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2 Related Work

Prompting Prompting has become the go-to method for adapting language models to
downstream use cases. Among the more popular techniques are in-context learning (Min
et al., 2022) and chain-of-thought prompting (Wei et al., 2022). Despite being flexible,
prompting cannot match the performance of fine tuning (Mosbach et al., 2023; Lu et al.,
2021). For dialog systems based on large language models, a system prompt is placed at the
beginning of context window to define the general behavior of the chatbot. In the line of
prompting, we test a simple remedy that repeats the system prompt many times before each
user utterance in Section 6.

Instruction Tuning Instruction tuning has been widely adopted to further align the model
to task instructions after pre-training (Gupta et al., 2022; Wei et al., 2021). Given pairs
of inputs and outputs that follow the instruction, the model is fine-tuned to generate the
desired output. For the purpose of mitigating instruction drift, instruction tuning has played
a major role, especially in addressing safety concerns using RLHF Ouyang et al. (2022).
However, instruction tuning has a high cost of collecting training data and is not as flexible
as prompting.

Controlled Decoding Controlled decoding methods can be adapted to avoid instruction
drift. Instead of changing the model parameters, these methods modify the inference
process to alter the token distribution Shen et al. (2017); Dathathri et al. (2019); Krause et al.
(2020); Li et al. (2023a). For example, for a certain prompt, Todd et al. (2023) find a set
of function vectors in the model’s hidden space that could be added to novel prompts to
steer the model outputs. This can be thought of as a way to distill the prompt without
repeating it in the context window. Weston & Sukhbaatar (2023) propose System-2 attention,
where the language model first decides where to attend to before making the final responses.
Classifier-free guidance (CFG) (Sanchez et al., 2023) works by running the model twice,
once with and once without the system prompt, and computing the next token distribution
by a scaled contrast of the two distributions. We will evaluate CFG in our experiments
in Section 6.

Studies of Instruction Following in Dialog Systems Li et al. (2023b); Wu et al. (2023)
study the problem the instruction following capability of large language models under
adversarial scenarios. Concurrent to this work, Zhou et al. (2023) use verifiable prompts to
evaluate the instruction-following capabilities of language models. However, they all focus
on one-turn situations without user input. Zeng et al. (2023) emphasize the difficulty for
language model to evaluate instruction-following even using close-source language models,
motivating us to use deterministic functions for evaluation.

3 Measuring Instruction Drift

We aim to quantify instruction drift without the need for human judgment or API calls of
proprietary LLMs. To that end, we introduce a simple experimental protocol, along with a
benchmark dataset.

3.1 Experimental Protocol

The idea behind the protocol is straightforward: to measure instruction drift, we create a syn-
thetic dialog between two chatbots A and B and evaluate how far the dialog [a1, b1, a2, b2, ...]
drifts from the original prompts. To automate this process, we need four elements: two
system prompts sA, sB, a conversation starter a1, a probe question pB, and a stability
measure fB(bi). Table 1 shows an example set of these elements.

The protocol consists of the following two steps ( Figure 2):

1. Given the two system prompts, sA for the user LM and sB for the agent LM, we
pit two copies of the same chatbot against each other but with different system
prompts, as specified by their different system prompts. The agent LM is the agent
under test for its instruction stability. We then create a synthetic multi-round dialog
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As shown in Figure 4, within each turn, π(t) remains almost constant, but there are signif-
icant decreases across turns. This observation runs over a naive hypothesis of attention
decay—if the attention distributes uniformly over previous tokens, π(t) should decay
hyperbolically and be independent of number of turns.

It’s also worth-noting that this highlights a unique issue in chatbots, distinct from language
models, where out-of-distribution text from interlocutors is absent. The case of the language
model completing its input partial sequence is technically equivalent to the agent LM
generating answers for a single turn, which displays a plateau in π(t).

This observation shows merely the co-occurrence of instruction drift and attention de-
cay. However, it inspires the hypothesis that attention decay may internally contribute
to instruction drift, suggesting that addressing the former could help mitigate the latter
(Section 6.2).

