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Abstract

We propose a new representation of functions in Sobolev spaces on an N-
dimensional hyper-rectangle, expressing such functions in terms of their ad-
missible derivatives, evaluated along lower-boundaries of the domain. These
boundary values are either finite-dimensional or exist in the space Lo of
square-integrable functions — free of the continuity constraints inherent to
Sobolev space. Moreover, we show that the map from this space of boundary
values to the Sobolev space is given by an integral operator with polyno-
mial kernel, and we prove that this map is invertible. Using this result,
we propose a method for polynomial approximation of functions in Sobolev
space, reconstructing such an approximation from polynomial projections of
the boundary values. We prove that this approximation is optimal with re-
spect to a discrete-continuous Sobolev norm, and show through numerical
examples that it exhibits better convergence behavior than direct projection
of the function. Finally, we show that this approach may also be adapted
to use a basis of step functions, to construct accurate piecewise polynomial
approximations that do not suffer from e.g. Gibbs phenomenon.

1. Introduction

We consider the basic question of the relation between a function and its
highest-order partial derivative. In particular, given a differentiable function
u, can we uniquely represent u by its highest-order derivative and a set of
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independent boundary values? Conversely, given these boundary values, can
we reconstruct the associated function u from its highest-order derivative?

To illustrate, for a first-order differentiable function in a single variable,
an answer to both of these questions is given by the fundamental theorem
of calculus. This results proves that a differentiable function u : [a,b] — R
can be represented by its partial derivative dsu and the value of u at a
single point in its domain, i.e. u(s) = u(a) + f; Osu(f)df. Moreover, given
any vg € R and vy € Lofa,b] such that u(s) = vo + [ v1(#)d6, we have
u(a) = vy and Osu = vy. If the function is Nth-order differentiable, this
result may be generalized using Cauchy’s formula for repeated integration,
uniquely expressing u in terms of its Nth-order derivative ¥ u and suitable
boundary values. More generally, the theory of Green’s functions tells us
that for a wide variety of differential operators D, a function u in multiple
variables can be expressed in terms of Du using an integral operator with a
suitable kernel [1]. Unfortunately, establishing this kernel for a given operator
D can be challenging in practice.

In this paper, we provide an explicit relation between a differentiable func-
tion u : Q — R on a hyperrectangle Q := [\, [a;, b;], and each of its deriva-
tives. In particular, let W2[Q)] denote the Sobolev space of d-differentiable,
square-integrable functions, so that D%u = (,i% e gXijvu € Ly[Q] for every
a € N with o; < §; for all i. Then, any function v € W[Q] can be ex-
pressed in terms of its derivatives D%u, evaluated along lower boundaries of
the hyperrectangle, as we show in the following theorem.

Theorem 1. Suppose u € WJ[Q] for 6 € NV and Q := [[,]as, b;] € RV,
Then
u(s) = Z (G2 B*~°D™u)(s), s €Q,

0<a<s

where B® == T2, 07 and G =[], 9%, with

i=1 "%

(b-ﬁiu)(s) _ {u(sl,...,ai,...,sN), B; <0,

u(sy,...,Si,...,8n), Bi=0,
5 P, (si — a;)u(s), o; < 0,
gia-u §) = Si
(Fia)(5) {fal Poi—1(8i — O)u(s)]s,=edd ;= d;,

Sk

where pi(z) = 3.



Moreover, for any {v® C Ly[I'*] | 0 < a < 0} on suitable I'* C Q, if

u(s) = > (Gv)(s), s€N,

0<a<é
then, v& = B“°Du for all 0 < o < 4.

Thm. 1 shows that any function u € WZ[€] can be represented uniquely
by its partial derivatives D*u for 0 < a < ¢, evaluated at suitable (lower)
boundaries of the domain. For example, consider a second-order differen-
tiable function u € WQ(Z’I)[[(L b] x [¢,d]] in two variables. Then, the associated
boundary values in Thm. 1 are given by

B~V DOy = y(a,c), (B~ DMu)(y) = dyu(a. ),
B0V DOy = du(a,c), (B~ DMVu)(y) = 8,9,u(a.y),
(B-ODDEIG) (@) = DPu(w, ), (BOVDEVu)(z,y) = E0,u(z, ),

and Thm. 1 implies

x

u(z,y) = u(a,c) + (x — a)du(a, c)+/( — 0)02u(0, c)do
/8ua77)d77+/( )88ua77d77+// 0)020,u(0, n)dndo.

