
Distributed-Memory Parallel Algorithms for Sparse Matrix
and Sparse Tall-and-Skinny Matrix Multiplication

Isuru Ranawaka∗, Md Taufique Hussain†, Charles Block‡, Gerasimos Gerogiannis§, Josep Torrellas¶, Ariful Azad∥
∗ Indiana University, Bloomington, IN, USA (isjarana@iu.edu)

† Indiana University, Bloomington, IN, USA (mth@iu.edu)
‡ University of Illinois at Urbana-Champaign, IL, USA (coblock2@illinois.edu)

§ University of Illinois at Urbana-Champaign, IL, USA (gg24@illinois.edu)
¶ University of Illinois at Urbana-Champaign, IL, USA (torrella@illinois.edu)

∥ Indiana University, Bloomington, IN, USA (azad@iu.edu)

Abstract—We consider a sparse matrix-matrix multiplication
(SpGEMM) setting where one matrix is square and the other is
tall and skinny. This special variant, TS-SpGEMM, has impor-
tant applications in multi-source breadth-first search, influence
maximization, sparse graph embedding, and algebraic multigrid
solvers. Unfortunately, popular distributed algorithms like sparse
SUMMA deliver suboptimal performance for TS-SpGEMM.
To address this limitation, we develop a novel distributed-
memory algorithm tailored for TS-SpGEMM. Our approach
employs customized 1D partitioning for all matrices involved
and leverages sparsity-aware tiling for efficient data transfers. In
addition, it minimizes communication overhead by incorporating
both local and remote computations. On average, our TS-
SpGEMM algorithm attains 5× performance gains over 2D and
3D SUMMA. Furthermore, we use our algorithm to implement
multi-source breadth-first search and sparse graph embedding
algorithms and demonstrate their scalability up to 512 Nodes (or
65,536 cores) on NERSC Perlmutter.

I. INTRODUCTION

Multiplication of two sparse matrices (SpGEMM) is a
prevalent operation in scientific computing [1, 2], graph ana-
lytics [3]–[5], and machine learning [6]. Within these diverse
applications, SpGEMM appears in three main variations: (a)
AA, which involves squaring a sparse matrix A ∈ Rn×n and
is used in Markov clustering [4] and triangle counting [7]; (b)
AAT, which entails multiplying a matrix by its transpose and
is useful in calculating Jaccard similarity [8, 9], performing
sequence alignments [10], and conducting hypergraph par-
titioning [2]; and (c) AB, which involves multiplying two
distinct sparse matrices and is used in multi-source breadth-
first search (BFS) [11], the initial phase of Algebraic Multigrid
solvers [1], influence maximization [12], and generating sparse
graph embeddings. In this paper, we focus on a special instance
of the third variant referred to as Tall-and-Skinny-SpGEMM
(TS-SpGEMM), where A ∈ Rn×n is a square matrix and
B ∈ Rn×d is a tall and skinny matrix with d≪ n.

TS-SpGEMM plays a crucial role in both graph analytics
and scientific computing applications. For instance, iterations
of multi-source BFS traversals on a graph are equivalent to
TS-SpGEMM operations, where A is the adjacency matrix
of the graph and B represents the BFS frontiers for all
searches. Such multi-source BFS operations are central to

calculations of influence maximization [12] and closeness
centrality [11], where the sparsity of B may vary significantly
across iterations. Additionally, TS-SpGEMM is applicable to
sparse graph embedding algorithms, where each row of B
corresponds to a d-dimensional sparse embedding of a vertex,
and is used in graph neural networks (GNNs) that support
sparse embeddings [13]. In the context of Algebraic Multigrid
(AMG) methods, TS-SpGEMM is utilized during the setup
phase, where B is the restriction matrix created from a
distance-2 maximal independent set computation [1].

Despite its wide range of applications, TS-SpGEMM has not
received focused attention in the literature (see Table II). Cur-
rent distributed-memory SpGEMM algorithms, such as Sparse
SUMMA [14, 15] in CombBLAS [5] and 1-D partitioning-
based algorithms in Trilinos [16] and PETSc [17], perform
well for standard scenarios but fall short in the TS-SpGEMM
context, as demonstrated by our experiments.

Our work aims to address this gap by introducing a
scalable distributed-memory algorithm specifically designed
for TS-SpGEMM. Our algorithm follows the principles of
Gustavson’s algorithm [18], which constructs the output row-
by-row. Since both the B matrix and the output matrix (which
we call C) are tall and skinny, 1-D partitioning is better suited
for them. For instance, in many cases, the number of columns
in matrix B is lower than the number of processes. However, a
basic implementation of Gustavson’s algorithm in distributed
memory might necessitate fetching a substantial portion of B
into a process, potentially exceeding local memory capacity.
We mitigate this issue by utilizing a 2-D virtual layout for
matrix A and conducting multiplications tile by tile, where
each tile represents a submatrix of A stored within a process.
During the execution of a tile, only the memory footprint of
B required by the tile needs to be stored in the local memory,
reducing the concurrent memory footprint. By adjusting tile
widths and heights, we can manage the granularity of compu-
tation and communication.

We develop TS-SpGEMM with two computation modes.
In the local compute mode, A and C remain stationary, while
data from B is communicated to perform local multiplications.
Conversely, in the remote compute mode, B and C remain sta-

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

tionary, while data from A is transferred to remote processes
where multiplication is performed, and partial results are then
returned back to their respective processes. The choice of local
or remote computations is determined for each tile based on its
sparsity pattern. By balancing local and remote computations,
we can reduce communication costs for certain applications.
As for local computations, we adaptively select between a
sparse accumulator (SPA) [19] or a hash-based accumula-
tor [20] for local SpGEMM and merging of partial results.
These optimizations substantially enhance the performance of
our TS-SpGEMM algorithm compared to existing distributed
SpGEMM methods in CombBLAS and PETSc.

We have implemented two graph algorithms using TS-
SpGEMM: multi-source BFS and sparse graph embedding. In
multi-source BFS, the C matrix from one iteration serves as
the B matrix in the subsequent iteration. Consequently, for
scale-free graphs, the sparsity of B fluctuates dramatically
across BFS iterations. For sparse embedding, we implemented
a force-directed graph embedding algorithm [21], maintaining
the embedding sparse without compromising its quality. In
both scenarios, TS-SpGEMM offered substantial performance
benefits over other SpGEMM alternatives.

We summarize key contributions of this paper as follows:
• Algorithm: We develop a distributed-memory algorithm

for TS-SpGEMM. Our algorithm uses tiling to reduce
memory requirements and selectively employs local or
remote computations to reduce communication.

• Comparison with SpMM and SUMMA: We demon-
strate the conditions under which TS-SpGEMM outper-
forms sparse and tall-and-skinny dense matrix multipli-
cation (SpMM) and Sparse SUMMA.

• Performance and Scalability: For TS-SpGEMM (with
d = 128), our algorithm runs on average 5× faster than
alternative SpGEMM implementations in CombBLAS
and PETSc. TS-SpGEMM scales well to 512 nodes
(65,536 cores) on the Perlmutter supercomputer

• Applications: Multi-source BFS utilizing our TS-
SpGEMM runs upto 10× faster than SUMMA-enabled
algorithms in CombBLAS.

Availability: TS-SpGEMM is publicly available at
https://github.com/HipGraph/DistGraph. The repository
includes scripts to reproduce results presented in this paper.

II. BACKGROUND AND RELATED WORK

A. The TS-SpGEMM problem

The generalized sparse matrix multiplication (SpGEMM)
multiplies two sparse matrices A and B and computes another
potentially sparse matrix C. In this paper, we consider TS-
SpGEMM that multiplies a square matrix A∈Rn×n with
a tall and skinny matrix B∈Rn×d and computes another
tall and skinny matrix C∈Rn×d, where d≪n. Although our
TS-SpGEMM algorithms can cover the broader SpGEMM
scenarios, our emphasis lies specifically on the TS-SpGEMM
variant, which is used in numerous applications mentioned
earlier. TS-SpGEMM can be also performed on an arbitrary

semiring S instead of the usual (x,+) semiring. For example,
we used a (∧,∨) semiring in our implementation of multi-
source BFS. Given a matrix A, nnz(A) denotes the number of
nonzeros in A, and flops denotes the number of multiplications
needed to compute AB.

