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Abstract. Generative AI raises many societal concerns such as boosting
disinformation and propaganda campaigns. Watermarking AI-generated
content is a key technology to address these concerns and has been widely
deployed in industry. However, watermarking is vulnerable to removal
attacks and forgery attacks. In this work, we propose the first image
watermarks with certified robustness guarantees against removal and
forgery attacks. Our method leverages randomized smoothing, a popu-
lar technique to build certifiably robust classifiers and regression mod-
els. Our major technical contributions include extending randomized
smoothing to watermarking by considering its unique characteristics, de-
riving the certified robustness guarantees, and designing algorithms to
estimate them. Moreover, we extensively evaluate our image watermarks
in terms of both certified and empirical robustness. Our code is available
at https://github.com/zhengyuan-jiang/Watermark-Library.
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1 Introduction

Generative AI (GenAI )–such as Stable Diffusion [2], Midjourney [1], and DALL-
E [4]–brings revolutionary capabilities in producing images. This technological
advancement offers immense possibilities for content creation. However, it also
introduces critical ethical concerns. For instance, the ease of generating realistic
content raises alarms about its potential misuse in spreading disinformation and
propaganda. These ethical dilemmas highlight the urgent need to manage GenAI
responsibly, balancing its creative benefits against the risks of misuse.

To deal with these risks, watermarking has been leveraged to detect AI-
generated images [21]. The Executive Order on trustworthy AI issued by the
White House lists watermarking AI-generated content as a key technology [32].
Indeed, many AI companies–such as OpenAI, Google, and Stability AI–have
deployed watermarking in their GenAI services to mark AI-generated images [12,
15, 27]. Specifically, a bitstring watermark (called ground-truth watermark) is
embedded into AI-generated images at generation using a watermarking encoder ;
and an image is detected as AI-generated if the corresponding watermarking
decoder can decode a similar watermark from it. Formally, if the bitwise accuracy
(BA) of the watermark decoded from an image is no smaller than a detection
threshold τ , the image is predicted as AI-generated. BA of a watermark is the
fraction of its bits that match with those of the ground-truth watermark.

https://github.com/zhengyuan-jiang/Watermark-Library
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However, existing watermarking methods are not robust to removal attacks
and forgery attacks [22, 34], which aim to remove the watermark from a water-
marked image and forge the watermark in a non-watermarked image, respec-
tively. Specifically, a removal attack (or forgery attack) adds a perturbation to
a watermarked image (or non-watermarked image) to remove (or forge) the wa-
termark, i.e., BA of the watermark decoded from the perturbed image is smaller
(or no smaller) than τ . Existing defenses against removal/forgery attacks mainly
rely on adversarial training [41], which considers removal/forgery attacks when
training the encoder and decoder. However, adversarial training is only robust
to the removal/forgery attacks that are considered during training, and can still
be defeated by strong, adaptive attacks. For instance, Jiang et al. [22] showed
that a strong removal attack can still remove the watermark from a watermarked
image without sacrificing its visual quality even if adversarial training is used.

We propose the first image watermark that is certifiably robust against re-
moval and forgery attacks. Certifiable robustness means that our watermark is
robust to any removal (or forgery) attacks that add ℓ2-norm bounded perturba-
tions to watermarked (or non-watermarked) images. Our method extends ran-
domized smoothing [10], a popular technique to build certifiably robust classifiers
and regression models, to watermark by considering its unique characteristics,
e.g., watermark is a bitstring.

Given any watermarking decoder, we build a smoothed decoder via adding
random Gaussian noise to an image. Specifically, we propose three ways to build a
smoothed decoder, i.e., multi-class smoothing, multi-label smoothing, and regres-
sion smoothing. In multi-class smoothing, we treat decoding each bit of the wa-
termark from an image as a binary classification problem; in multi-label smooth-
ing, we treat decoding a watermark from an image as a multi-label classification
problem, where the ith bit of the decoded watermark is 1 means that the water-
mark has label i; and in regression smoothing, we treat decoding a watermark
from an image as a regression problem, where BA of the decoded watermark is
treated as the regression outcome.

We derive certified robustness guarantees of our smoothed decoder for the
three ways of smoothing. Specifically, given any image, we derive a lower bound
and an upper bound for the BA of the watermark decoded by our smoothed
decoder, no matter what perturbation a removal or forgery attack adds to the
image once the ℓ2-norm of the perturbation is bounded. Our lower bound guar-
antees that no removal attacks with ℓ2-norm bounded perturbations can remove
the watermark from a watermarked image; and our upper bound guarantees
that no forgery attacks with ℓ2-norm bounded perturbations can forge the wa-
termark in a non-watermarked image. We also propose randomized algorithms
to estimate the lower bound and upper bound for any given image. Our ran-
domized algorithm adds multiple Gaussian noise to the image and estimates the
lower/upper bounds with probabilistic guarantees.

We conduct empirical evaluation on three AI-generated image datasets and
non-AI-generated images. We adopt HiDDeN [41] as a base watermarking method
and use our method to smooth it. We evaluate both certified and empirical ro-
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bustness. Certified robustness measures the detection performance under any
removal and forgery attacks, which is only applicable to our smoothed decoder;
while empirical robustness measures the detection performance under state-of-
the-art attacks, which is applicable to both base decoder and our smoothed
decoder. We find that regression smoothing outperforms multi-class and multi-
label smoothing. This is because regression smoothing better takes the correla-
tions between bits of the watermark into consideration. Moreover, other than
achieving certified robustness, we find that smoothing also improves empirical
robustness, i.e., smoothed HiDDeN outperforms HiDDeN.

2 Related Works

2.1 Watermarking

We consider a watermarking method [13, 14, 25, 28, 31, 36–39, 41] defined by a
triple (wt, E, D). The ground-truth watermark wt is a bitstring with m bits; the
encoder E embeds wt into an image to produce a watermarked image; and the
decoder D decodes a watermark from an image. Our method can transform any
such watermarking method to be certifiably robust. Note that D can decode a
watermark from any (watermarked or non-watermarked) image, and the decoded
watermark is supposed to be similar to wt when the image is watermarked. The
encoder and wt can also be integrated into the parameters of a GenAI model
such that its generated images are inherently watermarked with wt, e.g., Stable
Signature is such a watermarking method [14]. Our method is also applicable
in such scenarios because decoding watermarks from images only involves the
decoder D which our method smooths. In state-of-the-art watermarking meth-
ods [41], E and D are jointly trained using an image dataset such that 1) a
watermarked image produced by E is visually similar to the image before wa-
termarking, and 2) D can accurately decode the watermark in a watermarked
image produced by E.

