problem, our framework
has three components: geometric partitioning, high-level
planner, and low-level planner, as depicted in Fig. 2. Geomet-
ric partitioning divides the workspace into disjoint convex
cells, where the plan can be computed in parallel. A cen-
tralized high-level planner regulates the congestion for each
cell while guaranteeing inter-cell routing quality. An anytime
low-level planner plans collision-free paths for robots within
each cell. Initial planning includes pre-computation (the
geometric partitioning), and replanning only involves high-
and low-level planning. Once the initial plan is established,
our algorithm runs in real-time for replanning.

V. GEOMETRIC PARTITIONING

The geometric partitioning of a bounded workspace con-
sists of three steps: 1) roadmap generation, 2) graph partition-
ing and spatial linear separation, and 3) local goal generation.

A. Roadmap Generation

A roadmap is an undirected graph, introduced in Sec.III-A,
satisfying three properties: 1) connectivity-preserving, i.e.,
if a path between two points in F exists, there should be
a path in the roadmap as well; 2) optimality-preserving,
i.e., the shortest path between two points in F can be well
approximated by a path in the roadmap; and 3) sparse,
i.e., have a small number of vertices and edges. In our
experiments, we use a 6-connected grid graph, however, it
can be generated by other methods, such as SPARS [19].

B. Graph Partitioning and Spatial Linear Separation

Our method partitions the workspace into disjoint convex
cells and solves a MAPF instance in each cell. Partitioning
has two benefits: 1) fewer robots for each subgraph, and 2)
decomposed instances can be solved in parallel. While the
user can adopt any generic workspace partitioning approach,
we propose a method that generates Q convex polytopes.
First, we use graph partitioning (KaHyPar [20]) to group the
roadmap into Q balanced (similar vertex numbers) subgraphs
Gm=(Vm, Em), for m=1, . . . , Q. Balanced subgraphs lead
to cells of similar volume and an even spread of robots.

We further enforce each cell, containing a subgraph,
to be a convex polytope. Cell convexity prevents robots
from penetrating into neighboring cells before exiting their
current cells. We use soft-margin support vector machines
(SVM) [21] to compute a hyperplane Hml between vertices
of Gm and Gl, and reassign misclassified vertices. Here,
the subscript l denotes the index of the subgraphs with
vertices connecting to vertices of Gm. The resulting set of
hyperplanes forms the m-th cell, denoted as Pm.

C. Local Goal Generation

For navigating out of a cell, we generate candidate goal
states on the faces between adjacent cells. For each cell Pm,
we uniformly sample random local goals on the hyperplane
Hml and add them as shared vertices to both Gm and
Gl. Despite being shared vertices, local goals generated by
partition Pm have in-edges from Pm and out-edges to Pl

to avoid collision during cell transit. Thus, this part of the
graph is directed. To enable parallel computation, there must
be no communication between cells. Thus, the cell roadmap
Gm is modified such that the planned paths are collision-free
when crossing cells without information exchange between
cells. The following properties should be satisfied:
P1: Robots avoid collision when stationary at vertices (local-
goal or non-local-goal vertices) of different cells (generalized
vertex-vertex conflict across cells), i.e., ∀i, j,m ̸= l : vim /∈
conVV(vjl ), where the superscript in vim refers to the vertex
index and the subscript refers to the cell index.
P2: Robots avoid collision when traversing edges between
different cells (generalized edge-edge conflict across cells),
i.e., ∀i, k,m ̸= l : eim := (vim, vjm) /∈ conEE(ekl ), here the
superscript in eim refers to the edge index.
P3: Robots avoid collision when one robot is stationary at
a vertex while the other robot is traversing an edge of a
different cell (generalized edge-vertex conflict across cells),
i.e., ∀i, k, m̸=l : eim := (vim, vjm), vkl /∈ conEV(eim).