We prove Thm. 1 in Section 3. In the subsequent section, we then show how
this result may be applied to perform optimal polynomial approximation of
functions u € W?[Q)], reconstructing such an approximation from a projec-
tion of the derivatives B“~° D®u onto a polynomial subspace. This approach
has the advantage that, unlike a direct projection of u (using the Ly inner
product), it accurately captures each of the derivatives D*u, thus converging
in the Sobolev norm. Moreover, this approach can be adapted to perform
projection using a basis of step functions, avoiding undesired oscillatory be-
havior inherent to smooth basis functions, whilst still capturing each of the
derivatives of the function.

2. Notation

We denote the set of integers as Z, and that of natural numbers as N,
writing Ng := NU {0}. For N € N and o, 8 € Z", we write a < § if a; < 3;
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for alli € {1,..., N}, and we write o < 3 if o < 3 and « # 3. We write 0V
and 1V for the vectors of all zeros and ones in NJ', respectively.

Our focus in this paper will be on Sobolev spaces on a hyper-rectangle
Q=0 x...Qu, where Q; = [a;,b;] CR for ¢ € {1,..., N}. To distinguish
the boundaries and interior of this domain, we introduce the notation

{ai}a 6@ < 07
0F = Qfl X ... X Qz@» Qzﬁ =9 (@i, bi), B =0,
{b:},  Bi>0,

for all 5 € Z¥, so that Q = Uger s g1yv Q7. We will write Lo[Q] for the
Hilbert space of square-integrable functions on Qf. If QF corresponds to a
boundary of the domain, i.e. Q7 = {a;} or Q% = {b;} for some i, we identify
Ly[Q°] with the space of square-integrable functions along this boundary, so
that e.g. Lo[[a,b] x {c}] = Ly[[a,b]] and Ly[{b} x [c,d]] = Ls[[c,d]]. If Q°
corresponds to a vertex of the hyper-rectangle, we let Ly[Q°] = R, so that
e.g. Lo[{a} x {d}] = R.

For a suitably differentiable function u € Ls[(2], we define the partial
differential operator D as

%
.
0s™

2

e _ [65] QN (6% _
D%a = 05" -0 u, where Oyia =

For 6 € NYY, we define the Sobolev subspaces of d-order differentiable
functions on € as

W] == {u € L,y[Q] | D*u € Ly[Q], Vo € N{ : @ < 6}, (1)

with the associated Sobolev norm |[ullys = > gvc,<slluflz,. Note that
the Sobolev space as defined here differs from that more commonly used in
the literature, wherein functions u in the Sobolev space are required to be
differentiable only up to some order k := ||d||1, so that D*u € L, for all
a € NYY for which ||al; < k. However, defining a Sobolev space as in (1),
we ensure that the derivative Du of any u € W°[Q)] is classically defined
at the boundaries s; = a; and s; = b; whenever a; < ;, whereas such
boundary values may be only weakly defined if e.g. ||a|y < ||d][1. Then, for a
function u € W°[Q)] with suitable § > 0", we can define a boundary operator
BP :u s u|gs as the restriction of this function to the subdomain QF.



3. Proof of Main Result

In this section, we rephrase and prove the main theorem.

Theorem 1. Suppose u € WJ[Q] for 6 € NY and Q := [[,]as, b;] € RV,
Then
u(s)= Y (G2B*°D™u)(s), se, (2)

0N <a<é
where G .= [, g?fai where for alli € {1,...,N},
U(S), O:Oéi :(51',
(g7, 0)(s) =} Pa, (si—a:)u(s), 0<a; <6,
fas; pai_l(si—Q)u(s) si:9d9 0 <o =9
Moreover, for any {v® € Ly[Q*°] | 0N < a < &}, if

u(s) = Y (Gav®)(s), seQ (3)

0<a<é

then, v& = B 9D>u for all 0N < a < 6.