2.2 Watermark Removal and Forgery Attacks

Removal attacks [5,16,17,22,24,26,29,40] aim to remove the watermark in a wa-
termarked image via adding a small perturbation to it; while forgery attacks [29]
aim to forge the watermark in a non-watermarked image via adding a small per-
turbation to it. A removal attack can often be adapted as a forgery attack. In
particular, we can adapt the objective of a removal attack when finding the per-
turbation such that the watermark is falsely detected in the perturbed image.
Different attacks use different methods to find the perturbations. For instance,
commonly used image editing methods–such as JPEG compression and Gaus-
sian noise–can be used to find the perturbations. An attacker can also use more
advanced, optimization-based methods. For instance, Jiang et al. [22] proposed
an optimization-based method to find the perturbations in the white-box set-
ting where the attacker has access to the decoder; and they also proposed a



4 Z. Jiang et al.

query-based method to find the perturbations in the black-box setting where
the attacker can repeatedly query the watermark detector API, which returns a
binary prediction (i.e., watermarked or non-watermarked) for an image.

2.3 Randomized Smoothing

Randomized smoothing [8,10,18–20] is a state-of-the-art technique to build cer-
tifiably robust classifiers and regression models. Roughly speaking, given a clas-
sifier (called base classifier) or regression model (called base regression model),
randomized smoothing builds a smoothed classifier or regression model by adding
isotropic Gaussian noise to the input (i.e., an image in this work) of the base
classifier or regression model. The smoothed classifier (or smoothed regression
model) is guaranteed to predict the same label (or a similar response) for an
image when the ℓ2-norm of the perturbation added to it is bounded.
Multi-class smoothing: In this smoothing [10,18, 20], the base classifier f is
a multi-class classifier. Given an image x, the smoothed classifier g predicts the
label that is the most likely to be predicted by f when adding isotropic Gaussian
noise to x. Formally, the predicted label is g(x) = argmaxc∈Y Pr(f(x+ ϵ) = c),
where ϵ ∼ N (0, σ2I) is an isotropic Gaussian noise and Y is the set of labels. g
predicts the same label for x once the ℓ2-norm of the perturbation added to it
is bounded by r(x). Formally, we have:

g(x+ δ) = g(x) = l, ∀∥δ∥2 < r(x), (1)

r(x) = σΦ−1(pl), (2)

where pl is a lower bound of Pr(f(x + ϵ) = l), i.e., pl ≤ Pr(f(x + ϵ) = l), and
Φ−1 is the inverse cumulative distribution function of the standard Gaussian.
Multi-label smoothing: In this smoothing [19], the base classifier f is a multi-
label classifier, which predicts a set of k′ labels for an image x. The smoothed
classifier g predicts the k labels that are most likely to be predicted by f when
adding isotropic Gaussian noise to x. Formally, the predicted labels are g(x) =
argk-maxc∈YPr(c ∈ f(x + ϵ)), where ϵ ∼ N (0, σ2I) and argk-max means the k
labels that are most likely to be predicted by f(x+ ϵ). When the perturbation δ
added to x is ℓ2-norm bounded by R, the intersection size between the predicted
labels g(x+ δ) and the set of ground-truth labels L of x is at least e(x), i.e., we
have the following [19]:

|L ∩ g(x+ δ)| ≥ e(x), ∀∥δ∥2 < R, (3)

where e(x) depends on a lower bound of the probability Pr(c ∈ f(x+ϵ)) for each
c ∈ L and an upper bound of the probability Pr(c ∈ f(x+ ϵ)) for each c ∈ Y/L.
The complete form of e(x) is rather complex and omitted for simplicity.
Regression smoothing: In this smoothing [6, 8], the base regression model
f predicts a continuous value for a given image x. The smoothed regression
model g predicts the median of all possible values that can be predicted by



Certifiably Robust Image Watermark 5

f when adding isotropic Gaussian noise to x. Formally, the predicted value is
g(x) = argminy Pr(f(x+ ϵ) ≤ y) ≥ 0.5, where ϵ ∼ N (0, σ2I). When the l2-norm
of the perturbation added to x is bounded by R, g(x+ δ) is bounded as follows:

g(x) ≤ g(x+ δ) ≤ g(x), ∀∥δ∥2 < R, (4)

where g(x) = sup{y ∈ R | Pr(f(x + ϵ) ≤ y) ≤ Φ(−R
σ )}, g(x) = inf{y ∈ R |

Pr(f(x+ ϵ) ≤ y) ≥ Φ(Rσ )}, and Φ is the cumulative distribution function of the
standard Gaussian.

3 Problem Formulation

Notations: We use x, xw, and xn to represent an image, a watermarked image,
and a non-watermarked image, respectively. x can be either a watermarked or
non-watermarked image. The ground-truth watermark wt has m bits and wt[i]
is the ith bit of wt, where i = 1, 2, · · · ,m. E(xn, wt) means embedding wt into
xn to produce xw; while D(x) is the watermark decoded from x. BA(w,wt) is
the bitwise accuracy of watermark w, which is the fraction of its bits that match
with those of wt. Formally, BA(w,wt) =

1
m

∑︁m
i=1 I(w[i] = wt[i]), where I is an

indicator function whose output is 1 if the condition is satisfied and 0 otherwise.
An image x is detected as watermarked if BA(D(x), wt) ≥ τ .
Threat model: In a removal attack, an attacker aims to add a small perturba-
tion δ to a watermarked image xw to remove the watermark, i.e., BA(D(xw +
δ), wt) < τ ; while in a forgery attack, an attacker aims to add a small perturba-
tion δ to a non-watermarked image xn to forge the watermark, i.e., BA(D(xn +
δ), wt) ≥ τ . We assume the attacker can use any removal or forgery attack to find
the perturbation δ. Moreover, the attacker knows everything about the water-
marking method, e.g., its ground-truth watermark, encoder parameters, decoder
parameters, and the smoothing process.
Certifiably robust watermark: A watermarking method (wt, E,D) is cer-
tifiably robust if BA of the watermark decoded from any image x has a lower
bound and upper bound when the ℓ2-norm of the perturbation added to it is
bounded by R. Formally, we have the following definition:

