
Chapter 1

Introduction

1.1 Preface

Scientists share chemical information through the language of molecules. On
the news we hear about the impact of CO2 on the climate, we look at the
back of the ibuprofen container and read that it has a C13H18O2 composition,
in organic chemistry we learn that the formation of cyclohexene (C6H10) from
1,3-butadiene (C4H6) and ethylene (C2H4) occurs via the Diels-Alder reaction,

and in physical chemistry we discover the molecular orbitals of benzene (C6H6)
and naphthalene (C10H8)–which explain their unique properties. In these ex-
amples, the information about these molecules is passed to the receiver with the
use of molecular formulas, structural formulas, or even by introducing aspects
of molecular electronic structure.

The digital revolution (or third industrial revolution) introduced automation
and digitization in many aspects of the sciences, manufacturing, and daily life
through the use of electronics, computers, and the internet. We are now living
in the fourth industrial revolution which is dominated by personal connected de-
vices, artificial intelligence technologies, data analytics, and digital transforma-
tions. Those require e�cient communication between di↵erent participants and
online objects. Like every aspect of daily life, communication, manufacturing,
and sciences, the field of chemistry is currently experiencing a transformation
by the rise of digitalization and the era of Big Data. However, the common
language used for teaching chemistry or sharing results and announcing discov-
eries is not adequate for the flow of chemical information between a user and a
digital devise. This becomes more evident when such communication involves

5

6 CHAPTER 1. INTRODUCTION

databases of billions or even trillions of molecular entries.
E↵ective methodologies for transferring chemical information between hu-

mans and machines have been developed since the early days of chemoinformat-
ics (1970s). The field of molecular representations has been further developed
in previous years to digitalize molecular information in order to apply tools
from artificial intelligence and machine learning to chemical exploration. In this
book, we present the most common “languages” used by scientists to commu-
nicate chemical information with computers and algorithms. These methodolo-
gies have allowed the systematic exploration of chemical space that goes beyond
traditional experimental or computational approaches. Thus, we are now in a
unique position to explore large chemical databases for the extraction of patterns
(e.g. structure-functionality relations) and to discover molecules and materials
with enhanced properties.

The first chapter includes a historical background on how philosophers and
alchemists represented mater, and how the Chemical Revolution (1770 – 1790)
lead to the standard chemical nomenclature that is used till today. We move
then to the motivation behind the preparation of a book that introduces molec-
ular representations to chemistry students. The first chapter ends with a short
discussion on important properties that molecular representations should have.

1.2 Historical Background

A long standing question, for scientists and alchemists alike, is how to represent
molecules. Since atoms are the building blocks of molecular structures, we need
to go back to Ancient Greece and to the origins of atom theory to find answers
to this question.

1.2.1 The Atom Theory

Leucippus (480 – 420 BC) and his disciple, Democritus (460 – 370 BC), in-
troduced the hypothesis that the universe is composed by atoms and voids.
Democritus proposed a basic theory for atoms in which all apparent changes
in matter result from changes in the groupings of atoms. He suggested that
they can be distinguished from each other by their properties including weight,
form, size, position, and arrangement. Asclepiades of Prusa (124 – 40 BC) hy-
pothesized that atoms interact with each other and form clusters. In parallel to
the atom theory, Empedocles (490 – 430 BC) introduced the four “fundamental
elements” of fire, earth, air, and water, and a fifth element (“aether”) was later
added to complete the early interpretation of the matter that is around us.

The Roman philosopher and poet Lucretius (99 – 55 BC) introduced the
ideas of Asclepiades to Empedocles’ theory and argued that the four elements
are connected to each other with hooks and sockets, which is an early view
of chemical bonding. During the dark medieval times, alchemists acquired the
element theory, and the ideas of Democritus were abandoned, especially since
the influential philosophers Aristotle and Plato rejected the atom theory based

1.2. HISTORICAL BACKGROUND 7

on philosophical grounds. It took almost 2000 years to embrace Democritus
ideas with scientific observations and reasoning.

During the 17th century, the atom theory was revived primarily by the work
of Pierre Gassendi (1592 - 1655) and Isaac Newton (1643 - 1727), who acknowl-
edged that particles are connected with hooks and that they attract each other
via forces which, in close proximity, perform chemical operations. A more con-
crete concept was given in 1661 by Robert Boyle (1627 – 1691), who showed
that the four elements were not fundamental elements as they could be broken
down into simpler particles. He also stated that matter is composed of clusters
of particles and chemical operations are performed by their rearrangements.
Étienne François Geo↵roy (1672 - 1731) proposed the theory of chemical a�n-
ity to explain the forces between particles of various salts, and introduced the
A�nity Table, a visual representation of alchemical elements organized based
on “displacement reactions”, an early view of chemical reactivity.

In 1803, John Dalton (1766 - 1844) provided the foundations of modern
atomic theory based on experimental observations. Among other justified sci-
entific principles, he stated that each elemental atom is unique, he rationalized
that the weight of atom determines its character, he defined the atomic weight
of the lightest element (hydrogen) as unity, and that chemical reactions will oc-
cur based on atom-to-atom ratios. He realized that the old alchemical symbols
could not fit his new theory, so he introduced a new set of elemental symbols.
Based on this notation, he represented molecules as atom combinations. For
example, water ⊙◯ is represented as the combination of oxygen ◯ and hydrogen⊙. A few years later, Jöns Berzelius (1779 - 1848) argued that is easier to mem-
orize letters than symbols, so he introduced a simplified atom notation based
on the first one or two letters of the element’s name, which is the notation we
still use today. For example, oxygen (or “Oxygenium”) was represented by the
letter “O”, hydrogen (or “Hydrogenium”) by the letter “H”, aluminum by “Al”,
and iron (“Ferrum”) by “Fe”. Of course, this element terminology has been the
basis for the molecular nomenclature.

1.2.2 How to Represent a Molecule?

The concept of “molecules” was first proposed by Amedeo Avogadro (1776 –
1856) based on Dalton’s laws of atom proportions. In 1833, Marc Antoine
Auguste Gaudin (1804 - 1880) introduced “volume diagrams” which represented
molecules based on correct molecular formulas. For example, Cl2, NH3, and H2O
were represented as:

8 CHAPTER 1. INTRODUCTION

However, water was given as a linear molecule . . .

A few years later, Friedrich August Kekulé (1829 – 1896) developed a theory
for explaining how organic molecules are formed. He proposed that carbon is
tetravalent and can form bonds with other carbons as well. He also represented
simple organic molecules with “sausage models”.

Figure 1.1: Kekulé’s “sausage” representation of molecules. From left to right:
1-propanol, 2-propanol, and acetone.

Inspired by the work of Kekulé, the Scottish chemist Archibald Couper (1831
– 1892) developed the idea of molecular structures where bonds are represented
with straight lines between circles (atoms), and Alexander Crum Brown (1838 -
1922) was the first who introduced the atom label inside the circle. These are the
well-known structural formulas that are still used extensively today. In 1861 a
high-school teacher Johan Josef Loschmidt (1821 – 1895) self-published a book-
let titled Chemische Studien, in which he included two-dimensional molecular
representations. He introduced double lines to denote double bonds and triple
lines for triple bonds, which are easily recognizable to modern-day chemists.

These ideas were further explored by the German chemist August Wilhelm
von Hofmann (1818 – 1892), who was the first to create three-dimensional stick-
and-ball molecular models for his lectures (Figure 1.2).

1.2. HISTORICAL BACKGROUND 9

Figure 1.2: Physical representation of methane introduced by Hofmann.

Surprisingly, Hofmann’s color scheme is still in use today, where, for exam-
ple, oxygen is represented with a red sphere, nitrogen with a blue sphere, and
hydrogen with a white sphere. However, Hofmann’s spheres did not reflect the
correct proportions of atoms and he also represented carbon as planar. The lat-
ter was considered by Emil Fischer (1852 – 1919), who introduced a projection
technique for representing three-dimensional molecules in two-dimensions. An
example of tetravalent carbon is shown in Figure 1.3 for a planar, tetrahedral,
and Fischer projection representation.

Figure 1.3: From the erroneous planar tetravalent carbon (left) to a tetrahedral
geometry (center) and from there to the Fischer projection (right).

In the early 20th century, the American chemist Gilbert N. Lewis (1875 –
1946) introduced dots as a representation of electrons around atoms, a concept
that he later generalized to represent the covalent, electron-pair bond as two
“dots” or a straight line. In 1927, the physicists Fritz London (1900 – 1954) and
Walter Heitler (1904 – 1981) applied the emerging theory of quantum mechanics
to explain the chemical bond of the hydrogen molecule. Their important work
influenced Linus Pauling (1901 – 1994) who further applied quantum mechanics
to calculate geometries and properties of molecules, as well as provide the foun-
dations of valence-bond theory. Ultimately, the molecular wave function, the

10 CHAPTER 1. INTRODUCTION

function that holds all the pertinent information with respect to the electron
and nuclear positions, can be considered as the true, most complete molecular
representation since it includes all intrinsic information of a molecule.

1.3 Motivation

It is evident that conventional chemical nomenclature, molecular or structural
formulas and 3D molecular models (Figure 1.4), that are often used in a lecture
hall, in chemistry textbooks, or in scientific publications are di�cult to input
into a computer program in an e↵ective manner such that the algorithm can
obtain useful chemical information. For example, the introduction of a molec-
ular formula to a computer is straightforward since it is composed of letters
and numbers. It provides the atomic composition of a molecule, but it does
not distinguish between di↵erent isomers and does not include any information
about the molecular structure. The ball-and-stick model gives information re-
lated to the isomer in question, its stereochemistry, and its geometry, but since
it is a graphical representation (“image”), its conversion to a machine-readable
form becomes cumbersome. This becomes even more important when we con-
sider chemical data representation for machine learning applications, where the
target is to describe a molecular structure in a format that can maximize the
ability of the model to e↵ectively “learn” the underlying chemical properties
and functionalities when it is exposed to hundred of thousands or even millions
of molecules. Thus, it becomes evident that an e�cient “digitalization” or “en-
coding” of chemical information is vital for the successful training of data-driven
models, especially when a small number of data points are available or when
transferability between di↵erent families of molecular structures is desired.

1.3. MOTIVATION 11

Figure 1.4: Glycidol and benzyloxarine are two molecules that are used as ex-
amples throughout this book. Their IUPAC name and (condensed) molecular
formula are provided with a few common three-dimensional representations.

When we think of molecules, we often think of chemical formulas such as
H2O for water or CO2 for carbon dioxide. These chemical formulas are based
on the invention of line representations in the 1860s pioneered by A. Kekulé,
H. Debus, H. L. Bu↵, E. Erlenmeyer, E. Frankland, and B. F. Duppa.[1] In
the twentieth century, with the rise of computers, chemist sought novel ways
to apply line representations for the exploration of chemical properties. One of
the first broadly applied line representations was the Wiswesser Line-Formula
Notation (WLN), which was introduced in 1949 as a concise line representation
that seeks to closely mimic molecular diagrams.[2] While WLN has limited use
nowadays, fingerprinting methods that soon followed after, such as Morgan fin-
gerprints[3], are commonly applied. The success of Morgan fingerprints lie in
their algorithm for sorting connectivity tables, which was introduced to solve
the molecular isomorphism problem related to the permutational invariance of
atom ordering in molecules.[3] More modern representations, like the Simpli-
fied Molecular Input Line Entry System (SMILES) discussed in Section 2.7.1,

12 CHAPTER 1. INTRODUCTION

build on features found in WLN. These features include the use single letter
symbols for common atomic groups and numerical notation for alkyl chains.[4]
Overall, line notations are compact, less costly than two- or three-dimensional
representations,[5] but as we will see in this and in the following chapters, they
lack important geometrical, conformational and electronic structural informa-
tion.

The aim of this book is to provide a non-expert with a comprehensive intro-
duction to molecular representations that are used in the field of chemoinformat-
ics and machine learning applications in chemistry. Our philosophy is to present
each representation’s theoretical foundations and the logical steps that lead to
their development and applicability, together with representative examples and
Python code snippets. Since (molecular) graph theory has been the basis of
numerous representations that are used nowadays extensively in chemical ma-
chine learning and data sciences, we begin this book with the fundamentals of
graph theory and the description of methodologies that are directly connected
to molecular graphs (Chapter 2).

One of the main driving forces for the development of novel molecular rep-
resentations has been the field of chemoinformatics. According to Engel and
Gasteiger, chemoinformatics is defined as “the application of informatics meth-
ods to solve chemical problems”. One of the main targets behind Chemoin-
formatics is to understand the a priori physical, chemical, and biological ef-
fects of chemicals and chemical reactions.[6] To facilitate this goal, databases
to query these properties such as the Chemical Abstract Service (CAS)[7] and
PubChem[8] and software packages such as RDKit[9], Open Babel[10], ChemML[11],
and DScribe[12] have been developed. Our intention is to include in this book
established and widely applicable methodologies for encoding chemical informa-
tion together with novel and emerging approaches that have recently captured
the attention of the chemical community.

Within this context, many common molecular representations developed
within the chemoinformatics community have formed the basis for modern chem-
ical data sciences. Since the majority of these methodologies that are originated
from the mature scientific field of chemoinformatics are based on molecular
graphs, we have included them in Chapter 2. Some representative examples are
of such popular methods are the Simplified Molecular Input Line Entry Sys-
tem (SMILES) and the MACCS fingerprints. The second category included in
this book explores molecular topology from an algebraic topology perspective
such as persistent homology (Chapter 3). The last category includes the emerg-
ing field of molecular vectorizations based on the underlying molecular physics
(Chapter 4). Such physics-based or physics-informed representations consider
principles from the electronic structure of molecules, such as Coulomb interac-
tions, atom-based functions, or even descriptors from electron correlations.

It is also important to remember that the choice of a particular molecular
representation should be in based on the chemical application of interest. As we
will see in the next Chapters, each molecular representation has been developed
on specific chemical, physical, or biological principles and sometimes, by having
a specific property in mind (e.g. molecular similarity, drug-like activity, chemical

1.4. PROPERTIES OF MOLECULAR REPRESENTATIONS 13

reactivity or catalysis, conformational search, etc.).
We should also mention that this eBook does not describe the standard

machine learning models that are used extensively, nor their mathematical for-
mulation. We refer the reader to excellent textbooks that can provide such
background (see the end of this chapter for a collection of useful resources). In
this eBook, we use the term “algorithm” or “learner” to describe any machine
learning algorithm that is trained based on data such as neural networks, ran-
dom forest, kernel-ridge regression, or support-vector machines, while the term
“model” includes the molecular representation, and external hyperparameters
together with the machine learning algorithm.

The chemical encoding (i.e. molecular representation) and the amount of
information that is passed to the learner is vital for the successful develop-
ment and training of a machine learning model with predictive power. Thus, it
has become nowadays a common practice to test a variety of di↵erent molecu-
lar representations and/or learners when we develop a new model. Measuring
the model performance for each encoding/learner combination requires proper
model training and hyperparameter search, and contributes to the evaluation of
the developed machine learning model.

Finally, and in order to enhance the readability of this eBook, we have
selected two molecules, glycidol and 2-benzyloxirane (Figure 1.4), to serve as
examples of the most widely used representations that are discussed here. These
molecules have been selected as each of them has two distinct molecular func-
tional groups. Both contain an epoxide, a three-member ring, but glycidol has
a hydroxo group, whereas benzyloxirane has a phenyl group.

1.4 Properties of Molecular Representations

Before we delve into the di↵erent categories of representations, it is important to
discuss the pertinent properties a method should have in order to be considered
an e↵ective molecular representation. As we will see in the next chapters, those
properties are desired but not mandatory for the training and application of a
machine learning model. First, let us consider a molecule in Euclidean space.
The position of each atom is specified by its Cartesian coordinates, and the list
of all atomic coordinates generates a simple and general description of the molec-
ular structure. Usually, the atomic order in the list of coordinates is arbitrary,
and permutations of atoms can generate multiple lists representing the same
molecule. The same holds when rotations, translations, or reflections are per-
formed on a particular molecular structure, where new lists are generated which
describe the same molecule structure. Therefore, Cartesian coordinates are not
a suitable format for a molecular representation for many data-driven and/or
computational methodologies. A good representation should be invariant with
respect to permutation, rotational, reflection, and translation symmetries. Other
desirable properties of molecular representations are:

• Uniqueness: Each molecular structure should be uniquely encoded so that
a unique one-to-one mapping exists from the input structure to the output

14 CHAPTER 1. INTRODUCTION

representation. While this requirement is met for most representations,
the inverse will not always be true.

• Completeness: The injectivity of a molecular representation should be
guaranteed by the molecular representation [13].

• Descriptive: A molecular representation should adequately describe the
desired molecule with respect to the machine learning application. This
is an attractive feature for many chemical applications and can enhance
the learning power of a model, as a representation can include electronic
structure or topological information of a molecule. Numerous examples
are provided in the next Sections.

• Simple: Do not forget Occam’s razor, simplicity is an art. Cumbersome
representations add unneeded complexity and are undesirable when hun-
dreds to millions of molecules are in the dataset. Simple representations
o↵er portability of the representation and of the model, especially when
we are in the realm of Big Data.

The uniqueness and completeness of a molecular representation tend to be com-
plementary properties and in general, if you have one you tend to have the
other. Whereas for the last two properties, the desire for a simple, yet descrip-
tive representation is often the main challenge when designing new molecular
representations. If all four properties are satisfied, the molecular representation
will o↵er a reliable input for the machine learning task at hand.

1.5 That’s a Wrap

In this Chapter, we have briefly discussed how chemists represent molecules
the evolution of chemical nomenclature together with some fundamentals of
molecular representations for machine learning. The rest of the book covers
established but also emerging methods that allow the encoding of chemical
information in formats that can be used and manipulated by computers and
algorithms, while we have prioritize representations that are used extensively
in chemical applications of machine learning. We have chosen to organize these
methods into three main categories. The first category includes methods that
are based on molecular graphs, which have both historical and application im-
portance (Chapter 2). In Chapter 3, we extend the ideas of molecular graphs
by introducing representations that aim to capture the topology of molecules or
molecular groups. Finally, Chapter 4 covers molecular representations that are
based on the physical properties of atoms and molecules and, in particular, in
their electronic structure. These methods have become the past years the topic
of active research since they have a vital role on the use of artificial intelligence
and machine learning for chemical applications. Some excellent, introductory
resources on machine learning fundamentals are listed below. The first is a com-
pact collection of topics related to chemical applications, the latter is a more
detailed introductory book with hands-on examples.

1.5. THAT’S A WRAP 15

• Machine Learning in Chemistry, Jon Paul Janet, Heather J. Kulik, ACS
In Focus, 2020.

• Hands-OnMachine Learning with Scikit-Learn, Keras & TensorFlow, Aurélien
Géron, 2019, O’Reilly.

16 CHAPTER 1. INTRODUCTION

Chapter 2

Graph-based
Representations

2.1 Introduction

Graph-based representations serve as one of the more intuitive molecular repre-
sentations. One of the first ways we learn to visualize molecules is with atoms as
nodes/vertices and bonds as edges between nodes, e↵ectively forming a graph.
Graph theory is a branch of mathematics that explores how objects are con-
nected and some of the properties of these objects and connections. The central
object in graph theory is a graph, which can be considered as a collection of
elements that create a set together with the relations between the elements of
the set. A chemical graph is an e↵ective representation of an abstract chemical
system, such as a molecule or a complex reaction network. As we will see in this
Chapter, a molecular structure is a constructed, organized graph itself! Graph
theory has found many applications in chemistry including chemoinformatics,
chemical topology, chemical reactivity, group theory, and electronic structure
theory. In this Chapter, we will construct molecular graphs and analyze these
graphs with tools from graph theory. We will also explore related graph-based
concepts such as topological indices, autocorrelation functions, structural keys,
the Simplified Molecular Input Line Entry System (SMILES), and the Interna-
tional Chemical Identifier (InChI).

2.2 What is a Molecular Graph

In order to introduce a unified notation, we will now provide some necessary
definitions fundamental to graph theory. A graph is an ordered pair, G =(V,E), of a vertex set, V = {1, . . . , n}, and an edge set of unordered pairs,
E = {e1, . . . , em} where ek = vivj = vjvi. Two vertices vi and vj are adjacent
if they are incident in a common edge ek. A labeled graph is a graph with

17

18 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

labels assigned to the vertices and the edges. Molecular graphs are labeled
graphs where the vertices are labeled with the type of atom (hydrogen, carbon,
nitrogen, etc.) and the edges are the bonds that connect the atoms. We can
label the edges with information like the bond order (single, double, or triple)
or the bond length. Often, hydrogen atoms are left o↵ of the molecular graph
to form the hydrogen-suppressed molecular graph, as their presence is implied
by the valency of the remaining atoms. Molecular graphs provide information
about the elemental composition, connectivity, and bond type of a molecule,
and as such have remained a popular format for molecular representations.

To better understand these definitions, we will consider the molecular struc-
ture of glycidol (C3H6O2, Figure 2.1, left) and we will connect it to a molec-
ular graph (Figure 2.1, right). For sake of simplicity, we consider a hydrogen-
suppressed graph. This graph has 5 vertices labeled a - e, and 5 edges based on
the bonding connectivity between the non-hydrogen atoms. The type of atom
is given by the color; carbons are grey and oxygens are red. The degree D(i)
of a vertex i is the number of edges incident with the vertex i. For example,
the carbon labeled as b or Cb has D(b) = 2 since it is bonded to two atoms,
the oxygen Oa of the hydroxo group and the carbon Cc of the three-member
ring (ethylene oxide). Similarly, the degrees of the other vertices are D(a) = 1,
D(c) = 3, D(d) = 2, and D(e) = 2.
Figure 2.1: The molecular structure (left) and the molecular graph (right)
of glycidol. Note, the color of the vertex denotes the type of atom.
White corresponds to hydrogen, grey to carbon, and red to oxygen.

A typical molecular graph is a simplified two-dimensional format that does
not hold any geometrical information with respect to bond distances, angles, or
dihedrals (see Figure 2.2). Based on this simplified notation, we can provide
additional definitions with respect to the properties of the graphs. A walk is a
sequence of vertices and edges of a graph. A walk in which neither vertices nor
edges are repeated is called a path. If the starting and ending vertices of a walk
or path are di↵erent, then we will call this as an open walk/path. A traversal

2.3. GRAPHS AND MATRICES 19

is a walk that visits each vertex at least once. Typically, we want to minimize
the traversal to cut down on repeated vertices as much as possible.

Two examples of open paths are given in Figure 2.2. The first has an a>b>
c>d sequence (center) and the second has an a>b> c>d>e>c sequence (right),
as which are shown in orange edges. On the contrary, a closed walk/path starts
and ends on the same vertex. Length is the number of edges included in a walk
or path. For the two examples of Figure 2.2, the lengths of the paths are 3
and 5, respectively. Distance is the length of the shortest path between two
vertices. For example, the distance between vertices b and d is 2 (b>c>d).
A complete graph is a fully connected graph where the vertex is connected
with all the other vertices (D = n − 1, where n is the number of vertices). A
cycle is a graph where each vertex has D = 2, e.g. a benzene ring is a cycle
graph. Further categorization of graphs include connected/disconnected graphs
and simple, multigraph, and general graphs.

Figure 2.2: The molecular graph of glycidol (left). Two examples of open paths
are given in (center) and (right). The center path has length 3 and the path on
the right has length 5.

These features provide insight to the underlying chemical structure. For
example, atom adjacency and the graph distance between two atoms both give
connectivity representations for molecules. Capturing this information in a way
that is easy to parse and feed into computers can be done via matrices, as we
will see in Section 2.3.

2.3 Graphs and Matrices

If a graph is adequately labeled, it can be associated with several matrices. Ma-
trices generated from molecular graphs often serve as a useful representation for
data science and chemoinformatics applications, since such “vectorized” molec-
ular structures can be a direct input for machine learning models. Two common
“graph-theoretical” matrices are the adjacency matrix and the distance matrix,
which are often referred to as topological matrices. The word topology is used
in mathematics to denote geometric properties that are preserved regardless of
how you twist, stretch, or bend an object.