The theorem shows that any function u € W°[Q] can be expressed in
terms of each of its partial derivatives D“u, evaluated along a suitable lower
boundary Q%9 of the domain. To prove this result, we first show that we
can express such a function u in terms of its derivatives dg‘u with respect
to just a single variable s;, evaluated at the boundary s; = a;. To illustrate,
consider a function v € W@ [[a,b] x [c,d]] in just two variables. Applying
the fundamental theorem of calculus twice, we can expand this function along
x € [a,b] as

u(z,y) =u(a,y) + /1 O,u(f,y)do

x r0
= u(a,y) + [x—a]@U(a,y)Jr// 07u(n, y)dnds.

Using Cauchy’s formula for repeated integration, the double integral in this
expansion can be expressed as a single integral, and we obtain a representa-
tion of u as

u(z,y) = u(a,y) + [x — alOyu(a,y) + /I[x — 0)0%u(0,y)do.
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The following lemma generalizes this result to functions in N variables, dif-
ferentiable up to arbitrary order d; € Ny with respect to variable s; € [a;, b;],
for any 7 € {1,...,N}. In this lemma, we will write ¢; € RY for the ith
standard Euclidean basis vector in R¥.

Lemma 2. Suppose u € W3[Q] for § € NY and Q := [[X,[a;, b:i] € RV,
Then, for any i € {1,...,N},

64
(955 "0ku)(s),  seq, (4)

s
k=0

where gffk is as in Thm. 1 and 0% = Bk 5o that

(ou)(s) = {u(sl, ce @iy SN), B <0,

11(81,...78Z‘,...,SN>, 6@20
Moreover, for any {vF € Ly[QF—00e] L if
0;
= (gffkvk) (s), s €€, (5)
k=0

then, v¥ = %0k u for all 0 < k < 6.

Proor. Without loss of generality, fix ¢ = 1, re-ordering the variables s; if
necessary. Let § € N)'. We prove the result through induction on the order
of differentiability d; € Ng.

Base case d; = 0 : For the case §; = 0, the result holds trivially, since
99,b10% = I is an identity operator.

Induction step 6; > 0 : To show that the result holds for all §; € Ny,



fix arbitrary 8; € No. Then, for every {v* € L, [Q(k*‘gl)el] |0 <k <d},

A (Z (gffkvk)(n)) "
/ k(n—a1)v dn+/al/alp511n 0)v® (6) dodn
> [

k(n—ay)dn v* //p51 (n— Hdnv (0)do

Fnﬂw

=<t} o~
Il
,_. =)

P||1

Oqlk.
,_.o

pk+1(31—G1)Vk+/ p51(81—9)V51(9)d9

ai

k=

[en]

51
= (V) (1), (6)
k=0

where we note that f; pr(n—a)dn = pi+1(x —a) by definition of the polyno-
mials pg. Now, assume for induction that the lemma holds for € NJ, and
let § = §+ey so that 6, = §; + 1. Fix arbitrary u € W{[Q]. To prove that (4)
holds for u, note that d,,u € W2 [Q] = W2[Q]. Applying the fundamental
theorem of calculus, invoking the induction hypothesis, and finally using the
relation in (6), it follows that

u(s:) = u(ar) + / " By u(n)dn

S1 ! . -
=u(a;) + / (ng}kb’f_dlafl (831U))(77)d77

k=0

— gliby 5180u+z< DELDE L () ) (1)

51 1 61
= glbr " u+ D (gl bR ) (1) = D (gl bE 0k ) ).
k=0 k=0

Thus (4) holds. To see that also the implication for (5) holds, suppose that for
some {vF € Ly[Q*=3)e] | 0 < k < 6,}, we have u(s;) = Zilzo(gf}kvk) (s1).