We depict violations of P1-P3 in Fig. 3b-3d. To prevent
conflicts between stationary robots at local-goal and non-
local-goal vertices across cells, we buffer the separating hy-
perplane by the inter-robot collision configuration, Ccol (c.f.
Fig. 3a), which is computed as Ccol(p) = RR(p)⊕RR(0),
where ⊕ is the Minkowski sum. The buffering is achieved by
modifying the offset H′

a = Ha +maxy∈Ccol(0)Hn ·y of the
hyperplane, where Ha and Hn are the offset and the normal
vector of the hyperplane. Given the buffered hyperplanes,
all non-local-goal vertices within the buffered region are
removed, preventing collisions between stationary robots at
local-goal and non-local-goal vertices. The local goals sam-
pled on the hyperplane are confined within the blue region
in Fig. 3a to avoid vertex-vertex conflicts between stationary
robots at local goals of different separating hyperplanes. The
buffering satisfies P1 between local-goal and non-local-goal
vertices across cells and P1, P2, and P3 between non-local-
goal vertices across cells. To satisfy P1 between local-goal
vertices across cells, we uniformly randomly sample points
on the hyperplane and reject those that violate P1. For P2
and P3 between local-goal and non-local-goal vertices, we
add the connection between the sampled local-goal vertex
to valid (no collision with the environment) non-local-goal
vertices within a radius on both sides of the hyperplane. The
local goal is removed if any connected edge violates P2 or
P3 (see Fig. 3c, 3d). Otherwise, the edges are added to the
cell roadmaps. Figure 4 depicts an exemplar partition.

VI. MULTI-COMMODITY FLOW WITH OPTIMAL DETOUR

Our hierarchical approach relies on high-level planning
to 1) regulate cell congestion and 2) preserve the bounded-



(a) (b)

Fig. 4: Geometric partitioning with Q=5, before spatial linear separation
(a), and after (b). Each cell is a convex polytope in the workspace.

suboptimality of inter-cell routing solutions. Thus, our high-
level planner simplifies MAPF instances within cells and
leads to real-time replanning. We abstract the partition as
a directed graph Gp=(Vp, Ep), where the vertices (nodes)
represent cells and edges connect neighboring cells that share
at least one face. Edges are weighted according to Euclidean
distance between the cells’ centers of mass. The high-level
planner finds an inter-cell routing U i =

[
P i
s , · · · , P i

g

]
for

each robot ri, where P i
s and P i

g are its start and goal cell,
satisfying: 1) the influx of cell m is under a user-defined
value θm, and 2) cost(U i)≤wmcf ·cost(U i,∗). Here, wmcf≥1
is a scalar representing the suboptimality bound for the
routing solutions. U i,∗ is the optimal routing of robot ri. The
influx of a node represents the number of robots entering the
cell; we define influx formally in the following section.

A. High-level Planning Formulation

The SOTA partition-based MAPF solvers [13], [14] suffer
from cell congestion, leading to hard instances in certain
cells, causing computational bottlenecks. To address this,
we formulate the inter-cell routing as a variant of the MCF
problem and propose multi-commodity flow with optimal
detour (MCF/OD), which optimally distributes robots among
cells such that the number of robots entering any intermediate
cell m (not the start or goal cells of the robot teams) is under
a user-defined value θm, if a solution exists.

Specifically, robots sharing the same start cell Ps and
goal cell Pg are one commodity csg . The commodities
set C = {c1, · · · , cO} includes all commodities given the
robot positions. Solving the MCF problem results in optimal
flows {y∗sgml}, that is the number of robots in commodity
csg ∈ C traversing along edge eml ∈ Ep. In our minimal
influx MCF formulation, the optimal flow solutions lead to
minimized intermediate cell influx and the most dispersed
routing. We define the cell influx of Pl as the total number of
entering robots, that is,

∑
csg∈C,eml∈Ep

ysgml. We formulate
the following integer linear program (ILP):

argmin
{ysgml}

α ·
∑
csg

Lsg + β ·Lin (1a)

s.t.
∑

eml,eln∈Ep

ysgml − ysgln =


|csg|, l = g

−|csg|, l = s

0, o.w.

, ∀csg ∈ C (1b)

Lsg ≥ ysgml, ∀eml ∈ Ep, ∀csg ∈ C (1c)
Lin ≥ I⊤viy, ∀vi ∈ Vp (1d)

ysgml ∈ [0, |csg|] , ∀eml ∈ SPsg, ∀csg ∈ C (1e)
ysgml = 0, ∀eml /∈ SPsg, ∀csg ∈ C. (1f)

Algorithm 1: MCF/OD
Input: a multi-commodity flow instance.

