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Shared electric scooters (e-scooters) have beenincreasingly popular 
because of their characteristics of convenience and eco-friendliness. 
Due to their shared natureand widespread usage, e-scooters usually 
have a short lifespan (e.g., two to five months [2]), which makes it 
important to predict the remaining lifespan accurately, ensuring 
timely replacements. While several studies have focused on the 
lifespan prediction of various systems, such as batteries and bridges, 
they present a two-fold drawback. Firstly, they require significant 
manual labor or additional sensor resources to ascertain the ex 
plicit status of the object, rendering them cost-ineffective. Secondly, 
these studies assume that future usage is similar to historical usage. 
To solve these limitations, we aim at accurately predicting the re 
maining lifespan of e-scooters without extra cost, and its essence is 
to accurately represent its current status and anticipate its future 
usage. However, it is challenging because: i) lack of explicit rules 
for the e-scooters' status representation; and ii) e-scooters' future 
usage may significantly differ from their historical usage. In this 
paper, we design a framework called RUFE, whose key insight is 
modeling user behaviors from trip transactions is of great impor 
tance in predicting the B:emaining Lifespan of shared§_-scooters. 
Specifically, we introduce an unsupervised contrastive learning 
component to learn the e-scooters' status representation over time 
considering degradation, where user preferences are served as a 
status reflector; We further design an LSTM-based recursive com 
ponent to dynamically predict uncertain future usage, upon which 
we fuse the current status and predicted usage of the e-scooter 
for its remaining lifespan prediction. Extensive experiments are 
conducted on large-scale, real-world datasets collected from an 
e-scooter company. It shows that RUFE improves the baselines by 
35.67%and benefits from the learned user preferences and predicted 
future usage. 
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1 INTRODUCTION 
Shared electrical micromobility have become increasingly pop 
ular in recent years. Let take e-scooters as a concrete example. 
Lime [4] served more than 55 million customers in 2021 and is 
projected to serve 124.8 million users in 2026 [1]. Compared with 
traditional human-powered bikes, e-scooters provide a faster and 
easier way to solve the first and last-mile problem during com 
muting, using battery-powered motors with speeds of up to 50km 
per hour [3]. Due to their shared nature and widespread usage, 
e-scooters typically suffer from a short lifespan, ranging from two 
to five months [2]. Such a short lifespan makes it necessary to 
maintain or replace e-scooters timely in order to ensure a positive 
customer experience and prevent potential safety hazards before 
they become unserviceable. To this end, it is important to predict 
the remaining lifespan of e-scooters accurately. 

To date, the remaining lifespan prediction problem has been 
studied in manysystems, e.g., rail infrastructures (22], batteries [9], 
and bridges [23]. Existing works heavily rely on deploying ded 
icated sensors to collect explicit status indicators, e.g., state of 
health (SOH) in batteries [9]. Based on the sequentially collected 
data, (9, 38, 39] leverage neural networks(e.g., RNN, LSTM), to learn 
the non-linear degradation curve for the measured target, e.g., bat 
tery life curves [9]. However, those frameworks cannot be applied 
in our scenario directly, because: 1) the learned life curve typically 
works in ideal environments without considering uncertain noise; 
2)e-scooters are sophisticated machines with multiple components 
(i.e., wheels, batteries, etc.) and different kinds of sensorsare needed 
for status monitoring. Sensor deployment requires significant labor 
efforts and expensive fees, rendering it cost-effective. The limi 
tations of the existing works motivate us to answer a research 
question: can we predict the remaining lifespan of shared e-scooters 
without additional dedicated sensor deployment? 
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In this work, we collaborate with an e-scooter company to learn 

the degradation process of e-scooters in a data-driven manner. This 
collaboration offers us the opportunity to predict the remaining 
lifespan based on large-scale operational data without extra labor 
or sensor deployment. Through detailed data analysis, we found 
that it is important to consider both e-scooters' current status and 
predicted future usage in lifespan prediction (supported by Fig 
ures 2, 3, 4). Though it sounds straightforward, there are two chal 
lenges: 

• Lack of explicit rules for e-scooters' status representation and 
lack of explicit correlations between status and remaining lifes 
pan. One straightforward approach is to leverage the served 
distance to estimate the status of e-scooters. Intuitively, a longer 
served distance leads to more significant wear and tear, conse 
quently leading to a shortened lifespan. However, we found the 
correlation coefficient between the served distance and corre 
sponding remaining lifespan is only 0.6302 (as depicted in Section 
2). This relatively modest correlation is because of the fact that 
the longevity of e-scooters is not only affected by the used dis 
tance, but affected by other non-observable factors, e.g., weather 
conditions, riding habits, and accidents [2]. 