B. Related work

SpGEMM is a well-studied problem with many sequential,
shared-memory and distributed-memory parallel algorithms
discussed in the literature. Gao et al. [22] provided an excellent
survey of the field.

Shared-memory parallel algorithms. Most shared-
memory parallel SpGEMM algorithms can be categorized into
two main classes. The first and widely adopted approach is
based on Gustavson’s algorithm [18], which constructs the out-
put column-by-column (or row-by-row) [15, 20, 23]–[25]. For
performance, these algorithms rely on various accumulators
based on heap [15], hash table [20], and a dense vector called
SPA [19, 23]. The second approach uses the expand-sort-
compress strategy [26]–[30], which generates intermediate
results through outer products of input matrices and then
merges duplicated entries to obtain the final results. The
performance of these algorithms depends on factors such as
the sparsity of input matrices, compression ratio (the ratio of
floating-point operations to nonzeros in the output matrix),
number of threads, and efficient utilization of memory and
cache. Even in shared memory, most prior work evaluated
algorithms with AA and AAT settings.

Distributed-memory parallel algorithms and libraries.
Distributed-memory algorithms for SpGEMM can be classified
based on the data distribution method they employ. Algorithms
utilizing 1D partitioning distribute matrices across either the
row or column dimension. Buluç and Gilbert [31] showed for
the AA case that 1D algorithm fails to scale due to com-
munication cost. The variant of 1D algorithm they considered
forms output row-by-row while cyclicly shifting B to avoid
high memory cost. To mitigate communication costs in 1D
algorithms, preprocessing with graph/hypergraph partitioning
models has been proposed [32]. However, this preprocessing
step can pose new scalability challenges, as it often does not
scale efficiently. In 2D distribution, the matrices are partitioned
into rectangular blocks within a 2D process grid. For example,
CombBLAS [33] used the Sparse SUMMA algorithm [14, 34],
while Borvstnik et al. [35] used Cannon’s algorithm [36] on
the 2D distribution of matrices. In the 3D (or 2.5D) variant
of the Sparse SUMMA algorithm, each sub-matrix is further
divided into layers. This approach exhibits better scalability at
larger node counts [15, 37, 38], where the multiplied instances
become more likely to be latency-bound.

Given the broad range of applications, most libraries cov-
ering sparse linear algebra include an implementation of
SpGEMM. As illustrated in Table I, well-known libraries like
CombBLAS [5], DBCSR [35], PETSc [17], Trilinos [16], and
CTF [39] all feature various SpGEMM algorithms.

Experimental settings. Over the years, researchers have
evaluated distributed SpGEMM algorithms under various con-

https://github.com/HipGraph/DistGraph?tab=readme-ov-file#run-spgemm

TABLE I: Libraries with implementations of distributed SpGEMM.

Library Data Distribution Algorithm

CombBLAS [5] 2D, 3D Sparse SUMMA
DBCSR [35] 2D, 3D Sparse Cannon, One sided MPI
Saena [40] 1D Recursive
PETSc [17] 1D Distributed Gustavson
Trillinos [16, 41] 1D Distributed Gustavson
CTF [39] 1D, 2D, 3D Sparse SUMMA

TABLE II: Distributed SpGEMM algorithms with published exper-
imental settings.

Algorithm Data Distribution Experiments

Sparse SUMMA [5, 14, 15] 2D and 3D AA, AAT, AB
Sparse Cannon [35] 2D AA
Recursive [40] 1D AA

Hypergraph Partitioning [32] 1D AA, AAT, AB

Survey [22] 1D AA, AAT

TS-SpGEMM (this paper) 1D (virtual 2D) AB

TABLE III: List of notations used in the paper

Symbol Description
A The n×n square matrix, row-wise 1D partitioned
Ac The n×n square matrix, column-wise 1D partitioned
B The n×d tall and skinny matrix, row-wise 1D partitioned
C The n×d output matrix, , row-wise 1D partitioned
Pi The ith process
Ai The n

p
×n submatrix of A stored at Pi

Ac
i The n×n

p
submatrix of Ac stored at Pi

p The number of processes
h The height of a computing tile
w The width of the tile
t The number of threads

figurations of input matrices. Table II demonstrates that the
majority of algorithms were evaluated for AA and AAT

scenarios. Among these evaluations, 3D Sparse SUMMA [15]
and Akbudak et al. [32] conducted experiments for AB
cases, where B comprised rectangular matrices. However,
their experimental settings focused on the setup phase of
the AMG solvers, where the number of columns in B was
typically substantial and frequently comparable to that of
A. Consequently, most existing algorithms have not been
evaluated for TS-SpGEMM scenarios as discussed in this
paper.

III. DISTRIBUTED-MEMORY ALGORITHMS

A. Distributed TS-SpGEMM based on Gustavson’s algorithm

In the row variant of Gustavson’s algorithm, to compute the
rth row of C, the rth row of A is scanned. For each nonzero
element stored at location (r, c) of A, the cth row of B is
scaled with that particular non-zero value of A and merged
together to obtain C(r, :) as follows:

C(r, :) =
∑

c:A(r,c)̸=0

A(r, c)B(c, :) (1)

To implement Gustavson’s algorithm in a distributed setting,
we use 1-D row partitioning of all matrices, where Ai∈R

n
p ×n,

Bi∈R
n
p ×d, and Ci∈R

n
p ×d are submatrices of A, B, and

Fig. 1: Distributed memory Gustavson’s algorithm using a toy
example of 10× 10 square sparse matrix and 10× 5 tall-and-skinny
sparse matrix distributed over 3 processes in a row partitioned manner
(dark lines represent process boundary). Shaded rows of A and B
represent parts of the input matrices involved in the computation of
the shaded row of C. Shaded elements in the nzc vectors represent
columns with at least one non-zero (non-zero columns) of the local
matrix owned by each process. Thus, the nzc vector of each process
determines which rows of B are accessed by this process. Note that
while the sparsity patterns of A1 and A2 differ significantly, both
require all but one row of B.

Algorithm 1 Overview of Naive TS-SpGEMM
Input: A ∈ Rn×n and B ∈ Rn×d distributed in p processes.
Output: C ∈ Rn×d distributed in p processes.

1: procedure TS-SPGEMM-NAIVE(Ai, Bi) at Pi

2: nzc(Ai) ← Non-zero column ids in Ai

3: r ← ALLTOALL(nzc(Ai)) ▷ Requested rows of Bi

4: Brecv ← ALLTOALL(Bi(r, :))
5: Ci ← LOCALSPGEMM(Ai,Brecv)

return C

C stored by the ith process Pi. Table III shows the list of
notations used in the paper.

Alg. 1 shows a naive implementation of TS-SpGEMM
where A and C stays stationary while B moves. We call this
algorithm TS-SPGEMM-NAIVE. In this algorithm, each pro-
cess sends requests to potentially all other processes to collect
the necessary rows of B using two AllToAll communication
(Line 3 and 4, Alg. 1). After the necessary portion of B is
received, the output is generated by a local SpGEMM. We
use a toy example in Fig. 1 to explain the process. Variants
of this algorithm are implemented in popular libraries such as
PETSc [17] and Trillinos [16]. We identify several avenues to
optimize this algorithm.