1 Root.conflict counts[o] = 1, for o = 1, · · · , O
2 Root.shortest paths = solve shortest path for each commodity in the Gp
3 Root.cost = sum of the largest cost among all paths in each commodity
4 Root.solution = solve MCF with root shortest path constraints
5 insert Root to OPEN
6 Visited[Root.conflict counts] = True
7 while OPEN not empty do
8 P ← node from OPEN with the lowest cost
9 CS ← congestionDetection(Gp, P.solution, θ)

10 if CS is empty then
11 return P.solution

12 C ← getAllConflict (P,CS).
13 for commodity co ∈ C do
14 A← new node.
15 A.conflict counts ← P .conflict counts + Io
16 if Visited[A.conflict counts] then
17 Continue

18 A.shortest paths ← P .shortest paths
19 pk ← generateKShortestPath(co,Gp,

A.conflict counts[o])
20 Update A.shortest paths[o] with pk

21 if pk ≤ wmcf · pmin then
22 Update A.cost
23 Update A.solution by solving MCF with updated shortest

paths
24 if A.cost ≤ ∞ then
25 Insert A to OPEN

Here, Lsg represents the maximum flow for commodity
csg ∈ C, defined by (1c). Lin represents the maximum
influx among all the cells, defined by (1d), where Ivi =
[Iy1 , · · · , IyF

], where yf ∈ {ysgml} , Iyf
∈ {0, 1} is an

indicator function that returns 1 when yf has positive flow
to an intermediate vertex vi ∈ Vp. y is the vector of all
flows. By minimizing both, the objective function penalizes
the maximum congestion among all cells and disperses the
flows related to one commodity. We weight Lsg and Lin

with coefficients α and β, respectively, and set β ≫ α to
prioritize minimizing Lin. (1b) is the set of constraints for
MCF formulation. The set of constraints (1e, 1f) enforces
the flows ysgml onto the shortest paths between the start and
goal cells SPsg guaranteeing the solution optimality.

Despite the minimized influx to the intermediate cells,
the minimal influx MCF formulation leads to congestion
in certain cells due to tight constraints on the short-
est paths (robots’ shortest paths may intersect at cer-
tain cells). To detour the robots optimally, ensuring that
the number of robots that enter any intermediate cell m
remains below its influx limit θm and no unnecessary
detour is introduced, we present a complete and opti-
mal solver, MCF/OD, in Algo. 1. It maintains a con-
flict tree and resolves congestion iteratively. The function
congestionDetection(Gp, P.solution, θ) computes the in-
flux for each cell in Gp, given the flow solution P.solution
and returns the set of cells with their influx larger than
the corresponding limit. The function getAllConflict(P )
returns the set of all commodities passing congested cells.

Theorem 1. MCF/OD is complete on a locally finite graph.

Proof. The cost of a conflict tree node equals the sum
of the costs of the longest routing (without cycles) in all
commodities. For each expansion, k-th shortest paths will



be added to the commodity, which means the cost of the
conflict tree is monotonically non-decreasing. For each pair
of costs X < Y , the search will expand all nodes with cost
X before it expands the node with cost Y . As the graph is
locally finite, there are a finite number of routing with the
same cost for each commodity. Thus, expanding nodes with
cost X requires a finite number of iterations.

To include an arbitrary combination of Ẑ unique edges of
all commodities, the minimal cost of the conflict tree node
is Z. Z is finite, as the worst-case scenario is to include
all the cell routing within the suboptimality bound. Since
we are considering a graph with well-defined edge weights
and a finite number of commodities, the worst cost is finite.
For a finite cost Z, because the conflict tree node cost
is monotonically non-decreasing and only a finite number
of nodes with the same cost exists, we can find arbitrary
combinations of Ẑ unique edges in finite expansions. Thus,
if a solution exists by including a combination of Ẑ unique
edges in the MCF, the algorithm can find it within finite
expansions. If all the unique edges have been added to the
MCF solver and the optimization cannot find the solution
that satisfies the user-defined influx limit, the problem is
identified as unsolvable.

Theorem 2. MCF/OD is optimal. If a solution is found, it
will have the lowest possible cost, i.e., the sum of the costs
of the longest routing in all commodities will be minimized
if a solution is found.

Proof. MCF/OD is a best-first search. In each expansion, the
k-th shortest path for the selected commodity is inserted.
Thus, the cost of a descendant node is monotonically non-
decreasing. Therefore, if a solution is found, it is the optimal
solution w.r.t. the cost.