5 A Geometric View of Attention Decay

To shed light on attention decay in Figure 4, both the plateau within utterance and the
drop across utterances, we provide a theoretical explanation in a simplified situation.It has
been shown empirically and theoretically that the internal representation of deep neural
networks usually live in a narrow cone in the high-dimensional space (Mimno & Thompson,
2017; Ethayarajh, 2019; Zhu et al., 2021; Liang et al., 2022). Motivated by their observations,
we characterize attention decay from a similar geometric perspective.

We will consider two settings of model generation:

1. New tokens are generated autoregressively given initial tokens h1, . . . , h|sB |, which

models the process of the agent LM generating answers;

2. New tokens are drawn by the user. A user LM could put out-of-distribution tokens
into the context window of agent LM in a potentially adversarial fashion (Zou et al.,
2023).

For the first setting, we will show that tokens generated by the model always remain in
an approximately low-dimensional convex cone in Theorem 5.1. In the second setting, we
can characterize the expansion using spherical measure and show that randomly drawn
tokens will lead to an expansion of the underlying convex cone with the growth of intrinsic
dimension of token embeddings, as shown in Proposition A.2 in Appendix A.

5.1 Setting One: Agent Utterances

In linear algebra, a cone is a subset of a vector space that is closed under positive scalar
multiplication. In other words, C is a cone if x ∈ C implies sx ∈ C for every positive scalar s.
Moreover, C is called a convex cone if αx + βy ∈ C for any positive scalars α and β, and any
x, y ∈ C.

The dimension of a cone is the dimension of the vector space spanned by the elements of
the cone. For convenience, we define two new notions related to low dimensional cones in
the space RD. Given any d-dimensional convex cone C ⊂ RD (1 ≤ d ≤ D), for ǫ ∈ (0, 1) we
define the corresponding ǫ-approximate d-dimensional cone as

Cǫ := {w ∈ C ⊕ span(C)⊥ ⊂ R
D : w = u + v

for some u ∈ C, v ∈ span(C)⊥ ∼= R
D−d, ‖v‖ ≤ ǫ‖w‖}.

Given some c ∈ SD−1 and θ ∈ (0, π/2), a d-dimensional spherical cone is the set defined by

Pd[c, θ] := {u ∈ U ⊂ R
D : U ∼= R

d, 〈c, u〉 ≥ ‖u‖ cos θ}.

Theorem 5.1. Assume that the token embeddings of the system prompt given by h1, . . . , h|sB | lie in

the d-dimensional approximate cone Cǫ, and that any output-value matrix W l,m
ov = W l,m

o W l,m
v ∈

RD×D satisfy that W l,m
ov u ∈ Cǫ for any u ∈ Cǫ. Then all proceeding tokens generated by our
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simplified transformer lie in the convex hull of Cǫ. In particular, if Cǫ is contained in some

spherical cone Pd[c, θ] , then all generated tokens lie in the ǫ̃-approximate cone Cǫ̃ where ǫ̃ =

ǫ/
√

ǫ2 + cos2 θ(1 − ǫ2).

For the initial tokens, θ indicates how concentrated their embeddings are, and d is roughly
the intrinsic dimension of these embeddings. Note that d ≤ |sB| and the number of tokens
in the system prompt |sB| is usually much smaller than the dimensions of hidden space D,
which is 8192 in the case of LLaMA2-70B-chat. Thus, the assumption that initial embeddings
occupy a low-dimensional cone is reasonable.

Theorem 5.1 shows the convex cone for token embeddings remains stable during the
generating process if there is no user input, which leads to the plateau within an utterance.

6 Mitigating Instruction Drift

If instruction drift is related to attention decay, that suggests we can mitigate drift by
manipulating the level of attention on the original prompt. Before presenting an attention-
based mitigation method, however, we describe two baselines.

6.1 Baseline Methods

System Prompt Repetition (SPR) We inject the system prompt with probability 0 ≤ p ≤ 1
before each user utterance. The repeated system prompts, like the standard system prompt
at the start of the input sequence, only appear when the language model is prompted; users
do not see them.