Eliminating communication needed to send requests. In
Alg. 1 Line 3, we send column indices of A to fetch necessary
rows of B. For example, consider A to be an n × n Erdős-
Rényi matrix of an average degree of kA. Then, the expected
number of nonzero columns per process would be n kA

p . Hence,
each process sends n kA

p indices in the AllToAll communica-
tion at Line 3 of Alg. 1. We eliminate this communication
by keeping another copy of A and partitioning it column-
wise among processes, where Pi stores Ac

i ∈ Rn×n
p . By

Fig. 2: Distribution of the same matrices as in Fig.1 involved in our
algorithm. The highlighted regions in each subfigure represent (a) a
3× 3 tile in A, (b) the same tile in Ac, (c) the rows of B used by
this tile, and (d) the nonzeros in C produced by these tiles.

utilizing Ac, each process can precisely identify which rows
of its local copy of B are needed by other processes, thereby
eliminating the necessity to communicate indices beforehand.
Fig. 2 explains the benefit of keeping Ac. In this example, P2

is trying to determine which rows of B2 will be needed by
P1. By using Ac

i , P2 can calculate the necessary rows (in this
example all rows of B2) that are sent to P1 requiring P1 to
communicate the corresponding indices. Thus, our distribution
strategy decreases communication at the cost of doubling the
memory requirement for A.

Reducing memory requirement. At the end of commu-
nication, each process may receive a considerable number of
rows of B from other processes. For example, if Ai has a
dense row, it will need the entire B to compute Ci. Fig. 1
illustrates this scenario where the second row of A1 is nearly
dense, necessitating all rows except one from B to be stored
in P1. This memory bottleneck can also arise when A is
an Erdős-Rényi matrix with an average degree of kA. Let
each row of B have kB nonzeros. As the expected number of
nonzero columns of A in a process is n kA

p , the total memory
requirement in a process could be n kA kB

p . Thus, depending
on the average number of nonzeros in each row of A and B,
the memory requirement to receive remote rows of B can be
prohibitively large.

We address the high-memory requirement, by partitioning
Ai into tiles. A w×h tile is a submatrix of Ai, where
Ai(w, h)∈Rw×h with h≤n/p and w≤n. We conduct com-
putations tile by tile, where each process receives rows of
B corresponding to the nonzero columns in the current tile
of A. Fig. 2 shows an example where P1 computes with the
highlighted tile of A by storing B2 (also highlighted in Fig. 2)
in P1. We discuss the tile selection policy in the next section.

Improving memory locality in computation In Line 5 of
Alg. 1, local matrix multiplication is performed to generate the
final output. Since the local sparse matrices are stored in CSR
format, this computation can potentially involve accessing
rows of Brecv randomly depending on the sparsity pattern of
Ai. By computing tile by tile, we also maintain a reasonable
memory locality for this random access pattern.

Improving communication by alternating between mov-
ing B and C. Up to this point, we have exclusively focused
on communicating submatrices of B needed for a tile for

localized computation of C within their assigned processes.
We refer to this method of computation as the local mode
of computation. However, if there is a dense row of Ai in
a tile, we can further optimize the communication required
to compute the relevant portion of Ci. For example, consider
the tile highlighted in Fig. 2. This tile affects the highlighted
entries of C in P1 (Fig. 2d). If we perform this computation at
P1, 4 nonzero elements of B need to be communicated from
P2 to P1 (Fig. 2c), but this computation affects only 3 non-
zeros of C (Fig. 2d). Instead, because we maintain a column
partitioned copy Ac, P2 can compute the relevant entries in C
and send the result back to P1, reducing the required amount
of communication. We refer to this method of computation
as the remote mode of computation. This communication
optimization via remote computation only works when the
number of output nonzeros produced for a tile is less than the
number of nonzeros required from B. Due to maintaining two
copies of A, it is possible to mark each tile as a local or remote
compute tile through a symbolic step without requiring any
communication. In this way, it is possible to switch between
the move-B and move-C variants of TS-SpGEMM.

Improving load balance by alternating between moving
B and C. Line 5 of Alg. 1 may cause computation and
memory load imbalance when there is a dense row in matrix A.
Unlike the 2D distribution of matrices, the memory imbalance
is inherent in 1D distribution, a characteristic that persists
in our algorithm. However, by delegating computations to
remote processes, we can partially balance the computational
workload, which enhances the scalability of our algorithm.

B. Distributed TS-SpGEMM with tiling

In the previous section, we described several modifications
of Alg. 1 to reduce memory and communication requirements
and improve load balance. This section discusses the improved
algorithm with all those improvements.

Overall data distribution and storage. As mentioned
before, we use 1-D row partitioning of all matrices, where
Ai∈R

n
p ×n, Bi∈R

n
p ×d, and Ci∈R

n
p ×d are submatrices of A,

B, and C stored the ith process Pi. Additionally, we use 1-D
column partitioning of A where Pi stores Ac

i∈R
n×n

p . At the
ith process, Ai is divided into w×h tiles, where each tile is
a submatrix of Ai with h ≤ n/p and w ≤ n. Similarly, Ac

i is
divided into h×w tiles.

Overview of our distributed TS-SpGEMM algorithm.
Algorithm 2 provides a high-level description of our algorithm
from Pi’s point of view. At fist, we generate w×h tiles for Ai

and h×w tiles for Ac
i (Algorithm 2, Line 9)). The optimal tile

width and height depend on the available memory and sparsity
of input matrices. We tune them empirically as discussed in the
result section. After the tiles are generated, we categorize them
in local, remote and diagonal tiles (Algorithm 2, Line 10)). The
algorithm used to group tiles is discussed in the next section.

Processing remote tiles (lines 11-18 in Algorithm 2).
Let Aremote

i be a w × h tile stored at Pi. Let Pj denote the
process where the required portion of B necessary for this

Algorithm 2 Distributed TS-SpGEMM algorithm at Pi

1: Inputs:
2: Ai: Row partition of A stored at Pi

3: Ac
i : Column partition of A stored at Pi

4: Bi: Row partition of B stored at Pi

5: X: Tile mode (local/remote) selection policy
6: Output:
7: Ci: Row partition of the output stored at Pi

8: procedure DIST-TS-SPGEMM(Ai,A
c
i ,Bi, h, w) at Pi

9: GENERATETILES(Ai,A
c
i , h, w)

10: DECIDEMODE(Ai,A
c
i ,Bi,X)

11: ▷ Compute output for remote tiles
12: for each remote tile Aremote

i at Pi do
13: Pj ← the remote computation process for this tile
14: At Pj , extract Aremote

i from Ac
j

15: Bremote
j ← At Pj , extract the submatrix from Bj

corresponding to nonzero columns of the remote tile
16: Cremote

j ← LOCALSPGEMM(Aremote
i ,Bremote

j)
17: Send Cremote

j back to Pi

18: Ci = MERGE(Ci,C
remote
j) at Pi

19:
20: ▷ Compute output for diagonal tiles
21: Cdiag

i ← LOCALSPGEMM(Adiag
i ,Bi)

22: Ci = MERGE(Ci,C
diag
i)

23:
24: ▷ Compute output for local tiles
25: for each local tile Alocal

i at Pi do
26: Pj ← Process storing the necessary B submatrix
27: Blocal

j ← Fetch B submatrix from Pj

28: Clocal
i ← LOCALSPGEMM(Alocal

i ,Blocal
j)

29: Ci = MERGE(Ci,C
local
i)

tile is stored1. Given the column partitioned matrix Ac, Pj can
access the remote tile Aremote

i from Ac without any communi-
cation with Pi. Then, Pj extracts rows of Bj corresponding
to nonzero columns of this remote tile and store it in Bremote

j

(line 15). After multiplying the remote tile with Bremote
j , the

result is sent back to Pi, where the partial result is merged
with Ci.

Processing diagonal tiles (lines 20-22 in Algorithm 2).
Let Adiag

i = Ai ∩Ac
i be a tile on the diagonal of A. For this

tile, the corresponding entries of B are also available in Pi.
Hence, this multiplication is performed locally without any
communication.