MCF/OD can find the optimal detouring solution. How-
ever, the complexity is high due to solving an ILP in each
expansion. To tackle many commodities in a large partition,
we propose another efficient detour algorithm, one-shot
MCF, which solves MCF once. One-shot MCF augments the
shortest paths in (1e), (1f) to include all the wmcf bounded-
suboptimal paths for each commodity. We employ the k-
th shortest path routing algorithm to find all the candidate
paths. The proposed One-shot MCF is complete as it includes
all bounded-suboptimal paths for each commodity. While it
does not optimize for the routing length for all commodities,
it optimizes for minimum influx. Intuitively, MCF/OD adds
bounded-suboptimal paths iteratively to relax the constraints
and terminates once all cell influx limits are satisfied. On
the other hand, One-shot MCF adds all bounded-suboptimal
paths at once and optimizes for the minimum influx, so it
could result in unnecessary detour.

In each high-level planning iteration, we run both
MCF/OD and One-shot MCF in parallel. If MCF/OD times
out, we use the solution generated from One-shot MCF. The
high-level replanning happens every δh time interval.

VII. LOW-LEVEL PLANNER

Within each cell, the low-level planner, or the cell planner,
computes collision-free paths that navigate robots to their
local goals in an anytime fashion. The cell planner can
be divided into three steps: 1) local goal assignment, 2)
anytime MAPF/C generates discrete paths, and 3) cell-
crossing protocol for non-stop transiting between cells.

A. Local Goal Assignment

As the first step, local goal assignment aims to route robots
to the closest local goals while spreading out robots optimally
by solving the following ILP:

argmin
A

∑
ij

Aij ·Dij + α
∑
j

uj + βU (2a)

s.t.
∑
j

Aij= 1, ∀i (2b)

U ≥ uj≥
∑
i

Aij − 1, ∀j, (2c)

where Aij∈{0, 1} indicates if robot ri is assigned to the j-
th local goal, denoted as lgj . Dij is the Euclidean distance
between ri and lgj . Auxiliary variables uj in the objective
function minimize the number of robots queueing at local
goal lgj , prioritizing filling less congested local goals first.
Auxiliary variable U in the objective function minimizes the
maximum number of robots waiting in queue among all the
local goals. This leads to evenly routing robots to different
local goals to reduce congestion. A local goal is occupied if
assigned with at least one robot. Thus, the number of robots
waiting in queue for a local goal lgj is (

∑
i Aij − 1).

B. Anytime MAPF/C

We adopt the SOTA anytime MAPF method, namely
LNS [22], which iteratively improves the solution quality
until a solution is needed, to facilitate real-time replanning.
We use ECBS [23] as the initial planner as it provides a
bounded-suboptimal solution and prioritized planning with
SIPP [24] to rapidly replan for a subset of robots. We extend
both ECBS and SIPP using MAPF/C to account for the robot
embodiment.

For priority planning with SIPP, we propose the following
SIPP with generalized conflicts algorithm.

1) SIPP with generalized conflicts: SIPP compresses the
time dimension into sparse safety intervals to significantly
reduce the search space. The SIPP configuration augments
the position with its safety intervals. In the resulting config-
uration space, A∗ finds the shortest path for a robot. Planned
robots are considered moving obstacles and modify the safety
interval of the traversed states. We propose SIPP with gen-
eralized conflicts (SIPP/C) with the following modifications
and a different getSuccessors(s) algorithm, where line 11−14
(the highlighted part) differs from the original algorithm. In
SIPP/C, the collision intervals, the complements of safety
intervals, are added to vertices and edges as follows:
SIPP/C vertex conflict: for a robot at the vertex uk in a
planned path at time step k, we add the collision interval



Algorithm 2: getSuccessors(s) for SIPP/C
1 successors = ∅
2 for each action e in E(s) do
3 cfg = configuration of e applied to s
4 e time = time to execute action e
5 start t = time(s) + e time
6 end t = interval(s).end + e time
7 for each safe interval i in cfg do
8 if i.start > end t || i.end < start t then
9 continue