Definition 1 (Certifiably Robust Watermark). Given a watermarking
method (wt, E,D) and any image x. Suppose a perturbation δ, whose ℓ2-norm
is bounded by R, is added to x. We say the watermarking method is certifiably
robust if the following is satisfied:

BA(x) ≤ BA(D(x+ δ), wt) ≤ BA(x), ∀∥δ∥2 < R, (5)

where BA(x) is a lower bound and BA(x) is an upper bound of BA under per-
turbation. For a watermarked image xw, a certifiably robust watermark defends
against any removal attacks with at most R ℓ2-norm perturbations, once the
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Fig. 1: Illustration of our smoothing framework with three variants.

lower bound BA(xw) is no smaller than τ ; and for a non-watermarked image
xn, a certifiably robust watermark defends against any forgery attacks with at
most R ℓ2-norm perturbations, once the upper bound BA(xn) is smaller than
τ . Note that Equation 5 only involves D and wt of the watermarking method,
but not E explicitly. However, when E and D are jointly trained well, the lower
bound BA(xw) for a watermarked image xw = E(xn, wt) is larger, while the
upper bound BA(xn) for a non-watermarked image xn is smaller, making the
watermarking method more certifiably robust.

4 Our Smoothing Framework

4.1 Overview

Given any watermarking method (wt, E,D), we build a certifiably robust wa-
termarking method (wt, E,Ds) by smoothing D as Ds. We smooth D but not
E because only D is involved during watermark detection. Specifically, given an
image x, we add N isotropic Gaussian noise ϵ1, ϵ2, · · · , ϵN to it to construct N
noisy images x+ ϵ1, x+ ϵ2, · · · , x+ ϵN . Then, we use D to decode a watermark
for each noisy image. We propose three smoothing methods to aggregate the N
decoded watermarks to calculate bitwise accuracy. In multi-class smoothing, we
treat decoding each bit as a binary classification problem and aggregate bits of
the watermark separately. In multi-label smoothing, we treat decoding a water-
mark from a (noisy) image as a multi-label classification problem, where the ith
bit is 1 means that the watermark has label i. In regression smoothing, we treat
the bitwise accuracy of a decoded watermark for a (noisy) image as a regression
response and directly obtain a smoothed bitwise accuracy. Figure 1 illustrates
our three methods to smooth D to obtain a bitwise accuracy for an image x.

4.2 Building a Smoothed Decoder Ds

Multi-class smoothing based watermarking: In our first smoothing method,
we treat decoding each bit of a watermark from an image x as a binary classifica-
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tion problem and leverage multi-label smoothing to build a smoothed decoder Ds

based on D. Specifically, we define a binary base classifier fi for each ith bit, i.e.,
fi(x) = D(x)[i], where i = 1, 2, · · · ,m and D(x)[i] is the ith bit of the decoded
watermark D(x). We add Gaussian noise ϵ to x. Our ith smoothed classifier gi
predicts a binary label for x as follows: gi(x) = argmaxc∈{0,1} Pr(fi(x+ ϵ) = c),
where ϵ ∼ N (0, σ2I). We treat gi(x) as the ith bit of the watermark Ds(x)
decoded by the smoothed decoder Ds. Formally, we have:

Ds(x)[i] = gi(x) = argmax
c∈{0,1}

Pr(D(x+ ϵ)[i] = c), i = 1, 2, · · · ,m. (6)

Multi-label smoothing based watermarking: In this smoothing method,
we treat decoding a watermark from an image x as a multi-label classification
problem and utilize multi-label smoothing to build a smoothed decoder Ds based
on D. Specifically, we define the set of labels Y = {1, 2, · · · ,m}, where a label
corresponds to the index of a bit. Given D, we define a base multi-label classifier
f , which predicts k′ labels for an image x whose corresponding bits of the decoded
watermark D(x) are the most likely to be 1. Note that we can also define f
to predict the k′ labels whose corresponding bits of D(x) are most likely to
be 0 (i.e., having a label is mapped to a bit 0), which we found to achieve
similar certified robustness. Formally, we denote by Zi(x) the logit of the ith
bit outputted by D for an image x, i.e., Z is the second-to-last layer of D. f
predicts k′ labels for x as follows: f(x) = argk′-maxi∈YZi(x), where argk′-max
is the set of k′ labels that have the largest values of Zi(x). We add Gaussian
noise ϵ to x. Our smoothed multi-label classifier g predicts k labels for x as
follows: g(x) = argk-maxi∈YPr(i ∈ f(x+ ϵ)), where ϵ ∼ N (0, σ2I). Based on g,
we formally define the watermark Ds(x) decoded by Ds for x as follows:

Ds(x)[i] =

{︄
1, if i ∈ g(x),

0, if i /∈ g(x).
(7)

Regression smoothing based watermarking: In both multi-class and multi-
label smoothing, we explicitly obtain the watermark Ds(x) decoded by Ds for an
image x. When detecting watermarked images, we further calculate BA of the de-
coded watermark Ds(x) and predict x to be watermarked if BA(Ds(x), wt) ≥ τ .
Since detection eventually relies on BA, in our third smoothing method, we
directly compute BA(Ds(x), wt) without explicitly obtaining the watermark
Ds(x). Specifically, we treat computing BA for an image as a regression prob-
lem and leverage regression smoothing. As our experiments will show, directly
computing BA(Ds(x), wt) via regression smoothing outperforms multi-class and
multi-label smoothing, because it can better take the correlations between bits
into consideration. Given D, we define a base regression model f as follows:
f(x) = BA(D(x), wt). We add Gaussian noise ϵ to x and our smoothed regres-
sion model g is as follows: g(x) = argminy Pr(f(x+ ϵ) ≤ y) ≥ 0.5. Given g, we
define BA(Ds(x), wt) as follows:

BA(Ds(x), wt) = g(x) = argmin
y

Pr(BA(D(x+ ϵ), wt) ≤ y) ≥ 0.5, (8)
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where ϵ ∼ N (0, σ2I).

4.3 Deriving Certified Robustness

We show that our smoothed watermarking method (wt, E,Ds) is certifiably ro-
bust (i.e., satisfies Definition 1) for each of the three smoothing methods. In
particular, given any image x, we can derive a lower bound BA(x) and an upper
bound BA(x) of BA(Ds(x+ δ), wt), which is BA of the watermark decoded by
Ds from a perturbed image x+δ. Proofs of our theorems are shown in Appendix.