Processing local tiles (lines 24-29 in Algorithm 2). Let
Alocal

i be a w × h tile stored at Pi. Let Pj denote the process
where the required portion of B necessary for this tile is
stored. Given the column partitioned matrix Ac, Pj can access
the local tile Alocal

i from Ac and extracts necessary portion
of Bj at Blocal

j (line 27). Then, Pj send Blocal
j to Pi. Upon

1When the tile width is greater than n/p, the necessary rows of B is
distributed across multiple processes. For simplicity, we refer to a single
process Pj in line 13 of Algorithm 2

P1

P2

P3

P1 P2 P3

B CA and Ac

B1

B2

B3

C1

C2

C3

Fig. 3: P2 decides the mode of two tiles shown in red and blue
within A. To compute C1, the red tile is multiplied with the entire
B2. Since nnz(B2) is greater than the affected nonzeros in C1, the
red tile is marked as a remote tile within A1. To compute C3, the
blue tile is multiplied with just one nonzero in B2 shown in blue. In
this case, it is beneficial to communicate necessary data from B and
hence, the blue tile is marked as a local tile within A3.

receiving Blocal
j , Pi performs local computations and merge

the results with Ci.
Consolidated communication. For simplicity, Alg. 2 dis-

cusses communication concerning Pi. As all processes engage
in computations for both local and remote tiles, communica-
tion for the ith tile across all processes is consolidated into a
single AllToAll communication at lines 17 and 27 of Alg. 2.

C. Local computations

Algorithm 2 performs two computations: (1) SpGEMM
involving local or remote tiles and (2) merge results from a tile
with the results from other tiles. For both of these operations,
we use SPA or hash-based accumulators. Previous work [20,
42] demonstrated that hash-based merging performs the best
for AA and AAT operations. However, for tall-and-skinny
B matrices, we observed that the SPA outperforms hash-
based SpGEMM and merging techniques. This is attributed
to the fact that each row of the output matrix is of length
d. Therefore, a row-by-row SpGEMM necessitates a dense
vector for SPA with a length of d. When d is small, it can
easily fit into the lowest level of cache, resulting in enhanced
performance. We parallelize local computations by assigning
different rows of the output to t threads. For d > 1024, we
opt for a hash-based SpGEMM, as at large values of d, SPA
tends to spill out of the cache.

D. Tile mode selection

We use a symbolic step to categorize tiles into local and
remote modes with an aim of reducing communication. In this
step, Pi computes the modes of tiles available in Ac

i based
on the exact communication overheads of possible local and
remote computations for each tile. Fig. 3 explains this step
with three processes. In this example, the red tile is located
in P1 as part of A1, but it is also available in P2 as part of
Ac

2. Hence, P2 can multiply the red tile with its local B2 to
estimate the contribution of this tile to C1. In Fig. 3, the entire
B2 (four nonzeros) is needed for the red tile to generate three
nonzeros in C1. Hence, a remote computation of this red tile at

P2 and sending the results back to P1 reduces communication.
Hence, the red tile is marked as a remote tile by P2.

On the other hand, the blue tile is located in P3 as part
of A1, but it is also available in P2 as part of Ac

3. Hence,
P2 can multiply the red tile with its local B2 to estimate the
contribution of this tile to C3. In Fig. 3, only one nonzero from
B2 is needed for the red tile to generate three nonzeros in C3.
Hence, a local computation of this blue tile at P3 by getting
necessary data from P2 reduces communication. Thus the blue
tile is marked as a local tile by P2. Following these steps,
every process can categorize tiles from their respective column
partition of Ac. Note that the selection tiles do not require any
communication. After the modes of all tiles are finalized, the
modes of the tiles are shared with all processes via an AllToAll
communication step. The cost of this communication is not
significant since it only communicates a binary value (local or
remote) for each tile.

E. Communication and space complexity

Communication complexity of Algorithm 2. The com-
munication complexity depends on the cost of (a) receiving
remotely computed outputs (2, lines 17), and (b) sending rows
from B to other processes for local computations (2, line 27).
In both cases, we use AlltoAll collective communication to
transfer data. To analyze the communication complexity, we
used the α − β model [43], where α is the latency constant
corresponding to the fixed cost of communicating a message,
and β is the inverse bandwidth corresponding to the cost of
transmitting one word of data. Consequently, communicating
a message of n words takes α+ βn time.

Let kA, kB , and kC denote the average number of nonzeros
in each row of A, B, and C, respectively. We consider an
n/p × n/p tile Atile that is multiplied with Btile to generate
partial result Ctile. Here, nnz(Btile) = n kB /p and nnz(Ctile) =
n kC /p. Assuming the pairwise exchange algorithm typical for
long messages in MPI implementations, the communication
cost for a remote tile is O(αp+ β (p−1)n kC

p). Similarly, the
communication cost for a local tile is O(αp+ β (p−1)n kB

p).
Since a tile is either local or remote depending on the
communication cost, the overall communication costs for a
tile is O(αp+ β (p−1)nmin{kB ,kC}

p).
Space complexity of Algorithm 2. In 1-D partitioning,

there could be storage imbalance if different row partitions
have different numbers of nonzeros. This inherent problem of
1-D partitions also exists in our algorithm. We analyze the
additional memory requirements for an n/p×n/p tile, which
can be translated to other tile sizes. We use the nonzero settings
discussed in the communication analysis. For a local tile, the
additional memory required to store received submatrices of B
is O(n kB /p). Similarly, for a remote tile, the additional mem-
ory required to store partial results of C is O(n kC /p). These
estimates are not precise, as the actual memory requirements
can be substantially lower depending on the sparsity of the tile.
For local SpGEMM, the memory requirement depends on the
accumulator (SPA/Hash) used. For SPA, where each of the t
threads maintain their private SPA, the memory requirement

Algorithm 3 Multi-source BFS
Input: Adjacency matrix A ∈ Bn×n and vector f ∈ Bn×1

with d non-zero entries representing sources of BFS traversal.
Output: Tall and Skinny matrix S ∈ Bn×d representing
vertices reachable from d sources.

1: procedure DIST-MSBFS(A, f)
2: F← INIT(f) ▷ Initialize frontier, F ∈ Bn×d

3: S← F ▷ Mark sources as visited
4: SR ← SEMIRING(∧,∨)
5: while nnz(F) > 0 do
6: N← TS-SPGEMM(A,F, SR) ▷ Discover next

frontier
7: F← N \ S ▷ Remove already visited vertices
8: S← S ∨N ▷ Update so far visited list
9: return S

is O
(
t× d+ nnz(C)

p + n
)

, and for hash-based SpGEMM the

memory complexity is O
(

nnz(C)
p + n

)
.

IV. ALGORITHMS IMPLEMENTED WITH TS-SPGEMM

To demonstrate the utility of TS-SpGEMM in practical
settings, we implemented two graph algorithms that require
the multiplication of a square matrix with a tall-and-skinny
matrix. We briefly discuss these algorithms in this section.

A. Distributed multi-source BFS

BFS traversal from a single source can be translated as
a sequence of sparse matrix-sparse vector (SpMSpV) oper-
ations [44] with (∧,∨) semiring (or a (sel2nd,min) semiring
when the reconstruction of the BFS tree is desired) [25, 45].
In this formulation, the input vector represents the current
BFS frontier, while the output vector, after eliminating already
visited vertices, indicates the next frontier. In the beginning,
the input vector contains exactly one non-zero, indicating the
source of the traversal. For scale-free graphs, the BFS frontier
initially becomes denser and then gradually becomes sparser
as more vertices are discovered [46].