• The future usage of e-scooters deviates considerably from their 
historical patterns. Specifically, the daily trip distance decreases 
as the "age" of e-scooters increases (as shown in Section 2). For 
example, the average daily tripdistance during the first 10% of 
the lifespan is 14.3%more than that in the last 10%. 

To solve these challenges, we design a framework called RUFE 
to predict the Remaining LIFespan of sharedg-scooters. The key 
insight is that modeling user behaviors from trip transactions is of 
great importance in remaining lifespan prediction (detailed in Sec. 2). 
The rationale behind this insight is two-fold: i) the user behavior 
patterns indirectly reflect e-scooter status; and ii) user behavior 
trends can also provide valuable insights intofuture e-scooter usage. 
For instance, when faced with multiple nearby e-scooters, users 
typically opt for those in better condition, such as those without 
broken parts or with a pristine appearance. Furthermore, frequent 
usage is associated with accelerated wear and tear, ultimately re 
sulting in a shortened lifespan. Drawing from this insight, we have 
devised two main components for our approach, including (i) self 
supervised e-scooters status representation learning, and (ii) user 
preference evolution prediction. In component (i), we design a 
un-supervised contrastive learning, which learns thee-scooter's 
degradation status representation over time, where the trip records 
and user preferences are served as the direct and indirect reflec 
tors, respectively. For component (ii), we train a recursive layer 
to project the user preferences after /1days. Finally, we fuse the 
learned current status and /1-day user preference to estimate the 
future status. Byvarying the value of /1, we can estimate the future 
status of the e-scooter. Once the estimated status indicates that the 
end of life is approaching, we consider /1 as the remaining lifespan 
starting from the present moment. The key contributions of this 
paper are summarized as follows: 

• We for the first time study the remaining lifespan prediction 
problem for e-scooters without extra dedicated sensors. It in 

• We highlight the importance of modeling user preferences from 
transactions in the status learning and usage estimation. Specifi 
cally, we design an unsupervised contrastive learning framework 
to discriminate the lifespan status representation without anno 
tations and a recursive layer to predict the dynamic future usage 
in a given /1-day. 

• Weevaluate RU FE with 9-month data collected from an e-scooter 
company in two cities. The results show RUFE improves pre 
diction accuracy by 35.67% and 29.81% compared with the SoA 
methods in the two cities. The code and the data are available 1. 

The rest of the paper is organized as follows. In Section 2, we 
introduce the data sets, analyze the challenges and the key insight, 
and provide the formal definition of this problem. We show the 
technical design in Section 3, including the overview of RUFE, 
and the detailed design. In Section 4, we evaluate the performance 
of RUFE to show the effectiveness compared with baselines. We 
provide related works in Section 5. Finally, we discuss the lesson 
learned, the limitations, futureworksand privacy issues in Section 6 
and conclude the paper in Section 7. 

 
2 BACKGROUND AND MOTIVATION 

2.1 Data 
In this work, we mainly use two datasets, including an e-scooter 
trip record dataset and a weather dataset. 

2.1.1 E-scooter Dataset. By collaborating with an e-scooter com 
pany , one of the major shared e-scooter service providers, we have 
access to real-world datasets in two cities of New Jersey, USA: 

• In New Brunswick, the data is collected with 1, 179 e-scooters 
and 118,609 trips in 9 months from April to December in 2021; 

• In Newark, the data is collected with 639 e-scooters and 50,631 
trips in 4 months from August to December in 2021. 

Each trip record captures data from the point a user picks up an 
e-scooter until the point the user drops it off, including vehicle ID, 
trip start and end time, and trip routes (i.e., GPS traces). All the data 
are obtained legally under the users' consents [6).The detailed data 
format is listed in Table 1. 