Classifier-Free Guidance (CFG) The second method is classifier-free guidance
(CFG, Sanchez et al., 2023), which runs the base model twice, firstly with system prompt
to get log p(w|w≤t, sB) and then without system prompt to get log p(w|w≤t). It then uses
a contrastive linear operation inside the logit space to strengthen the effects of the system
prompt on answer generation. The new next-token probability distribution is defined by:

log p̂(w|w≤t, sB) = log p(w|w≤t) + α(log p(w|w≤t, sB)− log p(w|w≤t)). (5)

CFG comes with a hyperparameter α ≥ 1 that controls how far we shift the predicted logits.
When α = 1, it reduces to prompting with the system prompt; larger α produces stronger
intervention.

6.2 Proposed Method: Split-softmax (SS)

Motivated by the attention decay phenomenon, we introduce a method that requires no
retraining, split-softmax, aimed at reducing this decay with minimal overhead. The basic
idea is straightforward: if the problem is that the model pays too little attention to the
prompt, then force the model to pay more. In practice, we find that a power-law scaling of
attention seems to be effective.

In particular, split-softmax (SS) works by inserting a scaling operation between Equation 3
and Equation 4 for every attention operation. After obtaining the attention distribution
{αt,i}t

i=1 which sums up to 1 (omitting superscript for simplicity), we reweight it by:

π(t) =
|sB |
∑
i=1

αt,i, α′t,i =







πk(t)
π(t)

αt,i if i ≤ |sB|
1−πk(t)
1−π(t)

αt,i if i > |sB|
, (6)

where the introduced exponent 0 ≤ k ≤ 1 as a hyperparameter to control the strength of our
intervention. The smaller k is, the stronger the intervention is; when k = 1, the intervention
is nullified. The new set of attention {α′t,i}t

i=1 sums up to 1 as well and will replace {αt,i}t
i=1

so that more attention is paid to the system prompt tokens. Given 0 ≤ π(t) ≤ 1, 0 ≤ k ≤ 1

thus
πk(t)
π(t)

≥ 1, split-softmax increases the proportion of attention paid to system prompts.

See Appendix E for more discussion.
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APPENDIX

A Sketch of the Theory for Setting Two: User Utterances ( Section 5)

Again we assume that the system tokens h1, . . . , h‖sB‖ are from some Cǫ
0 , and let Cn be

the smallest convex cone containing C0 and user tokens {h|sB |+i}n
i=1. Then the expansion

C0 ⊂ C1 ⊂ · · · ⊂ Cn reflects the attention decay under the influence of user utterances. To
get some intuition on the expanding process, we show the following:

Proposition A.1. If user tokens are drawn i.i.d. uniformly from SD−1, then with probability 1 − η

after n ≥ 4D + 2 log 1
η user tokens Cn expands to the whole space RD.

Proposition A.1 suggests that when user utterances are inserted, the size of the convex cone
for token embeddings will grow significantly, which gives rise to the drop of π(t) across
utterances. To further quantify the expansion of convex cones, we can consider the spherical

measure σD−1, which is the Borel measure on the (D − 1)-sphere such that σD−1(S
D−1) = 1.

For any ǫ-approximate convex cone Cǫ, define the volume of Cǫ by

µ(Cǫ) := σD−1(C
ǫ ∩ S

D−1).

Then intuitively µ(Cǫ
0)/µ(Cǫ

n) indicates the degree to which the current tokens in Cǫ
n align

with the system tokens in Cǫ
0 , similar to the quantity π(t) defined in the previous section.

In real applications, user messages are not i.i.d. uniform variables from SD−1. However,
there usually exists an evident proportion of user tokens distinct from the system tokens.
They could probably be tokens unique in the specific topics that the user inquires about or,
more typically, tokens from a new language. It could also happen that the user is attacking
the LM by sending adversarial tokens (Zou et al., 2023). The following proposition quantifies
how attention decays in terms of µ(Cǫ

0)/µ(Cǫ
n) as such embedding dimension increases.

Proposition A.2. Suppose C0 is a d1-dimensional convex cone contained in some d1-dimensional

spherical cone Pd1 [c1, ψ1] while Cn is a d2-dimensional convex cone containing a d2-dimensional

spherical cone Pd2 [c2, ψ2]. Then we have

µ(Cǫ
0)

µ(Cǫ
n)

. ǫd2−d1 .