Theorem 1 (Certified Robustness of Multi-class Smoothing based Wa-
termarking). Our watermarking method (wt, E,Ds) obtained by multi-class
smoothing is certifiably robust for any image x. Specifically, when the pertur-
bation δ added to x is bounded by R, we can derive the following lower bound
BA(x) and upper bound BA(x) for BA(Ds(x+ δ), wt):

BA(x) =
1

m

m∑︂
i=1

I(Ds(x)[i] = wt[i]) · I(ri(x) ≥ R), (9)

BA(x) = 1− 1

m

m∑︂
i=1

I(Ds(x)[i] = ¬wt[i]) · I(ri(x) ≥ R), ∀∥δ∥2 < R, (10)

where I is the indicator function, ri(x) = σΦ−1(pli), Φ−1 is the inverse cu-
mulative distribution function of the standard Gaussian, pli is a lower bound of
Pr(D(x+ϵ)[i] = Ds(x)[i]), i.e., pli ≤ Pr(D(x+ϵ)[i] = Ds(x)[i]), ϵ ∼ N (0, σ2I),
and ¬wt means flipping each bit of the watermark wt.

Theorem 2 (Certified Robustness of Multi-label Smoothing based Wa-
termarking). Our watermarking method (wt, E,Ds) obtained by multi-label
smoothing is certifiably robust for any image x. Specifically, when the pertur-
bation δ added to x is bounded by R, we can derive the following lower bound
BA(x) and upper bound BA(x) for BA(Ds(x+ δ), wt):

BA(x) = 1− ∥wt∥1 + k − 2e(x)

m
, (11)

BA(x) = 1− ∥wt∥1 − k + 2e(x)

m
, ∀∥δ∥2 < R, (12)

where ∥wt∥1 is ℓ1-norm of wt, i.e., the number of ones in wt, e(x) = sup{e ∈ N |
|L ∩ g(x+ δ)| ≥ e,∀∥δ∥2 < R}, L is the set of indices of ones in wt, i.e., L =
{i ∈ Y|wt[i] = 1}, and e(x) = sup{e ∈ N | |Y/L ∩ g(x+ δ)| ≥ e, ∀∥δ∥2 < R}.
Y = {1, 2, · · · ,m}, g is the smoothed multi-label classifier defined in Section 4.2
for multi-label smoothing based watermarking and g returns k labels.

Theorem 3 (Certified Robustness of Regression Smoothing based Wa-
termarking). Our watermarking method (wt, E,Ds) obtained by regression smooth-
ing is certifiably robust for any image x. Specifically, when the perturbation δ
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added to x is bounded by R, we can derive the following lower bound BA(x) and
upper bound BA(x) for BA(Ds(x+ δ), wt):

BA(x) = sup{y ∈ R | Pr (BA(D(x+ ϵ), wt) ≤ y) ≤ Φ(−R

σ
)}, (13)

BA(x) = inf{y ∈ R | Pr (BA(D(x+ ϵ), wt) ≤ y) ≥ Φ(
R

σ
)}, ∀∥δ∥2 < R, (14)

where ϵ ∼ N (0, σ2I), and Φ is the cumulative distribution function of the stan-
dard Gaussian.

4.4 Estimating BA(Ds(x), wt), BA(x), and BA(x)

In practice, given an image x and a smoothed decoder Ds, we need to estimate
BA(Ds(x), wt) in order to predict whether x is watermarked or not when no
perturbations are added to x. Moreover, we further compute BA(x) and BA(x)
to measure certified robustness under attacks. Towards these goals, we sample
N isotropic Gaussian noise ϵ1, ϵ2, · · · , ϵN uniformly at random from N (0, σ2I),
and add them to x to obtain N noisy images x+ ϵ1, x+ ϵ2, · · · , x+ ϵN . Then, we
use the base decoder D to decode a watermark from each noisy image. Finally,
we aggregate the N decoded watermarks to estimate BA(Ds(x), wt), BA(x),
and BA(x). Our estimations with N random Gaussian noise are correct with a
confidence level 1− α, where α can be set to be arbitrarily small.
Multi-class smoothing based watermarking: We estimate the ith bit of
Ds(x) via majority vote of the ith bits in the N decoded watermarks, i.e.,
Ds(x)[i] = argmaxc∈{0,1}

∑︁N
j=1 I(D(x + ϵj)[i] = c). Given Ds(x), we can cal-

culate BA(Ds(x), wt). We denote by Ni =
∑︁N

j=1 I(D(x + ϵj)[i] = Ds(x)[i]) the
number of decoded watermarks whose ith bits are Ds(x)[i]. Ni follows a binomial
distribution Ni ∼ B(N, pli), where pli = Pr(D(x+ ϵ)[i] = Ds(x)[i]). Therefore,
based on the Clopper-Pearson method [9], we can estimate a lower bound pli of
pli for all i = 1, 2, · · · ,m simultaneously as follows:

pli = Beta(
α

m
;Ni, N −Ni + 1), (15)

where 1− α
m is the confidence level for estimating one pli , and Beta(α;u, v) is the

αth quantile of the Beta distribution with shape parameters u and v. According
to the Bonferroni correction [7], the overall confidence level for estimating the
m lower bounds is at least 1 − α. Given the estimated pl1 , pl2 , · · · , plm , we can
calculate BA(x) and BA(x) in Theorem 1.