 
Table 1:Trip Record Format and Example 

 
Field I Value 
Vehicle ID 50109575 
Trip ID d0980blf-59af-5944-980c-4ebb5336fdbe 
Trip duration 211 
Trip distance 232 
Start time August 7, 2021 8:57:29 PM 
End time August 7, 2021 8:59:49 PM 

 
Routes 

August 7, 2021 8:57:30 PM, [-74.448150, 40.499419), 
August 7, 2021 8:57:32 PM, [-74.448144, 40.499345), 
... 

corporates the current status representation learning and future   
usage estimation from operational data. 1https://www.dropbox.com/s/2muo5q6ggeOwd5!/rlife-src.tar.gz 

https://www.dropbox.com/s/2muo5q6gge0wd51/rlife-src.tar.gz
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2.1.2 Weather Datatset. The weather condition datawerecollected 
from 2, 400 stations in National Oceanic and Atmospheric Admin 
istration (NOAA) [5]. We utilize weather data from April 2021 to 
December 2021, including temperature, relative humidity, precipi 
tation, wind speed and direction, visibility, atmospheric pressure, 
and duration of different weather types (e.g., rain, snow, etc.). 

2.2 Problem Formulation 
Suppose an e-scooter has been in service for t days, generating 
time-ordered trip records denoted as Rt = [r1, rz,... ,rt], where 
r; E JR_Nr and N, is the dimension of record. 

Given those records, we aim to predict the remaining lifespan of 
this e-scooter. Formally, it is defined as: 

remaining lifespan= max 6IF(Rt,6) Fth (1) 

where 6 is the number of days, and F is the function that returns 
the probability of the e-scooter still in service in 6 days, Fth is a 
given probability threshold. 

Because the remaining lifespan is affected by its current degra 
dation status and future usage, Equation 1 is further extended to: 

remaining lifespan= max6IF(fd(Rt),Js(Rt, 6))   Fth  (2) 

where fd(Rt) returns the status representation at t, fs(Rt, 6) returns 
future usage during t tot+ 6. 

 

r:1'r:, ...,r:1"'r:, ,sr"r:, 
200 400 600 800 I000 

with the increase of thee-scooters' "age•, which validates the future 
usage is different from historical usage. 

 

 
Figure 3: Selection Probabil- Figure 4: Selection Probabil 
ity vs. Remaining Lifespan ity in Different Percentages of 
(days). Lifespan. 

 
2.4 Two Challenges 
Even though the idea sounds straightforward, there are still two 
challenges, including a lack of explicit status representation and 
uncertain future usage.We perform data analysis to show the above 
two challenges as follows. 
• Lack of explicit rules for e-scooters' status representation. 

Different from previous works [9, 29, 30, 39) that deployed sen 
sors to monitor the operation status of machines, we lack the 
explicit factors to directly evaluate the e-scooters' status and the 
explicit relationships between status and remaining lifespan. The 
simplest way is that we can leverage the total served distance 
to reflect the remaining lifespan. Intuitively, a longer served dis 
tance may indicate a shorter remaining lifespan. However, when 
we investigate the correlation coefficient between the served 
distance and remaining lifespan (as shown in Figure 1), where 
each point is an e-scooter. We found that the coefficient between 

Served Distance (km) Percentage of Lifespan 
the total served distance and remaining lifespan is only 0.6302, 

Figure 1: Correlations be- Figure 2: Daily Trips Distance 
tween Served Distance and Re- vs. Percentage of Lifespan. 
maining Lifespan. 

 
 

2.3 Key Insight 
Our system RUFE is based on one key insight: modeling user be 
haviors from trip transactions is of great importance in reflecting 
cun-ent status and future usage for remaining lifespan prediction. The 
rationale behinds it: i) the current user behavior patterns indirectly 
reflect e-scooter status; and ii) user behavior trends can also offer 
valuable insights into future e-scooter's usage. To visualize it, we 
quantify the user preference as selection probability, which is cal 
culated as the total selected times over the total available times (as 
in Sec. 3.2). For example, if an e-scooter is available for 10 trips in 
a time period (e.g., within 10 meters to the start locations of these 
10 trips) and it is selected twice, then the selection probability of 
this e-scooter is 0.2. Figure 3 shows that the e-scooters with long 
remaining days have a higher selection probability, which proofs 
that user behavior reflects thee-scooter's status. Figure 2 and Fig 
ure 4 shows that the selection probability and daily usage decreases 

which means the e-scooters with the same served distance may 
have significantly different remaining lifespans. In reality, the 
longevity of e-scooters is simultaneously affected by multiple 
factors, e.g., weather, riding habits, and accidents, which are non 
observable sometimes [2].Thus, it is inaccurate to directly use 
one single explicit data, e.g., the total served distance or duration, 
to represent the status of e-scooters. 