10 t = earliest arrival time at cfg during interval i with no collisions
11 if interval(e).end ≥ t−e time && interval(e).start ≤

interval(s).end && i.start ≤ interval(e).start + e time ≤ i.end
then

12 t = max(interval(e).start + m time, t)

13 else
14 continue

15 s
′

= state of configuration cfg with interval i and time t

16 insert s
′

into successors

17 return successors

[k, k] to vertices and edges that intersect with the robot-robot
collision model at pos(uk), i.e., RR(pos(v))∩RR(pos(uk))
and R∗R(e) ∩ RR(pos(uk)), ∀v, e. Note here, we use the
swept model R∗R(e) when the robot traverses an edge.
SIPP/C edge conflict: for a robot traversing an edge ek:=
(uk, uk+1) at time step k, we add the collision interval
[k, k] to vertices and edges that intersect with R∗R(ek), i.e.,
RR(pos(v)) ∩R∗R(ek) and R∗R(e) ∩R∗R(ek), ∀v, e.

In Algo. 2, E(s) is the action space at state s. For a
discrete path Pi, we assign a time tk = k∆t to each discrete
time step and obtain the path f i. ∆t is a user-defined value
to satisfy the robot’s dynamic constraints. The low-level
replanning happens repeatedly with a δl time interval.

C. Cell-crossing Protocol

A robot would idle at a local goal if the path in its next cell
is not yet computed. We propose a cell-crossing protocol that
results in non-stop execution, even when traversing between
cells. We buffer the hyperplane Hml by a distance de towards
cell Pm. All robots, currently in Pm and exiting to Pl,
compute paths for Pl within the buffer. Buffering is achieved
by changing the hyperplane offset to H′

a = Ha−Hn ·de. By
enforcing the buffer distance de ≥ δl · Vmax, where Vmax is
the maximum robot speed, the robot is guaranteed to have
a plan in its next cell computed at least once before leaving
its current cell. A robot entering the buffer zone will then
have a plan to exit its current cell and transition through its
next cell. The robot, in the buffer zone, fixes its plan of the
current cell to lock the local goal and expected arrival time
to its next cell. Thus, when computing the plan for the next
cell, the robot’s expected start time and position will be pre-
determined and independent of cell planning order. The robot
computes a plan for its next cell, then concatenates the fixed
plan of its current cell and the plan in its next cell to form
a complete transition plan. Fig. 5 depicts our cell-crossing
protocol.

VIII. RESULTS AND DISCUSSION

We now demonstrate the system in experiments on sim-
ulated and physical robots. For large-scale simulated robot

Fig. 5: Robots (cones) fix their paths within the buffer zone and start
replanning after crossing the hyperplane.

experiments, we create a confined 3D space with random
obstacles uniformly generated on a disk of radius 10m. To
validate the algorithm’s scalability, we scale up the number
of robots and the corresponding workspace size to maintain
the robot density in different experiment instances. The
“Circle74” workspace is 20m×20m×8m. We generate 74
robots whose start states form a circle with a 10m radius
at the height of 1m and are centered at the x-y plane’s
origin, depicted in Fig. 6a. In “Circle142” we scale x and y
dimensions by

√
N to 27.7m×27.7m×8m. The robots start

in concentric circles with 13.85m and 11.85m radii at 1m
high, centered at the x-y plane’s origin, shown in Fig. 6b. In
“Demo32” we model the occupancy map of our cluttered
lab environment. It is 12.55m×7.63m×2.8m. We run 32
Crazyflies with initial x-y positions uniformly on an ellipse at
1m high, shown in Fig. 6c. The goal states are the antipodal
points on the circle (or ellipse). We construct the roadmap
using a 6-connected grid graph with an edge length of 1.6m
for large-scale simulation and 0.7m for the lab environment.

For simplicity, we set the same influx limit θm=20 for all
cells in high-level planning and a suboptimal bound wmcf=2
for both MCF/OD and One-shot MCF algorithms. We set the
high-level planning time interval δh=5s for “Circle74”, δh=
3s for “Circle142”, and δh=10s for “Demo32”. We set the
low-level planning time interval δl=1s. For the LNS planner
with random neighborhood selection, we use ECBS as the
initial planner and prioritized planning with SIPP as the
iterative planner, both planners we extend with MAPF/C. To
account for downwash, we use an axis-aligned bounding box
to represent the robot-robot collision model RR(0). In sim-
ulations, i.e., “Circle74” and “Circle142”, we use the axis-
aligned bounding box from [−0.12m,−0.12m,−0.3m]

⊤

to [0.12m, 0.12m, 0.3m]
⊤. Since “Demo32” is denser, we

use the bounding box from [−0.12m,−0.12m,−0.2m]
⊤ to

[0.12m, 0.12m, 0.2m]
⊤. We use the same shape representa-

tion for the robot-environment collision model RE(0). All
experiments run on an Intel i7-11800H CPU computer.