2.3.1 Adjacency Matrix

An important matrix representation of a graph G, that has been used in nu-
merous chemical applications, is the vertex-adjacency matrix or simply, the

20 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

adjacency matrix. The adjacency matrix A = A(G) of a graph G, with n ver-
tices, is a square n × n matrix which contains information about the internal
connectivity of the vertices. Its elements are defined as:

Aij = �������
1, if vertices vi and vj are adjacent

0, otherwise
(2.1)

Aii = 0 (2.2)

Figure 2.3 shows the adjacency matrix of glycidol. In this example, we have
followed the same labeling as in Figure 2.2. Since the matrix ordering depends
on the vertices labeling and enumeration, the adjacency matrix is not permuta-
tionally invariant.

Figure 2.3: The adjacency matrix of glycidol.

The bond matrix is an extension of the adjacency matrix that encodes ad-
ditional molecular information related to the chemical bonds of the molecule.
Instead of including the atom connectivity as a binary matrix element, the bond
matrix includes the bond order of each connected atom pair. Addition of the
free valence electrons of an atom on the diagonal gives rise to the bond-electron
matrix.

2.3.2 Distance Matrix

The distance matrix, D =D(G), of a labeled connected graph G, with n vertices,
is a square n × n matrix whose elements are defined as:

Dij = �������
dij , if i ≠ j
0, if i = j (2.3)

where dij is the distance, such as the topological distance, between two vertices
vi and vj . The topological distance is measured based on the length of the
shortest path (i.e. the minimum number of edges) between these two vertices.
As an example, the topological distance matrix of glycidol is shown in Figure 2.4
(left). In graph theory, the conversion of an adjacency matrix into a distance
matrix is known as the all pairs shortest path problem.

An alternative to the topological distance is the geometric distance (i.e. the
atom distance in the Euclidean space). In that case, all matrix elements are

2.3. GRAPHS AND MATRICES 21

given in distance units (e.g. in Å or pm). Figure 2.4 (right) shows the distance
matrix of glycidol with geometric distances.

Figure 2.4: Labeled glycidol molecule (top) with the corresponding distance
matrices; topological distances (left) and geometric distances (right).

This idea of topologically-invariant features, in other words, features that
do not change based on the orientation of the molecule, provide important
structural information. In the next Section, we will look at topological indices,
a tool used to summarize the connectivity of a molecule.

2.3.3 Weighted Graphs

Weighted graph, a class of graphs commonly applied as input for graph neural
networks, include “weights,” or numerical values, assigned to nodes and edges.
In molecular applications, the nodes of weighted molecular graphs often include
the atomic weight, the atomic number (Z), or some other numerical value to
represent the atom type and its environment. In machine learning applications,
the atomic number Z is often used before being transformed into some unique,
“learned” atom embedding. A more specific example is discussed in more detail
in Section 4.3.6. The adjacency matrix of a weighted molecular graph di↵ers
from the unweighted adjacency matrix since it represents the edges between
nodes as weights, instead of using zeroes or ones.

Figure 2.5: Molecular graphs can be modeled as unweighted or weighted graphs,
depending on the particular application. For our example molecule, glycidol,
we have three toy examples: an unweighted graph (left), a graph with node
weights (middle), and a graph with node and edge weights (right). Unweighted
nodes are black and weighted nodes are denoted by color. Dashed lines denote
an unweighted edge and bold lines denote weighted edges.

22 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

These weighted graphs can replace molecular graphs in molecular descrip-
tors, like the Wiener index, which are discussed next in Section 2.4.

2.4 Topological Indices

Topological indices are molecular descriptors based on their molecular graphs
and they have been used extensively in the field of chemoinformatics. They can
provide insights into the underlying structure of the graph and several of them
are graphically invariant. They were pioneered by Harry Wiener, who argued
that molecular species can be characterized by such mathematical descriptors
as e↵ectively as from other physicochemical properties. Below, we will explore a
few di↵erent indices, while we will delve into other types of molecular topology
in Chapter 3.

Pentane, isopentane, and glycidol will serve as our three examples, pictured
in Figure 2.6. However, we should add that such indices are important metrics
for structure searching, but they have limited applicability in modern chemical
data sciences.

Figure 2.6: Left to Right: Labeled pentane, isopentane, and glycidol.

For the rest of this chapter, we will use the following notation: ∑
a∈Aa denotes

a sum over all elements in a given set A. For example, if A = {1,2,3,4}, then
�

a∈{1,2,3,4}
a = 1 + 2 + 3 + 4.

2.4.1 The Wiener Index and the Hyper Wiener Index

Introduced in 1947 by Harry Wiener, the Wiener index is one of the most
common topological indices.[14] Given a molecular graph, the Wiener index is
the sum of the shortest paths between each pair of non-hydrogen atoms or in
mathematical notation, �

v,w∈V (G)
d(v,w), (2.4)

where v and w run over all possible pairs of vertices in the vertex set and where
d denotes the topological distance between v and w. In other words, how many
bonds lie between v and w on the shortest path.

Let us consider pentane as an example. The topological distance between
carbon Ca (labeled as “a” in the pentane molecule shown in Figure 2.7) and

2.4. TOPOLOGICAL INDICES 23

carbon Cb is 1. Similarly, the topological distances between Ca and the re-
maining three carbon atoms Cc, Cd and Ce are 2, 3 and 4, respectively. The
distances between Cb and atoms Cc, Cd and Ce are 1, 2 and 3, respectively.
The distances between Cc and atoms Cd, and Ce are 1, and 2, respectively,
while the last distance between Cd, and Ce is 1. Summation of all the pair-
wise terms gives a Wiener index of 20. By following the same process, we can
find that the Wiener indices of isopentane and glycidol are 18 and 17, respec-
tively (Figure 2.7). Even though these molecules consist of the same number of
non-hydrogen atoms, their Wiener indices are di↵erent, which shows how the
di↵erent structures are captured by the Wiener index.

Figure 2.7: Top, Left to Right: Labeled pentane, isopentane, and glycidol.
Bottom: The Wiener and Hyper-Wiener indices for the three example molecules.
The calculation of these indices is shown explicitly for pentane. For the other
two molecules, the index calculation is left as an exercise.

Index Pentane Isopentane Glycidol
Wiener: 1+2+3+4+1+2+3+1+2+1=20 18 17

Hyper-Wiener: 1
2(2 + 6 + 12 + 20 + 2 + 6 + 12 + 2 + 6 + 2) = 35 28 26

The Hyper-Wiener index is a generalization of the Wiener index and is given
by

1

2
�

v,w∈V (G)
(d(v,w) + d2(v,w)). (2.5)

Introduced by Randić in 1993, this modified index captures slightly more struc-
tural information due to the added squared term [15]. Randić also developed
indices of his own, which are discussed in the next section.

2.4.2 The Randić Index

Another commonly used molecular index is the Randić index, which was first
introduced in 1975 by Milan Randić.[16, 17] The Randić index takes the sum of

bond contributions, where the bond contributions are given by 1��(D(v)D(w)),
where D(v) and D(w) are the degrees of vertices v and w that make up a bond
vw (see Figure 2.1).

In shorthand, if E(V) are the bonds in the molecular graph, the Randić
index is given by

�
vw∈E(V)

(D(v)D(w))−1�2. (2.6)

24 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Similar to the Wiener index, hydrogen atoms are not included in the calcula-
tion of the Randić index. We calculate the Randić index for our three example
molecules in Figure 2.8. For example, there are four edges (bonds) between the
carbon atoms of pentane. Two of them are between a terminal carbon atom (Ca

or Ce) which have a degree of vertices equal to D(a) = D(e) = 1 and a carbon
with a degree of D(b) = D(d) = 2. The other two edges (bonds) are between
vertices with D(b) = D(c) = D(d) = 2. Thus, the Randić index for pentane
is 2.414 (see Figure 2.8). The Randić index also served as the foundation for
higher order connectivity indices, such as the Zagreb indices.

Figure 2.8: Top, Left to Right: Labeled pentane, isopentane, and glycidol.
Bottom: The Randić index for pentane, isopentane, and glycidol, respectively.
The calculation of the Randić index is given explicitly for pentane.

Index Pentane Isopentane Glycidol
Randić: 2(1(1⋅2)1�2) + 2(1(2⋅2)1�2) = 2.414 2.270 2.432

2.4.3 Zagreb Indices

The first and second Zagreb indices were introduced by Gutman and Trinajstić
in 1972.[18, 19] Let V be the vertex set and E be the edge set of some molecular
graph G. Define the first Zagreb index, M1(G), and the second Zagreb index,
M2(G), to be

M1(G) = �
v∈V
(D(v))2 (2.7)

and
M2(G) = �

vw∈E
D(v)D(w), (2.8)

where D(v) is the degree of the given vertex. According to Das, these indices
can be used to show the amount of branching a molecule exhibits.[19] As the
branching increases, the two Zagreb indices also increase.

Later, Furtula, Graovac, and Vukičević introduced the augmented Zagreb
index, as an extension of the atom-bond connectivity (ABC) index, outlined in
Ref. [20] and shown in Table 2.1. The augmented Zagreb index is given by,

AZI(G) = �
vw∈E(G)

� D(v)D(w)
D(v) +D(w) − 2�

3

. (2.9)

The calculated first, second, and augmented Zagreb indices for pentane, isopen-
tane, and glycidol molecules are shown in Figure 2.9.

2.4. TOPOLOGICAL INDICES 25

Figure 2.9: Top, Left to Right: Labeled pentane, isopentane, and glycidol.
Bottom: A table of the three di↵erent Zagreb indices for each molecule. The
calculation of these indices is given explicitly for pentane.

Index Pentane Isopentane Glycidol
1st Zagreb: 12 + 22 + 22 + 22 + 12 = 14 16 22
2nd Zagreb: 1 ⋅ 2 + 2 ⋅ 2 + 2 ⋅ 2 + 2 ⋅ 1 = 12 14 24
Aug. Zagreb 2(1⋅2

1+2−2)3) + 2(2⋅2
2+2−2)3) = 32 22.75 40

2.4.4 Other Common Topological Indices

Finally, we summarize some other common topological indices in Table 2.1.
Please see the table caption for variable definition and explanation.

Table 2.1: Let G be a molecular graph, V be the set of vertices with �V � = n,
and E be the set of edges with �E� =m. Let d(v) denote the degree of vertex v

and let d(v,w) denote the shortest distance between vertices v and w.

Index Formula

ABC [21] ABC(G) = ∑
vw∈E

�
D(v)+D(w)−2
D(v)D(w)

Hosoya [22]
of matchings (a matching is a set
of pairwise non-adjacent edges, none of
which are loops)

Estrada∗ [23] EE(G) = n∑
i=1 exp (�i)

Szeged [24]

SZ(G) = ∑
vw∈E n1(vw�G) n2(vw�G)

n1: # of vert. lying closer to v than w
n2: # of vert. lying closer to w than v

Padmakar–Ivan [25]

PI(G) = ∑
e=vw∈E nev(vw�G) new(vw�G)

nev: # of edges lying closer to v than w
new: # of edges lying closer to w than v

Gutman [26] Gut(G) = ∑
v≠wD(v)D(w)D(v,w)

Harmonic [27] H(G) = ∑
vw∈E

2
D(v)+D(w)

Geometric-Arithmetic
[28] GA = ∑

vw∈E
2
�

D(v)D(w)
D(v)+D(w)

∗ For the Estrada index, let �i be an eigenvalue of the graph’s adjacency matrix.

26 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Although these indices provide molecular information, they are not enough
to completely characterize the underlying structure of the molecule. For this,
we turn to autocorrelation functions.

2.5 Autocorrelation Functions

The topological indices described in Section 2.4 have limited use in chemical ap-
plications of machine learning. However, they serve as an excellent example for
understanding molecular representations with broader applicability in chemoin-
formatics and chemical data sciences. One family of such methods are the auto-
correlation functions or topological autocorrelation vectors and their variants.
Autocorrelation functions (ACs) are based on a formulation of the molecular
graph, i.e. atoms are vertices, bonds are unweighted edges, and consider all
possible subgraphs based on di↵erent atoms. ACs are invariant to system size
and composition and do not depend on Cartesian or internal coordinates, but
only on the connectivity of the molecular graph.

An ACs (Pd) correlates one atom with its neighboring atoms based on a
series of atom-based properties such as element type, or electronegativity. For
a specific property P of atoms v and w (Pv and Pw, respectively) at the depth
d of a subgraph, the AC gets values from the following expression:

Pd = �
v
�
w

Pv Pw �(d(v,w), d), (2.10)

The distance d(v,w) between atoms v and w corresponds to the number of
edges, between two atoms in a molecular graph. The Dirac delta �(i, j) is a
function that is 0 when two values i and j are di↵erent, and 1 when i = j. For
example, for an AC of depth equal to 1, if an atom w is directly bonded to atom
v, then � = 1, otherwise � = 0.

Figure 2.10 shows schematically how to compute the AC function for glycidol
using the atomic number (Z). The values of the atomic properties Pv and Pw

are equal to the atomic number of each atom (1 for H, 6 for C, 8 for O). We can
label the computed AC as Zd, where d is the depth of the subgraphs that we
will consider. For sake of simplicity, we use a depth of 1 and in the computation
of the AC we only show the cases where � = 1. For d = 1, glycidol has 6 unique
subgraphs for a total of 11 subgraphs. For example, the H atom with label 1
forms a subgraph that includes only the neighboring atom O (H1-O2), while
carbon with label 3 forms a subgraph with the four atoms that are directly
bonded to it (O2, H4, H5, C6) After the computation of all nonzero elements,
we have a final value of Z1 = 508

2.5. AUTOCORRELATION FUNCTIONS 27

Figure 2.10: An example of the atomic number autocorrelation functions of
depth one (Z1) for glycidol. For sake of simplicity, we only show values where
� = 1. The left part of the figure shows the subgraphs of glycidol with labels to
aide in the understanding of the nonzero contributions to the autocorrelation
function. The center shows the sum of each contribution and the far right shows
the total Z1 autocorrelation for glycidol.

The Kulik group introduced revised autocorrelation functions (RACs) for
the study of inorganic complexes which have been a weak point for traditional
ACs. The key new features of RACS are the additional atomic properties, the
restricted sums to certain subgraphs, and the introduction of di↵erent math-
ematical operations, such as subtraction between properties, on the molecular
graph.[29] Local and global information of a molecule is encoded by systematic,
adaptable-resolution heuristics and topological descriptors. The five atomic
properties introduced in RACs are nuclear charge (Z), Pauling electronegativ-
ity (�), the atomic coordination number (T), covalent atomic radius (S), and
the identity (I), which denotes the number of bonds in a subgraph such that Pv

and Pw are equal to one for all bonds.

RACs contain two index terms, start and scope, which are introduced to
account for the importance of the metal and its coordination sphere, and enforce
di↵erent parts of the molecular graph to be utilized in each RAC. There are three
start definitions which account for the full molecule (f), the metal-center (mc),
and ligand-center (lc). The three scope options include all atoms (all), the axial
ligand atoms (ax), or the equatorial ligand atoms (eq). The di↵erent types
of RACs for a square planar complex are shown schematically in Figure 2.11
and are analyzed in the next paragraphs. Note that the traditional AC of
Equation 2.10 uses the full molecular graph and all atoms and thus, it can be
given as f

allP d in the RACs notation.

28 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Figure 2.11: Schematic representation of revised autocorrelation functions
(RACs) applied to an square planar metal complex with equatorial oxalate lig-
ands. The mc RAC (bright green) is of depth two (mc

eqZ2)and the lc RAC (light

blue) is of depth one (lc
axZ1). Reproduced from Jon Paul Janet and Heather J

Kulik. Resolving Transition Metal Chemical Space: Feature Selection for Ma-
chine Learning and Structure–Property Relationships. The Journal of Physical
Chemistry A, 121(46):8939–8954, 2017.

The first restricted-scope ACs incorporate the averaged properties of axial
or equatorial ligands:

f
ax/eqP d = 1

�ax/eq ligands�
nax/eq�

v

nax/eq�
w

Pv Pw �(d(v,w), d), (2.11)

where nax/eq is the number of atoms in either the axial or equatorial ligand.

The next restricted-scope ACs introduce the metal-centered descriptors, and

2.5. AUTOCORRELATION FUNCTIONS 29

it is defined as:

mc
allP d = mc�

v

all�
w

Pv Pw �(d(v,w), d) (2.12)

where v runs over the metal atoms and w denotes all atoms in the complex.

Features of each atom in the first coordination sphere of the metal are in-
corporated using the restricted-scope, ligand-centered sum RAC:

lc
ax/eqP d = 1

�ax / eq ligands�
1

�lc�
lc�
v

nax/eq�
w

Pv Pw �(d(v,w), d). (2.13)

To aide in the prediction of electronic properties of metal complexes, an elec-
tronegativity di↵erence is considered rather than products of the conventional
ACs (see Eq. 2.10):

lc/mc
ax/eq/allP

′
d = lc or mc�

v

scope�
w

(Pv − Pw) �(d(v,w), d). (2.14)

In this case, scope refers to either axial, equatorial, or all ligands and the start

must be ligand-centered or metal-centered.

The six types of start�scope definitions (f/all; mc/all; lc/ax; lc/eq, f/ax;
and f/eq) of ACs/RACs are combined for depths from zero, when applicable,
to the maximum depth d using both products and di↵erences of the five atomic
properties. The RACs descriptor is a continuous vector space with a total of
42d+ 30 product or di↵erence RACs, composed of 30d+ 30 product ACs/RACs
(6d+6 descriptors for five atomic properties) and 12d di↵erence descriptors. An
example of a RACs descriptor for a transition metal is shown in Figure 2.11.
The iron complex, where iron denoted by a brown sphere, oxygen is red, and
carbon is gray, has two equatorial oxalate ligands and an octahedral geometry.
The equatorial plane of the complex is shown with labels denoting the proximal
region as the metal and first coordination sphere, the middle region is the sec-
ond coordination sphere, and the distal region denotes the coordination sphere
beyond the second coordination sphere. Two RACS are depicted in the figure:
one mc RAC of depth two (mc

eqZ2), shown in bright green, and one lc RAC

(lc
axZ1), in light blue.

In the following Python example, we calculate the full complex ACs of glyci-
dol, which include f

all�d,
f

allZd,
f

allT d,
f

allSd, and
f

allId, using molSimplify.[30, 31]
For d = 1, 10 features will be generated: f

all�0,
f

all�1,
f

allZ0,
f

allZ1,
f

allT 0,
f

allT 1,
f

allS0,
f

allS1,
f

allI0, and
f

allI1.

30 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Python Example 1: Autocorrelation Functions

An example of Autocorrelation Functions (ACs)
using MolSimplify
import molSimplify.Informatics.autocorrelation as ac
from molSimplify.Classes.mol3D import mol3D
import pandas as pd

Create mol object from xyz using the mol3D class
mol = mol3D()
mol.readfromxyz('glycidol.xyz')

Create the ACs for the full structure with depth 0 to depth 1
#
chi - electronegativity
Z - nuclear charge
I - identiy, i.e. 1 for
T - atom coordination number
S - covalent atomic radius
acs = ac.generate_full_complex_autocorrelations(mol,depth=1,

loud=False)
print dictionary containing acs
print(acs)

Make a Pandas DataFrame to view the features together with
the feature name and depth, i.e. featurename-depth
df_feat=pd.DataFrame(zip(sum(acs['colnames'],[]),

sum(map(list,acs['results']),[])),
columns=['Feature Name','Features'])

print(df_feat)

2.6 Structural Keys

Structural keys or molecular fingerprints are an alternative approach for devel-
oping molecular representations based on molecular graphs. These representa-
tions are nothing else but a vector containing information related to the struc-
tural features generated by decomposing a molecular structure into fragments.
Since they contain information pertinent to molecular patterns, they have been
extensively applied for the search of similar compounds in large databases.

Before we describe some common molecular fingerprinting methods, we need
to provide definitions of the terms that we will use. A molecular fragment is
defined as a structural motif present on molecules that are larger than an atom,
and they can be atom pairs, common functional groups (e.g. amino groups,
carboxylic groups, etc.), or ring structures. These structures are selected from
a list (“dictionary”) of molecular fragments. The information of these frag-

2.6. STRUCTURAL KEYS 31

ments is stored is added in a vector called structural key or fingerprint. The
vector elements can be given as “bits” (fragment present on a given structure
or not, denoted as 1 or 0, respectively), as integers (e.g. how many times a spe-
cific fragment is present), or as real numbers (computed through mathematical
formulas). Let us consider benzyloxirane as an example of a structural key (Fig-
ure 2.12). The bit vector has three non-zero elements that correspond to three
fragments present in a hypothetical molecular dictionary (benzene, propane,
ethylene oxide shown in orange, blue, and red, respectively).

Figure 2.12: Example of a structural key for benzyloxirane, where colors denote
the presence of a molecular fragment in the structure key.

Common, well-established structural keys include circular fingerprints, such
as the Morgan and extended-connectivity fingerprints (ECFPs), and the Molec-
ular ACCess System (MACCS), which have been broadly applied in chemoinfor-
matics as molecular representations, such as applications in molecular similarity
searches.[32, 33]

2.6.1 Circular fingerprints

Circular fingerprints represent the atomic neighborhoods in molecules based on
the radial or circular growth of the descriptor.[34] Each circular fingerprint o↵ers
a unique interpretation of how the fingerprints are iteratively updated based on
the environment of each atom. While circular fingerprints tend to only describe
bonds around an atom within a given radius and information about bonding
and connectivity of atoms between layers is not available, the overlap of features
allows for the implicit connection of disjointed fragments.

The subsequent fingerprint generated by the the Morgan algorithm (Morgan
fingerprint) was introduced in 1965 by H. L. Morgan to assign unique labels to

32 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

chemical structures for the purposes of computer generated registrations for the
Chemical Abstracts Service (CAS).[3] The key innovation in Morgan’s method
was the proposed algorithm to solve the permutational invariance of identical
molecules with di↵erent atomic numbering schemes (molecular isomorphism).
The Morgan fingerprint utilizes the molecular graph to generate compact con-
nection tables.

In most software packages, such as RDKit and Open Babel, the Morgan fin-
gerprints are often extended-connectivity fingerprints (ECFPs) generated based
on the Morgan algorithm.[35] Unlike the traditional Morgan algorithm, ECFPs
do not require maximum disambiguation to represent a viable representation.
The ECFP algorithm terminates after a set number of iterations and the set of
all atomic identifiers is retained to generate ECFPs. The ECFP algorithm uses
a fast-hashing scheme for computational e�ciency and helps avoid assigning the
same identifier to two di↵erent atomic environments, or bit collisions which are
common in this method. Like many other representations, ECFPs are based
on molecular graphs and exclude hydrogen atoms and bonds in the fingerprint.
Since ECFPs are a method that updates the fingerprint iteratively, it is common
to see the method labeled “ECFP 4” or “ECFP 6”. The number following the
underscore denotes the diameter of the largest feature and is equal to double
the number of iterations performed.

ECFPs are generated in three stages: 1) the initial assignment, 2) iterative
updating, and 3) duplicate identifier removal. In the initial assignment stage
each atom is assigned an integer identifier, which are collected into an initial
fingerprint set. Various integer values can be used for the initial atom identifiers,
as long as they are independent of atom numbering.

The initial identity of an atom is hashed into a single 32-bit integer based on
the Daylight atomic invariants criteria, plus an additional criteria for whether
an atom is contained in at least one ring. These criteria are:

• Number of connections

• Number of non-hydrogen bonds

• Atomic number

• Sign of charge

• Absolute charge

• Number of attached hydrogen atoms

It should be noted that during the 0th iteration, the bond set of each atom is
an empty set.

The iterative updating stage incorporates the circular neighborhood of an
atomic environment and includes information about whether the structural fea-
ture is a duplicate. The starting point of each iteration are the previous iter-
ations atomic identifiers. The identifiers of the target and neighboring atoms
are collected into an array ordered by the their identifiers and attached bonds

https://www.rdkit.org/
https://openbabel.org/wiki/Main_Page

2.6. STRUCTURAL KEYS 33

to avoid dependence on the ordering. To reduce this representation down to a
single integer identifier, a hash function is applied. For a set number of itera-
tions, each atom identifier is iteratively updated and added to the fingerprint
set. Once all atoms have been updated with a new identifier the iteration is
ended. For a single iteration the order of operations is as follows:

1. For a given atom, the iteration number and atomic identifier is placed in
an array of integers

2. The attached atoms are then sorted based on the bond order: single,
double, triplet, and aromatic (based on Hückel’s 4n + 2 formula)

3. The bond order and the identifier for each attachment is added to the
array

4. If stereochemical fingerprints are requested and an atom is a possible
stereoatom that has not been disambiguated, with di↵erent identifiers for
each attachment atoms, a flag for stereochemistry is appended to the fea-
ture array and marked as disambiguated

5. A new atomic identifier is generated by a hash function as a 32-bit integer

Features which occur more than once are removed and condensed into a
single feature after the last iteration is performed. Despite having unique hashed
identifiers, structurally identical regions of molecules lead to so called structural
duplication, which can introduce redundancies in the fingerprint. Duplicate
features are removed based on two criteria. If the redundancies were generated
during di↵erent iterations, the one from the largest iteration is discarded or if
they were generated during the same iteration the one with the larger hashed
32-bit integer is discarded. Since the generation of each identifier is based on the
local nature of each iteration, this highlights the power of the Morgan algorithm
for the iterative generation of unique fingerprints.