Then, using Eqn. (6),

u(s)) = v+ > (g7 V) (1) = V0 + / D (ol V) (0)do
k=0 1 k=0
It follows that
511
b=10% u = u(a;) = v*, and  Oyu= Z (975 vFH).
k=0

By the induction hypothesis, then, for all 0 < k < &, = &, — 1,
VI =BT TOL (9,u) = BTk,

whence vF = b'f_516§1u for every 0 < k < §;. Thus, for §; = o +1¢€ Np,
both implications of the lemma hold. By induction, the lemma holds for all
01 € Ny, and hence all § € Név.

Lemma 2 shows that a function u € WZ[)] can be expressed in terms
of its partial derivatives dgiu with respect to a single variable s;, using a
suitable integral operator along ; = [a;, b;]. For example, a function u €
WD[[a,b] x [c,d]] in two variables can be expressed in terms of its partial
derivatives 8’;u for0<k<2as

u(z,y) = u(a,y) + [z — alOu(a,y) +/w[$ — 0)0%u(8, y)do,

or in terms of its derivatives 05u for 0 <k <1 as

w(z,y) = u(z,c) —i—/yayu(:z;,@)dé’.

Combining these expansions, it follows that we can express the function u in
terms of all of its partial derivatives D@y = 9209u for (0,0) < (4,5) < (2,1)
as

u(x,y) = u(a,c) + [xr—a]Oula,c) + /[x—Q}@iu(@, c)df (7)

y v z ry
+/8yu(a,n)dn —|—/[x—a]8$8yu(a,77)dn —i—//[x—@]@i@yu(é,n)dnd&

Thm. 1 generalizes this result to functions u € W2[Q] in N variables, dif-
ferentiable up to arbitrary order with respect to each variable. The proof of
the result follows by applying Lemma 2 along each variable of the function.
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PrROOF OF THEOREM 1. To prove that the theorem holds for arbitrary ¢ €
NY, let J € {0,..., N}, and suppose that §; = 0 for alli € {J +1,...,N}.
Then, it suffices to show that the theorem holds for J = N, which we will
prove through induction on the value of J.

Base case J = 0 : For J = 0, we have § = 0V, so that G B*°D* = [
for all 0V < o < § = 0V. In this case, the result holds trivially.

Induction step J > 1 : Suppose for induction that the theorem holds
for some J € {0, .. — 1}, and let J = J+1. Let § € N)Y be such that
0; = 0 for i > J, andlet5—(5 5JeJ€NO,sothat5 =06 fori < J-—1,
and 0; = 0 for i > J — 1. Then, for every 0¥ < & < § we have

J—-1 J-1

J—1

. 5 a-6 _ a;—0; & &;

=[los. B =]]er™  pr=]]ad
=1

i=1 =1

Now, fix arbitrary u € W$[Q] € WJ[Q)]. Invoking the induction hypothesis,
and applying Lem. 2, it follows that

oN<a<s
. . o
= > (géB"‘—“Dd(Z(gifajbﬁJ5Ja§;u))>
oN<a<é a ;=0
J J J
Cx () () () - 3 e
0N <a<s \i=1 i=1 i=1 oN<a<§

Hence u satisfies (2). To see that the implication given by (3) also holds, let
{v® e L[] | OV < « < 6} be such that

u= ) (Gv)= ) <g5<ZgJaJ ))

0N <a<s 0N <a<$ ay=0

where a = & + aye;. Then, by the induction hypothesis,

Sl

Z anJ a d 6Ddu, ON S&S

ay=0

By Lemma 2, it follows that for all 0V 4]

a <o,
v = bf’,”*‘sJé)?j (B‘S‘_SD&u> — B* Doy,



Thus, for the given J = J+1le {0,..., N}, both implications of the theorem
hold. By induction, we conclude that the theorem holds for J = N, and thus
for all 6 € N}’