• E-scooters' future usages are significantly different from 
the historical usages. As shown in Figure 2, the average trip 
distance continuously decreases as their "age· increases, which 
indicates a shift in usage patterns overtime. Typically, we analyze 
the usage of e-scooters(i.e., average daily trip distance) during 
their different lifespan stages(i.e., from the first 10%to the last 
10%). Future usage is one of the factors that affect the remaining 
lifespan. In this case, the remaining lifespan prediction works 
that do not explicitly consider the future usage patterns [22, 35] 
cannot achieve satisfying performance. 

2.5 Motivation 
Why do we choose contrastive learning? Tobetter illustrate our 
motivation, we first introduce contrastive learning. It is an unsu 
pervised framework that learns the general feature representations 
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from input data without explicit labels or categories. By comparing 
similar and dissimilar data pairs, the method can differentiate the 
two data types from the representations it learns. Typically, data 
augmentation techniques are designed and applied to generate sim 
ilar data pairs, while other data points are treated as dissimilar pairs. 

- --------------------- , 
: Data(§LIA)I Trip Records ,;tier I Road Network 

1 

: Pre-processing  Data  Trip User Preference : 
(§111.B) A_ e ation Features  Features : r-------------- ---- --, ------------- 

In our research, as there are no clear indicators to represent the 1 1 Current 5ta Status Leaming (§Ill .C)I ..lr.I Future Usage : tus _ : -, : Predicti.a. , §III.D) 1 
status of e-scooters, we utilize contrastive learning to investigate I Representation _ _ _ _ _ _  - possible representations of thee-scooters' status. Using it, we aim I ---- L•e I1 ----- ------ 

1 User arnm ..lr. I Remai11i11g L1ifiespan 1 
to identify and differentiate the status of e-scooters by comparing I I ..,  I ' I 

similar and dissimilar pairs of data and learning representations 
1 r'.:_f'.:_r:_n_:"  1 Prediction (§LILE) _ I 

that distinguish between them. Our assumption is that e-scooters 
that have similar trip records, such as similar locations and weather 
conditions, should have similar statuses. To take advantage of this, 
we use contrastive learning to optimize the alignment of the repre 
sentations of e-scooters' status with similar trip records without 
the need for human annotations. 

The key technical improvement. Asdescribed in literature [7, 
11-13, 17, 18, 36], data augmentation is a critical element in con 
trastive learning. It plays an important role in creating semantically 
similar pairs of e-scooters' records, whichin turn affects the quality 
of the learned representations of their status. However, traditional 
augmentation methods such as rotation or cropping, which are 
suitable for time-invariant data such as images or graphs, do not 
take into account temporal correlations and are not appropriate for 
sequential trip records. This highlights the need for specialized and 
tailored data augmentation techniques for our sequential data. To 
address these limitations, we have developed three specialized data 
augmentation techniques that takeintoaccount the time, geograph 
ical, and usage aspects of e-scooters' trip record simultaneously. 
These methods are called record masking, record shifting, and trip 
drifting, and they will be described in more detail in Section 3.3. 

3 DESIGN OF RUFE 
3.1 Overall Architecture 
Fig. 5 shows the overall architecture of RUFE including Pre-processing, 
Status Representation Learning, Future Usage Prediction, and Re 
maining Lifespan Prediction. 

3.1.1 Pre-processing. We extract features based on the aggregation 
of trip records, weather, and road networks. Specifically, we extract 
trip features (e.g., distance and duration) and user preference fea 
tures (e.g., selection probability), and trip intervals for the status 
representation learning and future usage prediction, respectively. 

3.1.2 Status Representation Learning. We process sequential trip 
features as explicit observation and user preference as an implicit 
reflection to learn e-scooters' current status representation. Specifi 
cally, we leverage a self-supervised contrastive learning component 
to discriminate the lifespan status representation. Different from 
traditional contrastive learning, we mainly have two improvements: 
i) the augmentation method perturbs the input in three aspects, 
i.e., time, geographical, and usage domain, simultaneously;ii) the 
similarity is guided by both degradation statusand user preferences. 