The following code example and figure (Figure 2.13) show an example of
generating an ECFP or Morgan fingerprint for 2-benzyloxirane using RDKit.
In this example, we use a radius of 2 for simplicity.

34 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Python Example 2: Morgan Fingerprints

This is an example of Morgan fingerprints as implemented in RDKit
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MolFromSmiles,MolToSmiles
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdMolDraw2D
Glycidol
smi='OC[C@@H]1CO1'
2-benzyloxirane
smi='c1ccc(C[CH]2CO2)cc1'
mol=MolFromSmiles(smi)

Prepare an interpretable Morgan Fingerprint instance
info={}
fp = AllChem.GetMorganFingerprint(mol,2,bitInfo=info)

info will be a dictionary with bit id keys and
values of (atom index, radius)
print(info)
The first bit, 98513984, is set three times:
((1, 1), (0, 1), (9, 1)).
This means that it is set by atom 1, 0, and 9 at radius 1.

Using the code above we can further examine the iterations of the Morgan
fingerprint for 2-benzyloxirane. Using the radius criteria of 2, we see in Fig-
ure 2.13 that at each radius iteration up, until the max, a bit is generated to
describe the environment highlighted in red. In this case, we would have to use
a radius of 3 to capture the full molecular information from atom 3. Luckily,
due to the Morgan algorithm, each atom is used as a starting point so the in-
formation related to the environment of the full molecular structure is included
in this representation.

2.6. STRUCTURAL KEYS 35

Figure 2.13: Example of an extended-connectivity fingerprint (ECFP) for ben-
zyloxirane implemented in RDKit with a max radius of 2. The labeled benzy-
loxirane is shown before iterations begin and for each iteration the associated
bit is also included. For iteration 0, the associated bit only includes informa-
tion about atom 3. Iteration 1 includes information about the first-neighbors
of atom 3, the bit includes information about the bonds attached to the neigh-
boring atoms. In iteration 2, the second-nearest neighbors are incorporated. To
incorporate all atoms in the molecule a third iteration would be required.

2.6.2 Molecular ACCess Systems Fingerprint (MACCS)

The Molecular ACCess Systems fingerprint (MACCS) was introduced in 2002
by MDL Information Systems.[36] The 166 bit MACCS fingerprint, the most
commonly applied and implemented version of the MACCS fingerprint, is de-
scribed in the white paper by BIOVIA (formerly MDL Information Systems
and Accelrys).[37] In this section, we refer to the 166 bit MACCS fingerprint
as a MACCS fingerprint or key, both of which denote the same thing. Also,
we only discuss this version of the MACCS key since it has been implemented
in common cheminformatics packages such as RDKit[9], Open Babel[10], and

36 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

OpenEye Toolkits.[38]

The 166 bits in the MACCS key denote the absence of a key by 0 or the
presence of a key using a 1. The keys are defined using a set of symbols to
describe the atomic and bonding environments of a molecule.[39, 40] The atomic
symbols are: A (any valid element from the periodic table), Q (any non-carbon
or non-hydrogen atom), X (F, Cl, Br, and I), and Z (any atom other than H,
C, N, O, Si, P, S, F, Cl, Br, or I). Common bonds such as single bonds are
denoted by −, double by =, and triple by T or #. Single and double query
bonds are denoted by ∼ and aromatic query bonds by %. Any bond type, i.e.
an unspecified bond type, is denoted by None. When a $ appears before a bond
type it specifies that it is a bond in a ring and when a ! appears before a bond
type it denotes a chain bond. When @ is followed by an integer, it denotes where
ring linkage occurs. Aromatic denotes either Kekule or Arom5, where Kekule is
a benzene ring and Arom5 is a five-membered ring with a Q, or heteroatom, at
the top of the ring.

We will give a brief, general overview of the 166 MACCS keys. Keys 1
and 49 denote whether a isotope and charge are present, respectively. Several
keys exist, 2, 3, 4, 5, 6, 7, 9, 10, 12, 18, and 35, to related where atoms are
located on the periodic table, i.e. what periods and groups atoms belong to.
Numerous keys exist to denote the presence of cyclic groups in molecules (11,
19, 22, 36, 57, 96, 101, 121, 137, 162, 163, and 165). The count of various
fragments are denoted by 118, 120, 125, 136, 138, 140-142, 145, 146, 149, and
159. The remaining keys (8, 13-17, 20, 21, 23-34, 37-48, 50-56, 58-95, 97-100,
102-117, 119, 122, 123, 124, 126-135, 139, 143, 144, 147, 148, 150-158, 160, 161,
164, 166), denote various fragments that can be found at Refs. [39] and [40].

Since most MACCS implementations do not include documentation on what
each bit in the MACCS fingerprint denote, in our code example we show how to
generate an interpretable MACCS key for glycidol, shown in Figure 2.14, using
the documentation from Refs. [39] and [40]. Since MACCS are often used in
similarity searches, this example provides powerful insight into the similarities
and dissimilarities of our sample molecules, glycidol and 2-benzyloxirane, in
Figure 2.14.

2.6. STRUCTURAL KEYS 37

Figure 2.14: An example of the bits in the MACCS keys for glycidol and 2-
benzyloxirane that correspond to 1. The tables in the figure show the keys that
equal to 1 and what the values correspond to based on the interpretation of
MACCS in Refs. [39] and [40].

38 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Python Example 3: MACCS Key

This example includes examples of the MACCS key
as implemented in RDKit
This is a SMARTS-based implementation of the 166 public MACCS keys
import pandas as pd
from rdkit.Chem import MACCSkeys
from rdkit.Chem import MolFromSmiles
glycidol
smi='C1C(O1)CO'
2-benzyloxirane
smi='c1ccc(C[CH]2CO2)cc1'
mol=MolFromSmiles(smi)
MACCS=list(MACCSkeys.GenMACCSKeys(mol))
Print MACCS key
length=len(list(MACCS))
print(f'Length of MACCS key={length}')
Print MACCS as a string of consecutive numbers
print(''.join(map(str,list(MACCS))))

Keys from http://www.mayachemtools.org/index.html
keys=pd.read_excel('MACCS_keys_example.xlsx').drop(

columns=['Unnamed: 0'])

Find the keys that appear in the fingerprint
mol_keys=[idx for idx, i in enumerate(MACCS) if i==1]
Print what the bit corresponds to
print(keys.set_index('Key').loc[mol_keys])

2.7 SMILES Notation and its Variants

One of the most ubiquitous molecular representations is the Simplified Molec-
ular Input Line Entry System (SMILES), first introduced in 1988 by Daylight
Chemical Information Systems, Inc. as a representation that was developed
with computational e�ciency in mind.[41] Daylight also introduced other re-
lated line notations such as SMARTS (discussed in Section 2.7.2) and SMIRKS.
These line notations have inspired other novel representations built specifically
for machine learning such as DeepSMILES and SELFIES. In this section, we
will provide examples of SMILES, SMARTS, DeepSMILES, and SELFIES using
Python so that the reader can apply these methods on their own.

2.7.1 Simplified Molecular Input Line Entry System (SMILES)

The SMILES notation was proposed as a user and machine friendly, unique
graph-based approach which has been broadly applied in machine learning ap-
plications such as molecular design and discovery.[42, 43] In the SMILES nota-

2.7. SMILES NOTATION AND ITS VARIANTS 39

tion, the three-dimensional representation is ignored and the SMILES structure
is built based on the traditional two-dimensional molecular graph. In SMILES
a hydrogen-suppressed graph or hydrogen-complete graph, the graph which in-
cludes the hydrogen atoms explicitly, can be used. SMILES represents molecules
as a series of characters followed by a space. Atoms, the most fundamental build-
ing blocks of a molecule, are represented by their atomic symbols. Hydrogen
atoms are usually omitted since they can be obtained from the valencies of the
other atoms. For example, methane (CH4) is represented by “C”, which implies
that the carbon is bonded to 4 hydrogen atoms. The formal SMILES encoding
of bonds are “-” for a single bond, “=” for a double bond, “#” for a triple bond,
and “:” for an aromatic, but single and aromatic bonds are often omitted, as
explained below. For example, ethanol (CH3CH2OH) is given as CCO, while
acetaldehyde (CH3CH=O) is represented as CC=O (see Figure 2.15). Formal
charges and additional information on the attached hydrogens can be enclosed
in brackets. For example, a proton is represented by [H+], the hydronium
cation is given by [OH3+], while an isotope label precedes the atom character
(e.g. [14C]). Disconnected structures, like an anion with an associated cation,
are denoted as two separate SMILES joined by a period, e.g. sodium chloride
is given as [Na+].[Cl-].

40 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Figure 2.15: Examples of SMILES strings.

The SMILES notation permits, but does not require, stereochemical infor-
mation, which can be explicitly introduced with a specific notation. Cis- and
trans- stereoisomers can be specified with the help of the “/” and “\” characters.
When these two symbols are around a double bonds, they indicate the direc-
tion of the single bonds adjacent to the double bond. For example, F/C=C/F

2.7. SMILES NOTATION AND ITS VARIANTS 41

indicates that the first fluorine atom is below the double bond axis, while the
second fluorine atom is above and thus, it represents the trans-difluoroethylene
(see Figure 2.15). On the contrary, the F/C=C\F notation is used for cis-
difluoroethylene where both fluorine atoms are on the same side of the double
bond. Chiral centers can also be explicitly introduced by considering the order of
the bonds as they appear on the SMILES string. The symbol @@ is used when
the four bonded atoms are given in clockwise order, and the @ when they are in
anticlockwise order (since @ is already pointing in an anticlockwise direction!).
For example, L-alanine (Figure 2.15) is represented as C[C@@H](C(=O)O)N
since we start the clockwise ordering from the first methyl group, then move on
to the hydrogen atom that points at the back side of your screen (not included
in the structure formula of Figure 2.15), then we continue to the carboxylic
acid group (shown as C(=O)O in the SMILES string, vide infra), and finally
we consider the amino group -NH2 which points at the front side of your screen.
The opposite holds for D-alanine, where connectivity of the chiral center follows
an anticlockwise order.

A cyclic structure is represented with a numeric su�x that is attached as
a label next to the first and last atoms that close the molecular ring. Thus,
cyclobutadiene (C4H4) is given as C1=CC=C1, while naphthalene (C10H8)
that has two aromatic rings, is given as C1=CC=CC2=C1C=CC=C2 (Fig-
ure 2.15). In the rare cases of cyclic structures having 10 or more rings, the ring
closure would be denoted with a percent sign (%). Sometimes, aromatic atoms
are denoted with lower case symbols, i.e. a carbon atom in benzene would be
denoted as “c” whereas a carbon atom in cyclohexane would be denoted as “C”.

When we are constructing SMILES strings, it is important to identify the
main atom chain in the molecular graph. Since more than one chain is usually
included in a molecular graph, the main chain can be defined based on specific
assumptions, such as the starting atom, the longest chain, or the number of
bonds chosen to break cycles. Once the main chain has been identified, all the
other chains or branches are denoted by parentheses (). For complex structures,
it is common to define branches inside branches, which leads to parentheses
inside other parentheses. Let us consider ca↵eine as a representative example,
which is shown at the bottom of Figure 2.15. The main chain is denoted in
orange. It begins from the methyl group (“C”) that is next to the five-member
ring (upper right of figure), while the nitrogen that is part of that ring has label
“N1”. As we “move” around the five-member ring, we encounter the first atom
(“C2”) that is attached to the six-member ring. A side (blue) chain appears at
the first (orange) nitrogen atom of the main chain, which also includes a second
(green) side chain. Of course, we could have chosen to add the blue-label atoms
into the main chain of the molecule, and treat the methyl group as a side chain.
This topic is further discusses in the next paragraph.

Since the rules above can generate numerous non-unique SMILES, canon-
icalization schemes are required to generate unique structures. While numer-
ous canonicalization schemes exist, including Universal SMILES[44] and RD-
Kit SMILES[45], we will discuss the original SMILES canonicalization scheme
called CANGEN. CANGEN was the first proposed SMILES canonicalization

42 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

algorithm which consists of two parts: first, CANonicalization (CANON) where
each atom is ordered and labeled using molecular graph theory and second,
GENerated (GENES) where a unique SMILES is created using the lowest la-
beled atoms.[46] A ranking system can be devised based on the connectivity and
node properties for an undirected molecular graph. The node ranking system
utilized in CANGEN can di↵erentiate node environments based on the initial
set of node properties. In order to be e↵ective, CANGEN must be able to dif-
ferentiate nodes that are topologically identical. Hence, unique node orderings
are generated by CANGEN via topological symmetry classes. Canonicalization
is guaranteed by the utilization of an unambiguous function for structural nota-
tions which include labeling, ranking, and unique ordering. For further informa-
tion about the algorithm, we refer the reader to the original article (Weiningen
et al., J. Chem. Inf. Comput. Sci., 1989, 29, 97–101).[46].

2.7.2 Popular Variants of SMILES

One of the most popular extensions of SMILES is the SMARTS molecular rep-
resentation. SMARTS build on the SMILES notation by introducing logical
operators that allow for a more general specification of atoms and bonds specif-
ically for substructure searches.[47] The main advantages of using SMARTS
over SMILES are its’ generality, ability to handle reactions, and query molec-
ular structures. It should be noted that SMILES describe molecular graphs
and SMARTS describe patterns, so most SMILES are valid SMARTS but most
SMARTS are not valid SMILES.

Starting with atomic properties, SMARTS introduces a wildcard symbol, ∗,
which can be used to query any atom with certain properties. An example would
be [∗C2] which means any atom with exactly two carbons attached. A general
aromatic atom is denoted as a. Atoms can also be denoted using #n, where
n is the atomic number. To search for atoms with <n> total bonds including
implicit hydrogens use the connectivity X<n> and for the total bonds without
implicit hydrogens use the degree flag D<n>. For an atom with 3 total bonds
this would be denoted as X3, where as an atom with 3 explicit bonds would be
D3. Along this line, the total number of attached hydrogens and the number
of implicit hydrogens can be queried using H<n> and h<n>, respectively. Ring
membership can be searched by using R<n>, where [R] denotes any atom in
any ring. The size of a ring be searched using r<n>, where [r6] would search for
any ring of size 6. To find the total number of ring connections x<n> is utilized,
where x2 would look for an atom with two ring connections. Bond orders can
be searched using the valence flag v<n>, which includes implicit hydrogens. To
search for an atom with a bond order of four, v4 would be used. SMARTS have
the ability to search for chirality as well. If the chirality is specified @<c><n>
matches the chirality, where <c> denotes the chirality (@ for anticlockwise and
@@ for clockwise). By using @<c><n>? the chirality is matched if it is specified
or will not if it is unspecified.

SMARTS also introduces a similar notation for bonds where a wildcard ∼ is
applied to denote any bond and @ to denote any ring bond. Like in SMILES /

2.7. SMILES NOTATION AND ITS VARIANTS 43

and \ denote directional bonds but when used with a ?, \? denotes a down or
unspecified directional bond and /? denotes an up or unspecified bond.

To assist with structure querying, common logical operators, such as NOT,
OR, or AND, are introduced. For a general atom or bond e, !e denotes NOT
e, e1&e2 denotes e1 AND e2 with high precedence, e1;e2 denotes e1 AND
e2 with low precedence, and e1,e2 denotes e1 OR e2. Additional querying
methods, such as recursive SMARTS, component-level groupings of SMARTS,
and reaction queries can be found at Daylight SMARTS.

We will now turn our attention to two more modern methods, developed
with machine learning in mind. When used in generative models, syntactically
invalid SMILES are often produced. A large fraction of the possible SMILES
generated do not correspond to a proper molecular graph or they violate basic
chemistry rules, such as maximum valency rules. One proposed method is the
DeepSMILES representation which was developed to address the issues related
to parentheses balancing and the pairing of ring closure symbols in SMILES.[48]
DeepSMILES avoids unmatched ring closure digits by using a single digit, in-
stead of two, to denote ring closures. The ring-opening symbol is removed and
the ring-closing symbol is replaced by %N for double and %(N) for triple digit
ring size. A postfix notation is used to avoid the use of paired parentheses
where branch length is denoted by the number of close parentheses used. An
example of this is benzene, which has a SMILES string c1ccccc1, whereas in
DeepSMILES the benzene would be denoted as cccccc6. Examples of more
complex molecules are discussed in Subsection 2.7.3, where we discuss glycidol
and 2-benzyloxirane. It should also be noted that SMILES and DeepSMILES
can be interconverted without loss of information.

The second proposed method is the SELF-referecIng Embedded Strings (SELF-
IES) method.[49] SELFIES is proposed as a robust method that represents every
molecule, even randomly generated strings, with a valid string-based descriptor.
SELFIES was developed in order to be paired with machine learning models and
as such, they o↵er a significant advantage over SMILES for molecule generation
tasks. Due to a more complex set of rules, every molecule generated by a ma-
chine learning model will correspond to a valid molecule that is independent
of the machine learning model. SELFIES show the branch length along with
the ring size are stored with the corresponding branch and ring identifiers. To
enforce the validity of chemical bonds, a formal grammar derived from theoret-
ical computer science is used. For a more in-depth discussion of the SELFIES
derivation rules refer to the supporting information document of Ref. [49].

2.7.3 Examples of SMILES, SMARTS, DeepSMILES, and
SELFIES

We will now compare and contrast SMILES, SMARTS, DeepSMILES, and
SELFIES (Figure 2.16) for our example molecules using the provided code
example. Glycidol has a very simple SMILES string where C1CO1 denotes
the oxirane group and OC denote the hydroxymethyl group. For our more
complex molecule, 2-benzyloxirane, the SMILES string is c1ccc(CC2CO2)cc1,

https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html

44 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

where c1ccccc1 denotes a benzene ring and CC2CO2 denotes the methyloxi-
rane functional group. The parenthesis denote a substitution at the specific
carbon in the benzene ring. The SMARTS for glycidol and 2-benzyloxirane
are [#6]1-[#6](-[#8]-1)-[#6]-[#8] and [#6]1:[#6]:[#6]:[#6](-[#6]-[#6H]2-[#6]-
[#8]-2):[#6]:[#6]:1, respectively. In this example, the only di↵erence between
the SMILES and the SMARTS generated by RDKit are the explicit incorpora-
tion of the bond type (i.e. - for single and : for double) and the use of the atomic
number instead of the atomic symbol. In the DeepSMILES represenation, the
main di↵erence between the two molecules is the presence of the benzene ring
in the 2-benzyloxirane. The most complex representation in this example is
SELFIES, which is not readily interpretible without referencing the derivation
rules.

Figure 2.16: A comparison of SMILES, SMARTS, DeepSMILES, and SELFIES
for glycidol and 2-benzyloxirane generated using the Python code below.

2.8. INTERNATIONAL CHEMICAL IDENTIFIER (INCHI) 45

Python Example 4: SMILES and Derivatives

This example includes examples of SMARTS and SMILES
RDKit
from rdkit.Chem import MolFromSmiles, MolToSmarts, MolToSmiles
Glycidol
smi='C1C(O1)CO'
2-benzyloxirane
smi='c1ccc(C[CH]2CO2)cc1'
mol=MolFromSmiles(smi)
Print SMILES and SMARTS
print('SMARTS',MolToSmarts(mol))
print('SMILES',MolToSmiles(mol))

DeepSMILES
import deepsmiles
converter = deepsmiles.Converter(rings=True, branches=True)

DeepSMILES encoding of 2-benzyloxirane from canonical SMILES
encoded = converter.encode(smi)
Print the DeepSMILES
print('DeepSMILES', encoded)

Example of SELFIES
import selfies

SMILES to SELFIES
try:

selfie = selfies.encoder(smi)
Print SELFIE
print('SELFIES',selfie)

except selfies.EncoderError:
pass # selfies.encoder error!

except selfies.DecoderError:
pass # selfies.decoder error!

2.8 International Chemical Identifier (InChI)

The International Chemical Identifier (InChI) was first introduced in 2005 by
the International Union of Pure and Applied Chemistry (IUPAC) as a non-
proprietary molecular representation for the identification of printed and elec-
tronic data.[50] Unlike SMILES, InChIs are a unique machine-readable identifier
that is not meant to be interpreted by humans. The goal of InChI is to provide
a unique inline string representation based on the molecular graph. InChI has a
set of rules for normalization and canonicalization based on conventions derived
by IUPAC for molecular structures.

InChI can be consider as a unique structure identifier, similar to a bar code,

46 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

based on the molecular structure for which it was generated. The identifier
consists of several layers of structural information, each containing unique in-
formation, that can be generated in an automated manner. Each layers adds
additional information to the representation that the prior layer did not pro-
vide. The layered structures provides di↵erent levels of abstraction for identical
molecules with varying stereochemistry or tautomerism; if one molecule omits
such bonds but another one includes them, the more refined structure will in-
clude the description of the less refined structure.

The five layers used for creating InChIs are related to the chemical formula
(including no formal bond orders), connectivity (information about disconnect-
ed/connected metals, etc.), isotopes, stereochemistry, and tautomerization. Ex-
cept for the first layer that describes the chemical formula, each layer of the
InChI string is separated by a / followed by a lowercase letter. The first posi-
tion in an InChI corresponds to the InChI version name, which includes an S
if it is the standard version, followed by a / with the chemical formula. The
connectivity is defined by /c, which excludes terminal hydrogens, and /h, which
denotes the locations of terminal and mobile hydrogen attachment positions.
Next the charge is included by /q and the proton balance by /p. The parity of
tetrahedral centers is denoted by /t and the relative stereo obtained by inverting
the parity (inverted equal to 1 and not inverted equal to 0) is denoted by /m.
The type of stereo center, whether it is absolute (=1), relative (=2), or racemic
(=3), are denoted by /s. The chemical formula of the fixed hydrogen structure,
if it is di↵erent than the original chemical formula, is denoted by /f. Locations
of fixed mobile hydrogens are denoted by /h.

In Figure 2.17 we provide an example of two InChIs generated by RDKit for
glycidol and 2-benzyloxirane. In both InChIs, 1S is used to denote that they
are standard version 1 InChIs. The connectivity of glycidol and 2-benzyloxirane
are /c4-1-3-2-5-3 and /c1-2-4-8(5-3-1)6-9-7-10-9, respectively. Note that in 2-
benzyloxirane, 1-2-4-8(5-3-1) is the benzene ring, where atoms 5, 3, and 1 are
treated as branches from atom 8. In glycidol, /h3-4H,1-2H2 denotes that there is
one hydrogen on atoms 3 and 4 and two hydrogens on atoms 1 and 2. /h1-5,9H,6-
7H2 denotes the 10 hydrogen atoms of 2-benzyloxirane, which are assigned as
follows: 1-5,9H means that atoms 1-5 and 9 have one hydrogen and 6-7H2
means that atoms 6 and 7 both have two hydrogens. We provide the code used
to generate this example in the following Python example.

2.8. INTERNATIONAL CHEMICAL IDENTIFIER (INCHI) 47

Figure 2.17: The InChI string for glycidol and 2-benzyloxirane generated using
the Python code below.

Python Example 5: InChI

This is an example of InChI and InChI key as implemented in RDKit
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit.Chem import MolFromSmiles,InchiToInchiKey,MolToInchi
from rdkit.Chem import Draw
from rdkit.Chem.Draw import rdMolDraw2D
Glycidol
smi='C1C(O1)CO'
2-benzyloxirane
smi='c1ccc(C[CH]2CO2)cc1'
mol=MolFromSmiles(smi)
RDKit mol object to InChI
print(MolToInchi(mol))
InChI to InChIKey
print(InchiToInchiKey(MolToInchi(mol)))

48 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Available Software Packages

Packages with common representations covered in this Chapter:

• Open Babel

– Wiswesser Line Notation

• RDKit

– RDKit fingerprints:

∗ Morgan

∗ MACCS

∗ Hashed topological torsion,

∗ Hashed atom pair

– SMARTS

– SMILES

– InChI

• ChemML

– RDKit fingerprints

– SMARTS

– SMILES

– InChI

2.9 That’s a Wrap

• Common graph-based molecular representations include matrices, topo-
logical indices, autocorrelation functions, and line notations.