A multi-source BFS from d sources runs concurrent BFSs
on the same input graph as described in Alg. 3. When
implemented with TS-SpGEMM, the multi-source BFS main-
tains a tall-and-skinny sparse matrix F where the ith column
represents the frontier corresponding to the ith source vertex.
To keep track of visited vertices, we maintain a tall-and-skinny
sparse matrix S where the ith column represents all vertices
visited from the ith source vertex. At first, we build F from
the set of source vertices such that each column of F has just
one nonzero (Line 2, Alg. 3). We continue expanding frontiers
until F is empty. In each iteration, we discover the vertices
reachable from the current frontier through the multiplication
of the adjacency matrix by the frontier matrix with (∧,∨)
semiring (Line 6, Alg. 3). After each multiplication, we
remove already visited vertices from F and then update the
set of visited vertices across all BFSs (Line 7 and 8, Alg. 3)
The updated frontier F becomes the input to the next iteration.

Fig. 4: (a) An illustration of the force-directed node embedding, where neighboring vertices generate attractive forces and non-neighboring
vertices generate repulsive forces. (b) The matrix A represents the adjacency matrix of the graph and ZT represents the sparse embedding
matrix. Then, force computations are mapped to a TS-SpGEMM operation. (c) The minibatch computation, where we set tile height to be
equal to the batch size.

As the sparsity of matrix F changes significantly throughout
iterations, this algorithm serves as an excellent testing ground
for TS-SpGEMM.

B. Distributed sparse embedding

We consider a node embedding problem where each vertex
in a graph is embedded in a d-dimensional vector space.
Typically, the embedding matrix Z ∈ Rn×d is a dense matrix,
but it can be sparsified without compromising the quality
of embedding. Hence, in sparse embedding, the embedding
matrix Z ∈ Rn×d takes the form of a tall-and-skinny sparse
matrix, presenting an interesting application for our TS-
SpGEMM algorithm.

We aim to implement a force-directed node embedding algo-
rithm called Force2Vec [21] that uses attractive and repulsive
forces among vertices to compute embeddings. We specifi-
cally choose Force2Vec to demonstrate TS-SpGEMM due to
its existing implementation with SpMM [47]. By inducing
sparsity in the embedding matrix, we develop a sparse variant
of Force2Vec using distributed TS-SpGEMM. Figure 4 shows
a sample graph (left figure) and matrix representation with
embedding computation (right figure). We use synchronous
SGD with negative samples to compute the embedding. The
matrix A ∈ Rn×n represents the adjacency matrix of the
graph G(V,E), where 1 indicates the neighbor vertices and
−1 indicates the negative sampled non-neighbor vertices. The
embedding matrices Z ∈ Rn×d, and ZT ∈ Rd×n represents
the tall-and-skinny embedding matrix and it’s transpose, re-
spectively. Both A, Z, and ZT are 1-D partitioned and stored
in each process in CSR format.

As depicted in Figure 4, each embedding vector in a
minibatch is updated parallelly by calculating the attrac-
tive force gradient ∆fa(vi), and repulsive force gradient
∆fr(vi) through a sequence of SpGEMM operations of
TS-SpGEMM and update each embedding vector using SGD.
Afterward, the updated embedding matrix is sparsified by

TABLE IV: Default parameters used in our experiments.

Parameter Value
Number of OpenMP threads per process 16
Number of processes per node 8
Number of processes for application testing 64
Dimension of B matrix (d) 128
Height of a tile (h) n

p
Width of a tile (w) 16× n

p
Default sparsity of B 80%
Embedding mini-batch size (b) 256
Embedding learning rate 0.02

selecting the required number of nonzero entries to achieve
the target sparsity by keeping the highest valued entries. This
sparsified output is used as the input to the next iteration.

We set the batch size to the height of a tile, that enables
minibatch SpGEMM for TS-SpGEMM . Reducing the height
of a tile increases the communication volume. For instance, in
the sub-figure (c) of Figure 4, the embedding vector Z6 needs
to be fetched twice in batches b1, and b2. But, if Aremote

1 is
computed remotely on P2, the Z6 only needs to be fetched
once while computing b2. Hence, the remote computations
can reduce communication overhead that is incurred in the
minibatch scenarios with tiling.

V. RESULTS

A. Experimental setup

Table IV shows the default parameters used in the exper-
iments. We identified these default parameters via extensive
benchmarking. Users can use default parameters to obtain
good performance. In particular, we observed that a tile width
of (16×n/p) and a tile height of n/p perform the best for most
matrices. We use these default parameters in all experiments
unless otherwise stated. Runtimes were reported as the average
of five runs.

Experimental platforms. We evaluate the performance of
our algorithm on the CPU partitions of the NERSC Perlmutter

TABLE V: Datasets used in our experiments.

Dataset Alias # Vertices # Edges Avg Degree
pubMed pubmed 19,717 44,338 4.49
flicker flicker 89,250 899,756 20.16
cora cora 2708 5429 2
citeseer citeseer 3312 4732 1.4
arabic-2005 arabic 22,744,080 639,999,458 28.1
it-2004 it 41,291,594 1,150,725,436 27.8
GAP-web gap 50,636,151 1,930,292,948 38.1
uk-2002 uk 18,520,486 298,113,762 16.0
Erdős-Rényi ER 40000000 320000000 8

Fig. 5: The impact of an increasing tile width on memory and runtime
on 8 nodes (64 processes). The x-axis shows the width of the tile
ranging from n/p to n, expressed as multiples of n/p. The left
subfigure shows the increase in memory consumption, while the right
subfigure shows the impact on the runtime.

supercomputer. A single compute node of the Perlmutter CPU
partition is equipped with two AMD EPYC 7763 CPUs with
64 cores and 512GB of memory. To compile the programs,
SUSE Linux g++ compiler 12.3.0 is used with -O3 option. We
used MPI+OpenMP hybrid parallelization for all experiments.
For in-node multithreading, we experimented with various
settings and found that 16 threads per process gave the best
performance Unless otherwise stated, we used 8 MPI processes
per node and 16 OpenMP threads per process. For MPI
implementation, we used Cray-MPICH-8.1.28.

Datasets. Table.V describes the graphs used in our exper-
iments. We collected these graphs from SNAP [48] and the
Suitesparse Matrix Colelction [49]. Additionally, we generate
uniformly random tall-and-skinny matrices for our experi-
ments. In our experiments, the tall-and-skinny matrix B with
s% sparsity means s% entries in each row of the B are zero.

Baselines. We compare our implementation with state-of-
the-art algorithms such as 2-D Sparse SUMMA [14], 3-D
Sparse SUMMA [50], and 1-D algorithm in PETSc [17]. We
use 2-D and 3-D implementation available in CombBLAS-2.0
[5] and 1-D implementation available in PETSc-3.19.3.

B. Impacts of the tile width

To determine the optimal tile size, we ran experiments on
8 nodes (64 MPI processes) with three datasets. We use the
maximum height h = n/p and vary the width of a tile w
from n/p to n. The results are shown in Figure 5, where tile
widths are shown as multiples of n/p. Figure 5(a) shows that
the memory consumption increases monotonically with the
increase of tile width. This behavior is expected since a higher

Fig. 6: The reduction in data transfers for hybrid mode and local
mode. The hybrid mode enables both local and remote tiles, whereas
the local mode only uses local tiles. We ran the experiments on 8
nodes for GAP-web.

Fig. 7: The Figure shows the comparison results of the
TS-SpGEMM and SpMM version. The left sub-figure shows the
communication volume and the right sub-figure shows the runtime
for different sparsity levels.

value of w requires fetching a larger fraction of B into the lo-
cal process. Hence, to reduce memory consumption, we should
use smaller tile widths. However, as shown in Figure 5(b), a
small tile width results in longer runtimes due to increased
communication rounds. Based on the observations from Fig. 5,
we determine that 16×n/p represents an optimal tile width for
achieving the fastest performance with a manageable memory
overhead. Hence, we use 16×n/p as the default tile width for
our experiments. Furthermore, we tested the data transfer cost
for different tile heights, by fixing the tile width to 16×n/p.
Figure 6 shows that in the hybrid mode where both remote
and local computations are enabled, TS-SpGEMM reduces the
data transfer cost compared to the pure local mode. A small
tile height is useful to capture the computations in the sparse
embedding application.