Multi-label smoothing based watermarking: We denote by Ni =
∑︁N

j=1 I(i ∈
f(x + ϵj)) the number of noisy images for which the base multi-label classifier
f predicts label i. f is defined in Section 4.2 for multi-label smoothing based
watermarking. We estimate the ith bit of Ds(x) as follows:

Ds(x)[i] =

{︄
1, if i ∈ argk-maxi′∈YNi′ ,

0, Otherwise,
(16)
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where Y = {1, 2, · · · ,m} and argk-max is the set of k labels that have the
largest values of Ni′ . Ni follows a binomial distribution Ni ∼ B(N, pi), where
pi = Pr(i ∈ f(x+ϵ)), ϵ ∼ N (0, σ2I). According to Jia et al. [19], we can estimate
the lower/upper bound of pi for all i = 1, 2, · · · ,m simultaneously as follows:

ps = Beta(
α

m
;Ns, N −Ns + 1), s ∈ {i ∈ Y|wt[i] = 1}, (17)

pt = Beta(1− α

m
;Nt, N −Nt + 1), t ∈ {i ∈ Y|wt[i] = 0}, (18)

where 1− α
m is the confidence level for estimating one lower/upper bound, and

the overall confidence level of estimating the m lower/upper bounds is at least
1 − α based on the Bonferroni correction [7]. Then, according to Jia et al. [19]
(we also show details in Appendix D), we can calculate e and e in Theorem 2
based on the lower bounds ps and upper bounds pt. Given e and e, we can further
calculate BA(x) and BA(x).
Regression smoothing based watermarking: We denote by BAj = BA(D(x+
ϵj), wt) the BA of the watermark decoded by D from the jth noisy image. We
sort BA1, BA2, · · · , BAN in a descending order, and without loss of general-
ity, we assume BA1 ≥ BA2 ≥ · · · ≥ BAN . We estimate BA(Ds(x), wt) as the
median of the N bitwise accuracy. Moreover, we estimate BA(x) as BAl∗ and
BA(x) as BAh∗ , where l∗ and h∗ are defined as follows:

l∗ = argmax
j∈{1,2,··· ,N}

1−
j∑︂

i=1

(︃
N
i

)︃
(Φ(−R

σ
))i(1− Φ(−R

σ
))N−i ≥ 1− α, (19)

h∗ = argmin
j∈{1,2,··· ,N}

j∑︂
i=1

(︃
N
i

)︃
(Φ(

R

σ
))i(1− Φ(

R

σ
))N−i ≥ 1− α. (20)

According to regression smoothing [8], the confidence level of such estimation of
BA(x) and BA(x) is 1− α.

4.5 Improving Certified Robustness via Adversarial Training

Given a watermarking method (wt, E,D), we build a smoothed watermarking
method (wt, E,Ds). Our smoothed decoder Ds relies on using the base decoder
D to decode watermarks from images x + δ with Gaussian noise. When D can
more accurately decode wt from noisy watermarked images, Ds is more accurate
and robust. However, in standard training, E and D are jointly trained such
that D is supposed to accurately decode wt from watermarked images, but not
noisy ones. To address this challenge, we can use adversarial training [41] to
jointly train E and D. Specifically, we add a noisy layer between E and D.
During training, for each watermarked image produced by E, the noisy layer
adds Gaussian noise to it and then passes it to D. With adversarial training, D
can more accurately decode wt from watermarked images with Gaussian noise,
making our smoothed decoder Ds more robust, as shown in our experiments.
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5 Evaluation

5.1 Experimental Setup

Image datasets Stable Diffusion, Midjourney, and DALL-E: We use
three image datasets, each of which consists of (10K training AI-generated im-
ages, 1K testing AI-generated images, 1K non-AI-generated images). The train-
ing/testing AI-generated images in the three datasets are produced by Sta-
ble Diffusion [35], Midjourney [33], and DALL-E [3], respectively. The non-AI-
generated images in the three datasets are sampled from the combined dataset
of COCO [23], ImageNet [11], and Conceptual Caption [30]. In each dataset, the
training AI-generated images are used to train watermarking encoders and de-
coders, while the testing AI-generated images and non-AI-generated images are
used for testing. Note that we embed the ground-truth watermark wt into each
testing AI-generated image using the corresponding encoder, while the non-AI-
generated images are non-watermarked. For consistency, we standardize the size
of images across all datasets to 128 × 128 pixels.

Training base watermarking encoders and decoders: We use HiDDeN [41],
whose code is publicly available, to train the base watermarking encoders and
decoders for each dataset. We consider HiDDeN because it achieves state-of-the-
art performance and is the basis of more recent watermarks like Stable Signa-
ture [14]. We use standard training and adversarial training to train different
base watermarking encoders and decoders, and compare them. For adversarial
training, the noisy layer samples a Gaussian noise from N (0, σ2I) for each water-
marked image. We follow the training setting in the public code of HiDDeN [41].
The only difference is that we increase the weight of encoder loss from 0.7 to 2 in
adversarial training to better preserve the visual quality of watermarked images.

Evaluation metrics: An image is detected as watermarked/AI-generated if
BA of the decoded watermark is no smaller than τ . For empirical robustness,
we evaluate performance of a watermarking method under state-of-the-art re-
moval and forgery attacks. Specifically, we use a removal attack to perturb the
watermarked/AI-generated testing images, and we compute false negative rate
(FNR), which is the fraction of perturbed watermarked images that are falsely
detected as non-watermarked/non-AI-generated. Moreover, we use a forgery at-
tack to perturb the non-watermarked/non-AI-generated images in a dataset,
and we compute false positive rate (FPR), which is the fraction of perturbed
non-watermarked images that are falsely detected as watermarked. We use FNR
and FPR to measure the empirical robustness of both base and our smoothed
watermarking methods.

For certified robustness, we evaluate performance of a watermarking method
under any removal and forgery attacks. FNR and FPR cannot be applied since
the worst-case removal and forgery attacks are unknown. To address the chal-
lenge, we propose certified false negative rate (CFNR) and certified false positive
rate (CFPR), which respectively are upper bounds of FNR and FPR under any
removal and forgery attacks. Note that CFNR and CFPR are only applicable
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to our smoothed watermarking method that achieves certified robustness. For-
mally, given a ℓ2-norm perturbation size R introduced by any removal or forgery
attacks, CFNR and CFPR are defined as follows:

CFNR =
1

|Xw|
∑︂

xw∈Xw

I(BA(xw) < τ), CFPR =
1

|Xn|
∑︂

xn∈Xn

I(BA(xn) ≥ τ),

where Xw is the set of testing watermarked/AI-generated images in a dataset,
Xn is the set of non-watermarked/non-AI-generated images in a dataset, I is the
indicator function, BA(xw) is a lower bound of BA(Ds(xw + δ), wt), BA(xn) is
an upper bound of BA(Ds(xn + δ), wt), and ∥δ∥2 < R. Intuitively, CFNR (or
CFPR) is the fraction of watermarked (or non-watermarked) images whose lower
bounds BA(xw) (or upper bounds BA(xn)) of BA under any removal attacks (or
forgery attacks) are smaller (or no smaller) than τ , i.e., such watermarked (or
non-watermarked) images are likely to be falsely detected as non-watermarked
(or watermarked) under attacks. Note that CFNR and CFPR depend on R.
Removal and forgery attacks: We consider 4 removal and forgery attacks to
evaluate empirical robustness. These attacks are JPEG compression, compress-
ing a watermarked or non-watermarked image using JPEG; black-box attack [22],
finding a perturbation for a watermarked or non-watermarked image via repeat-
edly querying the detection API; white-box attack [22], finding a perturbation
for a watermarked or non-watermarked image based on a decoder; and adaptive
white-box attack, which extends the white-box attack to find a perturbation for
a watermarked or non-watermarked image via taking smoothing into consider-
ation. The details of these 4 attacks are shown in Appendix E. Note that each
attack can be used as a removal or forgery attack.
Parameter settings: Unless otherwise mentioned, m = 30; wt is picked uni-
formly at random; N = 10, 000; τ = 0.83 (corresponding to FPR< 10−4 for
the base watermarking method under no attacks [22]); the standard deviation
of Gaussian noise in adversarial training is σ′ = 0.1; the standard deviation of
Gaussian noise in smoothing is σ = 0.1; confidence level 1 − α = 0.999; k′ and
k for multi-label smoothing based watermarking are the number of ones in wt;
and we show results on regression smoothing based watermarking and adversar-
ial training. In evaluation of empirical robustness, we set N = 100 due to limited
computational resources.

5.2 Certified Robustness

Comparing our three smoothing based watermarking methods: Fig-
ure 2a and 2b compare our three smoothing based watermarking methods with
respect to CFNR and CFPR of Stable Diffusion dataset as the perturbation size
R increases. The results for the other two datasets are shown in Figure 5 in
Appendix. We observe that regression smoothing based watermarking outper-
forms multi-class and multi-label smoothing based watermarking, i.e., regression
smoothing based watermarking achieves smaller CFNR and CFPR. The reason
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Fig. 2: (a) CFNR and (b) CFPR of our three smoothing based watermarking methods.
(c) CFNR and (d) CFPR of our regression smoothing based watermarking when the
base watermarking method is trained via standard or adversarial training.
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Fig. 3: (a-b) Impact of detection threshold τ . (c-d) Impact of smoothing Gaussian
noise standard derivation σ.

is that regression smoothing based watermarking accounts for the correlation
between bits because bitwise accuracy is aggregated across all bits. Thus, in the
remaining experiments, we focus on regression smoothing based watermarking.
Standard vs. adversarial training: Figure 2c and 2d compare standard
and adversarial training with respect to CFNR and CFPR of Stable Diffusion
dataset. The results for the other two datasets are shown in Figure 7 in Appendix.
We observe that when the base watermarking method is trained via adversarial
training, our smoothed watermarking achieves better certified robustness. In
particular, adversarial training achieves much smaller CFNR and slightly smaller
CFPR. Note that in order to fairly compare standard and adversarial training,
we tune their training settings as discussed in Section 5.1 to achieve similar visual
quality of watermarked images. Specifically, the average SSIM between images
and their watermarked versions is 0.943 and 0.941 for standard training and
adversarial training, respectively. Figure 6 in Appendix shows some examples of
watermarked images for the two training strategies.
Impact of detection threshold τ : Figure 3a and 3b compare different detec-
tion threshold τ with respect to CFNR and CFPR of Stable Diffusion dataset.
Figur 8 in Appendix shows results on the other two datasets. We vary the default
τ=0.83 with a step size 0.05. We observe τ controls a trade-off between CFNR
and CFPR: a smaller τ achieves a smaller CFNR but also a larger CFPR.
Impact of smoothing Gaussian noise σ: Figure 3c and 3d compare different
σ with respect to CFNR and CFPR of Stable Diffusion dataset. Figure 9 in
Appendix shows results on the other two datasets. We observe that certified
robustness is sub-optimal when σ is too small or too large. This is because, when
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Fig. 4: Results of base vs. smoothed watermarking under the 4 removal attacks.

σ is too small, the percentile Φ(−R
σ ) is small, leading to a small lower bound

BA(x). When σ is too large, the introduced noise makes watermark decoding
incorrect, leading to a smaller bitwise accuracy.

5.3 Empirical Robustness

Figure 4 shows the results of base vs. our smoothed watermarking under the
4 removal attacks for Stable Diffusion dataset. Figure 10 in Appendix shows
the results for the other two datasets under the 4 removal attacks, while Figure
11 in Appendix shows the results under the 4 forgery attacks. We observe that
our smoothed watermarking method achieves better empirical robustness than
the base one under the 4 removal/forgery attacks. For instance, as the quality
factor Q of JPEG compression as a removal attack decreases from 99 to 20, our
smoothed method always achieves FNR close to 0 while FNR of the base method
increases to 0.25. Given the same number of queries (i.e., Query Budget) to the
detector API, perturbations found by the black-box removal/forgery attack are
larger for our smoothed method, which implies that our smoothed method is
more robust. Note that the black-box removal (or forgery) attack achieves FNR
(or FPR) of 1 while minimizing the perturbations. When the perturbation size
R is larger than some threshold, our smoothed method achieves smaller FNR
(or FPR) than the base method under the white-box and adaptive white-box
removal (or forgery) attacks; while both the base method and our smoothed
method achieve FNR and FPR close to 0 when the perturbation size R is small.

6 Conclusion and Future Work

We show randomized smoothing can be extended to build image watermarks that
are certifiably robust against removal and forgery attacks. Specifically, we can
leverage multi-class, multi-label, and regression smoothing to build certifiably ro-
bust image watermarks. We find that regression smoothing based watermarking
achieves the best robustness because it can better take the correlations between
bits of a watermark into consideration. Other than achieving certified robust-
ness, smoothed watermarking also achieves better empirical robustness than the
base watermarking against removal and forgery attacks. An interesting future
work is to extend our method to audio, text, and video watermarks, as well as
watermarks that do not use bitstrings explicitly.
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Fig. 5: Comparing our three smoothing based watermarking methods on Midjourney
and DALL-E datasets.