• A molecular graph characterizes atoms as nodes and bonds as edges. Ad-
jacency matrices and distance matrices can be used to capture the under-
lying connectivity and the molecule’s structure.

• Topological indices and autocorrelation functions are two molecular repre-
sentations that utilize connectivity information to summarize the under-
lying structure.

• Structural keys, SMILES, and InChI are a few popular line notations
which are widely applied vectrorizations in chemoinformatics and chemical
machine learning.

• Additional resources related to molecular graphs and graph-based molec-
ular representations can be found in these textbooks and review articles:

https://open-babel.readthedocs.io/en/latest/
https://www.rdkit.org/
https://hachmannlab.github.io/chemml/

2.9. THAT’S A WRAP 49

– Chemical Graph Theory, Nenad Trinajstić, 1992, CRC Press.

– Chemoinformatics: Basic Concepts and Methods, Thomas Engel and
Johann Gasteiger, 2018, John Wiley & Sons.

– Daniel S. Wigh, Jonathan M. Goodman, and Alexei A. Lapkin. A
Review of Molecular Representation in the Age of Machine Learning.
WIREs Comput. Mol. Sci., 2022, 12, e1603.

– Laurianne David, Amol Thakkar, Rocò Mercado, and Ola Engkvist.
Molecular Representations in AI-Driven Drug Discovery: a Review
and Practical Guide. J. Cheminformatics, 2020. 12, 56.

– Daniel C. Elton, Zois Boukouvalas, Mark D. Fuge, and Peter W.
Chung. Deep Learning for Molecular Design - a Review of the State
of the Art. Mol. Syst. Des. Eng., 2019, 4, 828–849.

– Shampa Raghunathan and U. Deva Priyakumar. Molecular Repre-
sentations for Machine Learning Applications in Chemistry. Int. J.
Quant. Chem., 2022, 122, e26870.

50 CHAPTER 2. GRAPH-BASED REPRESENTATIONS

Chapter 3

Topology-based
Representations

3.1 Introduction

In Chapter 2, we saw the importance of molecular topology for the generation
of useful representations. We explored the topology of a chemical structure
through matrices, topological indices, functions, molecular fragments, and line
notations, all of which centered around the molecular graph. These features
and other topological properties are useful chemical representations as they are
preserved independently of the spacial orientation or the representation of the
molecule. In this Chapter, we will survey persistent homology-based approaches.
Persistent homology, a powerful topological tool, o↵ers an alternative method-
ology for capturing the underlying structure of a molecule, and has been used
successfully in numerous applications as an alternative molecular representa-
tion. Some recent examples of this emerging methodology in chemoinformatics
and chemical data sciences include molecular similarity searches[51, 52], molecu-
lar discovery[53], and HOMO-LUMO gap minimization.[54] In this Chapter, we
will provide the fundamentals of persistent homology, visualization techniques,
and extensions to alternative encodings that capture additional chemical infor-
mation.

3.2 Simplicial Complexes

To discuss some of the most common topological properties, we first need to
introduce simplicial complexes. Simplicial complexes are made up of k-simplices,
or k-dimensional triangles. For a few examples of k simplices for di↵erent values
of k, see Figure 3.1. A 0-simplex is a point, a 1-simplex is a line segment, a 2-
simplex is a triangle and a 3-simplex is a solid tetrahedron. Higher dimensional
simplicies are the equivalent of higher dimensional triangles. Each simplex is

51

52 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

made up of lower dimensional simplices. For example, the 2-simplex is made
up of three 1-simplices and three 0-simplices. These objects will serve as the
foundation for our topology-based representations.

Figure 3.1: From left to right: a 0-simplex, a 1-simplex, a 2-simplex, and a
3-simplex.

With k-simplices in mind, we can define a simplicial complex. In this work,
we define a simplicial complex as a finite collection of simplices, K, in the real
numbers, Rn, such that the following two conditions are satisfied:

C1) If � ∈K, then every face of � is in K,

C2) The intersection of any two simplices in K is either empty or a face of
each simplex.

To better understand the aforementioned conditions C1-C2, consider the sim-
plicial complex (skeleton or triangularization scheme) in Figure 3.2B (see next
Section). As an example of C1, each edge in the figure is connected to two ver-
tices, and those vertices are also members of our simplicial complex. We have
no edges without endpoints or faces without edges. Condition C2 outlines that
all of our simplices either connect via a node, edge, or triangle.

3.3 Persistent Homology

Persistent homology captures the shape of an object across di↵erent dimen-
sions and scales. Put simply, homology identifies the number of clusters, or as
more commonly called in the topological literature, connected components (0-
dimensional homology), holes (1-dimensional homology), voids (2-dimensional
homology), etc. of a simplicial complex.

As an example, consider the point cloud data in Figure 3.2A. In this instance,
the task is to identify the two circular patterns in the dataset. The algorithmic
process of generating a simplicial complex starts by considering circles of radius
r centered on each data point, and inserting a 1-simplex, i.e. an edge, when two
circles overlap. If three circles intersect, we insert a 2-simplex, i.e a triangle.
Finally, if k circles overlap, we insert a k-simplex. Indeed, the circles with radius
r used in Figure 3.2 capture the structure of our dataset nicely; if we evaluate
the homology of this object, we end up with the homology of two circles. But,
what if we had chosen a di↵erent parameter value, r, for radius? If we chose
one too small, the circles would be disconnected and if we chose one too large,
there would be no holes in the middle, since all circles would overlap. In other

3.4. CAPTURING PERSISTENT HOMOLOGY 53

words, di↵erent choices in r values results in di↵erent homological features.
This is where persistent homology comes in. Instead of choosing a single r

value, we look at the homology across a wide range of r values. Hence, we start
with r = 0 and grow the radius. This allows us to capture the homology and
how it changes across various resolutions. Varying, the filtration parameter,
the radius in our case, one wants to detect features that persist over a large
range of r values. Subsection 3.4 explores ways on how to capture the evolving
homology as r varies. It is important to note that the filtration parameter, and
its variability in the process, may have physical meaning as it may correspond
to atom distances, time, or energy.

Figure 3.2: A. A point cloud X in R2. B. The same point cloud with circles
of radius r around each ball. Note, we insert a 1-simplex (edge, shown with a
thick black line) when two circles overlap and a 2-simplex (triangle, shown as a
yellow triangle) when three circles overlap. C. The persistence barcode for the
point cloud. D. The persistence diagram for the point cloud.

A. B.

C. D.

3.4 Capturing Persistent Homology

To capture the persistent homology with the help of the filtration parameter,
we need tools that allow us to record the birth, death, and dimension of homo-
logical features. Persistence barcodes and persistence diagrams are two tools

54 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

that capture this information. Each has particular instances that are beneficial
for specific applications. Here, we will discuss and analyze both instances and
provide examples with respect to chemical applications.

First, we consider persistence barcodes. A persistence barcode assigns a
bar to each homological feature. The start of the bar corresponds to the value
of the filtration parameter at which the feature is born. The color of the bar
denotes the dimension, connected components, and holes. Consider the point
cloud consisting of 27 points in the plane given in Figure 3.2A. Note, the data
seems to fall in two circles to form a shape that looks like a tilted “8”, as
becomes evident by traversing on the skeleton (edges) in Figure 3.2B. We will
construct the persistence barcode in Figure 3.2C to show how we could capture
the underlying structure of the dataset. For this example, our changing filtration
parameter is the radius of the circle centered on each point.

At r = 0, each data point corresponds to a connected component, resulting
in the birth of 27 red bars. Now, as we increase the radius, 0-dimensional bars
end whenever two circles merge. To break ties, the latest bar born will die first;
hence, the staircase pattern we see on the right-hand side of all of the bars.
At around r = 2, the circles overlap such that when we add in the 1-simplices,
they form a hole (the smaller hole in the upper right corner), which the barcode
captures by the birth of a blue bar. At r = 2.8, the second circle is born (the
larger hole in the bottom left corner). Then, as we keep increasing the radius,
the holes are filled in, resulting in their deaths, which naturally terminates the
blue bars. Finally, after r = 6.2, only one component remains, which we denote
with the top bar touching the right-hand side of the figure. Indeed, the only
component that survives is this top red bar, which corresponds to the filtration
value increasing past the point where all circles overlap.

The length of each bar shows us how long each homological feature persists,
which is measured by di↵erence between the birth and death of the bar. This
means that the longer the bar is, the longer the “lifetime” of a homological
feature is. This can be nicely seen in Figure 3.2C, where the small, upper right
circle has lower persistence, as it is captured by the upper, short blue bar, than
the larger circle that is found at the bottom left, which corresponds to a longer
bar and thus, to longer persistence.

A persistence diagram captures the same information as a persistence bar-
code, but displays it in a more concise way. The x-axis corresponds to the
birth of the feature and the y-axis corresponds to the death of the feature. It is
also common to plot birth vs. persistence. To get how long a feature persists,
(shown in the bars by the length of the bar) we simply take the death value
and subtract the birth value. For the top bar, which expresses the one single
connected component after all circles overlapped, we introduce a line at the top
of the diagram and denote it with ∞. Just as in the barcode case, the color of
the point denotes the dimension.

For the example in Figure 3.2A, we use the persistence barcode in Fig-
ure 3.2C to construct the persistence diagram. Each point on the persistence
diagrams has coordinates (birth, death). For each bar, we plot the birth of the
bar on the x-axis and the death of the bar on the y-axis. The length of the

3.4. CAPTURING PERSISTENT HOMOLOGY 55

bar translates to (death-birth), which captures how long a feature persists. The
persistence can also be computed with respect to the distance from the diagonal.
For example, the small circle of Figure 3.2A appears as the blue point on the
persistence diagram that is closer to the diagonal. For our semi-infinite bar, we
plot a point at (0,∞) to denote that we have one connected component that
lives no matter the scale r. Note, no points can exist below the diagonal as that
would mean features would die before they are born.

Below, the code block shows how to produce a persistence diagram and
a persistence barcode from a set of points. All barcodes and diagrams were
created using GUDHI [55], an open-source C++ library with a documented
python interface. Download instructions, documentation, and examples can all
be found in [56].

Python Example 6: Generating persistence

barcodes and diagrams for a point cloud

Code to generate the persistence barcode and
persistence diagram for a set of points.

import gudhi
import matplotlib.pyplot as plt

Import your dataset.
pt_cloud_x = [3,3.5,2,1,2,1,3,4.5,6.5,8,8,7,8,7,

5,8,8,7.5,9,10,11,12,9,11,11.5]
pt_cloud_y = [1,2,2,4,5,6,8,1,1,2,3.5,4,6,7,7,8,

10,9,7.5,7,8,8.5,11,11,10]
pt_cloud = zip(pt_cloud_x,pt_cloud_y)

#Use GUDHI to generate the corresponding Rips complex,
rips_complex = gudhi.RipsComplex(points=pt_cloud, max_edge_length=20)
simplex tree,
simplex_tree = rips_complex.create_simplex_tree(max_dimension=3)
and persistence data from the point cloud
diag = simplex_tree.persistence(min_persistence=0.4)

Generate the persistence barcode.
pb = gudhi.plot_persistence_barcode(diag, max_intervals=0,

alpha=1.0,legend=True)
Generate the persistence diagram.
pd = gudhi.plot_persistence_diagram(diag, max_intervals=0,

alpha=1.0,legend=True)

Plot the barcode and diagram
plt.show()

56 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

3.5 Comparing Persistent Homology

A topological summary representation in the form of a persistence diagram
allows us to introduce a distance as a measure of shape di↵erences. This idea
naturally extends to the distance between two molecular representations.

Suppose you want to compare the shape of two molecules, such as how many
holes each molecule possessed. One way to do this would be to calculate the
persistent homology of the molecules and compare the two persistence diagrams.
The distance between topological features (e.g. two holes) that are found on
two di↵erent persistence diagrams can be used for comparing the similarity of
two molecules. In this section, we will introduce two di↵erent ways to compare
persistence diagrams, the Wasserstein distance and the Bottleneck distance.
These two distance functions are often used due to their stability results, if our
molecules have a similar shape, then the persistent homology should be similar.
Note, there are other distances, such as the interleaving distance [57], and the
d
c
p distance [58, 59] that also can be applied to persistence diagrams.
The Bottleneck distance function finds the smallest distance it takes to move

the points of one persistence diagram to the points of another persistence dia-
gram. It could be the case that one diagram has more points than the other;
if this happens, all leftover points are mapped to the diagonal, the line that
corresponds to when birth = death. This ensures that we have a one-to-one
mapping of points for any pairing of persistence diagrams. With these ideas in
mind, we define the Bottleneck distance.

Suppose we have two persistence diagrams, call them B and B
′, and we want

to know how close these diagrams are to each other, as shown in Figure 3.3. For
computing the Bottleneck distance, consider all possible mappings ⌘∶B → B

′,
and record the supremum (the smallest upper bound) of distances of all point
pairings for each map ⌘. In other words, record the maximum L∞ distance
between any two points b ∈ B and ⌘(b) ∈ B′. Then, take the infimum (smallest
total distance) over all ⌘ bijections to calculate the bottleneck distance. For
example, Figure 3.3B and Figure 3.3C are two examples of matchings, where B
is an optimal matching and C is a less than optimal matching. Mathematically,
this corresponds to evaluating

Wb(B,B
′) = inf

⌘∶B→B′ supb∈B ��b − ⌘(b)��∞. (3.1)

Note, the L∞ norm, �v�∞, isolates the maximum magnitude of all vector com-
ponents. Hence, we get

�(v1, v2, . . . vk)�∞ =max(�v1�, �v2�, . . . , �vk �). (3.2)

The bottleneck distance gives a good intuitive understanding of distance.
Further, there are stability results for small perturbations of the input data.
For the statement and proof of stability, see [60].

As an introduction to the Wasserstein distance, consider the following prob-
lem. Suppose you wanted to move a pile of Earth to a di↵erent location. The

3.6. PERSISTENT HOMOLOGY AND MACHINE LEARNING 57

Figure 3.3: A. The original dataset (Black) and perturbed dataset (Orange).
B. and C. The persistence diagram of the original dataset (lighter dots) and
the perturbed dataset (darker dots) overlaid. B. An optimal matching of the
1-dimensional features. C. A less than optimal matching of the 1-dimensional
features.

A.

B. C.

amount of e↵ort it would take to move the earth would depend on the amount of
earth being moved and the distance it needs to travel. The Wasserstein distance
is the mathematical implementation of that concept.

Borrowing notation from the Bottleneck distance, the degree-p Wasserstein
distance between two persistence diagrams is given by

Wp(B,B
′) = ��̀ inf

⌘`
�
x

��x − ⌘`(x)��p∞�
1�p

(3.3)

where ` is the variable that runs over all homological dimensions, ⌘` are the
bijections between B and B

′ for the given dimension `, and x is a point in the
diagram of B.

3.6 Persistent Homology and Machine Learning

In this section, we focus on methods that will allow us to utilize persistence
diagrams as an input to machine learning algorithms for a wide range of appli-
cations. To that end, one will need to consider a vectorization of persistence

58 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

diagrams. There are various ways to view and vectorize a persistence diagram,
from elementary considerations, such as by considering only the most persistent
point, to more sophisticated, e.g. probability distributions of persistence dia-
grams. The reader may refer to [61, 62, 63, 64, 65, 66] and references therein
for a gamut of such vectorizations. Below, we will consider persistence images,
an up-and-coming method that has performed well on di↵erent chemistry ap-
plications.

3.6.1 Persistence Images

Persistence images or PIs, developed by Adams et. al.[67], are “a finite-dimensional-
vector representation of a persistence diagram.” PIs are stable with respect to
noise, e�cient to compute, understandable with regard to the original persis-
tence diagram, and provide the flexibility to focus on specific types of features,
such as medium or high-persisting features. First, we will introduce the mathe-
matics behind PIs and then we will provide examples of their use for molecular
representations.[53, 54]

Suppose we have some form of data, such as a point cloud in Rn, and consider
its corresponding persistence diagram, B. We break down the PI construction
into a series of steps.[67]

1. Convert B from (birth, death) coordinates to (birth, persistence) coordinates.
Let B be the a persistence diagram in terms of birth and death time of a

homological feature. Define the function T (x, y)∶R2 → R2 such that T (x, y) =(x, y − x). Note, y − x captures the persistence of the feature. Thus, where
for each point in B, T (B) gives the birth and persistence coordinates for each
feature.

2. Choose a di↵erentiable probability distribution
Consider some di↵erentiable probability distribution �u∶R2 → R with mean

u = (ux, uy). A common choice is to use the Gaussian distribution, given by

�u(x, y) = 1

2⇡�2
e
−[(x−ux)2+(y−uy)2]�2�2

where �
2 is the variance. This is used, for example in [67] and [54].

3. Choose a weighting function and construct the persistence surface.
To properly weight the features we want to extract, we must define a function

that takes in all points of T (B) and determines each point’s significance. This
function must be non-negative, zero when y = 0, continuous, and piecewise dif-
ferentiable. We will use this weighting function to define the persistence surface.

First introduced by Donatini et. al [68] and [69] for size functions, the
persistence surface of a persistence diagram B is a function ⇢B ∶R2 → R such

3.6. PERSISTENT HOMOLOGY AND MACHINE LEARNING 59

that

⇢B(x, y) = �
u∈T (B)

f(u)�u(x, y),

where u is an ordered pair of the birth time and the persistence of T (B).

4. Construct the persistence image.

To obtain a finite-dimensional vector, we discretize the relative portions of
the domain and integrate ⇢B(x, y) over each section of the discretization. Thus,
compute the double integral

� �
p
⇢B(x, y)dxdy

where p is the discretized subdomain. Thus, we get an m × n grid of values
which we transform into a vector by attaching the rows in the natural way,

[p1,1, p1,2, . . . , p1,n, p2,1, p2,2, . . . , p2,n, . . . , pm,1, pm,2, . . . , pm,n].

This vector is the persistence image of a given persistence diagram. Note, as
it stands, this is the vector for the persistence diagram in one dimension. If
there are multiple homological dimensions to consider, simply tack on the other
persistence vectors to yield a single vector.

As an example, consider the point cloud introduced in Figure 3.2, shown
again in Figure 3.4A. Recall, sublevel set persistence captures the underlying
structure of the point cloud by forming simplicial complexes for increasing radius
r. Note, Figure 3.4B. contains an example of a simplicial complex for some r.
The 1-dimensional persistence diagram in Figure 3.4C. captures the holes in our
dataset. From the persistence diagram, we can calculate the persistence image
using a variety of probability distributions and variances, see Figure 3.4D.-F.
Note, changing the probability distribution changes the persistence image.

60 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

Figure 3.4: A. The point cloud from Figure 3.2. B. An example of a simplicial
complex generated via some radius r. C. The 1-dimensional persistence diagram
in terms of birth and persistence (as opposed to birth and death) for the set
of points in A. D. The persistence image of the persistence diagram with a
Gaussian kernel with spread .1. E. The persistence image of the persistence
diagram with a Gaussian kernel with spread .01. F. The persistence image of
the persistence diagram with a uniform kernel.

3.6.2 Chemically-driven Persistence Images

In previous sections, we have discussed how persistence diagrams (PDs) and
persistence images (PIs) describe topological information of arbitrary points
in Euclidean space. Since one aim of molecular representations is to encode
the topology of chemical structures, it becomes evident that PDs/PIs can be
also employed for that purpose. Indeed, over the past few years, many com-
putational chemists and material scientists have started exploring the unique
features of these vectorizations. In this section, we discuss how PDs/PIs can be
generated from a molecular structure, and how these vectorizations can be used
for machine learning applications. Since PDs are the first step toward generat-
ing chemically-driven PIs, we will first explore the properties of a PD for our
example molecule, 2-benzyloxirane (Figure 3.5).

First, we will consider each atom as a point in the Euclidean space defined

3.6. PERSISTENT HOMOLOGY AND MACHINE LEARNING 61

by its (x, y, z) coordinates, and we will place spheres of radius r centered at
each atom. The radius is the filtration parameter and as the radii of each
sphere increases with the same rate, they intersect and lead to the evolution of
homological features (connected components and holes). In this case, the con-
nected components encode interatomic distances, while holes describe molecular
attributes such as ring structures and functional groups.

Figure 3.5: An example of how the persistence diagram (PD) and persis-
tence barcodes for 2-benzyloxirane are generated for a radius of 0, 1, 2, and
3 angstroms (where the algorithm terminates).

Let us see how this is achieved by analyzing the example in Fig. 3.5. The
evolution of these homological features is shown in this example (from left to
right) as they are plotted in a persistence diagram (middle) and a persistence
barcode (bottom). Notice, the y-axis of the PD gives the persistence, which is
defined as the di↵erence between death and birth of a homological feature. At
radius r = 0, we only see zeroth-order homology features at birth = persistence
= 0, while all bars begin at point 0. As the radii values increase from 0 to 1,
the barcodes start to expand and the connected components of the PD persist.

Recall, the intersection of two spheres leads to the death of a connected com-
ponent. This information is introduced in the PD as a point born at birth=0
and persistence≈1.1. Hence, these features have stopped persisting, as they have
merged with other component(s) to form a cluster. For example, in the third
column of Figure 3.5, we clearly see points at (0,1.1) coordinates, which corre-
spond to the overlap between carbon and hydrogen atoms. In other words, C-H

62 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

bonds are encoded in the PD, and since there are more than one C-H bonds in
2-benzyloxirane, a “stack” of points is introduced at the (0,1.1) coordinates. It
also becomes evident that the units of the PD are not arbitrary, but they corre-
spond to atom length units (e.g. Å). The same information is also introduced in
the persistence barcode since bars end at 1.1 Å. Similarly, information related
to C-C and C-O bonds is introduced in both plots.

At about r = 1.4Å, we see the birth of the first “hole” (first-order homological
feature), which is an outcome of the overlap of the six spheres placed on the
carbon atoms of the phenyl group (shown as a triangle in Figure 3.5). As
the sphere’s radii continue to increase, the first-order hole continues to persist,
and the length of the corresponding bar increases (grey bar in the bottom of
Figure 3.5). The death of this homological feature is reached when the Euclidean
space contained in the phenyl ring is completely covered by the spheres.

Finally, a second hole appears in the PD with short persistence. The birth
of the second hole corresponds to the H-Cp-Cp-C-Ce-H chain, where Cp are the
carbon atoms that belong to the phenyl group of 2-benzyloxarine, and Ce to the
carbon that is part of the epoxide. The small persistence value results from a
brief hole appearing before all spheres merge to form one connected component.
This naturally ends the algorithm.

We should mention that the three-atom epoxide does not produce a hole since
when the three spheres overlap, they have completely covered the Euclidean
space within the three-member ring and thus, birth and death coincide. Since
these two functional groups have completely di↵erent coordinates in the PD, we
can consider these points in the PD as their “fingerprint”. Indeed, for any six-
atom planar group, the birth coordinate of the hole is around 1.4 Å, while the
persistence value varies based on the composition of these groups, since subtle
structural changes will a↵ect the coordinates of the homological features. For
example, a phenyl group (C6H5) has larger persistence than a pyridyl group
(C5NH4), since substitution of CH by a nitrogen atom shrinks the hexagonal
structure of the phenyl which, consequently, a↵ects the (birth, persistence) or
(birth, death) coordinates.

Once the PD is generated, it can be vectorized into a PI. For example, the
connected components and holes of the PD of Fig. 3.6a are converted into non-
zero values in the PI, as shown in Fig. 3.6b and 3.6c, respectively. Based on the
above, it becomes evident that a conventional PI cannot di↵erentiate between
bonds of similar length, since the radii r of all atoms increase at the same rate.
For example, the persistence images of the diatomic molecules HBr and F2

(Fig. 3.6d and 3.6e, respectively) are identical since the interatomic distance is
the same (1.4 Å). To di↵erentiate between bonds of similar length but varying
composition, a metric that depends on the atomic types is introduced. For
example, the electronegativity di↵erence between an atom pair can be added
into the variance of an additive Gaussian placed on each connected component of
a PI[53]. This addition allows for di↵erentiation between di↵erent homonuclear
and heteronuclear bonds (e.g., Fig. 3.6h and 3.6i for HBr and F2, respectively).