Thm. 1 shows that a differentiable function u is uniquely defined by its
derivatives D*u for 0¥ < a < §, evaluated at the lower boundaries Q*? of
the domain. However, it is clear that a similar expansion of u may be given
in terms of the derivatives D®u along upper boundaries Q°~®. For example,
just as u € Wz(z’l)[[a, b] X [¢,d]] can be expressed in terms of its derivatives
at * = a and y = ¢ as in (7), so too can it be expressed in terms of its
derivatives at x = b and y = d as

b
() = u(b, d) — [b—2]dsu(b, d) — / 2 —010%u(0, d)do

d d b pd
= [outbanan+ [ -0ty + [ [ lo-61020,u(6.n)anas.
) Yy T JY

Such different expansions of u in terms of different boundary values are
of particular interest when considering functions constrained by boundary
conditions, in which case the value of certain terms B”D%u is known. Given
sufficient and suitable boundary conditions, then, Thm. 1 proves that there
exists a unique map between u and its highest-order derivative D°u. We
leave a full derivation of such a relation for future works.

4. Polynomial Approximation of Functions in Sobolev Space

Thm. 1 offers an alternative representation of functions u € WJ[Q2] on the
hyperrectangle Q0 = Hf\;l [a;, b;] in terms of their derivatives D*u along lower
boundaries Q%% of the domain. The benefit of this representation is that
the boundary values B*°D%u € Ly[Q2*°] in the expansion are elements of
Ly rather than W, and therefore not required to be differentiable or even
continuous. Specifically, defining an aggregate space of square-integrable
functions

Lg[Q] = H LQ[QQ_(;L
0N <a<s
Thm. 1 shows that there exists a bijective map G : L3[Q] — WZ[Q)] from
this space to the Sobolev space, where G is an integral operator with poly-
nomial kernel. Using this bijection, analysis, approximation, and simulation
of functions in W¢[)] may be performed in the less restrictive space L3[(].
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In this section, we illustrate one application of Thm. 1, concerning poly-
nomial approximation of functions in Sobolev space. In particular, rather
than constructing a polynomial approximation for u € WY directly, we pro-
pose to approximate each of the derivatives B*~°D%u, and reconstruct an
approximation of u using Thm. 1. We show how this may be achieved us-
ing a basis of Legendre polynomials in the following subsection, as well as
using step functions in Subsection 4.2. In each case, we assume the domain
Q = [IX,[~1,1] to a be a hypercube for ease of notation.

4.1. Approximation using Legendre Polynomials

As a first method for approximation of functions u € WZ[€], we consider
projection using Legendre polynomials. These functions may be recursively
defined for x € [—1,1] as

$(x) =1, ¢'(z) ==,
2k + 1 koo
P (x) = k‘——i—1¢k<x> - k——|—1¢k Ha), k>1,

and are orthogonal with respect to the standard L inner product, satisfying

1 L men,
¢" (x)¢" (z)dz = { "2
-1 0, else.
Letting ¢%(s) := Hf\il \/di + 3 ¢%(s;) for d € NJ, we can thus project a
function u € W2[Q] onto the space R[] of polynomials of degree at most
d; € N in variables s; € €, as

P = Z Ca®”, where Ca ::/Qu(s)(,bo‘(s)ds. (8)

0N <a<d

This projection Pju offers an Ls-optimal polynomial approximation of u, in
the sense that

— P, = mi — |, 9
lu— Py, vg@”!\u vl|L, (9)

Moreover, in the case that § = dp - 1V and d = dy - 1V, the error in the
projection of u € W{[€] is bounded as [2]

|lu— Pz, < CodE(SOHuHWg»
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for some constant Cjy, so that the error decays as O(d, 50). Unfortunately,
such decay is not guaranteed for the Sobolev norm of the error, which is
bounded only as [3, 4]

2v0—8o—1
lu— Puflwy; < Cydy” ™ 2 lullyg, 0<% <deN,

for v = 7y - 1V, This bound does not guarantee convergence of the error
in terms of the Sobolev norm, and indeed, the Sobolev norm of the error
may actually increase with the degree of the polynomials. Instead, accurate
approximation in terms of the Sobolev norm requires projecting not just the
function u, but also its derivatives D*u. Although this can be achieved
using a Sobolev inner product with suitable polynomial basis [5, 6, 7, 8],
we propose to instead use Thm. 1, to reconstruct an approximation of u
from L, projections of its derivatives v® = B*°D%u. In particular, if u =
N oncacs GOV®, We can project each v® € Ly[Q%°] onto RYQ*~°] as