Fig. 6: Standard and adversarial training achieve similar visual quality of watermarked
images. The first row shows original AI-generated images, the second row shows their
watermarked versions when standard training is used, and the third row shows their
watermarked versions when adversarial training is used.
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Fig. 7: Results of standard vs. adversarial training for Midjourney and DALL-E
datasets.
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Fig. 8: Impact of detection threshold τ for Midjourney and DALL-E datasets.
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Fig. 9: Impact of smoothing Gaussian noise standard derivation σ for Midjourney and
DALL-E datasets.
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Fig. 10: Results of base vs. smoothed watermarking under the 4 removal attacks. First
row: Midjourney. Second row: DALL-E.
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Fig. 11: Results of base vs. smoothed watermarking under the 4 forgery attacks. First
row: Stable Diffusion. Second row: Midjourney. Third row: DALL-E.
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A Proof of Theorem 1

Given an image x with the perturbation δ added to it, our smoothed decoder
Ds decodes a watermark Ds(x+ δ). Following Equation 1, we calculate ri(x) for
ith bit in the watermark as follows:

ri(x) = σΦ−1(pli), (21)

where Φ−1 is the inverse cumulative distribution function of the standard Gaus-
sian, and pli is a lower bound of Pr(D(x+ ϵ)[i] = Ds(x)[i]), i.e., pli ≤ Pr(D(x+

ϵ)[i] = Ds(x)[i]), ϵ ∼ N (0, σ2I). If the perturbation size is smaller than ri(x),
we have:

Ds(x+ δ)[i] = Ds(x)[i], ∀∥δ∥2 < ri(x). (22)

Given the ground-truth watermark wt, when the added perturbation δ is ℓ2-
norm bounded by R, we derive a lower bound BA(x) for BA(Ds(x+ δ), wt) as
follows:

BA(Ds(x+ δ), wt) =
1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = wt[i]) (23)

=
1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = wt[i]) (24)

≥ 1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = wt[i]) · I(ri(x) ≥ R) (25)

=
1

m

m∑︂
i=1

I(Ds(x)[i] = wt[i]) · I(ri(x) ≥ R), (26)

where I is the indicator function. Also, we derive an upper bound BA(x) for
BA(Ds(x+ δ), wt) as follows:

BA(Ds(x+ δ), wt) =
1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = wt[i]) (27)

= 1− 1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = ¬wt[i]) (28)

≤ 1− 1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = ¬wt[i]) · I(ri(x) ≥ R) (29)

= 1− 1

m

m∑︂
i=1

I(Ds(x)[i] = ¬wt[i]) · I(ri(x) ≥ R), (30)

where ¬wt means flipping each bit of the watermark wt.
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B Proof of Theorem 2

Given the smoothed multi-label classifier g, we define e(x) and e(x) as follows:

e(x) = sup{e ∈ N | |L ∩ g(x+ δ)| ≥ e, ∀∥δ∥2 < R}, (31)
e(x) = sup{e ∈ N | |Y/L ∩ g(x+ δ)| ≥ e, ∀∥δ∥2 < R}, (32)

where L is the set of indices of ones in wt, i.e., L = {i ∈ Y|wt[i] = 1}, and
Y = {1, 2, · · · ,m}. Specifically, the smoothed decoder Ds returns k labels (cor-
responding to k bits that are predicted to be 1), and other m−k labels correspond
to m−k bits that are predicted to be 0. As defined in Section 4.2, the watermark
Ds(x+ δ) decoded by Ds for x+ δ is as follows:

Ds(x+ δ)[i] =

{︄
1, if i ∈ g(x+ δ),

0, if i /∈ g(x+ δ).
(33)

Therefore, for any perturbation δ whose ℓ2-norm is bounded by R, we derive a
lower bound BA(x) for BA(Ds(x+ δ), wt) as follows:

BA(Ds(x+ δ), wt) =
1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = wt[i]) (34)

=1− 1

m

m∑︂
i=1

I(i /∈ g(x+ δ)) · I(i ∈ L) + I(i ∈ g(x+ δ)) · I(i ∈ Y/L) (35)

=1− 1

m

m∑︂
i=1

(|L| − |L ∩ g(x+ δ)|+ |g(x+ δ)| − |L ∩ g(x+ δ)|) (36)

=1− 1

m
(∥wt∥1 + k − 2 |L ∩ g(x+ δ)|) (37)

≥1− 1

m
(∥wt∥1 + k − 2e(x)). (38)

Also, for any perturbation δ whose ℓ2-norm is bounded by R, we derive an upper
bound BA(x) for BA(Ds(x+ δ), wt) as follows:

BA(Ds(x+ δ), wt) = 1− 1

m

m∑︂
i=1

I(Ds(x+ δ)[i] = ¬wt[i]) (39)

=
1

m

m∑︂
i=1

I(i /∈ g(x+ δ)) · I(i ∈ Y/L) + I(i ∈ g(x+ δ)) · I(i ∈ L) (40)

=
1

m

m∑︂
i=1

(|Y/L| − |Y/L ∩ g(x+ δ)|+ |g(x+ δ)| − |Y/L ∩ g(x+ δ)|) (41)

=
1

m
(m− ∥wt∥1 + k − 2 |Y/L ∩ g(x+ δ)|) (42)

≤ 1

m
(m− ∥wt∥1 + k − 2e(x)). (43)
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C Proof of Theorem 3

Following Equation 4, given the added perturbation δ, the ground-truth water-
mark wt, the decoder D, and the smoothed decoder Ds, we define g(x + δ) =
BA(Ds(x + δ), wt) and f(x) = BA(D(x), wt). When δ is ℓ2-norm bounded by
R, we have:

sup{y ∈ R | Pr (BA(D(x+ ϵ), wt) ≤ y) ≤ Φ(−R

σ
)} ≤ BA(Ds(x+ δ), wt)

≤ inf{y ∈ R | Pr (BA(D(x+ ϵ), wt) ≤ y) ≥ Φ(
R

σ
)}, ∀∥δ∥2 < R, (44)

where ϵ ∼ N (0, σ2I) and Φ is the cumulative distribution function of the stan-
dard Gaussian.