3.6. PERSISTENT HOMOLOGY AND MACHINE LEARNING 63

Figure 3.6: The persistence diagram of a molecule (a) is converted into a persis-
tence image, which includes the connected components (b) and holes (c). The
molecules (d) HBr and (e) F2 have the same bond length, resulting in equiva-
lent features on the persistence diagram. Without incorporating the chemically
driven PI, the representations in (f) and (g) are equivalent. By incorporating
the pairwise electronegativity di↵erence into the variance of the Gaussian ker-
nel, the input vectors (h) and (i) for the two molecules are distinguished by the
variance of the vector for HBr.

In our code example, we will generate the PDs and PIs of our sample
molecules, as shown in Figure 3.7. These two molecules o↵er interesting test
cases since glycidol does not have any holes and 2-benzyloxirane does.

64 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

Figure 3.7: An example persistence diagram (PD) and persistence image (PI)
of glycidol and 2-benzyloxirane. Note the absence of holes in the PD and PI of
glycidol.

3.7. THAT’S A WRAP 65

Python Example 7: Chemically-Driven Persis-

tence Images

Chemically driven persistence homology example
Required files to be in same directory:
-Element_PI.py
-elements.py
From Element_PI.py import PersDiagram to generate
a persistence diagram (PD)
from Element_PI import PersDiagram
From Element_PI.py import VariancePersist to generate
a persistence image (PI)
from Element_PI import VariancePersist as VP
import matplotlib.pyplot as plt

test_file1='glycidol.xyz'
test_file2='2-benzyloxirane.xyz'

We will create a four panel figure with a PD and PI both
sample molecules
plt.figure(figsize=(8, 8))

Create subfigures for glycidol
plt.subplot(221)
PersDiagram(test_file1,lifetime=False)
plt.legend(loc=4)
plt.subplot(222)
VP(test_file1,pixelx=20, pixely=20, myspread=0.1,

myspecs={"maxBD": 3, "minBD":0},showplot=False)

Create subfigures for 2-benzyloxirane
plt.subplot(223)
PersDiagram(test_file2,lifetime=False)
plt.legend(loc=4)
plt.subplot(224)
VP(test_file2,pixelx=20, pixely=20, myspread=0.1,

myspecs={"maxBD": 3, "minBD":0},showplot=False)
plt.tight_layout()
plt.show()

3.7 That’s a Wrap

• Persistent homology can be used to capture the structure (connected com-
ponents, holes, voids, etc.) of molecules.

• Persistence barcodes and persistence diagrams record the persistence in-
formation, the foundation of persistence-based molecular representations

66 CHAPTER 3. TOPOLOGY-BASED REPRESENTATIONS

for machine learning.

• The Bottleneck distance and Wasserstein distance are two ways to com-
pare persistence diagrams and hence, compare molecular representations.

• Persistence images are one way to utilize persistence-based representations
of molecules for Machine Learning applications.

• Additional resources on persistent homology:

– Computational topology: an introduction, Herbert Edelsbrunner and
John L Harer. 2008, American Mathematical Society.

– L. Wasserman. Topological Data Analysis. Annu. Rev. Stat. Appl.,
2018, 5, 501.

– Yuriy Mileyko, Sayan Mukherjee, and John Harer. Probability mea-
sures on the space of persistence diagrams. Inverse Probl., 2011, 27,
124007.

Chapter 4

Physics-Based
Representations

4.1 Introduction

The physics-based representation is the last family of molecular representations
discussed in this eBook. These methodologies have emerged as a result of e↵orts
to bridge high-dimensional physical properties such as the molecular wave func-
tion to low-dimensional and more compact vectorizations. In physics-informed
machine learning, the physical laws of the problem under consideration are
included as part of the model, as it happens for example in kernel-based re-
gression. For molecular systems, enforcing the physical laws of symmetry or
electronic structure as the input molecular representation o↵ers additional ad-
vantages on the discovery of relationships between molecular structures at the
atomic level and their properties. Thus, the machine learning algorithm is able
to learn more e↵ectively since it connects patterns from the underlying struc-
tural information parsed into the model with molecular energies or properties.
Such physics-based geometric and electronic structure information span from
the pairwise electrostatic interactions between two atoms in a molecule, and
can go as deep as properties obtained from the electronic wave function (e.g.
electron correlation). These types of representations have helped the field of
computational chemistry and chemoinformatics to build transferable and inter-
pretable machine learning models for a variety of applications, including the
exploration of the chemical space for the discovery of molecules with enhanced
properties and the development of accurate force fields for large-scale molecular
simulations.

In this chapter, the most widely-applied physics-based representations are
presented. We chose not to list them in chronological order, but in order of
relevance and increasing complexity. We begin with the conceptually simplest
method, the Coulomb Matrix (CM), followed by its derivatives that o↵er ex-
tensions and solutions to the inherit problems of CMs. Then, we move to

67

68 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

atom-centered symmetry functions which introduce a systematic expansion of
convergent terms of increasing complexity and other spectral representations,
and we close this Chapter with ab initio or “first principles” representations
that are based on known quantum mechanical and quantum chemical relations,
functions, and expansions.

4.2 Coulomb Matrices and Derivatives

In this section, we discuss Coulomb matrices (CMs) and methods that are either
derived from CMs or are related to CMs. The main motivation behind our choice
to begin this Chapter with CMs is that these molecular representations are
generally easy to compute and o↵er interpretable input to ML models. First,
we will cover CMs and bag of bonds (BoBs), which a student with a basic
understanding of introductory physics can easily compute by hand, and move
towards more advanced topics such as the many-body tensor representation
(MBTR). Code examples for every method in this section are provided at the
end of the subchapter.

4.2.1 Coulomb Matrix

One of the most straightforward physics-based molecular representations are the
Coulomb matrices (CMs), first introduced by Rupp et al.[70] to predict atom-
ization energies of organic molecules. CMs are square matrices with dimensions
Natoms×Natoms, where Natoms is the number of atoms of a given molecule, which
hold information related to the atom type (diagonal elements) and the pairwise
atomic interaction (o↵-diagonal elements). The construction of a CM requires
a set of nuclear charges {Zi} and the Cartesian coordinates of the atomic posi-
tions, {Ri}. The Coulomb matrix, xCoulomb, is then defined as

x
Coulomb
ij = �������

0.5Z2.4
i , ∀i = j

ZiZj�Ri−Rj�2 , ∀i ≠ j (4.1)

where the o↵-diagonal elements correspond to the Coulomb repulsion between
atoms i and j and the diagonal elements correspond to a polynomial fit of the
nuclear charges to the total atomic energies. In the equation above, �Ri −Rj�2
denotes the Euclidean distance, or l2-norm, between the atomic coordinates of
atoms i and j. Figure 4.1 shows an example of a CM for glycidol. The two dom-
inant values of 73.52 correspond to oxygen’s self-interaction (0.5 ⋅ 82.4 = 73.52).
The second largest value considers the self-interaction of carbon with a value of
36.86. The largest o↵-diagonal element, ((6 ⋅ 8)�1.42 = 33.75), corresponds to a
C-O bond between the hydroxyl group and the carbon atom that bridges the
hydroxyl and epoxy group.

4.2. COULOMB MATRICES AND DERIVATIVES 69

Figure 4.1: A sorted Coulomb Matrix for glycidol.

While CMs are invariant to rotations, translation, and symmetry operations
with respect to the total energy, the CM representation has two important draw-
backs. The first is related to their dimensionality since CMs of molecules of vary-
ing size will have matrices with varying dimensions. The CM of a molecule com-
posed by 10 atoms will have 10 × 10 dimension, while for a 100-atom molecule,
the size will be 100× 100. To remedy this issue and to o↵er same-size represen-
tations, CMs are padded with “dummy atoms” and matrix elements with zero
as a value to represent an atom with zero nuclear charge and no interaction.
This is typically done in order to match the dimensions of the largest molecules.

The second drawback is related to the permutational invariance of the CM.
For a given molecule, there areNatoms! ways to permute the columns and rows of
the CM without e↵ecting the energy of the molecule. While this ambiguity has
no obvious solution, three suggestions that circumvent this issue are the eigen-
spectrum representation, the sorted CMs, and the randomly sorted CMs.[71]
The extended Coulomb matrix representation is an extension of CMs to peri-
odic systems, where the electrostatic interaction between an atom in a unit cell
with the atoms of the neighboring units cells is considered. Another extension
of the Coulomb matrix is the Sine matrix representation, which only depends

70 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

on the positions of atoms in a single unit cell. The sums of the electrostatic
interaction are replaced with an arbitrary two-point potential, �̃(Ri,Rj),

x
Sine
ij = �������

0.5Z2.4
i if i = j

ZiZj�̃(Ri,Rj) if i ≠ j, (4.2)

where Rl is the l
th atomic coordinate in the unit cell.

4.2. COULOMB MATRICES AND DERIVATIVES 71

Python Example 8: Coulomb Matrices

An example of how to generate a Coulomb matrices (CM)
for glycidol using DScribe and Atomic Simulation Environment (ASE)
#
import pandas as pd
import seaborn as sns
import numpy as np
import matplotlib.pyplot as plt
from dscribe.descriptors import CoulombMatrix
from ase.build import molecule
from ase.io import read
This code block shows the default parameters for generating CMs
in DScribe. By default, a sorted CM is generate with L2-norm
sorted rows and columns. n_atoms_max is a parameter that helps
with padding, for one molecule it is the number of atoms in
the molecule.
print('Sorted CM')
cm = CoulombMatrix(n_atoms_max=11)

Generate the ethanol molecule using ASE

mol = read('../glycidol.xyz')
print(type(mol))

Create CM output for the system
cm_mol = cm.create(mol)

Print the sorted CM and it's corresponding shape
print("Flattened shape of the sorted CM", cm_mol.shape)
print(cm_mol)

Set the parameters, sigma and seed, of the unsorted CM
print('\nUnsorted CM')
cm_unsrtd=CoulombMatrix(n_atoms_max=11,permutation='none')

Generate the unsorted CM for mol
cm_unsrtd_mol = cm_unsrtd.create(mol)

Print the unsorted CM and it's corresponding shape
print("Flattened shape of the unsorted CM", cm_unsrtd_mol.shape)
print(cm_unsrtd_mol)

Set the parameters of the eigenspectrum representation
print('\nEigenspectrum')
cm_eigen=CoulombMatrix(n_atoms_max=11,permutation='eigenspectrum')

Generate the eigenspectrum representation of the CM
cm_eigen_mol = cm_eigen.create(mol)

Print the eigenspectrum and it's corresponding shape
print("Flattened shape of the eigenspectrum", cm_eigen_mol.shape)
print(cm_eigen_mol)

Set the parameters, sigma and seed, of the randomly sorted CM
Examine how sigma effects the sorting of the randomly sorted CM
print('\nRandomly sorted CM')
cm_random=CoulombMatrix(n_atoms_max=11,permutation='random',

sigma=1e-3,seed=42)

72 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

Generate the randomly sorted CM for mol
cm_random_mol = cm_random.create(mol)

Print the randomly sorted CM and it's corresponding shape
print("Flattened shape of the randomly sorted CM",

cm_random_mol.shape)
print(cm_random_mol)

4.2.2 Bag of Bonds (BoBs)

The bag of bonds (BoBs) descriptor builds on common ML descriptors such
as CMs (Section 4.2.1) and bag-of-words.[72] The bag-of-words descriptor is
used in natural language processing and classification applications to encode
the frequency of words in a given text. The BoBs descriptor uses the same
principle to group (“bag”) bonds of a particular type (i.e. C-C, C-N, N-H, etc.),
where each entry in every bag is computed using the o↵-diagonal Coulomb
matrix formula, Eq. 4.1, as shown in Figure 4.2 (b) and (c). A vectorizable,
permutationally invariant input is then formed by concatenating all bags of
bonds in a specific order (Figure 4.2 (d)) with padding between each bag.

We will discuss an example of the BoBs representation related to the devel-
opment of a ML model for predicting molecular energies. For a given molecule
(Figure 4.2 (a)) represented by the BoBs vector M (Figure 4.2 (d)), the energy,
ÊBoBs, takes the form of the predicted value from kernel ridge regression, where
the sum of regression coe�cients, ↵I , and a kernel, k (M,MI), centered on a
training molecule, I, are defined as

ÊBoBs(M) = N�
I=1

↵Ik(M,MI). (4.3)

The BoB kernel is then defined as,

k (M,MI) = exp�−d(M,MI)
�

�, (4.4)

where the kernel metric, d(M,MI) = ∑j�M j−M j
I �p, is the lp-norm (or distance)

between BoB vectors M and MI and � is the kernel width. In theory, any
kernel used in kernel ridge regression can be used in the BoBs representation
but the original BoB formulation uses a Laplacian kernel (p = 1) due to improved
performance over a Gaussian kernel (p = 2) on the GDB-7 database. To obtain
bags of equal size for all molecules in a given data set, bags are padded with
zeros, as it was discussed for CMs as well.

4.2. COULOMB MATRICES AND DERIVATIVES 73

Figure 4.2: The Bag of Bonds (BoBss) molecular representation for glycidol.
(a) The upper-diagonal elements of the Coulomb matrix for glycidol. (b) Bags
grouped by atom type (O, C, H) and by atom pairs (OO, OC, OH, CC, CH, and
HH). (c) The BoBs representation shown as an array, instead of a vector, for
visualization choices. In the BoBs representation, zeroes are often introduced for
padding to make the representation the same size between molecules of variable
size. In (c), zeroes are shown as white squares.

(a) (b)

(c)

An extension of the BoBs representation, the BA-representation, expands the
use of bags to include atoms, bonds, angles, and torsions.[73] The hierarchy of
bags used are (1) dressed atoms (MD), (2) atoms and bonds (MB), (3) atoms,
bonds, and angles (MA), and (4) atoms, bonds, angles, and torsions (MT).
Along with the BA-representation, they o↵er a reformulated CM, using scaled,
pairwise London dispersion interactions, called the London Matrix (LMs). LMs
were developed, based on improvements found when changing from Coulomb
1�R to van der Waals 1�R6 power laws, to model molecular atomization energies.

74 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

Python Example 9: Bag of Bonds

Bag of Bonds (BoBs) example using QML
from qml import representations
import os
from collections import Counter
Create the QML compound using the glycidol xyz file
mol = qml.Compound(xyz="glycidol.xyz")

Generate the BoB vector for glycidol using Counter to create
a dictionary with the number of each atom type
num_atoms = Counter(mol.atomtypes)
print(num_atoms)
mol.generate_BoBs(asize=num_atoms)
print(mol.representation)

4.2.3 Many-Body Tensor Representation (MBTR)

The many-body tensor representation (MBTR) is based on a distribution of
atomic terms organized by elements and is invariant to translations, rotations,
and permutations.[74] The MBTR provides a unique, di↵erentiable descriptor
for both molecules and crystals, and builds on established methods covered
in the previous sections, such as CMs and BoBs, while incorporating features
derived from many-body expansions. When molecular representations are used
in force-field based ML methods, the di↵erentiability plays an important role
since the derivative of energy, with respect to the atomic coordinates, is the
force.

In the MBTR representation, for a moleculeM, the BoBs tensor is rewritten
as,

fBoBs(x, z1, z2) = Natoms�
i,j=1

�(x − d−1i,j)�(z1, Zi)�(z2, Zj), (4.5)

where the dimensions of fBoBs(x, z1, z2) is equal to the (Natoms ×Natoms × p),
where p denotes the amount of padding needed in the tensor. The Dirac delta
and Kronecker delta are denoted by �(⋅) and �(⋅, ⋅), respectively. The sorting
step of the BoBs representation is removed by mapping the Euclidean distance
between atoms i and i, di,j = �Ri −Rj�2, to the real axis x, using the Dirac
delta. In MBTR, the arrangement of the bags by elements is still used.

As an intermediate step, we will show the two-body tensor, which is a a spe-
cial case of the BoBs tensor, where the Dirac delta is replaced with a smoother
probability distribution and a weighting function w2 and a correlation matrix
between atoms (C ∈RNatoms×Natoms) is introduced. The two-body tensor is,

f2(x, z1, z2) = Natoms�
i,j=1

w2(i, j)D(x, g2(i, j))Cz1,ZiCz2,Zj , (4.6)

4.2. COULOMB MATRICES AND DERIVATIVES 75

where the Kronecker deltas in Eq. 4.5 are replaced by the element correlation
matrix. g2 describes the relationship between atoms using the inverse distances
between two atoms i and j. An example of the two-body tensor for aspirin is
shown in Figure 4.3.

Figure 4.3: One key feature of the many-body tensor representation (MBTR)
is that elements of belonging to the representation can be visualized. The left
panel shows the distributions of inverse distances (k = 2, quadratic weighting)
for aspirin (C9O4H8). Reproduced from H. Huo and M. Rupp. Unified repre-
sentation of molecules and crystals for machine learning. arXiv, 4 2017.

Using the notation introduced for the simple case of the two-body tensor,
the g2 term is reformulated to a more general term gk that introduces features
commonly found in many-body expansions such as atom counts (k = 1), (inverse)
distances (k = 2), angles (k = 3), and dihedral angles (k = 4). The general many-
body tensor is then defined as,

fk(x, z) = Natoms�
i=1

wk(i)D(x, gk(i)) k�
j=1

Czj ,Zij
. (4.7)

In the following example, we use DScribe to obtain the k = 1,2,and 3 terms for
glycidol.

https://singroup.github.io/dscribe/latest/

76 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

Python Example 10: Many-Body Tensor Repre-

sentation

Example of generating a many-body tensor representation
(MBTRs) representation for glycidol using DScribe and
the Atomic Simulation Environment (ASE)
#
from dscribe.descriptors import MBTR
from ase.io import read

Set up the MBTR descriptor with parameters:
species, rcut, nmax, and lmax
mbtr = MBTR(species=["H", "O","C"],

k1={
"geometry": {"function": "atomic_number"},
"grid": {"min": 0, "max": 16, "n": 100, "sigma": 0.1},

},
k2={

"geometry": {"function": "inverse_distance"},
"grid": {"min": 0, "max": 1, "n": 100, "sigma": 0.1},
"weighting": {"function": "exp", "scale": 0.5,

"threshold": 1e-3},
},
k3 = {

"geometry": {"function": "angle"},
"grid": {"min": 0, "max": 180, "sigma": 5, "n": 50},
"weighting" : {"function": "exp", "r_cut": 10,

"threshold": 1e-3}
},
periodic=False,
normalization="l2_each",)

Import the glycidol xyz
mol = read('../glycidol.xyz')
print(type(mol))

Create MBTR representation of glycidol
mbtr_mol = mbtr.create(mol)

Print the MBTR representation for glycidol and the shape of the
feature vector
print(mbtr_mol)
print('Shape of the MBTR representation of glycidol',

mbtr_mol.shape)

4.3. ATOM-CENTERED SYMMETRY FUNCTIONS 77

Available Software Packages

Packages with relevant representations covered in Section 4.2:

• ChemML

– Coulomb Matrix

– Bag of Bonds

• DScribe

– Coulomb Matrix

– Ewald Sum Matrix

– Sine Matrix

– Many-Body Tensor Representation

• QML

– Coulomb Matrix

– Bag of Bonds

4.3 Atom-centered Symmetry Functions

An alternative approach for the construction of physics-informed molecular rep-
resentations is the introduction of a series of functions placed on atomic posi-
tions. These functions, called Atom-centered Symmetry Functions (ACSFs),
are combined into multiple two- and three-body terms and aim to capture the
short-range atomic interactions of a molecule. Some of the attractive advan-
tages of ACFSs are that they are based on known mathematical expansions
that describe the geometric and electronic structure of the local environment
near an atom, they are systematically improvable, and they can be modified to
represent molecular properties and other physical e↵ects for specific chemical
applications. Some of the most popular ACSFs are discussed in this section.
Our discussion begins with the Behler-Parrinello functions and then explores
other representations that have been extensively applied in previous years for
ML-based studies of molecules and materials.

4.3.1 Behler-Parrinello Atom-centered Symmetry Func-
tions (ACSFs)

Behler and Parrinello proposed the first general ACSFs, which built on the
previous work of Blank et al.[75] and Lorenz et al.[76], which include a novel
set of atom-centered radial and angular symmetry functions. These ACSFs
incorporate permutational invariance to the representation that previous ACSFs

https://hachmannlab.github.io/chemml/index.html
https://singroup.github.io/dscribe/latest/
https://www.qmlcode.org/index.html

78 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

lacked. The symmetry functions of each atom must also be rotationally and
translationally invariant and reflect the local environment that determines the
atoms energy. To maintain generality, since coordination numbers of atoms can
change during the course of a molecular mechanics simulation, the symmetry
functions must be independent of the coordination of the atom.[77]

The first step of this scheme is to transform the Cartesian coordinates ↵ of
atom i, {R↵

i }, into symmetry functions, {Gµ
i }. The local environment can be

enforced by the cuto↵ function,

fc(Rij) =
�������
0.5 × �cos �⇡Rij

Rc
� + 1� for Rij ≤ Rc

0 for Rij > Rc,
(4.8)

where Rij is defined as the interatomic distance and Rc is the cuto↵ value. The
function fc(Rij) has a slope and value of zero at Rij > Rc. The cuto↵ functions
are used to ensure that the total symmetry functions decay to zero in value and
slope at the cuto↵ radius and to eliminate atoms beyond the cuto↵ radius from
contributing to the energy of the atom centered at i. This cuto↵ function is
incorporated into all of the following ACSFs.[78]

First, we will discuss the radial symmetry functions, which are constructed
as sums of two-body terms and describe the coordination of a central atom at
varying distances. The radial symmetry functions can also be considered an
e↵ective coordination number. The first radial function,

G
1
i = �

j

fc(Rij), (4.9)

is the sum of cuto↵ functions with respect to all neighboring atoms j. The
second radial function,

G
2
i = �

j

exp �−⌘(Rij −Rs)2�fc(Rij), (4.10)

is a sum of Gaussians multiplied by the cuto↵ function with parameters ⌘,
related to the width of the Gaussian and Rs, a radial distance that can shift the
center of the Gaussian. The third radial function represents a damped cosine
function,

G
3
i = �

j

cos (Rij) ⋅ fc(Rij), (4.11)

with period length .
Next, we will discuss the angular symmetry functions, which describe the

angular environments of atom i using the two functions, G4
i and G

5
i . Both func-

tions are formulated using the angles ✓ijk = arccos (Rij ⋅Rik�Rij ⋅Rik), where
the first angular symmetry function is defined as

G
4
i = 21−⇣ �

j,k≠i
(1 + � cos (✓ijk))⇣ ⋅

exp (−⌘(R2
ij +R2

ik +R2
jk)) ⋅ fc(Rij) ⋅ fc(Rik) ⋅ fc(Rjk)

(4.12)

4.3. ATOM-CENTERED SYMMETRY FUNCTIONS 79

and the second as,

G
5
i = 21−⇣ �

j,k≠i
(1 + � cos (✓ijk))⇣ ⋅ exp (−⌘(R2

ij +R2
ik)) ⋅ fc(Rij) ⋅ fc(Rik). (4.13)

The parameters for Eq. 4.12 and 4.13 include �, which shifts the maxima of
the cosine function to ✓ijk = 0○ (� = +1) or ✓ijk = 180○ (� = −1), and ⇣, which
provides angular resolution.

Figure 4.4 shows an example of the neural network incorporated in the
Behler-Parrinello ACSFs scheme.

Figure 4.4: An example of the Behler-Parrinello neural network. The first layer
takes the atomic coordinates, R = {R1, . . . ,RNatoms}, and transforms them into
symmetry functions, G = {G1, . . . ,GNatoms}. Each atom has a corresponding
neural network to learn the atomic energy, which is then summed to recover the
total energy.