PfigvﬁﬂS = Z @7, where Cy 1= /Qﬁu(s)qbv(s)ds,

N B
0NV <v<kry

where we define l{g e NY by (I{g)i = {g“ ffse: 0, for —6 < B < 0V, so

that e.g. P v/t = cond” = v+ when v#+9 € R is finite-dimensional.
d

Then, for any 0V <~ < 6§ and d € N}, we can construct an order-y Sobolev
projection of u onto R¥7[Q)] as

Plui= 3 G (P [Bo7D]), (10)

0N <a<y

Approximating u € W2[Q] in this manner is equivalent to projecting the
function onto a polynomial subspace using a discrete-continuous Sobolev in-
ner product [9]. In particular, defining a discrete-continuous norm on WZ[(]
as
. a—d Do é
lallys == > [[B°D, .,  wews[q (11)

0N <a<és

the following proposition shows that the approximation Pu is optimal with
respect to this norm.
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Proposition 3. Let u € W2[Q)] for some § € NY, and define the polynomial
approzimation Pju for 0N <~ < ¢ as in (10). Then, for every d € NYY,

_ p7Y — ; _ -
Ju Pdu||w;—veﬁgig[m\|u vllig

where the norm |||y is as defined in (11).

PROOF. Fix arbitrary u € WZ[Q] and v € R4™[Q]. Then B* 7D €
W0 and B® 7D € R*H7=2[Q*] for every 0¥ < a < 7. By
optimality of the projection P in L[] (Eqn. (9)), it follows that

lu=vly = > [|[B*D*u—B*"D|,

0N <a<y

Z Z HBQ—’YDOéu — Png—'y [Ba_'yDau]‘ L
0N <a<y

= > B (u- P, = [lu = PJullg; -
0N <a<y

where we remark that B*7D*(Pju) = Pﬁgfw,[Ba”Dau] by Thm. 1 and
Eqn. (10).

Numerical Example
To illustrate the proposed polynomial approximation method, we apply
it to a univariate function u € W3[—1, 1] defined by

(5) 54 N 1753 3s? L 295 413 ( )512|s|¥ 12)
u(s) = — — — + — — —— +ssign(s

36 210 55 90 1140 00765835
so that du(s) = 2‘s|+/4 is square-integrable. Figure 1 shows the error in the

projection P} u for increasing polynomial degrees d € N, and for v = 0,1, 3, 5.
Note that P%u = Pju corresponds to the standard Legendre projection using
the Ly inner product. The error ||u— P]ul| is computed both in the Ly norm
and the standard Sobolev norm on WS.

Figure 1 shows that the L, norm of the error decreases at a linear rate
on log-log scale, independent of the order v of the Sobolev projection. The
slope of each graph is roughly —5, matching the expected rate of decay
|lu — Pyullp, = O(d™%) = O(d~®) for the standard L, projection. On the
other hand, the error in the Sobolev norm decreases only for v = 5, displaying
a decay ||u — PPul| = O(d=0%).
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Error in Polynomial Approximations P)u of Degree d

10°
10* ¢
p— 5 f—
?;Nc 10 (\%5 102 3
A ~
\ —— P [
3 —o— 1Yy =0
1070 | —e— PPy
—o— Py
‘ ‘ : : : 10°2 ‘ ‘ : : :
2 4 8 16 32 64 128 2 4 8 16 32 64 128
Maximal Degree of Polynomials (d) Maximal Degree of Polynomials (d)

Figure 1: Ly (left) and Sobolev (right) norms of error in polynomial approximations P, u of
function u € W3[—1,1] defined in (12). The plot P,u corresponds to a standard Legendre
projection of u using the Lo inner product, as defined in (8). The plots P, u correspond to
reconstructing an approximation of u from a projection of v as in (10), using Thm. 1.
Projecting the highest-order derivative 92u of u € W3, both the Ly and Sobolev norms of

)

the error in the associated approximation Pf u decrease with the degree d, with the Lo

norm decaying at the same rate as observed for the standard projection Pju = Péo)u.