Fig. 6 depicts typical solutions of the proposed algorithm.
We summarize quantitative results in Table I, where MCF
refers to MCF/OD and One-shot MCF running in parallel,
as described in Sec. VI-A. Note that, as |V | and |E| suggest,
the number of vertices and edges increases after partitioning
as we add local goals and corresponding edges. With a small
computational overhead t̄high, the proposed high-level plan-
ner effectively reduces the congestion among cells compared
to both greedy and partitionless baseline approaches, by in-
specting N̄max. Here t̄high is the average high-level planning
time and N̄max is the averaged maximum number of robots
in a cell throughout the whole execution. By increasing



Instance Q Roadmap High-level Low-level
|V | |E| Method t̄high(s) t̄max

high(s) N̄max Method T̄ t̄low(s) t̄max
low (s)

Demo32 8 1059 5890 MCF 0.06 0.06 18.0 ECBS(3.0)+PP 26.88 0.03± 0.01 0.13± 0.06
Circle74 1 1110 6728 - - - 29.0 ECBS(2.0) 29.00 12.31± 0.17 -
Circle74 10 1515 8760 Greedy - - 42.4 ECBS(2.0)+PP 46.85 0.04± 0.03 0.40± 0.42
Circle74 10 1515 8760 MCF 0.01 0.04 23.9 ECBS(2.0)+PP 42.85 0.02± 0.00 0.09± 0.02

Circle142 1 2100 13220 - - - 32.0 ECBS(4.5) 36.00 16.32± 0.28 -
Circle142 25 2954 16383 Greedy - - 73.6 ECBS(4.5)+PP 121.60 1.69± 0.82 37.58± 23.07
Circle142 25 2954 16383 MCF 0.13 0.35 27.1 ECBS(4.5)+PP 98.35 0.03± 0.01 0.28± 0.14

TABLE I: Influence of different parameters on different instances. The statistics are averaged across 20 trials.

(a) (b) (c)

Fig. 6: Representative runs of our algorithm with (a) 74 robots, (b) 142
robots, and (c) 32 robots in cluttered environments.

the number of cells Q, the algorithm significantly reduces
MAPF computation time. Specifically, for the average low-
level planning time t̄low, in instance “Circle74”, the proposed
algorithm runs 616-times faster than the baseline method and
544-times faster in instance “Circle142”. Both the average
low-level replanning time t̄low and the averaged maximum
low-level replanning time t̄max

low are within the real-time
regime for all instances. Since we use an anytime algorithm,
we only record its initial planning time in Table I, which can
be directly compared to the baseline. As we would expect,
while running in real-time, the algorithm yields suboptimal
solutions compared to the baseline MAPF, according to the
average makespan T̄ . Because the partitioning invalidates the
global optimality of MAPF algorithms, and the high-level
planner detours robots among the partition, the planned paths
become longer.

A. Effectiveness of Partition in Low-level Planning

Fig. 7a shows a quantitative evaluation of the low-level
planning time and its solution makespan against the number
of cells in “Circle74”. We report the median of low-level
planning time for its robustness. The logarithm of low-level
planning time decreases significantly as the number of cells
increases. Thus, by dividing the workspace and parallelizing
computation, the proposed algorithm significantly reduces
the low-level planning time. The makespan increases at the
beginning then plateaus. This phenomenon is expected. As
the number of cells increases, at the beginning, the high-
level planner becomes more effective in detouring the robots
to reduce congestion. At a certain point, no further detour is
required as congestion regulation is satisfied. Additionally,
the partition breaks the global optimality of the MAPF
planner, leading to a degeneracy in solution quality.