In the following example, we generate ACSFs using DScribe and the Atomic
Simulation Environment (ASE).

https://singroup.github.io/dscribe/latest/
https://wiki.fysik.dtu.dk/ase/
https://wiki.fysik.dtu.dk/ase/

80 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

Python Example 11: Atom-Centered Symmetry

Functions (ACSFs)

Example of the atom-centered symmetry functions (ACSFs)
representation of glycidol using DScribe and the Atomic
Simulation Environment (ASE)
#
from dscribe.descriptors import ACSF
from ase.io import read

Import the glycidol xyz
mol = read('../glycidol.xyz')
print(type(mol))

Set up the ACSF descriptor
acsf = ACSF(species=["H", "O","C"],rcut=6.0)

Create the glycidol ACSFs
acsf_mol = acsf.create(mol)

Print the ACSFs for glycidol and the corresponding shape
print(acsf_mol)
print('Shape of the ACSF feature matrix',acsf_mol.shape)

4.3.2 Atomic Environment Vectors (AEV)

One of the short-comings of Behler-Parrinello ACSFs is the tranferability be-
tween systems, to address this Smith, Isayev, and Roitberg proposed the Ac-
curate NeurAl networK engINe for Molecular Energies (ANAKIN-ME, or ANI)
family of potentials.[79] The modified angular ACSFs introduced in ANI have
been developed for the transferable exploration of configurational and confor-
mational space and are incorporated into a new molecular representation called
atomic environment vectors (AEVs). The AEVs, �GX

i , are input for the neural
network potentials (NNPs) used in the ANI method. For each atom, i, with
atomic number, X, the AEVs take the form,

�GX
i = {G1,G2,G3, . . . ,GM}, (4.14)

where the elements, GM , describe the radial and angular environment of a
specific atom.

The components of the AEV, the radial and angular symmetry functions,
follow a similar derivation as that of Behler and Parrinello. ANI utilizes the
piece-wise cuto↵ function defined in Eq. 4.8 and the Behler-Parrinello radial
functions defined in Eq. 4.10. To make the notation consistent for the AEV
formulation, the radial functions, G2

i , are redefined as the G
R
m elements of �Gx

i ,

G
R
m = �

i≠j
exp (−⌘(Rij −Rs)2) ⋅ fc(Rij), (4.15)

4.3. ATOM-CENTERED SYMMETRY FUNCTIONS 81

where the indexm is a set of of parameters, ⌘ and Rs. For G
R
M , the set of param-

eters can be defined as,M = {m1,m2,m3, . . .} = {(⌘1,Rs1), (⌘2,Rs2), (⌘3,Rs3), . . .}.
It should be noted that the parameters, ⌘ and Rs, are the same as those defined
by Behler and Parrinello but the ANI potential is built using a singular ⌘ and
multiple Rs.

The angular symmetry functions in Eq. 4.13 are then modified to introduce
additional information related to the local angular environments. The proposed
modified angular symmetry function, GAmod

m , is an element of �Gi
X , defined as,

G
Amod
m = 21−⇣ �

j,k≠i
(1 + cos (✓ijk − ✓s))⇣ ⋅

exp�−⌘ �Rij +Rik

2
−Rs�2� ⋅ fc(Rij) ⋅ fc(Rik),

(4.16)

for atoms i, j, and k, the associated angle, ✓ijk, centered on atom i, and distances
Rij and Rik. The index m runs over four parameters: ⇣, ✓s, ⌘, Rs. The modified
exponential introduces Rs, which uses the average of the distance of neighboring
atoms to consider the angular environment within a given radial shell. The
width of peaks in the angular environment are controlled by the ⇣ parameter.
To introduce better angular resolution, the parameter ✓s introduces an arbitrary
number of shifts in the angular environment.

4.3.3 Smooth Overlap of Atomic Positions (SOAPs)

The Smooth Overlap of Atomic Positions (SOAPs) is an alternative represen-
tation of Behler-Parrinello ACSFs that explicitly defines the similarity between
two neighboring atomic environments.[80] Bartók et al. introduced SOAPs to
bypass the need for descriptors by using a similarity measure, i.e. a kernel
K(q,q′), between atomic neighborhoods. A good similarity measure is char-
acterized as one that has (1) a well-defined limit when comparing either two
very similar or di↵erent environments, (2) changes smoothly with respect to
deviations of the Cartesian coordinate system, and (3) is invariant to symmetry
operations of the atoms in each environment. SOAPs define atomic environ-
ments by atomic neighbor density functions defined as the sum of Gaussians,
expanded in terms of spherical harmonic functions, centered on each neighbor,

⇢(r) = �
i

exp(−↵�r − ri�2) = �
i
�
lm

c
i
lm(r)Ylm(r̂), (4.17)

where i runs over the neighboring atoms within a cuto↵ region. The coe�cients
c
i
lm(r) are defined as:

c
i
lm(r) ≡ 4⇡ exp �↵(r2 + r2i)� il(2↵rri)Y ∗lm(r̂i), (4.18)

where il are the modified spherical Bessel functions of the first kind. The simi-
larity measure (or overlap), which satisfy the permuational invariance criterion,

82 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

is then defined as the inner product of two atomic neighbor density functions,
⇢(r) and ⇢

′(r):
S(⇢, ⇢′) = � ⇢(r)⇢′(r)d(r). (4.19)

The overlap between an atomic environment (⇢) and a rotated environment
(R̂⇢

′) is

S(R̂) ≡ S(⇢, R̂⇢
′) = � dr⇢(r)⇢′(R̂r)

= �
i,i′

�
l,m

l′,m′,m′′
D

l′
m′m′′(R̂)� drc

i∗
lm(r)ci′l′m′(r)� dr̂Y ∗lm(r̂)Yl′m′′(r̂)

= �
i,i′
�

l,m,m′
Ĩ
l
mm′(↵, ri, ri′)Dl

mm′(R̂) = �
l,m,m′

I
l
mm′Dl

mm′(R̂),
(4.20)

where the integral of the coe�cients is

Ĩ
l
mm′(↵, ri, ri′) = 4⇡ exp[−↵(r2i + r2i′)�2]il(↵riri′)Ylm(r̂i)Y ∗lm(r̂i′) (4.21)

and

I
l
mm′ ≡ �

i,i′
Ĩ
l
mm′(↵, ri, ri′). (4.22)

The rotationally invariant similarity kernel is formed via the integration of Eq.
4.19 over all possible rotations of one of the environments:

k(⇢, ⇢′) = � �S(⇢, R̂⇢
′)�ndR̂ = � dR̂ �� ⇢(r)⇢′(R̂r))dr�n (4.23)

With n = 2, the rotationally invariant kernel becomes

k(⇢, ⇢′) = � dR̂S
∗(R̂)S(R̂)

= �
l,m,m′�,µ,µ′

(I lmm′)∗I�µµ′ � dR̂D
∗(R̂)lmm′D(R̂)�µµ′

= �
l,m,m′

(I lmm′)∗I lmm′ .

(4.24)

Raising k to some power ⇣ ≥ 2 accentuates the sensitivity of the kernel to
changing the atomic positions. The SOAP kernel is normalized by dividing by�
k(⇢, ⇢)k(⇢′, ⇢′) and defined as

K(⇢, ⇢′) = ��
k(⇢, ⇢′)�

k(⇢, ⇢)k(⇢′, ⇢′)
�
�
⇣

, (4.25)

where ⇣ is any positive integer.

4.3. ATOM-CENTERED SYMMETRY FUNCTIONS 83

Python Example 12: SOAPs

Example of generating a smooth overlap of atomic positions
(SOAPs) representation for glycidol using DScribe and
the Atomic Simulation Environment (ASE) environment
#
from dscribe.descriptors import SOAP
from ase.io import read

Import the glycidol xyz
mol = read('../glycidol.xyz')
print(type(mol))

Set up the SOAP descriptor with parameters:
species, rcut, nmax, and lmax
soap = SOAP(species=["H", "O","C"],rcut=6.0,nmax=8,lmax=6)

Create SOAP representation of glycidol
soap_mol = soap.create(mol)

Print the SOAP representation for glycidol and the shape of the
feature vector
print(soap_mol)
print('Shape of the SOAP representation of glycidol',

soap_mol.shape)

4.3.4 Faber–Christensen–Huang–Lilienfeld (FCHL)

The Faber-Christensen-Huang-Lilienfeld (FCHL) representation, referred to as
FCHL-18 in later articles [81], represents atoms as a sum of multi-dimensional
Gaussians representing interatomic many-body terms.[82] Unlike BoBs (Section
4.2.2) representations, FCHL avoids binning by encoding information about
atomic species directly into the distributions. Structural and elemental degrees
of freedom are explicitly treated and the Gaussian distribution functions are
scaled by power laws. The FCHL representation is also rotationally, transla-
tionally, and permuationally invariant.

For an atom I in moleculeM, the set of interatomic M -body expansions is,

AM(I) = {A1(I),A2(I),A3(I), . . . ,AM(I)}, (4.26)

where the elements, Am(I), are weighted sums over all m-body interactions.
Each element, consisting of Gaussian basis functions, in the sums is weighted
by a scaling factor, ⇠m, which determines the importance of each Gaussian.
Geometrical information is encoded via structural values and elemental values
are encoded using parameters from the periodic table such as P , the period,

84 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

and G, the group. For element I, the first order expansion, A1(I), encodes
information related to the chemical composition of the model,

A1(I) = N(x(1)I) = exp�−(PI − �1)2
2�2

P

− (GI − �2)2
2�2

G

�, (4.27)

with the set of parameters x(1)I = {PI , �p;GI , �G}. The Gaussian is centered
at the period PI and group GI on the periodic table, �p and �G are elemental
smearing parameters, �1 and �2 are dummy variables that are integrated out,
and the scaling factor (excluded from Eq. 4.27) is equal to 1. The two-body
term, A2(I), is a product of Eq. 4.27 and a sum over all neighboring atoms I,

A2(I) = N(x(1)I)�
i≠I
N(x(2)iI)⇠2(diI). (4.28)

The parameters of the Gaussian are defined as x(2)iI = {diI , �d;Pi, �P ;Gi, �G}
where the Gaussian is centered at the interatomic distance diI with width �d.
The scaling factor, ⇠2,

⇠2(diI) = 1

d
n2
iI

, (4.29)

with n2 = 4 in the original formulation.

The three-body term, A3(I), runs over all neighboring atoms j,

A3(I) = N(x(1)I)�
i≠I
N(x(2)iI) �

j≠i,I
N(x(3)ijI)⇠3(diI , djI , ✓Iij), (4.30)

with the set of associated parameters, x(3)ijI = {✓Iij , �✓;Pj , �P ;Gj , �G}, where �✓

is the width of the Gaussian centered at ✓
I
ij . The three-body scaling function,

⇠3(diI , djI , ✓Iij), is a function of the interatomic distances, diI and diI , and the

angle, ✓Iij , between the distance vectors �rIj and �rIj ,

⇠3(diI , djI , ✓Iij) = 1 − 3 cos (✓Iij) cos (✓iIj) cos (✓jiI)(diIdjIdij)n3 , (4.31)

with n3 = 2 in the original formulation. An example of the A3 terms of ethanol
is shown in Figure 4.5, where the inlay circles show A3 as a function of the angle
(✓) and radius (d) for H, C, and O.

4.3. ATOM-CENTERED SYMMETRY FUNCTIONS 85

Figure 4.5: An example of the three-body (A3) terms, as a function of the
angular (✓) and radial (d) degrees of freedom, for ethanol. The inlaid circles
show the atomic environments of O, C, and H. Reproduced from F. A. Faber,
A. S. Christensen, B. Huang, and O. A. von Lilienfeld. Alchemical and struc-
tural distribution based representation for universal quantum machine learning.
Journal of Chemical Physics, 148, 6 2018.

It should be mentioned, that A2 and A3 are equivalent to radial distribution
functions (RDF) and angular distribution functions (ADF). When �P and �d

approach zero, A2 is equivalent to using a ADF for each element pair and as �d

approaches infinity, A3 is equivalent to using an ADF.

To incorporate this method into kernel ridge regression, a novel distance
metric must be derived between two atomic environments I and J ,

�(AM(I),AM(J))2 = M�
m=0�m�(Am(I),Am(J))2 (4.32)

where �m is a weighting hyperparameter. A more in depth derivation of the
individual distances used in the FCHL scheme can be found in Ref. [82]. The
associated Gaussian FCHL kernel is,

K(M,M′) = �
I∈M �

I∈M′
k(�(AM(I),AM(J))), (4.33)

for the molecule of interest,M, and a query compound,M′.

86 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

Available Software Packages

Some useful packages that include the molecular representations
discussed in the previous sections:

• RuNNer

– Atom-centered Symmetry Functions (ACSF)

• Accurate NeurAl networK engINe for Molecular Energies (ANI)

– ASE-ANI

– TorchANI

• ChemML

– Coulomb Matrix

– Bag of Bonds

• DScribe

– Atom-centered Symmetry Functions (ACSF)

– Smooth Overlap of Atomic Positions (SOAP)

• QML

– Faber–Christensen–Huang–Lilienfeld (FCHL)

4.3.5 Permutationally Invariant Potentials (PIPs)

Permutationally invariant potentials (PIPs) are a class of molecular representa-
tions originally developed for the study of potential energy surfaces (PESs).[83,
84, 85, 86, 87, 88] PIPs are based on invariant polynomials, which are a class of
polynomials that are invariant under a group acting on a vector space. A brief
overview of the theory of invariant polynomials from a mathematical perspec-
tive, with respect to the application in PIPs, can be found in Ref. [83]. The
motivation behind PIPs is that permutational symmetry should be incorporated
into the PES representation through the use of a permutationally invariant fit-
ting basis. The PIP is expressed as

V (y) = M�
↵=1h↵(p(y))q↵(y) (4.34)

where the vector y is the collection of Morse variables yij with Natoms(Natoms−
1)�2 components. The vector of primary invariant polynomials p(y) hasNatoms(Natoms−
1)�2 components and for 1 ≤ ↵ ≤ M the secondary invariant polynomials are
denoted as q↵(y). At each order, the number of terms in Eq. 4.34 is determined

https://theochemgoettingen.gitlab.io/RuNNer/1.3/overview/about/
https://github.com/isayev/ASE_ANI
https://github.com/aiqm/torchani
https://hachmannlab.github.io/chemml/index.html
https://singroup.github.io/dscribe/latest/
https://www.qmlcode.org/index.html

4.3. ATOM-CENTERED SYMMETRY FUNCTIONS 87

by the Molien series,

M(t) = (M�
↵=1 t

e↵)⇧n
i=1(1 − tdi)−1. (4.35)

A set of invariant polynomials is the set of polynomials on a n-dimensional
vector space over a field for which the polynomials are invariant under action
of a group on the vector space. The set of invariant polynomials forms a vector
space, ring, and algebra.

4.3.6 SchNet

As mentioned in Chapter 2, molecular graphs have been extensively applied in
the fields of chemoinformatics and chemical machine learning. Graphs, along
with graph neural networks (GNNs), can be extended to study quantum me-
chanical properties of molecules. SchNet is a hybrid quantum chemical/machine
learning model that extends the ideas of ACSFs and utilizes a molecular graph-
based architecture.[89, 90]

Like other graph-based molecular representations, the graph of a molecule,M, is defined by the nuclear charges, Z = (Z1, . . . , ZNatoms), and nuclear posi-
tions, R = (r1, . . . , rNatoms). As input for a machine learning model, the tuple
of nuclear charges does not provide a unique representation since molecules of-
ten contain multiple atoms of the same type. For example, in glycidol there
are six hydrogens–all of which would be indistinguishable to a machine learning
model. SchNet incorporates atom-dependent embeddings, which are a common
starting point in molecular graph-based neural networks. An atom i is initially
represented by the atom-dependent embedding,

x0
i = aZi , (4.36)

where each atom is assigned a unique random number, which initially, does
not carry any chemical information. These embeddings are updated to include
chemical information as they are passed through the network layers defined
below and are optimized during the training iterations. In this sense, atom
embeddings are learned by the network during the training process. Going
forward this embedding is denoted by the tuple of features X l = (xl

1 . . . ,x
l
n) for

xi
l ∈ RF , where RF is the number of associated feature maps and l denote the

current layer.
Once the nuclear charges are transformed into unique atom embeddings, the

embeddings are passed to the interaction block, which incorporates pairwise
interactions between neighboring atoms. Within the interaction block (Figure
4.6a right), the atom embeddings are passed through an atom-wise layer for
each atom i, which is defined as,

xl+1
i =W lxl

i + bl
, (4.37)

where the weights W l and b
l are shared across each atoms to maintain a scalable

network architecture.

88 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

The next layer within the interaction block incorporates a continuous-filter
convolutional (cfconv) layer. While image and audio data can be treated as
discrete objects, the position of atoms in a molecule cannot be treated with a
traditional filter-tensor. The cfconv layer is formulated as,

xl+1
i = (X l ∗W l)i = Natoms�

j=0
xl
j ○W l(rj − ri), (4.38)

where W
l denotes a filter and ○ is defined as element-wise multiplication. W

l

is created by the filter generator block (Figure 4.6b) to include the interactions
between atoms i and a neighboring atom j.

Within the filter generator block, the interaction between atoms is learned
by the filter value, W (rj − ri), where rj − ri is the vector from atoms i to j.
Rotational invariance is incorporated into the model by a Gaussian basis,

ek(rj − ri) = exp (−�(�rj − ri�2 − µk)2), (4.39)

where the centers µk are on a uniform grid from zero to the cuto↵ distance.
This introduces decorrelation among filter values to improve optimization con-
ditioning. The resolution of the filter is determined by the number of Gaussians
and the hyperparameter �. The remaining layers in the overall architecture
(Figure 4.6a) are additional interaction, atom-wise, or dense layers.

Figure 4.6: (a) The full SchNet architecture is shown on the left, while an
example of the interaction block is shown in depth on the right. In (b) the filter
generator block is shown. Reproduced from K. T. Schüutt, H. E. Sauceda, P.
J. Kindermans, A. Tkatchenko, and K. R. Müller. Schnet - a deep learning
architecture for molecules and materials. Journal of Chemical Physics, 148, 6
2018.

(a) (b)

4.4. AB INITIO REPRESENTATIONS 89

4.4 Ab Initio Representations

We now turn our attention to molecular representations that utilize data from
molecular wave functions and, in particular, from quantum chemical methods.
These methods are typically parameter-free methods and they are solely based
on laws of quantum mechanics. For that reason, they often called as ab initio or
first principles methods. Recently, there has been a high interest from the theo-
retical and computational chemistry community on the development of method-
ologies that utilize the strength of modern data sciences for the acceleration or
completely elimination of the solution of complex equations, without of course
the loss of the high accuracy of the quantum chemical methods. The motivation
behind such data-driven approaches is that those complex equations, such as
the post-Hartree-Fock (post-HF) methods,[91] require a significant amount of
computational time and resources.

The field of quantum chemistry investigates the application of quantum me-
chanics on atomistic systems for the study of their physicochemical properties.
The molecular wave function is the cornerstone function of quantum mechanics
that holds all the pertinent information with respect to the electron and nuclear
positions. Therefore, it becomes evident that information that is directly or in-
directly extracted from these wave functions can be e↵ectively used as input for
machine learning for the training of models that can predict molecular energies
or properties. Input features can range from molecular orbital energies, electron
densities, atom-based properties (e.g. partial atomic charges), till intrinsic wave
function properties derived from the quantum chemical operators, such as Fock
matrix elements, one- and two-electron integrals, or electron correlation terms.
In this Section, we will discuss representative methodologies that utilize such
molecular electronic structure representations.

4.4.1 Molecular orbital based-ML (MOB-ML)

The scope of Molecular orbital based-ML (MOB-ML) models are the fast estima-
tion of accurate electronic energies and nuclear gradients at low cost.[92, 93, 94]
MOB-ML utilizes information pertinent to molecular orbitals as input, an ap-
proach that secures transferability across di↵erent molecular species of variable
size and composition. Here, we will focus on the quantum chemical information
that is introduced in MOB-ML. In our discussion, we have selected to follow
the original notation used in Ref. [92].

MOB-ML is a straightforward method for learning the electron correlation
of post-HF methods, such as Møller-Plesset second-order perturbation theory
(MP2) and coupled-cluster singles and doubles (CCSD). Using Nesbet’s theo-
rem, the correlation energy of a general post-HF method can be written in the
form,

Ecorr = �
ij

"ij , (4.40)

where "ij are the pair-energies, i.e. the electron correlation energy terms that

90 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

arise from promoting (exciting) two electrons from occupied orbitals to unoccu-
pied (virtual) orbitals.

The main idea behind MOB-ML is that each pair energy "ij depends on
information related to molecular orbitals i and j. Thus, a ML model can be
developed for estimating the expensive "ij of coupled-cluster theory by using as
input a representation that is based on quantum chemical properties related to
the two molecular orbitals i and j. MOB-ML correlates the pair-energies "ij

with a feature vector f , while it considers separately two-electron promotions
from the same molecular orbital i (diagonal or d) and promotions from di↵erent
orbitals i and j (o↵-diagonal or o):

"ii = "d(fi) and "ij = "o(fij). (4.41)

For the training and application of the MOB-ML models, we require data that
are obtained from a quantum chemical method that is computationally less de-
manding than the expensive coupled-cluster scheme (e.g. CCSD). Hartree-Fock
theory serves that purpose, since it is the method that provides the set of opti-
mized molecular orbitals that CCSD requires. Specifically, a MOB-ML feature
set is derived from the Fock matrix (F), Coulomb matrix (J), and exchange
matrix (K). The full feature set for a given pair of occupied MOs i, j is

fij = �f (F)ij , f (J)ij , f (K)ij � , (4.42)

where f (F)ij , f (J)ij , and f (K)ij denote the feature vectors associated with the afore-
mentioned matrices, defined as

f (F)ij = �Fii, Fij , Fjj ,F
vv
ij � (4.43)

f (J)ij = �Jii, Jij , Jjj ,Jv
i ,J

v
j ,J

vv
ij � (4.44)

f (K)ij = �Kij ,K
v
i ,K

v
j ,K

vv
ij � . (4.45)

The terms with the superscript v denote the inclusion of virtual orbitals, i.e.

Jv
i = (Jia, Jib, Jic, . . .) (4.46)

Jv
j = (Jja, Jjb, Jjc, . . .) (4.47)

Kv
i = (Kia,Kib,Kic, . . .) (4.48)

Kv
j = (Kja,Kjb,Kjc, . . .) , (4.49)

where a, b, c, . . . denote virtual orbitals. Jv
i , J

v
j , K

v
i , and Kv

j are sorted based
on the contribution of the virtual orbital to the term, i.e. Jia > Jib > Jic >
Kvv

ij ,J
vv
ij , and Kvv

ij denote virtual-virtual matrix elements selected and sorted
such that Jia + Jja > Jib + Jjb, etc.
4.4.2 Data-Driven Quantum Chemistry (DDQC)

The last section of this eBook covers an alternative approach to represent
molecular information based on abinitio data for machine learning algorithms.

4.4. AB INITIO REPRESENTATIONS 91

This representation encodes wave function information from low-level quan-
tum chemical methods for the development of models that predict wave func-
tions of high-level, accurate wave quantum chemical methods. As we will
discuss here, it has been used successfully applied in a family of methods
called data-driven quantum chemistry (DDQC) methods which include the data-
driven coupled cluster (DDCC) and data-driven complete active space second-
order perturbation theory (DDCASPT2) methods.[95, 96, 52] Here, we will
briefly cover the fundamentals of the DDCC methodology. Further informa-
tion on the implementation of DDCC and DDCASPT2 can be found in our
recent book chapter (Ref. [52]) and the associated website with case studies
https://chemracer.github.io/DDQC_Demo/.

DDCC comes in several flavors: an non-alchemical approach to learn the
exact T̂2 amplitudes in coupled-cluster singles and doubles (CCSD) by iterating
over a predicted set of amplitudes, an alchemical approach where the predicted
T̂2 amplitudes are used explicitly for the calculation of the CCSD energy, or
where the CCSD pair-energies ("ij) are learned from the Møller-Plesset second-
order perturbation theory (MP2) pair-energies. All three flavors are formulated
using features derived at the Hartree-Fock (HF) and MP2 level.

To capture the missing dynamical correlation from HF, coupled-cluster the-
ory introduces electron promotions (excitations) from occupied spin orbitals i, j,
to unoccupied (virtual) orbitals a, b. This is formulated via the coupled-cluster
wave function,

� CC� = e(T̂)� 0� = e(T̂1+T̂2+T̂3+...)� 0�, (4.50)

where T̂ is the cluster excitation operator. In CCSD, the cluster operator is
truncated to only use single (T̂1) and double (T̂2) electron promotions from the
occupied to the unoccupied orbitals. An individual coupled-cluster amplitude
(weight) corresponds to each single (tai) and double (tabij) electron promotion. To
obtain the coupled-cluster energy, the set of projected coupled-cluster equations
are iteratively solved to find the optimal amplitudes.