D Calculation of e(x) and e(x)

We have estimated the lower bounds ps for s ∈ {i ∈ Y|wt[i] = 1} and upper
bounds pt for t ∈ {i ∈ Y|wt[i] = 0} in Section 4.4. To calculate e(x) and e(x),
we follow Jia et al. [19]. We denote that d = ∥wt∥1. Without loss of generality,
we assume ps1 ≥ ps2 ≥ · · · ≥ psd for lower bounds ps and pt1 ≥ pt2 ≥ · · · ≥ ptd
for upper bounds pt. Then, we have:

e(x) = argmax
e′=1,2,··· ,min{d,k}

e′ (45)

s.t. max

{︃
Φ

(︃
Φ−1

(︂
pse′

)︂
− R

σ

)︃
,

η
max
u=1

k′

u
· Φ

(︃
Φ−1

(︂pSu

k′

)︂
− R

σ

)︃}︃
>min

{︃
Φ

(︃
Φ−1

(︁
ptµ

)︁
+

R

σ

)︃
,

µ

min
v=1

k′

v
· Φ

(︃
Φ−1

(︂pTv

k′

)︂
+

R

σ

)︃}︃
, (46)

where Φ and Φ−1 are the cumulative distribution function and its reverse of
the standard Gaussian distribution, η = d − e′ + 1, µ = k − e′ + 1, pSu

=∑︁e′+u−1
l=e′ psl , pTv

=
∑︁µ

l=µ−v+1 ptl , R is perturbation’s ℓ2-norm bound, σ is the
standard derivation of Gaussian noise, k′ is the number of returned labels for
the base multi-label classifier f defined in Section 4.2, and k is the number of
returned labels for the smoothed multi-label classifier g defined in Section 4.2.
The calculation of e(x) follows a similar procedure.

E Removal and Forgery Attacks

We consider four post-processing methods that can be applied to both removal
and forgery attacks. For removal attack, the attacker takes a watermarked image
xw as input and tries to perturb xw such that the detector misclassifies the
perturbed image as non-watermarked. For forgery attack, the attacker takes
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a non-watermarked image xn as input and tries to perturb xn such that the
detector misclassifies the perturbed image as watermarked.
JPEG compression: JPEG compression is widely used in image transmission
and compression. This operation compresses an image with a quality factor Q. In
particular, a smaller quality factor Q may introduce larger perturbation. JPEG
compression can be used for both removal and forgery attacks. In particular,
given an image (watermarked or non-watermarked), the attacker perturbs the
image via JPEG such that the detector may classify the perturbed image as the
opposite. Note that JPEG compression is unsuccessful for forgery attack, which
is validated by our experimental results in Figure 11.
Black-box attack: In this attack, the attacker only has access to the detection
API, which returns whether an image is watermarked or not. The attacker’s
goal is to evade the detector by adding a perturbation to the watermarked or
non-watermarked image such that the perturbed image is misclassified as the
opposite. Specifically, the attacker keeps querying the API and reduces the per-
turbation based on the binary result [22]. Ideally, the attacker eventually finds
an imperceptible perturbation to evade the detector. For removal attack, the at-
tacker initializes watermarked images via JPEG compression to obtain perturbed
images that are misclassified as non-watermarked by the detector. For forgery
attack, we assume that the attacker collects at least one watermarked image
and uses it as an initial image. In the black-box forgery attack, we set τ = 0.63.
This is because, we note that WEvade-B-Q performs successful forgery attack on
base watermarking while fails to forge watermark on our smoothed watermark-
ing when τ = 0.83 by default, which further demonstrates that our smoothed
watermarking is more robust against the black-box attack.
White-box attack: In this attack, the attacker has access to watermark de-
coder’s parameters. To evade the detector, the attacker designs a small pertur-
bation via solving an optimization problem using gradient descent. For removal
attack, the attacker does not need to know the ground-truth watermark [22].
In particular, the attacker selects a target watermark uniformly at random as
the target watermark. For forgery attack, we assume the attacker knows the
ground-truth watermark and uses it as the target watermark. For both attacks,
the attacker optimizes the perturbation δ to maximize the similarity between
the target watermark and decoded watermark in each iteration.
Adaptive white-box attack: In adaptive white-box attack, the attacker fur-
ther takes smoothing process into consideration when finding the perturbation.
The attacker knows that there are N bitwise accuracy (corresponds to N noisy
images) during detection and the final bitwise accuracy is the median one. Thus,
The attacker tries to mimic such smoothing process in this attack. Specifically,
the attacker samples N ′ Gaussian noises ϵ1, ϵ2, · · · , ϵN ′ and adds them to the
perturbed image x+ δ to obtain x+ δ+ ϵ1, x+ δ+ ϵ2, · · · , x+ δ+ ϵN ′ . Then, the
attacker calculates N ′ bitwise accuracy with respect to the target watermark,
takes the median, and updates the perturbation δ based on the gradient of this
noisy image. We describe the adaptive attack in Algorithm 1. In our experiments,
N ′ is set as 100. For removal attack, the attacker randomly selects a bitstring
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as the target watermark. For forgery attack, the attacker uses the ground-truth
watermark as the target watermark. For both attacks, the attacker optimizes
the perturbation δ to maximize the similarity between the target watermark
and decoded watermark (in the smoothing setting). Note that we use double-
tailed detector [22] in our experiments, which is more robust than single-tailed
detector.

Algorithm 1 Adaptive white-box attack
Input: Image x, decoder D, target watermark wT , number of iteration n_iter, learn-

ing rate α, objective function l, perturbation bound R
Output: Perturbation δ
1: δ ← 0
2: for i = 1 to n_iter do
3: if adaptive attack then
4: ϵ′ ← Smooth_noise(x, D, wT )
5: w ← D(x+ ϵ′ + δ)
6: else
7: w ← D(x+ δ)
8: δ ← δ − α · ∇δl(w,wT )
9: if ∥δ∥2 > R then

10: δ ← δ · R
∥δ∥2

11: if smoothed decoder then
12: ϵ∗ ← Smooth_noise(x, D, wT )
13: w ← D(x+ ϵ∗ + δ)
14: else
15: w ← D(x+ δ)
16: if BA(w,wT ) ≥ 1− ϵ then
17: return δ
18: return δ

Algorithm 2 Smooth_noise(x, D, wT )
Input: Image xw, decoder D, watermark wT , standard deviation σ, number of Gaus-

sian noises N ′

Output: Gaussian noise ϵ
1: ϵ1, ϵ2, · · · , ϵN′ ← N ′ Gaussian noises randomly sampled from N (0, σ2I)
2: BA1, · · · , BAN′ ← BA(D(x+ ϵ1), wT ), · · · , BA(D(x+ ϵN′), wT )
3: sort BA1, BA2, · · · , BAN′

4: pick ϵ among ϵ1, ϵ2, · · · , ϵN′ such that BA(D(x + ϵ), wT ) is the median among
BA1, BA2 · · · , BAN′

5: return ϵ
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