Our algorithm runs MAPF in parallel for all cells; in
Fig. 7b, we investigate the utilization of multi-threading. The
orange dashed curve represents the theoretical lower bound
of the total low-level planning time (assuming no overhead
is introduced when allocating the computation to different
threads). We observe that our method’s computation time
follows the same trend, while the gap between the theoretical
lower bound and experimental computation time increases as

(a) (b)

Fig. 7: 95% Confidence intervals of (a) log-median of low-level planning
time and Makespan of our algorithm (b) median of total low-level planning
time. The statistics are averaged across 20 trials.

we increase the number of threads, indicating an increase in
parallelization overhead in more cells.

B. Effectiveness of High-level Planning

To demonstrate the effectiveness of our MCF-based high-
level planner, we compare its cell congestion to an egocentric
greedy approach. The greedy planner outputs a single-robot-
based shortest inter-cell routing without considering other
robots’ routing, and may lead to congestion in certain cells.
Additionally, we compare the MCF-based approach with the
baseline by imposing the partition onto the workspace.

In Table I, we report the average high-level computation
time t̄high and the averaged maximum number of robots in a
cell throughout the whole execution N̄max. The complexity
of a MAPF instance scales poorly with the number of robots.
Thus, N̄max is an insightful indicator of the computational
hardness of a MAPF instance. The computation time for
greedy high-level planning is instant, while the MCF-based
methods have additional overhead that increases with the
number of cells, since they are centralized. For all instances
in this paper, MCF-based methods provide real-time solu-
tions.

The MCF-based methods reduce the congestion com-
pared to greedy and baseline methods, according to Nmax.
Although the advantage to the baseline is minor in the
current experiment setup, the MCF-based approach can fur-
ther reduce the congestion by relaxing the suboptimality
bound, i.e., increase wmcf . For a fair comparison of low-
level planning time, both greedy and MCF-based utilize the
same number of threads in computation. Compared to the
greedy approach, the proposed MCF-based inter-cell routing
brings cell planning computation time to real time while
maintaining its solution quality, i.e., makespan.

C. Scalability of the Proposed Algorithm

To validate the scalability of our algorithm, we run sim-
ulations on increasing numbers of robots (c.f., Table. I).
Note that our algorithm achieves real-time performance in all
instances as we scale up, according to the averaged maximum
high-level and low-level replanning time t̄max

high and t̄max
low . Due

to our hierarchical approach, it can further scale to larger



teams with more cells and CPU threads. The computation
bottleneck is the centralized high-level planning in larger
scale problems, which we aim to address in future work.

D. Physical Robots

Fig. 1 shows a representative experiment with 32 physical
Crazyflies in a cluttered environment (video link: https:
//youtu.be/ftdWVpLkErs). We use a VICON motion
capture system to localize and CrazySwarm [25] to control
the robots. In the experiment, robots are uniformly located on
an ellipse, with their antipodal goals. Three column obstacles
are placed within the ellipse. The experiment demonstrates
that the proposed algorithm distributes robots effectively
through the workspace and achieves real-time replanning.

IX. CONCLUSION AND FUTURE WORK

We have introduced a hierarchical path planning algo-
rithm for large-scale coordination tasks. Despite yielding a
suboptimal solution, our algorithm significantly reduces the
computation time and suits on-demand applications such as
drone delivery. The framework achieves real-time operation
by dividing the workspace into disjoint cells; within each,
an anytime MAPF planner computes collision-free paths in
parallel. Our high-level planner regulates congestion while
guaranteeing routing quality. Additionally, our algorithm
considers the robot embodiment, and we run experiments
with the downwash-aware collision model of a quadrotor.
We also devise a cell-crossing protocol, which guarantees
non-stop execution even when transiting between cells.

The proposed algorithm is designed for lifelong replan-
ning. In our experiments, goals are chosen from a pre-
determined set, however, it can be extended to a lifelong
replanning as we request new goals online, and the algorithm
runs conflict annotation to update the conflicts.

While the MCF-based high-level planner operates in real-
time in our experiments with up to 142 robots in a 25-
cell partition, the limits of its real-time operation are not
well defined and depend on the number and density of
robots and cells in the space. Future work will explore
distributed MCF [26], [27] to increase scalability of the
system with real-time, distributed operation regardless of the
number of robots and cells. Furthermore, we aim to solve real
time large scale motion planning, which respects the robot’s
kinodynamic constraints and plans in continuous space and
time.
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