3.1.3 Future Usage Prediction. We model the dynamic evolution of 
user preference, which predicts the future embedding trend of user 
preference. This is done by leveraging an attention-based layer to 

Figure 5: The Architecture of RLIFE. It consists of four com 
ponents: Data Pre-processing, Status Learning, Future Usage 
Prediction, and Remaining Lifespan Prediction. In data pre 
processing, we first clean the data, e.g., remove the outliers, 
and extract the features, including trip and user preference 
features(detailed in Sec.111.B). In status learning, we design 
an unsupervised contrastive learning framework to leverage 
the extracted features to discriminate the lifespan status rep 
resentation without human annotations(detailed in Sec.111.C). 
In future usage prediction, we predict the future usage con 
sidering the given query time !'.(detailed in Sec.III.D). In the 
remaining lifespan prediction, we output the probability that 
an e-scooter is still in service after time I'.with the learned sta 
tus representation from Sec.111.B. By computing the queries 
for multiple I'., the final output is the I'. with the maximum 
probability. 

 
project the embedding of user preference after a time lapse I'.. The 
projected embedding is used for downstream tasks, i.e., predicting 
the future usage at a given query time I'.. 

3.1.4 Remaining Lifespan Prediction. We formulate the remaining 
lifespan prediction as a query task whose inputs are the e-scooters' 
current status and predicted future usage during time [t, t+I'.]. The 
output is the probability that an e-scooter is still in service after 
time I'.. By computing the queries for multiple I'., we can derive the 
distribution of the probability. 

3.2 Pre-processing 
We mainly clean the raw data, e.g., outliers removal, and extract 
features from them. 

3.2.1 Data Cleaning. Since data collected from real-world sources 
maycontain noise, we eliminate triprecords with improbable speed 
and distancevalues. For example, e-scooters havea maximum speed 
of 30 mph [3]. So we remove the trips with an average speed of 
over 30 mph. Further, we identify and remove a set of trips with a 
distance over 25 miles that are abnormal in our dataset considering 
the service areas in the city. 

3.2.2 Features Extraction. We first map the GPS points on the 
road network and obtain the sequence of passed regions. We then 
aggregate the records with weather information and derive the 
features from two aspects, i.e., trip features and user preference 
features. 
• Trip Features. represent the trip features within one trip, in 

cluding its start time and end time, origin and destination, trip 
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duration and distance, passed regions, and current weather situ 
ation (e.g., temperature, relative humidity, wind, etc.). 

• User Preference Features. represent the trip features between 
consecutive trips, i.e., selection probability and idle intervals. 
Specifically, the selection probability p for an e-scooter is cal 
culated by p =N where N is the total potential trips for this 
e-scooter (i.e., this e-scooter is within a certain distance of the trip 
origin and can be potentially selected by users), n is the number 
of actually selected times. The idle intervals of an e-scooter are 
the interval between two consecutive trips, which also reflects 
its popularity. 

3.3 E-scooter Status Representation Learning 

3.3.1 Data Augmentation. Data augmentation is a critical step 
in contrastive learning. It helps to construct semantically similar 
e-scooters' record pairs and affects the quality oflearned status rep 
resentations. Current augmentation methods, e.g., rotation or crop 
ping, are designed for time-invariant data, e.g., images or graphs, 
which do not consider temporal correlations and are not suitable 
for sequential trip records. Thus, we design three types of data 
augmentation methods for the e-scooters' record data. 

Record Masking. Intuitively, the status of an e-scooter should 
be more similar to itself than to others, even though its historical 
usage is slightly adjusted. To reflect this, we disturb input data by 
selectively masking (deleting) the trip records for certain days. 