C. SpGEMM vs SpMM

When the tall-and-skinny input matrix (B) is sufficiently
dense, running an SpMM may run faster than TS-SpGEMM.
To determine the sparsity threshold of B at which TS-
SpGEMM begins to outperform SpMM, we implemented
an SpMM with a dense B using the same communication
patterns as TS-SpGEMM. We confirmed that our SpMM
performs comparably or better than the 1.5D dense shifting
algorithm [51, 52]. We ran this experiment on 32 nodes

Fig. 8: This figure shows the runtime comparison of the TS-SpGEMM , 2-D SUMMA, 3-D SUMMA, and PETSc (1-D) for uk-2002 dataset
under different dimensions for sparsity 80%, and 99% on 128 nodes (p = 1024) and 32 nodes (p = 256). For 80% sparsity, we encountered
out-of-memory issues with the PETSc binary converter, preventing us from converting inputs to binary format for dimensions d ≥ 256.

Fig. 9: The figures show the strong scaling runtime for TS-SpGEMM 2-D SUMMA, 3-D SUMMA, and PetSc for GAP-web, it-2004,
arabic-2005 and uk-2002 datasets. We ran this experiment for B with 128 dimensions and 80% sparsity.

Fig. 10: The figures show the strong scaling runtime for TS-SpGEMM , 2-D SUMMA, 3-D SUMMA, and PetSc for GAP-web, it-2004,
arabic-2005, and uk-2002 datasets. We ran this experiment for B matrix with 128 dimensions and 99% sparsity.

Fig. 11: The figures show the strong scaling communication time for TS-SpGEMM , 2-D SUMMA, 3-D SUMMA, and PetSc for GAP-web,
it-2004, arabic-2005, and uk-2002 datasets. We ran this experiment for B matrix with 128 dimensions and 80% sparsity.

with 256 MPI processes and show the results in Figure 7.
For all datasets with sparsity exceeding 50%, TS-SpGEMM
communicates less data and runs faster than SpMM. This
sparsity threshold is justified by considering that TS-SpGEMM
requires communication of both indices and values, whereas
SpMM only communicates values. The reduction in commu-
nication may not translate into a proportional reduction of
runtime because local SpGEMM computation is more costly
than SpMM. Furthermore, the total runtime of SpGEMM

is higher up to 50% sparsity compared to SpMM due to
additional overheads involved with random memory access
and computation. We recommend using TS-SpGEMM only
for applications where the second matrix is at least 50% sparse.

D. Comparison with other distributed SpGEMM

We compared TS-SpGEMM with state-of-the-art imple-
mentations: PETSc (1-D algorithm), 2-D Sparse SUMMA,
and 3-D Sparse SUMMA. We ran the experiments by varying

Fig. 12: The multi-source BFS implementation using TS-SpGEMM ran on 8 nodes (64 MPI processes). The sub-figure (a) shows the average
BFS frontier. The sub-figure (b) shows the average communicated nnz. The sub-figure (c) shows the runtime for each iteration. The sub-figure
(d) shows the speedup with respect to 2-D SUMMA on each iteration.

Fig. 13: The performance of the sparse embedding algorithm on 8 nodes (64 MPI processes). (a) The link-prediction accuracy for citeseer,
cora, flicker, and pubmed with varying sparsity in the embedding matrix. (b) Total runtime with varying sparsity. (c) The communicated
volume. (d) The percentage of remotely computed tiles.

d under 80% and 99% sparsity in 32 nodes and 128 nodes.
The results are shown in the Figure 8. Our algorithm outper-
forms the others when varying the dimension of the second
matrix B from 4 to 16, 384. According to the results, PETSc
and TS-SpGEMM have similar runtimes at d=4, but PETSc
SpGEMM performance drops noticeably at around d=64. This
is because, at d=4 with 80% sparsity, it is feasible to store
the entire B on a single process. Hence, there is no significant
benefit of tiling when d is very small. By contrast, SUMMA-
2D and SUMMA-3D do not perform well when d < 256,
but their runtimes appear to be more competitive at higher
d. The behavior of SUMMA-2D and SUMMA-3D is also
predictable because these algorithms involve communication
for both A and B. In cases where d is small and B is sparse,
it is advantageous to communicate only B, as our algorithm
and PETSc do. A more interesting result is TS-SpGEMM’s
superior performance at d = 4, 096 and d = 16, 384 where
1D SpGEMM in PETSc performs poorly. This improved
performance of TS-SpGEMM is attributed to tiling and other
optimizations discussed in the method section. Thus, Figure
8 demonstrates that TS-SpGEMM outperforms state-of-the-art
algorithms when B is a tall-and-skinny matrix.

E. Scalability

We ran scalability tests ranging from 1 node to 512 nodes
for sparsity levels of 80% and 99%. The results are shown in
Figures 9 and 10 respectively. TS-SpGEMM scales up to 512
nodes (4096 MPI processes; 65,536 cores) and outperforms
other SpGEMM implementations. Runtime scales almost lin-
early until 1024 processes for both sparsity levels. Past this
point, performance scaling has been reduced due to workload

reduction. Figure 11 shows the results for communication
scalability for 80% sparsity. TS-SpGEMM’s communication
scales up to 1024 MPI processes, after which latency begins to
dominate. We did not plot the PETSc communication overhead
as it does not report the communication time separately.
Since SUMMA3D is a communication-avoiding algorithm,
its communication scales much better than other algorithms.
SUMMA3D communication can even beat TS-SpGEMM at
512 nodes by utilizing more layers. Still, applications relevant
to TS-SpGEMM do not typically need more than 128 nodes
to run, as the second matrix stays as tall and skinny.

F. Multi-source BFS

The multi-source BFS is the first application we imple-
mented using TS-SpGEMM . We test the application using
8 nodes (64 MPI processes). We use four datasets to evaluate
the BFS: uk-2002, arabic-2005, it-2004, and GAP-web. We
consider 128 sources randomly selected as the starting nodes.
Hence, B is of size n×128 and initially contains one randomly
chosen non-zero per column. The evaluation results are given
in the Figure 12. In the BFS implementation, we sparsify
the output of each iteration such that it only contains the
newly visited vertices and feed that output as input to the next
iteration. We can see that the BFS frontier becomes denser
only in a few iterations but remains sparse for the rest of the
iterations. If there are multiple connected components, it is
possible to have several peaks in the BFS frontier for the same
dataset. If sparsity is greater than 50%, we use SpGEMM for
the computation, otherwise we can utilize the SpMM version
of the TS-SpGEMM. The communication and runtime closely
follow the BFS frontier. Figure 12(d) shows the speedup with

respect to multi-source BFS implemented with 2-D SUMMA
in CombBLAS. We can achieve up to a 10x speedup in some
iterations and around a 5x speedup on average.

G. Sparse Embedding

As our final application, we implemented a sparse em-
bedding algorithm discussed in Section IV-B. For improved
accuracy, we use mini-batch SpGEMM where we set a batch
size of b = 0.5 × n

p . The tile height matches the batch size
in the minibatch setting. We ran all the experiments on 8
nodes (64 MPI processes) and calculated the link prediction
accuracy as given by the Force2Vec embedding algorithm [21].
Figure 13 shows that we can make the embedding 80% sparse
by sacrificing less than 5% accuracy in link prediction. The
runtime and data transfer plots reveal that we can achieve
faster convergence and lesser communication overhead with
increasing sparsity. Furthermore, sub-figure 13(d) shows that
remote tiles play important roles in the minibatch setting.

VI. CONCLUSION

Popular distributed algorithms deliver suboptimal perfor-
mance for SpGEMM settings where one matrix is square
and the other is tall and skinny—a variant we call TS-
SpGEMM. To address this limitation, we developed a novel
distributed-memory algorithm for TS-SpGEMM that employs
customized 1D partitioning for all matrices and leverages
sparsity-aware tiling for efficient data transfers. At lower to
moderate node counts (up to 128 nodes), TS-SpGEMM shows
superior performance compared to 1D, 2D, and 3D SpGEMM
algorithms. This trend persists even at 512 nodes, highlighting
the effectiveness of our optimizations. Further, we use our
algorithm to implement multi-source BFS and sparse graph
embedding algorithms and demonstrate their scalability up to
512 Nodes on NERSC Perlmutter.