The computation of the one-electron t
a
i amplitudes is fast, while the two-

electron t
ab
ij amplitudes requires significantly more computational e↵ort. A com-

mon approach to initialize the t
ab
ij amplitudes is to use the two-electron ampli-

tudes from a computational less demanding method such as MP2. The MP2
amplitudes are defined as

t
ab
ij(MP2) = �ij��ab�

"i + "j − "a − "b (4.51)

where the term �ij��ab� on the numerator are two-electron integrals and the "p

terms of the denominator are the orbital energies of the occupied i, j and unoc-
cupied a, b orbitals. Since the final set of two-electron amplitudes in CCSD rely
on the the MP2 amplitudes, we incorporate tabij(MP2), along with the subsequent

components, i.e. the two-electron integrals (�ab��ij�) and the di↵erence in or-
bital energy ("i+"j−"a−"b), are incorporated into our feature set. Our previous
study has rea�rmed this and have shown that the most important features in

https://chemracer.github.io/DDQC_Demo/

92 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

the DDCC feature set is the MP2 two-electron amplitudes. Features related
to the energy of each orbital involved in a two-electron excitation are incorpo-
rated which include the orbital energies ("i, "j , "a, "b), Coulomb (Ja

i , J
b
j) and

exchange terms (Ka
i , K

b
j), a Boolean feature to denote whether two-electrons

are promoted to the same virtual orbital and one to denote whether the t2 am-
plitude is greater than zero, and the log10 value of the MP2 amplitudes and of
the Coulomb and exchange integrals. For a single t2 amplitude, the feature set
consists of 30 electronic properties.

As mentioned previously, the set of predicted t2 amplitudes can be either
iteratively updated to solve for the exact CC energy using Eq. ?? or use to
predict the final CC energy without iteration. Since the first case provides
an exact CC energy, the DDCC method learns the wavefunction defined in
Eq. 4.50. Another highlight of the DDCC method is that the feature set is
permutationally, rotationally, and translationally invariant and o↵ers a non-
alchemical, transferable data-driven quantum chemistry method.

4.4.3 Density Functional Based Molecular Representations

In this section, we will briefly mention some density functional theory (DFT)
based ML representations. We will avoid an in-depth look into these meth-
ods since two book chapters in the book Quantum Chemistry in the Age of
Machine Learning provide adequate overviews of the modern methods.[97, 98]
DFT is one of the most important and broadly applied methods in computa-
tional chemistry due to its e�ciency and accuracy.[99] Many DFT base ML ap-
proaches are formulated to learn the exchange-correlation (XC) functionals[100,
101, 102, 103, 104, 105, 106, 107, 108], kinetic energy functionals[109, 110, 111,
112, 113, 114, 115, 116], local range-separated hybrid functionals[117], and elec-
tron densities.[118, 119, 120]

4.5 That’s a Wrap

End-of-Chapter

A comment on physics-based representation, their strengths, their
weaknesses, and where do we use them. These statements will be added
once we have a first complete version of the ACS in Focus book.

4.5. THAT’S A WRAP 93

Read This Next

• Machine Learning Meets Quantum Physics, ed. K. T. Schütt, S.
Chmiela, O. A. von Lilienfeld, A. Tkatchenko, K. Tsuda, K.-R.
Müller, 2020, Springer.

• Felix Musil, Andrea Grisafi, Albert P. Bartók, Christoph Ortner,
Gábor Csányi, and Michele Ceriotti. Physics-Inspired Structural
Representations for Molecules and Materials. Chem. Rev., 2021,
121, 9759–9815.

• Quantum Chemistry in the Age of Machine Learning. Editor:
Pavlo Dral, 2022, Elsevier.

94 CHAPTER 4. PHYSICS-BASED REPRESENTATIONS

Bibliography

[1] William J. Wiswesser. 107 years of line-formula notations (1861-1968).
Journal of Chemical Documentation, 8:146–150, 8 1968. ISSN 0021-9576.
doi: 10.1021/c160030a007. URL https://pubs.acs.org/doi/abs/10.

1021/c160030a007.

[2] William J. Wiswesser. The wiswesser line formula notation. Chemi-
cal & Engineering News Archive, 30(34):3523–3526, 1952. ISSN 0009-
2347. doi: 10.1021/cen-v030n034.p3523. URL https://doi.org/10.

1021/cen-v030n034.p3523. doi: 10.1021/cen-v030n034.p3523.

[3] H. L. Morgan. The generation of a unique machine description for chemical
structures-a technique developed at chemical abstracts service. Journal of
Chemical Documentation, 5(2):107–113, 1965. ISSN 0021-9576. doi: 10.
1021/c160017a018. URL https://doi.org/10.1021/c160017a018. doi:
10.1021/c160017a018.

[4] William J. Wiswesser. How the wln began in 1949 and how it might be
in 1999. Journal of Chemical Information and Computer Sciences, 22(2):
88–93, 11982. ISSN 0095-2338. doi: 10.1021/ci00034a005.

[5] William J. Wiswesser. Historic development of chemical notations. Jour-
nal of Chemical Information and Computer Sciences, 25(3):258–263,
1985. doi: 10.1021/ci00047a023. URL https://doi.org/10.1021/

ci00047a023.

[6] Thomas Engel and Johann Gasteiger. Chemoinformatics: basic concepts
and methods. John Wiley & Sons, 2018.

[7] P G Dittmar, N A Farmer, W Fisanick, R C Haines, and J Mockus. The
cas online search system. 1. general system design and selection, gener-
ation, and use of search screens. J. Chem. Inf. Comput. Sci, 23:93–102,
1983. URL https://pubs.acs.org/sharingguidelines.

[8] Yanli Wang, Jewen Xiao, Tugba O Suzek, Jian Zhang, Jiyao Wang, and
Stephen H Bryant. Pubchem: a public information system for analyz-
ing bioactivities of small molecules. Nucleic acids research, 37(suppl 2):
W623–W633, 2009.

95

https://pubs.acs.org/doi/abs/10.1021/c160030a007
https://pubs.acs.org/doi/abs/10.1021/c160030a007
https://doi.org/10.1021/cen-v030n034.p3523
https://doi.org/10.1021/cen-v030n034.p3523
https://doi.org/10.1021/c160017a018
https://doi.org/10.1021/ci00047a023
https://doi.org/10.1021/ci00047a023
https://pubs.acs.org/sharingguidelines

96 BIBLIOGRAPHY

[9] Greg Landrum, Paolo Tosco, Brian Kelley, Ric, sriniker, gedeck, Ric-
cardo Vianello, NadineSchneider, Eisuke Kawashima, David Cosgrove,
Andrew Dalke, Dan N, Gareth Jones, Brian Cole, Matt Swain, Samo
Turk, AlexanderSavelyev, Alain Vaucher, Maciej Wójcikowski, Ichiru
Take, Daniel Probst, Kazuya Ujihara, Vincent F. Scalfani, guillaume
godin, Axel Pahl, Francois Berenger, JLVarjo, strets123, JP, and Do-
liathGavid. rdkit/rdkit: 2022 03 5 (q1 2022) release, August 2022. URL
https://doi.org/10.5281/zenodo.6961488.

[10] Noel M. O’Boyle, Michael Banck, Craig A. James, Chris Morley, Tim Van-
dermeersch, and Geo↵rey R. Hutchison. Open babel: An open chemical
toolbox. Journal of Cheminformatics, 3, 10 2011. ISSN 17582946. doi:
10.1186/1758-2946-3-33.

[11] Mojtaba Haghighatlari, Gaurav Vishwakarma, Doaa Altarawy, Ra-
machandran Subramanian, Bhargava Urala Kota, Aditya Sonpal, Sriran-
garaj Setlur, and Johannes Hachmann. Chemml: A machine learning
and informatics program package for the analysis, mining, and modeling
of chemical and materials data. ChemRxiv, page 8323271, 2019. doi:
10.26434/chemrxiv.8323271.v1.

[12] Lauri Himanen, Marc O.J. Jäger, Eiaki V. Morooka, Filippo Federici
Canova, Yashasvi S. Ranawat, David Z. Gao, Patrick Rinke, and Adam S.
Foster. Dscribe: Library of descriptors for machine learning in materials
science. Computer Physics Communications, 247:106949, 2 2020. ISSN
00104655. doi: 10.1016/j.cpc.2019.106949. URL https://linkinghub.

elsevier.com/retrieve/pii/S0010465519303042.

[13] Sergey N. Pozdnyakov, Michael J. Willatt, Albert P. Bartók, Christoph
Ortner, Gábor Csányi, and Michele Ceriotti. Incompleteness of atomic
structure representations. Physical Review Letters, 125, 10 2020. ISSN
10797114. doi: 10.1103/PhysRevLett.125.166001.

[14] Henry Wiener. Structural determination of para�n boiling points. J Am
Chem Soc, 69(1):17–20, Jan 1947. ISSN 0002-7863 (Print); 0002-7863
(Linking). doi: 10.1021/ja01193a005.

[15] Milan Randić. Novel molecular descriptor for structure—property studies.
Chemical Physics Letters, 211(4):478–483, 1993.

[16] V. Consonni, R. Todeschini, R. Mannhold, H. Kubinyi, and G. Folk-
ers. Molecular Descriptors for Chemoinformatics: Volume I: Alphabet-
ical Listing / Volume II: Appendices, References. Methods & Princi-
ples in Medicinal Chemistry. Wiley, 2009. ISBN 9783527628773. URL
https://books.google.com/books?id=03iAsdAcXHcC.

[17] Milan Randic. Characterization of molecular branching. Journal of the
American Chemical Society, 97(23):6609–6615, 11 1975. doi: 10.1021/
ja00856a001. URL https://doi.org/10.1021/ja00856a001.

https://doi.org/10.5281/zenodo.6961488
https://linkinghub.elsevier.com/retrieve/pii/S0010465519303042
https://linkinghub.elsevier.com/retrieve/pii/S0010465519303042
https://books.google.com/books?id=03iAsdAcXHcC
https://doi.org/10.1021/ja00856a001

BIBLIOGRAPHY 97

[18] I. Gutman and N. Trinajstić. Graph theory and molecular orbitals. total
�-electron energy of alternant hydrocarbons. Chemical Physics Letters,
17(4):535–538, 1972.

[19] Kinkar Ch. Das, Kexiang Xu, and Junki Nam. Zagreb indices of graphs.
Frontiers of Mathematics in China, 10(3):567–582, 2015.

[20] Boris Furtula, Ante Graovac, and Damir Vukičević. Augmented zagreb
index. Journal of Mathematical Chemistry, 48(2):370–380, 2010.

[21] Ernesto Estrada, Luis Torres, Lissette Rodriguez, and Ivan Gutman. An
atom-bond connectivity index: Modeling the enthalpy of fomation of alka-
nes. Indian Journal of Chemistry, 37:849–855, 10 1998.

[22] Haruo Hosoya. Topological index. a newly proposed quantity characteriz-
ing the topological nature of structural isomers of saturated hydrocarbons.
Bulletin of the Chemical Society of Japan, 44(9):2332–2339, 1971.

[23] Ernesto Estrada. Characterization of 3d molecular structure. Chemical
Physics Letters, 319(5):713–718, 2000.

[24] S. Klavžar, A. Rajapakse, and I Gutman. The szeged and the wiener
index of graphs. Applied Mathematics Letters, 9(5):45–49, 1996.

[25] Padmakar V. Khadikar, Sneha Karmarkar, and Vijay K. Agrawal. A novel
pi index and its applications to qspr/qsar studies. Journal of Chemical
Information and Computer Sciences, 41(4):934–949, 07 2001.

[26] Ivan Gutman. Selected properties of the schultz molecular topological
index. Journal of Chemical Information and Computer Sciences, 34(5):
1087–1089, 1994.

[27] Lingping Zhong. The harmonic index for graphs. Applied Mathematics
Letters, 25(3):561–566, 2012.

[28] Yan Yuan, Bo Zhou, and Nenad Trinajstić. On geometric-arithmetic
index. Journal of Mathematical Chemistry, 47:833–841, 02 2010. doi:
10.1007/s10910-009-9603-8.

[29] Jon Paul Janet and Heather J Kulik. Resolving transition metal chemi-
cal space: Feature selection for machine learning and structure–property
relationships. The Journal of Physical Chemistry A, 121(46):8939–8954,
2017.

[30] Efthymios I. Ioannidis, Terry Z. H. Gani, and Heather J. Kulik. molsim-
plify: A toolkit for automating discovery in inorganic chemistry. Journal
of Computational Chemistry, 37(22):2106–2117, 2016. ISSN 1096-987X.
doi: 10.1002/jcc.24437. URL http://dx.doi.org/10.1002/jcc.24437.

http://dx.doi.org/10.1002/jcc.24437

98 BIBLIOGRAPHY

[31] Aditya Nandy, Chenru Duan, Jon Paul Janet, Stefan Gugler, and
Heather J. Kulik. Strategies and software for machine learning accelerated
discovery in transition metal chemistry. Industrial & Engineering Chem-
istry Research, 57(42):13973–13986, 2018. ISSN 0888-5885. doi: 10.1021/
acs.iecr.8b04015. URL https://doi.org/10.1021/acs.iecr.8b04015.

[32] A. Cereto-Massagué, M. J. Ojeda, C. Valls, M. Mulero, S. Garcia-
Vallvé, and G. Pujadas. Molecular fingerprint similarity search in vir-
tual screening. Methods, 71:58–63, 2015. ISSN 1095-9130 (Electronic)
1046-2023 (Linking). doi: 10.1016/j.ymeth.2014.08.005. URL https:

//www.ncbi.nlm.nih.gov/pubmed/25132639.

[33] Daniel S. Wigh, Jonathan M. Goodman, and Alexei A. Lapkin. A review
of molecular representation in the age of machine learning. WIREs Com-
putational Molecular Science, 2 2022. ISSN 1759-0876. doi: 10.1002/
wcms.1603. URL https://onlinelibrary.wiley.com/doi/10.1002/

wcms.1603.

[34] Robert C Glen, Andreas Bender, Catrin H Arnby, Lars Carlsson, Scott
Boyer, and James Smith. Circular fingerprints: flexible molecular descrip-
tors with applications from physical chemistry to adme. IDrugs, 9(3):199,
2006.

[35] David Rogers and Mathew Hahn. Extended-connectivity fingerprints.
Journal of Chemical Information and Modeling, 50:742–754, 5 2010. ISSN
1549960X. doi: 10.1021/ci100050t.

[36] Joseph L. Durant, Burton A. Leland, Douglas R. Henry, and James G.
Nourse. Reoptimization of mdl keys for use in drug discovery. Journal
of Chemical Information and Computer Sciences, 42:1273–1280, 11 2002.
ISSN 0095-2338. doi: 10.1021/ci010132r. URL https://pubs.acs.org/

doi/10.1021/ci010132r.

[37] Accelerys. The keys to understanding mdl keyset technology. Re-
port, 2011. URL https://www.yumpu.com/en/document/read/4611723/

the-keys-to-understanding-mdl-keyset-technology-accelrys.

[38] Openeye toolkits 2022.1.1. openeye scientific software and santa fe, nm.
URL http://www.eyesopen.com.

[39] Keith Taylor. Description of public maccs keys, 2007. URL https://

list.indiana.edu/sympa/arc/chminf-l/2007-11/msg00058.html.

[40] Manish Sud. Maccskeys, 2022. URL http://www.mayachemtools.org/

docs/modules/html/MACCSKeys.html.

[41] David Weininger. Smiles, a chemical language and information system.
1. introduction to methodology and encoding rules. Journal of Chemi-
cal Information and Modeling, 28:31–36, 2 1988. ISSN 1549-9596. doi:

https://doi.org/10.1021/acs.iecr.8b04015
https://www.ncbi.nlm.nih.gov/pubmed/25132639
https://www.ncbi.nlm.nih.gov/pubmed/25132639
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1603
https://onlinelibrary.wiley.com/doi/10.1002/wcms.1603
https://pubs.acs.org/doi/10.1021/ci010132r
https://pubs.acs.org/doi/10.1021/ci010132r
https://www.yumpu.com/en/document/read/4611723/the-keys-to-understanding-mdl-keyset-technology-accelrys
https://www.yumpu.com/en/document/read/4611723/the-keys-to-understanding-mdl-keyset-technology-accelrys
http://www.eyesopen.com
https://list.indiana.edu/sympa/arc/chminf-l/2007-11/msg00058.html
https://list.indiana.edu/sympa/arc/chminf-l/2007-11/msg00058.html
http://www.mayachemtools.org/docs/modules/html/MACCSKeys.html
http://www.mayachemtools.org/docs/modules/html/MACCSKeys.html

BIBLIOGRAPHY 99

10.1021/ci00057a005. URL https://pubs.acs.org/doi/abs/10.1021/

ci00057a005.

[42] Rafael Gómez-Bombarelli, Jennifer N. Wei, David Duvenaud, José Miguel
Hernández-Lobato, Benjamı́n Sánchez-Lengeling, Dennis Sheberla, Jorge
Aguilera-Iparraguirre, Timothy D. Hirzel, Ryan P. Adams, and Alán
Aspuru-Guzik. Automatic chemical design using a data-driven continu-
ous representation of molecules. ACS Central Science, 4:268–276, 2 2018.
ISSN 23747951. doi: 10.1021/acscentsci.7b00572.

[43] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming
Chen. Molecular de-novo design through deep reinforcement learning.
Journal of Cheminformatics, 9:48, 12 2017. ISSN 1758-2946. doi:
10.1186/s13321-017-0235-x. URL https://jcheminf.biomedcentral.

com/articles/10.1186/s13321-017-0235-x.

[44] Noel M. O’Boyle. Towards a universal smiles representation - a standard
method to generate canonical smiles based on the inchi. Journal of Chem-
informatics, 4, 9 2012. ISSN 17582946. doi: 10.1186/1758-2946-4-22.

[45] Nadine Schneider, Roger A. Sayle, and Gregory A. Landrum. Get
your atoms in order-an open-source implementation of a novel and ro-
bust molecular canonicalization algorithm. Journal of Chemical Infor-
mation and Modeling, 55:2111–2120, 10 2015. ISSN 1549960X. doi:
10.1021/acs.jcim.5b00543.

[46] David Weininger, Arthur Weininger, and Joseph L. Weininger. Smiles. 2.
algorithm for generation of unique smiles notation. Journal of Chemical
Information and Computer Sciences, 29:97–101, 5 1989. ISSN 0095-2338.
doi: 10.1021/ci00062a008. URL https://pubs.acs.org/doi/abs/10.

1021/ci00062a008.

[47] Daylight chemical information systems inc. 4. smarts—a language for de-
scribing molecular patterns. URL https://www.daylight.com/dayhtml/

doc/theory/theory.smarts.html.

[48] Noel M O’boyle and Andrew Dalke. Deepsmiles: An adaptation of smiles
for use in machine-learning of chemical structures. chemrxiv. doi: https:
//doi.org/10.26434/chemrxiv.7097960.v1. URL https://chemrxiv.org/

engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d.

[49] Mario Krenn, Florian Häse, Akshat Kumar Nigam, Pascal Friederich, and
Alan Aspuru-Guzik. Self-referencing embedded strings (selfies): A 100%
robust molecular string representation. Machine Learning: Science and
Technology, 1, 12 2020. ISSN 26322153. doi: 10.1088/2632-2153/aba947.

[50] Stephen Heller, Alan McNaught, Stephen Stein, Dmitrii Tchekhovskoi,
and Igor Pletnev. Inchi - the worldwide chemical structure identifier
standard. Journal of Cheminformatics, 5, 1 2013. ISSN 17582946. doi:
10.1186/1758-2946-5-7.

https://pubs.acs.org/doi/abs/10.1021/ci00057a005
https://pubs.acs.org/doi/abs/10.1021/ci00057a005
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0235-x
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-017-0235-x
https://pubs.acs.org/doi/abs/10.1021/ci00062a008
https://pubs.acs.org/doi/abs/10.1021/ci00062a008
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d
https://chemrxiv.org/engage/chemrxiv/article-details/60c73ed6567dfe7e5fec388d

100 BIBLIOGRAPHY

[51] Bryn Keller, Michael Lesnick, Suny Albany, and Ted Willke. Persistent
homology for virtual screening. chemrXiv, 2018. doi: 10.26434/chemrxiv.
6969260.v3.

[52] Grier M Jones, PD Varuna S Pathirage, and Konstantinos D Vogiatzis.
Data-driven acceleration of coupled-cluster and perturbation theory meth-
ods. In Quantum Chemistry in the Age of Machine Learning, pages 509–
529. Elsevier, 2023.

[53] Jacob Townsend, Cassie Putman Micucci, John H. Hymel, Vasileios
Maroulas, and Konstantinos D. Vogiatzis. Representation of molecular
structures with persistent homology for machine learning applications
in chemistry. Nature Communications, 11:3230, 12 2020. ISSN 2041-
1723. doi: 10.1038/s41467-020-17035-5. URL http://www.nature.com/

articles/s41467-020-17035-5.

[54] Yair Schi↵, Vijil Chenthamarakshan, Samuel Ho↵man, Karthikeyan Nate-
san Ramamurthy, and Payel Das. Augmenting molecular deep generative
models with topological data analysis representations. arXiv, 6 2021. URL
http://arxiv.org/abs/2106.04464.

[55] Clément Maria, Jean-Daniel Boissonnat, Marc Glisse, and Mariette
Yvinec. The Gudhi library: Simplicial complexes and persistent homol-
ogy. In International Congress on Mathematical Software, pages 167–174.
Springer, 2014.

[56] The GUDHI Project. GUDHI User and Reference Manual. GUDHI Edito-
rial Board, 2015. URL http://gudhi.gforge.inria.fr/doc/latest/.

[57] Frédéric Chazal, David Cohen-Steiner, Marc Glisse, Leonidas J. Guibas,
and Steve Y. Oudot. Proximity of persistence modules and their diagrams.
In Proceedings of the Twenty-Fifth Annual Symposium on Computational
Geometry, SCG ’09, page 237–246, New York, NY, USA, 2009. Association
for Computing Machinery. ISBN 9781605585017. doi: 10.1145/1542362.
1542407. URL https://doi.org/10.1145/1542362.1542407.

[58] Andrew Marchese and Vasileios Maroulas. Signal classification with a
point process distance on the space of persistence diagrams. Advances in
Data Analysis and Classification, 12(3):657–682, 2018.

[59] Vasileios Maroulas, Cassie Putman Micucci, and Adam Spannaus. A sta-
ble cardinality distance for topological classification. Advances in Data
Analysis and Classification, 14(3):611–628, 2020.

[60] Herbert Edelsbrunner and John L Harer. Computational topology: an
introduction. American Mathematical Society, 2022.

[61] Peter Bubenik. Statistical topological data analysis using persistence land-
scapes. J. Mach. Learn. Res., 16(1):77–102, jan 2015. ISSN 1532-4435.

http://www.nature.com/articles/s41467-020-17035-5
http://www.nature.com/articles/s41467-020-17035-5
http://arxiv.org/abs/2106.04464
http://gudhi.gforge.inria.fr/doc/latest/
https://doi.org/10.1145/1542362.1542407

BIBLIOGRAPHY 101

[62] Vasileios Maroulas, Joshua L Mike, and Christopher Oballe. Nonpara-
metric estimation of probability density functions of random persistence
diagrams. Journal of Machine Learning Research, 20(151):1–49, 2019.
URL http://jmlr.org/papers/v20/18-618.html.

[63] Theodore Papamarkou, Farzana Nasrin, Austin Lawson, Na Gong,
Orlando Rios, and Vasileios Maroulas. A random persistence
diagram generator. Statistics and Computing, 32(5):88, 2022.
doi: 10.1007/s11222-022-10141-y. URL https://doi.org/10.1007/

s11222-022-10141-y.

[64] Vasileios Maroulas, Farzana Nasrin, and Christopher Oballe. A bayesian
framework for persistent homology. SIAM Journal on Mathematics of
Data Science, 2(1):48–74, 2020.