Numerical Example in 2D
For a second example, consider the function w € W2(3’3)[[—1, 1]?] defined
by w(s1, s2) = v(s1)v(sz2), where for z € [—1, 1],

1.3 1.2, 5. 1 _1

6T S5+ s — 5, T < —3,

_ 1,..3 7 5 1
v(r) = =62 + 5T — 5, lz] < 35, (13)

1.3 _1.2 4 5,._1 1

g 5 +6:I: 1 T >3,

so that 9%v = { L fal > 3

z —1, else
the projection P]w of this function for increasing polynomial degrees (d, d),
and for v = (y0,7) with 79 = 0,1,2,3. The figure shows that, again, the
Ly norm of the error decreases as roughly O(d=%) = O(d~3), independent of
the order v of the Sobolev projection Pju. However, decay of the error in
the Sobolev norm is observed only for v = (2,2) and v = (3,3), i.e. when
projecting a suitably high-order derivative of the function.

is piecewise constant. Figure 2 shows the error in

4.2. Ezxpansion using Step Functions Basis
In the previous subsection, we showed how Thm. 1 can be used to con-
struct a polynomial approximation of a differentiable function u € W2[Q)],
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Error in Polynomial Approximations Pjw of Degree d

10*
S y
B =T 102
<= 1070 ?*i 10
& .
| ——Puw ‘
3 —o—pr"w 3
- (2,2 —
—o— P 1007
o— P33y,
10710 - - ‘ ‘ ‘ - - ‘ ‘ ‘
2 4 8 16 32 64 128 2 4 8 16 32 64 128
Maximal Degree of Basis Functions (d) Maximal Degree of Basis Functions (d)

Figure 2: L (left) and Sobolev (right) norms of error in polynomial approximations P} w
ofw € W:,(S’3) [[—1, 1]?] defined in (13). Each approximation P} w is computed by projecting
the derivative DYw onto the space of polynomials of degree at most d in each variable,
and reconstructing an approximation of w as in (10). The error in the direct projection

Pyw = cho,o)w is also plotted. Convergence of the approximation in the Sobolev norm is
observed only for Péz’z)w and Pf”?’)w7 i.e. when projecting D32 w and D33y,

using polynomial projections of the boundary values v® = B*D*u. How-
ever, computing these projections requires integrating the product v®¢” for
each polynomial ¢” up to degree v = d, which becomes numerically challeng-
ing for large degrees d. Moreover, since the boundary values v® € L,[Q%]
— and in particular the highest-order derivative v = D%u € Ly[Q)] — need
not be continuous, a polynomial projection of these functions may not be
well-behaved, exhibiting e.g. Gibbs phenomenon.

As an alternative to the polynomial projection method presented in the
previous section, we now propose to perform projection using a basis of step
functions. In particular, for K € NV, we decompose the hypercube ) =
[—1,1]" into [[X, K; disjoint hypercubes T C Q for 1V < X\ < K of equal
dimensions, each with volume Ax = [], K%, so that Q = Uine g .
Then, we define a piecewise constant approximation Siv of v € Ls[()] as the
projection of v onto a basis of step functions on these cells, as

1

S = d VN <A<K.
KV‘F?{ AK/F;\(V<S) SJ —= =

Projecting each derivative v® = B*7D%u € Lo[Q2* 7] in this manner, we
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Error in Step Function Approximations S},u on K Cells
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Figure 3: Ly (left) and Sobolev (right) norms of error in step function approximations S} u
of u € WJ[—1,1] defined in (12), on a uniform grid of K cells. Each S}u is computed by
projecting DYu onto a space spanned by K orthogonal step functions, and subsequently
reconstructing an approximation of u as in (14). The error in the direct step function
projection Sxu = S%u is also plotted.