One limitation of our TS-SPGEMM algorithm is that it
requires storing two copies of the first input matrix, A,
which increases the overall memory usage. However, most
communication-avoiding algorithms, including SUMMA3D,
use additional memory to reduce communication overhead.
We believe that most graph and sparse matrix algorithms can
accommodate an extra copy of A in a distributed-memory
system. Another limitation of our algorithm is the use of
1D matrix partitioning, which can lead to load imbalances
in scale-free graphs that typically have denser rows. While
the memory imbalance is inherent to 1D partitioning, we
addressed the computational imbalance using virtual 2D par-
titioning, which performs multiplication tile by tile. Neverthe-
less, the memory imbalance associated with input matrices can
still pose challenges for scale-free graphs.

The optimizations used in TS-SpGEMM can be adapted
to distributed SpMM [51, 52] and fused matrix multiplica-
tion [53] algorithms. We observed that while TS-SpGEMM
is not faster than SpMM when matrix B is fully dense, it
outperforms SpMM when B is 50% or more sparse. Ad-
ditionally, TS-SpGEMM is not the optimal choice when B
closely resembles A in shape and sparsity; however, it still

outperforms SUMMA when multiplying a sparse matrix by
another sparse matrix that is not tall and skinny.

VII. ACKNOWLEDGMENTS

This research was funded in part by DOE grants DE-
SC0022098 and DE-SC0023349; by NSF grants PPoSS CCF
2316233 and OAC-2339607; by SRC JUMP 2.0 ACE Center;
and by the National Science Foundation Graduate Research
Fellowship Program under Grant No. DGE 21-46756.

REFERENCES

[1] N. Bell, S. Dalton, and L. N. Olson, “Exposing fine-grained parallelism
in algebraic multigrid methods,” SIAM Journal on Scientific Computing,
vol. 34, no. 4, pp. C123–C152, 2012.

[2] K. D. Devine, E. G. Boman, R. T. Heaphy, R. H. Bisseling, and U. V.
Catalyurek, “Parallel hypergraph partitioning for scientific computing,”
in Proceedings 20th IEEE International Parallel & Distributed Process-
ing Symposium. IEEE, 2006, pp. 10–pp.

[3] E. Solomonik, M. Besta, F. Vella, and T. Hoefler, “Scaling betweenness
centrality using communication-efficient sparse matrix multiplication,”
in Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, 2017, pp. 1–14.

[4] A. Azad, A. Buluç, G. A. Pavlopoulos, N. C. Kyrpides, and C. A.
Ouzounis, “HipMCL: a high-performance parallel implementation of the
Markov clustering algorithm for large-scale networks,” Nucleic Acids
Research, vol. 46, no. 6, pp. e33–e33, 01 2018.

[5] A. Azad, O. Selvitopi, M. T. Hussain, J. R. Gilbert, and A. Buluç, “Com-
binatorial BLAS 2.0: Scaling combinatorial algorithms on distributed-
memory systems,” IEEE Transactions on Parallel and Distributed Sys-
tems, vol. 33, pp. 989–1001, 2021.

[6] E. Qin, A. Samajdar, H. Kwon, V. Nadella, S. Srinivasan, D. Das,
B. Kaul, and T. Krishna, “SIGMA: A sparse and irregular GEMM
accelerator with flexible interconnects for DNN training,” in 2020 IEEE
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2020, pp. 58–70.

[7] A. Azad, A. Buluç, and J. Gilbert, “Parallel triangle counting and
enumeration using matrix algebra,” in IEEE International Parallel and
Distributed Processing Symposium Workshop, 2015, pp. 804–811.

[8] M. Besta, R. Kanakagiri, H. Mustafa, M. Karasikov, G. Rätsch, T. Hoe-
fler, and E. Solomonik, “Communication-efficient jaccard similarity for
high-performance distributed genome comparisons,” in IPDPS. IEEE,
2020.

[9] E. Hassani, M. T. Hussain, and A. Azad, “Parallel algorithms for
computing jaccard weights on graphs using linear algebra,” in 2023 IEEE
High Performance Extreme Computing Conference (HPEC). IEEE,
2023, pp. 1–7.

[10] O. Selvitopi, S. Ekanayake, G. Guidi, G. Pavlopoulos, A. Azad, and
A. Buluç, “Distributed many-to-many protein sequence alignment using
sparse matrices,” in SC, 2020.

[11] M. Then, M. Kaufmann, F. Chirigati, T.-A. Hoang-Vu, K. Pham,
A. Kemper, T. Neumann, and H. T. Vo, “The more the merrier: Efficient
multi-source graph traversal,” Proceedings of the VLDB Endowment,
vol. 8, no. 4, pp. 449–460, 2014.

[12] M. Minutoli, M. Halappanavar, A. Kalyanaraman, A. Sathanur, R. Mc-
clure, and J. McDermott, “Fast and scalable implementations of influ-
ence maximization algorithms,” in 2019 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE, 2019, pp. 1–12.

[13] M. K. Rahman and A. Azad, “Triple sparsification of graph con-
volutional networks without sacrificing the accuracy,” arXiv preprint
arXiv:2208.03559, 2022.

[14] A. Buluç and J. R. Gilbert, “Parallel sparse matrix-matrix multiplication
and indexing: Implementation and experiments,” SIAM Journal on
Scientific Computing, vol. 34, no. 4, pp. C170–C191, 2012.

[15] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[16] M. A. Heroux, R. A. Bartlett, V. E. Howle, R. J. Hoekstra, J. J. Hu,
T. G. Kolda, R. B. Lehoucq, K. R. Long, R. P. Pawlowski, E. T. Phipps,
A. G. Salinger, H. K. Thornquist, R. S. Tuminaro, J. M. Willenbring,
A. Williams, and K. S. Stanley, “An overview of the trilinos project,”
ACM Transactions on Mathematical Software, vol. 31, no. 3, pp. 397–
423, 2005.

[17] S. Balay, S. Abhyankar, M. F. Adams, J. Brown, P. Brune,
K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and H. Zhang, “PETSc
users manual,” Argonne National Laboratory, Tech. Rep. ANL-95/11 -
Revision 3.5, 2014. [Online]. Available: http://www.mcs.anl.gov/petsc

[18] F. G. Gustavson, “Two fast algorithms for sparse matrices: Multiplica-
tion and permuted transposition,” ACM Transactions on Mathematical
Software, vol. 4, no. 3, pp. 250–269, Sep. 1978.

[19] J. R. Gilbert, C. Moler, and R. Schreiber, “Sparse matrices in matlab:
Design and implementation,” SIAM journal on matrix analysis and
applications, vol. 13, no. 1, pp. 333–356, 1992.

[20] Y. Nagasaka, S. Matsuoka, A. Azad, and A. Buluç, “Performance
optimization, modeling and analysis of sparse matrix-matrix products
on multi-core and many-core processors,” Parallel Computing, vol. 90,
p. 102545, 2019.

[21] M. K. Rahman, M. H. Sujon, and A. Azad, “Force2vec: Parallel force-
directed graph embedding,” in 2020 IEEE International Conference on
Data Mining (ICDM). IEEE, 2020, pp. 442–451.

[22] J. Gao, W. Ji, F. Chang, S. Han, B. Wei, Z. Liu, and Y. Wang, “A
systematic survey of general sparse matrix-matrix multiplication,” ACM
Computing Surveys, vol. 55, no. 12, pp. 1–36, 2023.