[65] Andrew Marchese, Vasileios Maroulas, and Josh Mike. K-means clustering
on the space of persistence diagrams. In Yue M. Lu, Dimitri Van De
Ville, and Manos Papadakis, editors, Wavelets and Sparsity XVII, volume
10394, page 103940W. International Society for Optics and Photonics,
SPIE, 2017.

[66] Christopher Oballe, David Boothe, Piotr J. Franaszczuk, and Vasileios
Maroulas. Tofu: Topology functional units for deep learning. Foundations
of Data Science, 4(4), 2022. doi: 10.3934/fods.2021021.

[67] Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Pe-
terson, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis
Motta, and Lori Ziegelmeier. Persistence images: A stable vector repre-
sentation of persistent homology. Journal of Machine Learning Research,
18(8):1–35, 2017. URL http://jmlr.org/papers/v18/16-337.html.

[68] Pietro Donatini, Patrizio Frosini, and Alberto Lovato. Size functions for
signature recognition. In Robert A. Melter, Angela Y. Wu, and Longin Jan
Latecki, editors, Vision Geometry VII, volume 3454, pages 178 – 183.
International Society for Optics and Photonics, SPIE, 1998.

[69] Massimo Ferri, Patrizio Frosini, Alberto Lovato, and Chiara Zambelli.
Point selection: A new comparison scheme for size functions (with an
application to monogram recognition). In Roland Chin and Ting-Chuen
Pong, editors, Computer Vision — ACCV’98, pages 329–337, Berlin, Hei-
delberg, 1997. Springer Berlin Heidelberg.

[70] Matthias Rupp, Alexandre Tkatchenko, Klaus Robert Müller, and
O. Anatole von Lilienfeld. Fast and accurate modeling of molecular at-
omization energies with machine learning. Physical Review Letters, 108,
1 2012. ISSN 00319007. doi: 10.1103/PhysRevLett.108.058301.

[71] Katja Hansen, Grégoire Montavon, Franziska Biegler, Siamac Fazli,
Matthias Rupp, Matthias Sche✏er, O. Anatole von Lilienfeld, Alexan-
dre Tkatchenko, and Klaus Robert Müller. Assessment and validation of

http://jmlr.org/papers/v20/18-618.html
https://doi.org/10.1007/s11222-022-10141-y
https://doi.org/10.1007/s11222-022-10141-y
http://jmlr.org/papers/v18/16-337.html

102 BIBLIOGRAPHY

machine learning methods for predicting molecular atomization energies.
Journal of Chemical Theory and Computation, 9:3404–3419, 8 2013. ISSN
15499618. doi: 10.1021/ct400195d.

[72] Katja Hansen, Franziska Biegler, Raghunathan Ramakrishnan, Wiktor
Pronobis, O. Anatole von Lilienfeld, Klaus Robert Müller, and Alexandre
Tkatchenko. Machine learning predictions of molecular properties: Ac-
curate many-body potentials and nonlocality in chemical space. Journal
of Physical Chemistry Letters, 6:2326–2331, 6 2015. ISSN 19487185. doi:
10.1021/acs.jpclett.5b00831.

[73] Bing Huang and O. Anatole von Lilienfeld. Communication: Understand-
ing molecular representations in machine learning: The role of uniqueness
and target similarity. Journal of Chemical Physics, 145, 10 2016. ISSN
00219606. doi: 10.1063/1.4964627.

[74] Haoyan Huo and Matthias Rupp. Unified representation of molecules and
crystals for machine learning. arXiv, 4 2017. URL http://arxiv.org/

abs/1704.06439.

[75] Thomas B. Blank, Steven D. Brown, August W. Calhoun, and Douglas J.
Doren. Neural network models of potential energy surfaces. The Journal of
Chemical Physics, 103:4129–4137, 9 1995. ISSN 0021-9606. doi: 10.1063/
1.469597. URL http://aip.scitation.org/doi/10.1063/1.469597.

[76] Sönke Lorenz, Axel Groß, and Matthias Sche✏er. Representing high-
dimensional potential-energy surfaces for reactions at surfaces by neural
networks. Chemical Physics Letters, 395:210–215, 9 2004. ISSN 00092614.
doi: 10.1016/j.cplett.2004.07.076. URL https://linkinghub.elsevier.

com/retrieve/pii/S000926140401125X.

[77] Jörg Behler and Michele Parrinello. Generalized neural-network repre-
sentation of high-dimensional potential-energy surfaces. Physical Review
Letters, 98, 4 2007. ISSN 00319007. doi: 10.1103/PhysRevLett.98.146401.

[78] Jörg Behler. Atom-centered symmetry functions for constructing high-
dimensional neural network potentials. Journal of Chemical Physics, 134,
2 2011. ISSN 00219606. doi: 10.1063/1.3553717.

[79] J. S. Smith, O. Isayev, and A. E. Roitberg. Ani-1: an extensible neural
network potential with dft accuracy at force field computational cost.
Chemical Science, 8:3192–3203, 2017. ISSN 20416539. doi: 10.1039/
C6SC05720A.

[80] Albert P. Bartók, Risi Kondor, and Gábor Csányi. On representing chem-
ical environments. Physical Review B, 87, 5 2013. ISSN 10980121. doi:
10.1103/PhysRevB.87.184115.

http://arxiv.org/abs/1704.06439
http://arxiv.org/abs/1704.06439
http://aip.scitation.org/doi/10.1063/1.469597
https://linkinghub.elsevier.com/retrieve/pii/S000926140401125X
https://linkinghub.elsevier.com/retrieve/pii/S000926140401125X

BIBLIOGRAPHY 103

[81] Anders S. Christensen, Lars A. Bratholm, Felix A. Faber, and O. Anatole
von Lilienfeld. Fchl revisited: Faster and more accurate quantum machine
learning. Journal of Chemical Physics, 152, 1 2020. ISSN 00219606. doi:
10.1063/1.5126701.

[82] Felix A Faber, Anders S Christensen, Bing Huang, and O Anatole von
Lilienfeld. Alchemical and structural distribution based representation
for universal quantum machine learning. The Journal of chemical physics,
148:241717, 6 2018. ISSN 1089-7690. doi: 10.1063/1.5020710. URL http:

//www.ncbi.nlm.nih.gov/pubmed/29960351.

[83] Bastiaan J Braams and Joel M Bowman. Permutationally invariant po-
tential energy surfaces in high dimensionality. International Reviews in
Physical Chemistry, 28(4):577–606, 2009.

[84] Alex Brown, Anne B McCoy, Bastiaan J Braams, Zhong Jin, and Joel M
Bowman. Quantum and classical studies of vibrational motion of ch 5+
on a global potential energy surface obtained from a novel ab initio direct
dynamics approach. The Journal of chemical physics, 121(9):4105–4116,
2004.

[85] Joel M Bowman, BJ Braams, S Carter, C Chen, G Czakó, B Fu, X Huang,
E Kamarchik, AR Sharma, BC Shepler, et al. Ab-initio-based potential
energy surfaces for complex molecules and molecular complexes. The Jour-
nal of Physical Chemistry Letters, 1(12):1866–1874, 2010.

[86] Zhen Xie and Joel M Bowman. Permutationally invariant polynomial
basis for molecular energy surface fitting via monomial symmetrization.
Journal of Chemical Theory and Computation, 6(1):26–34, 2010.

[87] Bin Jiang and Hua Guo. Permutation invariant polynomial neural network
approach to fitting potential energy surfaces. The Journal of chemical
physics, 139(5):054112, 2013.

[88] Jun Li, Bin Jiang, and Hua Guo. Permutation invariant polynomial neu-
ral network approach to fitting potential energy surfaces. ii. four-atom
systems. The Journal of chemical physics, 139(20):204103, 2013.

[89] K. T. Schütt, H. E. Sauceda, P. J. Kindermans, A. Tkatchenko, and K. R.
Müller. Schnet - a deep learning architecture for molecules and materials.
Journal of Chemical Physics, 148, 6 2018. ISSN 00219606. doi: 10.1063/
1.5019779.

[90] K T Schütt, P.-J Kindermans, H E Sauceda, S Chmiela, A Tkatchenko,
and K.-R Müller. Schnet: A continuous-filter convolutional neural network
for modeling quantum interactions. Advances in Neural Information Pro-
cessing Systems, pages 922–1002, 2017. URL www.quantum-machine.org.

http://www.ncbi.nlm.nih.gov/pubmed/29960351
http://www.ncbi.nlm.nih.gov/pubmed/29960351
www.quantum-machine.org.

104 BIBLIOGRAPHY

[91] Jacob Townsend, Justin K. Kirkland, and Konstantinos D. Vogiatzis.
Chapter 3 - post-hartree-fock methods: configuration interaction, many-
body perturbation theory, coupled-cluster theory. In S.M. Blinder and
J.E. House, editors, Mathematical Physics in Theoretical Chemistry, De-
velopments in Physical ‘I&’ Theoretical Chemistry, pages 63–117. El-
sevier, 2019. ISBN 978-0-12-813651-5. doi: https://doi.org/10.1016/
B978-0-12-813651-5.00003-6. URL https://www.sciencedirect.com/

science/article/pii/B9780128136515000036.

[92] Matthew Welborn, Lixue Cheng, and Thomas F. Miller. Transferability
in machine learning for electronic structure via the molecular orbital ba-
sis. Journal of Chemical Theory and Computation, 14:4772–4779, 9 2018.
ISSN 15499626. doi: 10.1021/acs.jctc.8b00636.

[93] Lixue Cheng, Matthew Welborn, Anders S. Christensen, and Thomas F.
Miller. A universal density matrix functional from molecular orbital-based
machine learning: Transferability across organic molecules. Journal of
Chemical Physics, 150, 4 2019. ISSN 00219606. doi: 10.1063/1.5088393.

[94] Tamara Husch, Jiace Sun, Lixue Cheng, Sebastian J.R. Lee, and
Thomas F. Miller. Improved accuracy and transferability of molecular-
orbital-based machine learning: Organics, transition-metal complexes,
non-covalent interactions, and transition states. The Journal of Chemical
Physics, 154:064108, 2 2021. ISSN 0021-9606. doi: 10.1063/5.0032362.
URL https://aip.scitation.org/doi/abs/10.1063/5.0032362.

[95] Jacob Townsend and Konstantinos D. Vogiatzis. Data-driven acceleration
of the coupled-cluster singles and doubles iterative solver. Journal of
Physical Chemistry Letters, 10:4129–4135, 6 2019. ISSN 19487185. doi:
10.1021/acs.jpclett.9b01442.

[96] Jacob Townsend and Konstantinos D. Vogiatzis. Transferable mp2-based
machine learning for accurate coupled-cluster energies. Journal of Chem-
ical Theory and Computation, 16(12):7453–7461, 2020. doi: 10.1021/
acs.jctc.0c00927. URL https://doi.org/10.1021/acs.jctc.0c00927.
PMID: 33138363.

[97] Bruno Cuevas-Zuviŕıa. Learning electron densities. In Quantum Chem-
istry in the Age of Machine Learning, pages 431–451. Elsevier, 2023.

[98] Jiang Wu, Guanhua Chen, Jingchun Wang, and Xiao Zheng. Redesigning
density functional theory with machine learning. In Quantum Chemistry
in the Age of Machine Learning, pages 531–558. Elsevier, 2023.

[99] Wolfram Koch and Max C Holthausen. A chemist’s guide to density func-
tional theory. John Wiley & Sons, 2015.

https://www.sciencedirect.com/science/article/pii/B9780128136515000036
https://www.sciencedirect.com/science/article/pii/B9780128136515000036
https://aip.scitation.org/doi/abs/10.1063/5.0032362
https://doi.org/10.1021/acs.jctc.0c00927

BIBLIOGRAPHY 105

[100] Kanun Pokharel, James William Furness, Yi Yao, Volker Blum, Tom
James Patrick Irons, Andrew Michael Teale, and Jianwei Sun. Exact con-
straints and appropriate norms in machine learned exchange-correlation
functionals. The Journal of Chemical Physics, 2022.

[101] David J Tozer, Victoria E Ingamells, and Nicholas C Handy. Exchange-
correlation potentials. The Journal of chemical physics, 105(20):9200–
9213, 1996.

[102] Xiao Zheng, Li Hong Hu, Xiu Jun Wang, and Guan Hua Chen. A gen-
eralized exchange-correlation functional: The neural-networks approach.
Chemical Physics Letters, 390:186–192, 5 2004. ISSN 00092614. doi:
10.1016/j.cplett.2004.04.020.

[103] Yi Zhou, Jiang Wu, Shuguang Chen, and GuanHua Chen. Toward the
exact exchange–correlation potential: A three-dimensional convolutional
neural network construct. The journal of physical chemistry letters, 10
(22):7264–7269, 2019.

[104] Ryo Nagai, Ryosuke Akashi, and Osamu Sugino. Completing density
functional theory by machine learning hidden messages from molecules.
npj Computational Materials, 6(1):1–8, 2020.

[105] Li Li, Stephan Hoyer, Ryan Pederson, Ruoxi Sun, Ekin D Cubuk, Patrick
Riley, Kieron Burke, et al. Kohn-sham equations as regularizer: Building
prior knowledge into machine-learned physics. Physical review letters, 126
(3):036401, 2021.

[106] Sebastian Dick and Marivi Fernandez-Serra. Machine learning accurate
exchange and correlation functionals of the electronic density. Nature
communications, 11(1):1–10, 2020.

[107] Ryo Nagai, Ryosuke Akashi, Shu Sasaki, and Shinji Tsuneyuki. Neural-
network kohn-sham exchange-correlation potential and its out-of-training
transferability. The Journal of chemical physics, 148(24):241737, 2018.

[108] Etienne Cuierrier, Pierre-Olivier Roy, Rodrigo Wang, and Matthias Ernz-
erhof. The fourth-order expansion of the exchange hole and neural net-
works to construct exchange–correlation functionals. The Journal of
Chemical Physics, 157(17):171103, 2022.

[109] Li Li, John C Snyder, Isabelle M Pelaschier, Jessica Huang, Uma-Naresh
Niranjan, Paul Duncan, Matthias Rupp, Klaus-Robert Müller, and Kieron
Burke. Understanding machine-learned density functionals. International
Journal of Quantum Chemistry, 116(11):819–833, 2016.

[110] Kun Yao and John Parkhill. Kinetic energy of hydrocarbons as a function
of electron density and convolutional neural networks. Journal of chemical
theory and computation, 12(3):1139–1147, 2016.

106 BIBLIOGRAPHY

[111] Junji Seino, Ryo Kageyama, Mikito Fujinami, Yasuhiro Ikabata, and Hi-
romi Nakai. Semi-local machine-learned kinetic energy density functional
with third-order gradients of electron density. The Journal of chemical
physics, 148(24):241705, 2018.

[112] Finding density functionals with machine learning. Physical Review Let-
ters, 108, 6 2012. ISSN 00319007. doi: 10.1103/PhysRevLett.108.253002.

[113] Pavlo Golub and Sergei Manzhos. Kinetic energy densities based on the
fourth order gradient expansion: performance in di↵erent classes of mate-
rials and improvement via machine learning. Physical Chemistry Chemical
Physics, 21(1):378–395, 2019.

[114] Junji Seino, Ryo Kageyama, Mikito Fujinami, Yasuhiro Ikabata, and Hi-
romi Nakai. Semi-local machine-learned kinetic energy density functional
demonstrating smooth potential energy curves. Chemical Physics Letters,
734:136732, 2019.

[115] Ralf Meyer, Manuel Weichselbaum, and Andreas W Hauser. Machine
learning approaches toward orbital-free density functional theory: Simul-
taneous training on the kinetic energy density functional and its functional
derivative. Journal of chemical theory and computation, 16(9):5685–5694,
2020.

[116] Felix Brockherde, Leslie Vogt, Li Li, Mark E. Tuckerman, Kieron Burke,
and Klaus Robert Müller. Bypassing the kohn-sham equations with ma-
chine learning. Nature Communications, 8, 12 2017. ISSN 20411723. doi:
10.1038/s41467-017-00839-3.

[117] James Kirkpatrick, Brendan McMorrow, David HP Turban, Alexander L
Gaunt, James S Spencer, Alexander GDG Matthews, Annette Obika,
Louis Thiry, Meire Fortunato, David Pfau, et al. Pushing the frontiers
of density functionals by solving the fractional electron problem. Science,
374(6573):1385–1389, 2021.

[118] Bruno Cuevas-Zuviŕıa and Luis F Pacios. Analytical model of electron
density and its machine learning inference. Journal of Chemical Informa-
tion and Modeling, 60(8):3831–3842, 2020.

[119] Bruno Cuevas-Zuviŕıa and Luis F Pacios. Machine learning of analytical
electron density in large molecules through message-passing. Journal of
Chemical Information and Modeling, 61(6):2658–2666, 2021.

[120] Peter Bjørn Jørgensen and Arghya Bhowmik. Deepdft: Neural message
passing network for accurate charge density prediction. arXiv preprint
arXiv:2011.03346, 2020.

Glossary

k-simplex A generalization of a triangle or tetrahedron in k-dimensional space;
the smallest polytope in k-dimensions. For example, a 0-simplex is a point,
a 1-simplex a line segment, a 2-simplex a triangle, etc.. 52

adjacency matrix A matrix that captures the pairwise adjacency between all
nodes of a graph. For a formal definition, please see Subsection 2.3.1.. 19,
20

adjacent Given a graph G with vertex set V and edge set E, two vertices, vi
and vj , are adjacent if the edge vivj is in E.. 17, 20

Atom-centered Symmetry Functions Atom-centered Symmetry Functions.
77

bag of bonds . 68, 72

bijection A map f between two sets, X and Y such that f ∶X → Y is one-to-
one (injective) and onto (surjective).. 56, 57

Bottleneck distance A distance defined on persistence diagrams that yields
the minimal matching between two persistence diagrams.. 56, 66

chemical graph A graph where the nodes and edges represent chemical prop-
erties. For example, a molecular graph (atoms as nodes and bonds as
edges) is a chemical graph.. 17

correlation matrix . 74

Coulomb matrices Representation. 68

Coulomb matrix QC. 90

degree For some vertex v, the degree of v, D(v), is the number of edges incident
to v.. 18, 23–25

Dirac delta . 26, 74

107

108 Glossary

distance matrix A matrix that captures the distance (such as the geometric
or the topological) between two nodes.. 19

edge A link between two nodes, vi and vj , often written as vivj = eij .. 17–20,
26, 48

electronegativity ability of an atom in a molecule to attract electrons to itself.
27

Euclidean distance The Euclidean distance, or l2 norm, is a common distance
metric. For a vector, x = (x1, . . . , xn), the l2 norm is defined as the length
of a vector: ��x��2 = �x

2
1 + ⋅ ⋅ ⋅ + x2

n. For two points in Rn the distance
between two points x = (x1, . . . , xn) and y = (y1, . . . , yn) in as ��x − y��2 =�(x1 − y1)2 + ⋅ ⋅ ⋅ + (xn − yn)2. . 68, 74

Euclidean space Let R be the set of real numbers. Euclidean space of dimen-
sion n is Rn. In this work, we will be mainly concerned with R2; the real
plane and R3; real space. . 20

exchange matrix . 90

Faber-Christensen-Huang-Lilienfeld Faber-Christensen-Huang-Lilienfeld. 83

filtration parameter Given a simplicial complex, a filtration parameter, r ≥ 0,
is the radius of the ball placed around each node in the simplicial complex
and is allowed to vary over values greater than or equal to 0.. 53, 54, 61

Fock matrix . 90

graph An ordered pair, G = (V,E), of a vertex set, V = {1, . . . , n}, and an edge
set of unordered pairs, E = {e1, . . . , em} where ei = vjvk.. 17–20, 22

graph neural network Neural networks that take graphs as input.. 87

graph theory A branch of mathematics that studies graphs, both directed and
undirected.. 17, 20

homology A branch of mathematics that associates algebraic objects with
other mathematical objects. In this work, we use homology as a way
to understand the underlying structure of a space, such as the number of
connected components, holes, and voids.. 52, 53, 61

hyperparameter External parameters that control the learning process and
determine the model parameters values of the optimized learning algo-
rithm.. 13, 85

incident A vertex v is incident with an edge e if v is one of the vertices that
makes up the edge.. 17, 18

Glossary 109

kernel ridge regression (Grier: Place a definition of ridge regression and a
kernel in here... mention regularization). 72

Kronecker delta . 74

length The number of edges in a walk or path.. 19, 20

many-body tensor representation . 68, 74

matrix An m by n array of numbers arranged in rows and columns. Often
denoted Am,n where an entry ai,j represents the element in the ith row
and jth column.. 19, 20

molecular graph A graph where the nodes represent atoms and the edges
represent the bonds between atoms.. 17–19, 22, 24–27, 30, 32, 39, 41–43,
45, 48, 51, 87

node A point which represents an object. Also referred to as a vertex. Usually
connected to other nodes via edges.. 17, 42

path A walk in which no vertices or edges are repeated.. 18–20, 22

Permutationally invariant potentials . 86

persistence Given some homological feature with birth b and death d, the
persistence of that feature is d − b.. 54, 55, 58, 59, 61, 62

persistence barcode A representation of persistence information where each
homological feature is represented by a bar. The x-axis denotes the time
the feature is born or dies and the y-axis counts the number of bars. The
color of each bar denotes the dimension of the homological feature.. 54,
55, 61, 62

persistence diagram A representation of persistence information where each
homological feature is represented by a point. The x-axis denotes the time
the feature is born and the y-axis represents the time at which the feature
dies. The color of each point denotes the dimension of the homological
feature.. 54–58, 60, 65, 66

persistent homology A mathematical method used to capture the underlying
structure of a space at di↵erent filtration parameters.. 51, 53, 56

probability distribution A function that gives the probability of di↵erent
events or outcomes occurring. . 58, 59, 74

SchNet . 87

110 Glossary

simplicial complex A set consisting of points, lines, faces, and their k-dimensional
equivalents. Specifically, for some simplicial complexK, each face of a sim-
plex in K is also in K and the non-empty intersection of any two simplices
of K is a face (lower dimensional simplex) of both simplices.. 51, 52, 59

Smooth Overlap of Atomic Positions . 81

topological distance The smallest number of edges one must traverse to get
from one node to another.. 20, 22, 23

traversal A walk that visits each vertex exactly once.. 18, 19

walk An alternating sequence of vertices and edges that begins and ends with
a vertex such that each edge is incident with both of its defining vertices..
18, 19

Wasserstein distance A distance defined on persistence diagrams we can vi-
sualize as how much e↵ort it takes to move a mound of Earth from one
place to another.. 56, 57, 66

	Introduction
	Preface
	Historical Background
	The Atom Theory
	How to Represent a Molecule?

	Motivation
	Properties of Molecular Representations
	That's a Wrap

	Graph-based Representations
	Introduction
	What is a Molecular Graph
	Graphs and Matrices
	Adjacency Matrix
	Distance Matrix
	Weighted Graphs

	Topological Indices
	The Wiener Index and the Hyper Wiener Index
	The Randić Index
	Zagreb Indices
	Other Common Topological Indices

	Autocorrelation Functions
	Structural Keys
	Circular fingerprints
	Molecular ACCess Systems Fingerprint (MACCS)

	SMILES Notation and its Variants
	Simplified Molecular Input Line Entry System (SMILES)
	Popular Variants of SMILES
	Examples of SMILES, SMARTS, DeepSMILES, and SELFIES

	International Chemical Identifier (InChI)
	That's a Wrap

	Topology-based Representations
	Introduction
	Simplicial Complexes
	Persistent Homology
	Capturing Persistent Homology
	Comparing Persistent Homology
	Persistent Homology and Machine Learning
	Persistence Images
	Chemically-driven Persistence Images

	That's a Wrap

	Physics-Based Representations
	Introduction
	Coulomb Matrices and Derivatives
	Coulomb Matrix
	Bag of Bonds (BoBs)
	Many-Body Tensor Representation (MBTR)

	Atom-centered Symmetry Functions
	Behler-Parrinello Atom-centered Symmetry Functions (ACSFs)
	Atomic Environment Vectors (AEV)
	Smooth Overlap of Atomic Positions (SOAPs)
	Faber–Christensen–Huang–Lilienfeld (FCHL)
	Permutationally Invariant Potentials (PIPs)
	SchNet

	Ab Initio Representations
	Molecular orbital based-ML (MOB-ML)
	Data-Driven Quantum Chemistry (DDQC)
	Density Functional Based Molecular Representations

	That's a Wrap