The geometric perspective we proposed provides a concrete explanation of why inserting
user prompts will cause attention decay while autoregressive generation from the model
will almost have no harm. However, one limitation here is that we have only compared the
cone structure without tracking the distribution of token embeddings within the cones. In
particular, if we force the majority of tokens generated from Cǫ

n to be contained or close to
Cǫ

0 , the issue of attention decay could possibly be mitigated, which motivates our method in
the proceeding section.

B Proofs for Theorems

We start by making simplifications to the model and token-generating process. First, the
model is simplified by omitting the MLP and layer norms as in Equation 1. For the token-

generating process, the embedding of the next token ht+1 is close to hL
t among all tokens in

the vocabulary in Equation 2. Thus, for convenience we directly put ht+1 := hL
t /‖hL

t ‖ in our

simplified model, meaning that all embeddings lie on the unit hypersphere SD−1 := {v ∈
RD : ‖v‖ = 1}.

Proof of Theorem 5.1. Let Cǫ be the convex hull of Cǫ. The Cǫ is a convex cone containing Cǫ.
Theorem 5.1 can be proven in two steps.
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Step I. We establish that ht ∈ Cǫ by induction. h1, . . . , ht0 already satisfy the claim by

assumption. Supposing that h1, . . . , ht ∈ Cǫ (t ≥ t0), we show that ht+1 is also in Cǫ. Here

we look into hl
j (j = 1, . . . , t, l = 1, . . . , L) in the process of generating ht+1. We perform

induction on l. For l = 0, we have hl
j = hj ∈ Cǫ. Supposing that hl

j ∈ Cǫ for j = 1, . . . , t, it

suffices to prove that hl+1
j ∈ Cǫ.

By induction hypothesis that hl
j ∈ Cǫ (j = 1, . . . , t) we can find k j ∈ N+, xj,1, . . . , xj,kj

∈ Cǫ,

and wj,1, . . . , wj,kj
> 0 for j = 1, . . . , t such that

hl
j =

kj

∑
i=1

wj,ixj,i.

Thus, by Equation 1 we have

hl+1
j = hl

j +
H

∑
m=1

W l+1,m
o Attl+1,m(hl

1, . . . , hl
j)

= hl
j +

H

∑
m=1

j

∑
s=1

αl+1,m
j,s W l+1,m

o W l+1,m
v hl

s

= hl
j +

H

∑
m=1

j

∑
s=1

ks

∑
i=1

αl+1,m
j,s ws,iW

l+1,m
o W l+1,m

v xs,i.

Note that αl+1,m
j,s > 0 since it is calculated from softmax and by assumption we have

W l+1,m
o W l+1,m

v xi,s ∈ Cǫ as xs,i ∈ Cǫ. Thus, we conclude that hl+1
j ∈ Cǫ. By induction we

know for l = 1, . . . , L and j = 1, . . . , t we have hl
j ∈ Cǫ. Thus, ht+1 = hL

t /‖hL
t ‖ ∈ Cǫ holds.

And by induction again we conclude that ht ∈ Cǫ for all t ≥ 1.

Step II. Let γ = cos θ. We prove that Cǫ ⊂ Cǫ̃ where ǫ̃ = ǫ/
√

ǫ2 + γ2(1 − ǫ2). For any

y ∈ Cǫ, there exists k ∈ N+, x1, . . . , xk ∈ Cǫ, and w1, . . . , wk > 0 such that y = ∑
k
i=1 wixi.

By definition of Cǫ, xi can be written as xi = ui + vi where ui ∈ C and vi ∈ span(C)⊥

and ‖vi‖ ≤ ǫ‖xi‖. By definition of Pd[c, θ] we have 〈c, ui〉 ≥ γ‖ui‖ for all i = 1, . . . , k. Let

ũi := 〈c, ui〉c. Then 〈ũi, ui − ũi〉 = 0 and hence 〈∑k
i=1 wiũi, ∑

k
i=1 wi(ui − ũi)〉 = 0. Therefore,

we have
∥

∥

∥

k

∑
i=1

wiui

∥

∥

∥
≥

∥

∥

∥

k

∑
i=1

wiũi

∥

∥

∥
=

k

∑
i=1

〈

c,
k

∑
i=1

wiui

〉

≥ γ
k

∑
i=1

wi‖ui‖.