Record Shifting. Similar trip records, e.g., used distance, frequen 
cies, and regions, probably have a similar impact on status represen 
tation. Thus, we provide a record-shifting method that augments 

3.3.2 Contrastive Learning. Fig. 6 shows the architecture of status 
representation learning. For each e-scooter x; and its augmented 
sample Xj, we first embed them using an LSTM to generate trip 
embeddings. Then the embeddings are fed into an encoder Je(-) 
(or J;(-)) to get the corresponding degradation status d; (or dj) 
We adopt an MLP as the encoder. Following the design in [18], 
we call.fe(·) the query encoder andf;(-) themomentum encoder 
respectively. The degradation status representation d; and dj are 
extracted as: 

d; = Je(LSTM(x;)) 
(3) 

dj fe(LSTM(xj)) 

where x; and Xj are the input trip features. 
Instead of directly calculating the similarity of the learned status 

representations, we introduce two projectors to project the status 
representations to different spaces. One is for the status comparison 
of similar/dissimilar e-scooters (i.e., self with its augmented pos 
itive samples and negative samples) and the other is for the user 
preference estimation. The motivation is that different views of the 
learned statusrepresentations in different spaces make it robust for 
different tasks. 

Status comparison. We leverage an MLP as projector for status 
comparison and the process is formulated as: 

(4) 
where a is a ReLU non-linearity. After obtaining the output, we 
apply a loss function, following the form oflnfoNCE [27], where 
one e-scooter is encouraged to be close to those with similar expe 
riences. 

the data by shifting the trip records in the time domain. Specifi 
cally, this method involves selecting the trip records at random and 
shifting them to the neighboring days. 

exp(l-; l-1/:r) 

, exp(l; • Ij /r) + I,11 exp(l; • t; /r) 
 

(5) 

Trip Drifting. As we derive the geographical information from 
GPS sensors which may naturally have noise and drifting, such 
drifting should not impact our results too much. Therefore, we 
introduce a trip drifting augmentation, i.e., randomly disturbing 
the trip's passed region to some neighboring regions. 

In our work, for each e-scooter, we treat the augmented trip 
records from the same e-scooter as the positive samples and the 
trip records from other e-scooters in the batch as negative samples. 

r ---------------------------- 1 

where lj is known as l;'s positive sample and the I"j is regarded as 
l;'s negative sampler. is a temperature hyper-parameter for I; and 
lj with l2 normalization [34]. 

User preference estimation. Meanwhile, we use user preference 
estimation to guide the status representation learning. We apply 
another projector to map the status representation d; to the user 
preference space asp;. We utilize an MSE loss function to calculate 
the loss between the projected user preference p; and the ground 
truth user preference P(- Formally, the user preference estimation 
loss is defined as 

1 n 

.[_P(p;,p[) = -n · L. (p;,t - P[,t) 
t=l 

 
(6) 

 

 
Figure 6: Contrastive Status Representation Learning. Based 
on trip records, each e-scooter is fed into an LSTM to generate 
the trip embedding. Then we encode the trip embeddings to 
get the corresponding degradation status andhistorical usage 
status. Wethen use a predictor to estimate the user prefer 
ence based on historical usage status. Combining the user 
preference and degradation status, we project the e-scooter 
status which is then used to compare similar/dissimilar pairs. 

Finally, we combine the contrastive loss function and the user pref 
erence estimation loss function as the total loss of our contrastive 
status representation learning. Formally, the total loss is defined as 

(7) 

where w1 is a learnable weight. 
Momentum Update.After computing the total loss, we conduct 

back-propagation and update the parameters of the momentum 
encoder following the momentum update [18]. Specifically, given 
the momentum m, we update the J: by the following equation: 

J: = m • J: + (1 - m) • Je (8) 

G 
 
 

Weather Trajecto 
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3.4 Future Usage Prediction 
After learning the status representation, the next step is to predict 
the future usage of the e-scooters. Traditional ways to predict fu 
ture usage generally purely rely on the historical usage [22], while 
ignoring the degradation of the e-scooters. It makes the prediction 
sub-optimal because the usage would decrease with the gradual 
degradation of thee-scooters. In our work, we introduce the dynam 
ically changed user preference (i.e., predicted future user prefer 
ences) in the prediction to represent the impacts of the degradation 
of the e-scooters on future usage. 

3.4.1 Single-step Prediction. We consider the current e-scooter 
status and the user preference evolving process in the future usage 
prediction. As the user preference is influenced by the degradation 
status, we incorporate learned status representation to predict the 
future user preference and its influence on future usage. 

Wefirst apply an LSTM-based feature extractor to extract the trip 
features x:rip, which will be put into the encoder for the current 
status dt generation. We then put the dt into the user-preference 
projector to estimate the user preference pf. The estimated user 
preference will be combined with the trip feature hidden states to 
predict future usage at time t + 1. 

ht = LSTM(x:rip) 

Considering a relatively small search space of!',., we simply iterate 
all the possible I',. in a certain range (e.g., historically maximum 
lifespan of all the e-scooters) to obtain the optimal remaining lifes 
pan. 