then construct a piecewise polynomial approximation of u as

Siu= Y GlSk[B“D"u]. (14)
0N <a<y

We remark that, by expanding the derivative D°u € L[] using a basis of
step functions, the proposed projection S%u € W2[Q)] is sufficiently smooth
to capture all of the derivatives of the function u € WZ[Q] — unlike e.g. a
direct step function expansion Sxu := S%u € Ly[Q] — but will not suffer
from Gibbs phenomenon — unlike e.g. a polynomial projection. In addition,
the integrals fr; v®(s)ds in the step function projection are in general much

easier to compute than the integrals [, ¢*(s)v(s)ds for more complicated
basis functions ¢?, such as the Legendre polynomials.

Numerical Example

Consider again the functions v € W[—1,1] and w € W [[—1,1)2]
defined in (12) and (13), respectively. Figure 3 shows the error in the step
function approximation S}u for increasing number of cells K € N, and
for v € {0,1,3,5}. Similarly, Figure 4 shows the error in the step function
approximation S}.w for (K, K) € N?_ and for v = (v9, ), with v = 0, 1,2, 3.

The figures show that the Ls norm of the error in the step function
approximation decreases linearly on log-log scale for both functions, decaying
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Error in Step Function Approximations Sj,w on K x K Cells

_k
S
S

[|lw — Sgwl|L,
|[w — S}}wng

1 2 4 8 16 32 64 128 1 2 4 8 16 32 64 128
Number of Cells (K) Number of Cells (K)

Figure 4: Lo (left) and Sobolev (right) norms of error in step function approximations
Sjiw of w e Wég’g)[[—l, 1]?] defined in (13), on a grid of K x K cells. Each S}w is
computed by projecting DYw onto a space spanned by K x K orthogonal step functions,

and subsequently reconstructing an approximation of w as in (14). The error in the direct

step function projection Sxw = SE?’O)U) is also plotted. Note that SS’?’)w =w for K >4,

since D33y is a piecewise constant function on 4 x 4 cells.

as O(K~?) when projecting a derivative of the function (y € {1,3,5} for S}u
and v € {1,2} for S w), but decaying only as O(K~1) for the direct
approximation Sk = S%. However, the Sobolev norm of the error decreases
only when fitting the highest-order derivative (v =5 for S},u and 7, = 3 for
SgO’VO)w) of the function, though the rate of decay is still only O(K %) for
the approximation S}?)u. Unsurprisingly, both the Ly and W3 norms of the
error in the approximation S}?’:g)w drop to machine precision when K = 4,
since the highest-order derivative D®3)w of the example function w can be
exactly represented by just 4 x 4 step functions.

We remark that, although numerical simulation was performed only pro-
jecting using a standard basis of step functions, the proposed methodology
can be readily adapted to construct a piecewise continuous approximation
using any suitable basis of (discontinuous) functions. For example, better
convergence results might be achieved using a complete basis of step func-
tions {4} as proposed in e.g. [10], though this will again require (computa-
tionally) evaluating more complicated integrals [, P?(s)v(s)ds.
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5. Conclusion

In this paper, we proposed a representation of a differentiable function
on a N-dimensional hyperrectangle, expressing it in terms of its derivatives
along lower boundaries of the domain. We proved that this representation
offers a bijective map between the Sobolev space WZ[§)] and a space of square-
integrable functions L[], defined by an integral operator with polynomial
kernel. Based on this map, we proposed a method for polynomial approxi-
mation of a differentiable function, by projecting its derivatives onto a space
of polynomials or step functions, and then using the main theorem to recon-
struct an approximation of the original function. Through numerical exam-
ples, we showed that this approach exhibits similar convergence to standard
projection methods in the L, norm, and performed substantially better in
the Sobolev norm. While the map proposed in this paper is defined only for
functions on a hyperrectangle, similar maps can likely be derived for func-
tions on more general domains, using integral operators with more general
(non-polynomial) kernels.
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