[23] M. M. A. Patwary, N. R. Satish, N. Sundaram, J. Park, M. J. Anderson,
S. G. Vadlamudi, D. Das, S. G. Pudov, V. O. Pirogov, and P. Dubey,
“Parallel efficient sparse matrix-matrix multiplication on multicore plat-
forms,” in International Conference on High Performance Computing.
Springer, 2015, pp. 48–57.

[24] M. Deveci, C. Trott, and S. Rajamanickam, “Performance-portable
sparse matrix-matrix multiplication for many-core architectures,” in
IPDPSW. IEEE, 2017, pp. 693–702.

[25] T. A. Davis, “Algorithm 1000: SuiteSparse:GraphBLAS: Graph algo-
rithms in the language of sparse linear algebra,” ACM Transactions on
Mathematical Software (TOMS), vol. 45, no. 4, pp. 1–25, 2019.

[26] A. Buluc and J. R. Gilbert, “On the representation and multiplication
of hypersparse matrices,” in 2008 IEEE International Symposium on
Parallel and Distributed Processing. IEEE, 2008, pp. 1–11.

[27] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti,
H. Kim, D. Blaauw, T. Mudge, and R. Dreslinski, “Outerspace: An outer
product based sparse matrix multiplication accelerator,” in 2018 IEEE
International Symposium on High Performance Computer Architecture
(HPCA), 2018.

[28] S. Dalton, L. Olson, and N. Bell, “Optimizing sparse matrix—matrix
multiplication for the GPU,” ACM Transactions on Mathematical Soft-
ware (TOMS), vol. 41, no. 4, p. 25, 2015.

[29] J. Liu, X. He, W. Liu, and G. Tan, “Register-aware optimizations for
parallel sparse matrix–matrix multiplication,” International Journal of
Parallel Programming, vol. 47, no. 3, pp. 403–417, 2019.

[30] Z. Gu, J. Moreira, D. Edelsohn, and A. Azad, “Bandwidth-optimized
parallel algorithms for sparse matrix-matrix multiplication using propa-
gation blocking,” in SPAA, 2020, pp. 293–303.

[31] A. Buluç and J. R. Gilbert, “Challenges and advances in parallel sparse
matrix-matrix multiplication,” in The 37th International Conference on
Parallel Processing (ICPP’08), 2008, pp. 503–510.

[32] K. Akbudak, O. Selvitopi, and C. Aykanat, “Partitioning models for
scaling parallel sparse matrix-matrix multiplication,” ACM Transactions
on Parallel Computing (TOPC), vol. 4, no. 3, pp. 1–34, 2018.

[33] A. Buluç and J. R. Gilbert, “The Combinatorial BLAS: design, im-
plementation, and applications,” The International Journal of High
Performance Computing Applications, vol. 25, pp. 496 – 509, 2011.

[34] R. A. van de Geijn and J. Watts, “SUMMA: Scalable universal matrix
multiplication algorithm,” Austin, TX, USA, Tech. Rep., 1995.

[35] U. Borštnik, J. VandeVondele, V. Weber, and J. Hutter, “Sparse matrix
multiplication: The distributed block-compressed sparse row library,”
Parallel Computing, vol. 40, no. 5-6, pp. 47–58, 2014.

[36] L. E. Cannon, “A cellular computer to implement the Kalman filter
algorithm,” Ph.D. dissertation, Montana State University, 1969.

[37] A. Lazzaro, J. VandeVondele, J. Hutter, and O. Schütt, “Increasing the
efficiency of sparse matrix-matrix multiplication with a 2.5 d algorithm
and one-sided MPI,” in PASC, 2017, pp. 1–9.

[38] M. T. Hussain, O. Selvitopi, A. Buluç, and A. Azad, “Communication-
avoiding and memory-constrained sparse matrix-matrix multiplication at
extreme scale,” in IPDPS. IEEE, 2021.

[39] E. Solomonik and T. Hoefler, “Sparse tensor algebra as a parallel
programming model,” arXiv preprint arXiv:1512.00066, 2015.

[40] M. Rasouli, R. M. Kirby, and H. Sundar, “A compressed, divide and
conquer algorithm for scalable distributed matrix-matrix multiplication,”
in The International Conference on High Performance Computing in
Asia-Pacific Region, 2021, pp. 110–119.

[41] K. L. Nusbaum, “Optimizing tpetra’s sparse matrix-matrix multiplication
routine,” SAND2011-6036, Sandia National Laboratories, Tech. Rep,
2011.

[42] M. T. Hussain, G. S. Abhishek, A. Buluç, and A. Azad, “Parallel
algorithms for adding a collection of sparse matrices,” in 2022 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2022, pp. 285–294.

[43] R. Thakur, R. Rabenseifner, and W. Gropp, “Optimization of collective
communication operations in mpich,” The International Journal of High
Performance Computing Applications, vol. 19, no. 1, pp. 49–66, 2005.

[44] A. Azad and A. Buluç, “A work-efficient parallel sparse matrix-sparse
vector multiplication algorithm,” in Proceedings of the IPDPS. IEEE,
2017.

[45] J. Kepner, P. Aaltonen, D. Bader, A. Buluç, F. Franchetti, J. Gilbert,
D. Hutchison, M. Kumar, A. Lumsdaine, H. Meyerhenke, S. McMillan,
J. Moreira, J. Owens, C. Yang, M. Zalewski, and T. Mattson, “Mathe-
matical foundations of the GraphBLAS,” in IEEE HPEC, 2016.

[46] S. Beamer, K. Asanovic, and D. Patterson, “Direction-optimizing
breadth-first search,” in SC’12: Proceedings of the International Con-
ference on High Performance Computing, Networking, Storage and
Analysis. IEEE, 2012, pp. 1–10.

[47] I. Ranawaka and A. Azad, “Scalable node embedding algorithms us-
ing distributed sparse matrix operations,” in 2024 IEEE International
Parallel and Distributed Processing Symposium Workshops (IPDPSW).
IEEE, 2024, pp. 1199–1201.

[48] J. Leskovec and R. Sosič, “Snap: A general-purpose network analysis
and graph-mining library,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 8, no. 1, pp. 1–20, 2016.

[49] T. A. Davis and Y. Hu, “The university of florida sparse matrix
collection,” ACM Trans. Math. Softw. (TOMS), vol. 38, no. 1, pp. 1–
25, 2011.

[50] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[51] O. Selvitopi, B. Brock, I. Nisa, A. Tripathy, K. Yelick, and A. Buluç,
“Distributed-memory parallel algorithms for sparse times tall-skinny-
dense matrix multiplication,” in Proceedings of the ACM International
Conference on Supercomputing, ser. ICS ’21. New York, NY, USA:
Association for Computing Machinery, 2021, p. 431–442.

[52] C. Block, G. Gerogiannis, C. Mendis, A. Azad, and J. Torrellas, “Two-
face: Combining collective and one-sided communication for efficient
distributed spmm,” in Proceedings of the 29th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, 2024, pp. 1200–1217.

[53] M. K. Rahman, M. H. Sujon, and A. Azad, “FusedMM: A unified
SDDMM-SpMM kernel for graph embedding and graph neural net-
works,” in 2021 IEEE International Parallel and Distributed Processing
Symposium (IPDPS). IEEE, 2021, pp. 256–266.

http://www.mcs.anl.gov/petsc

	Introduction
	Background and Related Work
	The TS-SpGEMM problem
	Related work

	Distributed-Memory Algorithms
	Distributed TS-SpGEMM based on Gustavson's algorithm
	Distributed TS-SpGEMM with tiling
	Local computations
	Tile mode selection
	Communication and space complexity

	Algorithms implemented with TS-SpGEMM
	Distributed multi-source BFS
	Distributed sparse embedding

	Results
	Experimental setup
	Impacts of the tile width
	SpGEMM vs SpMM
	Comparison with other distributed SpGEMM
	Scalability
	Multi-source BFS
	Sparse Embedding

	Conclusion
	Acknowledgments
	References