On the other hand, we know

∥

∥

∥

k

∑
i=1

wivi

∥

∥

∥
≤

k

∑
i=1

wi‖vi‖ ≤ ǫ√
1 − ǫ2

k

∑
i=1

wi‖ui‖.

Therefore, it holds that
∥

∥

∥

k

∑
i=1

wiui

∥

∥

∥
≥ γ

√
1 − ǫ2

ǫ

∥

∥

∥

k

∑
i=1

wivi

∥

∥

∥
,

which implies that
∥

∥

∥

k

∑
i=1

wivi

∥

∥

∥
≥ ǫ

√

ǫ2 + γ2(1 − ǫ2)

∥

∥

∥

k

∑
i=1

wixi

∥

∥

∥
.

Thus, we conclude that Cǫ ⊂ Cǫ̃.

To prove Proposition A.1 we need the following lemma.
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Lemma B.1 (Wendel, 1962). Let N points be scattered uniformly at random on Sm ⊂ Rm+1. Then
the probability that all points lie on some hemisphere is given by

am,N = 2−N+1
m

∑
k=0

(

N − 1

k

)

.

Proof of Proposition A.1. If there is no hemisphere containing ht0+1, . . . , ht0+n, then the origin

lies in Cn and is not on the boundary, meaning that Cn = RD. Thus, we only need to show

that for n ≥ 4D + log 1
η , it holds that aD,n ≤ η. Since

2−n
D

∑
i=0

(

n

i

)

≤ 2−n
D

∑
i=0

ni

i!
= 2−n

D

∑
i=0

D!

i!

( n

D

)i
≤ 2−n

( en

D

)D
.

It suffices to prove that 2−n
(

en
D

)D
< η. For convenience let α := 4 + 2

D log 1
η ≤ n

D . Then we

can check that
(

log 2 − 1

2

)

eα/2
>

( 1

η

)1/D
.

Note that

eα(log 2− 1
2 )−1 ≥ α

(

log 2 − 1

2

)

,

which is equivalent to

eα ≤ eα(log 2− 1
2 )

log 2 − 1
2

=
2α

eα/2
(

log 2 − 1
2

) .

Thus, we have

2−n
( en

D

)D
≤ (eα)D

2αD
≤ 1

(

log 2 − 1
2

)D
eαD/2

< η.

To show Proposition A.2 we need the following lemma.

Lemma B.2 (Li, 2010). The spherical measure of the spherical cap Pm+1[c, θ] ∩ Sm is given by

σm(Pm+1[c, θ] ∩ S
m) =

∫ θ
0 sinm−1 xdx

2
∫ π/2

0 sinm−1 xdx
=

Γ(m+1
2 )√

πΓ(m
2 )

∫ θ

0
sinm−1 xdx,

where Γ(x) is the Gamma function.

Proof of Proposition A.2. First we lower bound µ(Cǫ
n) by identifying as many disjoint spheri-

cal caps with angle θ := arcsin ǫ as possible and applying Lemma B.2.

Let M be the largest number such that there exists a set of points a1, . . . , aM ∈ Pd2 [c2, ψ2 −
θ] ∩ SD−1 to ensure PD[ai, θ] ⊂ Pd2 [c2, ψ2] (i = 1, . . . , M) are disjoint from one another

(“disjoint” meaning that the measure of intersection is zero). We claim that
{

Pd2 [ai, 2θ]
}M

i=1

is a covering of Pd2 [c2, ψ2]. Otherwise, choosing a0 ∈ Pd2 [c2, ψ2] ∩ SD−1 \⋃

i Pd2 [ai, 2θ] we

can check that PD[a0, θ] does not intersect with any of PD[ai, θ]. Thus, these M + 1 spherical

caps do not overlap, which contradicts the definition of M. Hence Pd2 [c2, ψ2] ⊂
⋃

i Pd2 [ai, 2θ],
and by Lemma B.2 we have

Γ( d2
2 )√

πΓ( d2−1
2 )