 
4 EXPERIMENTS 
4.1 Evaluation Settings 
4.1.7 Baselines. We start this subsection by describing the base 
lines for comparison, followed by evaluation metrics. Then we 
summarize the implementation details. We include the following 
eight benchmark methods for evaluation, each of which serves as a 
representative framework for predicting the remaining lifespan of 
the e-scooter. 

• Historical Average (HA): We calculate the average length of 
lifespan for all the e-scooters and obtain the remaining lifespan 
of each e-scooter by subtracting the duration of service. 

• XGBoost [10]: It is a boosting tree-based method that achieved 
outstanding performance in many prediction tasks. In our imple 
mentation, the input is the trip features, and the output is the 
remaining days. 

• LSlM [38]:The LongShort-Term Memory Network is a suitable 
model for sequential data learning, i.e., sensors in manufactur 
ing machines. The input of our baseline is the trip features in 

Pt = g'(fe(ht)) 

x::r= LSTM(ht EB Pt) 

(9) sequences, and the output is the same as that in XGBoost. 
• TCN [19]: It is for rolling bearing remaining lifespan prediction. 

The input and output of the temporal convolutional network 
3.4.2 Multi-step Prediction. Given the output from the single-step 
prediction, we further design a recursive way for multi-step predic 
tion. Similar to the single-step prediction, we first generate by 
Equati•on (9). Then, we trea.ttxrt+ipI  as the .mput to generate.txrt+ipz m• 
the same way. Given a future time slot parameter I',., we can  predict 

. th " II  . l 
e  tureusagem  e10 owmg'--'timesotsxt+l ,xt+z , ... ,xt+fl.' 

3.4.3 Multi-step Fusion. After predicting the future usage of the 
e-scooter in the following I',.time slots, we fuse the multi-step future 
usage to represent the future usage for this e-scooter. We apply 
an MLP network where the input is the predicted future usages 
x.ttr+ip , x.ttr+ip , ... ,x.ttr+ilpl. and th e output 1. sht e fu sed fu ture usage"1ea- 

(TCN) are the same as that of LSTM. The difference between 
LSTM and TCN is that LSTM emphasizes long-term and short 
term influences while TCN focuses on the neighboring influences 
determined by kernel sizek. We set k to 5. 

• Linear Regression [26]: It is a straightforwardapproach that 
uses a linear function to model the correlation between the input 
and the output. The input is the aggregated trip records, which 
is the same input used in the XGBoost method. 

• Auto-encoder [25]: Auto-encoder uses the encoder-decoder 
framework with multiple-layer neural networks for the bearing 
lifespanprediction. It takesin the sameinput data as XGBoost and 
captures the complex, non-linear relationships for more accurate 

1 2 predictions. 
ture at the following I',. days as follows: 

u fl. -_ ,1.(x.ltlr.ip , wu) 

.trip _  .trip .trip .trip 

 
(10) 

• Belief Network [21]: It is a model for the machine's remain 
ing lifespan prediction. It consists of multiple stacked restricted 
Boltzmarm machines for greedy layer-by-layer training. Its input 
is the same as that of the XGBoost model 

where xll.  - {xt+l ,xt+z , ... ,xt+ll. }, wu are learnable parameters, 
and  is the predicted future usage. 

 
3.5 Remaining Life Prediction 
After learning the status representationand predicting the future 
usage, we predict the remaininglife.Different from general machine 
learning tasks that directly output lifespan, we design a query 
scheme to output the probability of the predicted lifespan given 
I',._ In this way, we can introduce negative samples such as a very 
large lifespan but with a probability of 0. Formally, the remaining 
life prediction is defined as: 

remaining lifespan= max l',.IF(dt, ull.,!',.) <". Fih (11) 

•  AdaCare [20]:The model is a general health-status representa 
tion learning model. It first adopts dilated convolutional layers 
as short, medium, and long-term convolutional layers for various 
time scales, where the kernel size k is set to 1, 2, and 3, respec 
tively. Then, it adopts two fully-connected layers to learn the 
nonlinear dependencies between features explicitly. 