∫ ψ2

0
sind2−2 xdx = σd2−1(Pd2 [c2, ψ2] ∩ S

D−1)

≤
M

∑
i=1

σd2−1(Pd2 [ai, 2θ] ∩ S
D−1) = Mσd2−1(Pd2 [ai, 2θ]) = M

Γ( d2
2 )√

πΓ( d2−1
2 )

∫ 2θ

0
sind2−2 xdx.
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On the other hand, since PD[ai, θ]’s are disjoint from each other and that PD[ai, θ] ⊂
PD[c2, ψ2] (because ǫ = sin θ), we know

µ(Cǫ
n) ≥

M

∑
i=1

σD−1(PD[ai, θ] ∩ S
D−1) = MσD−1(PD[ai, θ] ∩ S

D−1)

= M
Γ(D

2 )√
πΓ(D−1

2 )

∫ θ

0
sinD−2 xdx

≥ Γ(D
2 )

Γ(D−1
2 )

∫ ψ2
0 sind2−2 xdx

∫ θ
0 sinD−2 xdx

∫ 2θ
0 sind2−2 xdx

.

Next we upper bound µ(Cǫ
0). For any (x1, · · · , xn) ∈ Bn := {(x1, . . . , xn) : ∑

n
i=1 x2

i ≤ 1}, we
introduce the hyperspherical coordinate system, which consists of a radial coordinate r, and
n − 1 angular coordinates φ1, . . . , φn−1, where the angles φ1, · · · , φn−2 range over [0, π] and
φn−1 ranges over [0, 2π). In specific, the coordinates are defined through the transformation:

x1 = r cos φ1,

x2 = r sin φ1 cos φ2,

x3 = r sin φ1 sin φ2 cos φ3,

...

xn−1 = r sin φ1 · · · sin φn−2 cos φn−1,

xn = r sin φ1 · · · sin φn−2 sin φn−1.

By assumption we know C0 ⊂ PD[c1, ψ1]. Therefore, using the notion of spherical elements
(Blumenson, 1960), we can write

µ(Cǫ
0) = σD−1(C

ǫ
0 ∩ S

D−1) =
1

Area(SD−1)

∫

Ω
sinD−2 φ1 sinD−3 φ2 · · · sin φD−2d(φ1, . . . , φD−1),

where

Ω =
{

(φ1, · · · , φD−1) : φ1 ∈ [0, ψ1], φ2, . . . , φD−2 ∈ [0, π], φD−1 ∈ [0, 2π], ∏
d1−1
j=1 sin φj ∈ [0, ǫ]

}

.

Denoting

Ω1 =
{

(φ1, · · · , φd1−1) : φ1 ∈ [0, ψ1], φ2, . . . , φd1−1 ∈ [0, π], ∏
d1−1
j=1 sin φj ∈ [0, ǫ]

}

,

then we have

µ(Cǫ
0) =

1

Area(SD−1)

∫

(φ1,...,φd1−1)∈Ω1

sinD−2 φ1 · · · sinD−d1 φd1−1d(φ1, . . . , φd1−1)

∫ π

0
· · ·

∫ π

0

∫ 2π

0
sinD−d1−1 φd1

· · · sin φD−2dφd1
· · · dφD−1

=
Area(SD−d1)

Area(SD−1)

∫

(φ1,...,φd1−1)∈Ω1

sinD−2 φ1 · · · sinD−d1 φd1−1d(φ1, . . . , φd1−1)

≤ Area(SD−d1)

Area(SD−1)
ǫD−d1

∫ ψ1

0

∫ π

0
· · ·

∫ π

0
sind1−2 φ1 · · · sin φd1−2dφ1 · · · dφd1−1

=
Area(SD−d1)Area(Sd1−1)

2Area(SD−1)
σd1−1(Pd1 [c1, ψ1] ∩ S

D−1)

=
Γ(D

2 )

Γ(D−d1+1
2 )Γ( d1−1

2 )
ǫD−d1

∫ ψ1

0
sind1−2 xdx.
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