4.7.2 Metrics. We introduce three metrics to evaluate the predic 
tion performance, i.e., Mean Absolute Errors (MAE), Root Mean 
Squared Errors(RMSE), and Mean Absolute Percentage Error (MAPE). 
In particular, we use a day as the unit of the lifespan, which is 
consistent with the minimum operational intervals, such as daily 
rebalancing or charging. 
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Table 2: Overall Prediction Performance of Different Methods on the Newark and New Brunswick Datasets. 

 
 Newark New Brunswick 
 RMSE MAE MAPE(%) RMSE MAE MAPE(%) 

HA 33.04±1.21 29.63±1.15 48.52±2.86 35.54±1.27 32.64±1.18 49.61±3.14 
XGBoost [10) 26.47±1.18 19.29±1.16 35.31±2.93 29.70±1.22 21.18±1.15 44.83±3.07 

LSTM (38) 25.73±0.94 23.13±1.01 28.14±1.87 28.90±0.98 24.27±1.02 33.81±2.37 
TCN [19) 26.17±0.97 22.52±0.99 28.65±1.77 29.02±1.09 22.53±1.11 34.69±1.98 

Regression (26) 17.23±1.09 12.13±0.98 20.87±0.95 21.06±1.12 13.57±1.07 21.43±0.96 
Auto-encoder (25] 15.33±0.56 10.25±0.43 19.83±0.97 18.43±0.45 12.13±0.51 20.58±1.03 

Belief Network [21] 19.23±0.43 14.09±0.37 21.32±1.06 19.98±0.52 14.47±0.48 22.90±1.26 
AdaCare (20) 12.56±0.35 10.86±0.28 18.64±1.03 15.35±0.27 12.82±0.35 19.68±1.01 

RUFE 6.51±0.21 4.97±0.11 13.96±0.94 7.23±0.17 5.46±0.13 15.74±0.82 
 
 

4.1.3 Implementation Details. The implementation details of each 
component are described as follows. 
Contrastive learning. For the experiments, we split all datasets 
into training, validation, and testing sets with a 6:3:1 ratio. Fore 
scooter'strip records, we apply the methods introduced in Sec.3.3.1 
to construct positive samples. Similarly, we processothere-scooters' 
trip records as negative samples. 
Future usage prediction. In order to dynamically explore future 
usage, we formulate it as a query task with a time variable /J.. /J. 
changes from 1 to the maximum threshold, which we set 50 in the 
experiments. 
Remaining lifespan prediction. For each /J., the output is the probabil 
ity that this e-scooter is stillalive in service in /J. days. Bycomparing 
the query results on multiple /J. to the given probability threshold, 
we find the largest one as our predicted remaining lifespan. Intu 
itively, the probability threshold is set to be 0.5. 

We implement RUFE with Keras 2.4 and test it on a server with 
NVIDIA A4000 GPU with Intel(R) Xeon(R) CPU E5-2650 v4 @ 
2.20GHz, 256GB memory. For the hyper-parameters, the batch size 
is 256, and the decayweight is 10-6 for alldatasets. The momentum 
coefficient is set as 0.5 and 0.9for Newark data and New Brunswick 
data, respectively (detailed in Sec. 4.4). For contrastive learning, 
the learning rate is set as 1.5 X 10-5, as the momentum mecha 
nism requires a relatively smooth parameter update (14). For the 
remaining life prediction, we set the learning rate as 0.01. The di 
mension of status representationis optimized as 1, 024. Weoptimize 
it with the Adam optimizer for 100 epochs and do not apply any 
non-mentioned optimization techniques. All the experiments are 
repeated 5 times, and the performances are presented using the 
"mean±standard deviation• format. 

 
4.2 Overall Performance 
From Table 2, we observe that: 

• In general, the models [21, 25) that focus on capturing the inte 
grated featuresof e-scooters' status (i.e., total served distance, and 
total served duration) achieve better performance than that (19, 
38] explore the accumulated influences of time-series trip records. 
It is because the integrated results have a stronger representative 
power of e-scooters' status, and the models learned by individual 
records may drop partial information. 

• AdaCare [20) outperforms others (19, 38) because it integrates 
the status representationconsidering the temporal correlation. 

• RUFE gains 35.67% and 29.81% improvement compared with 
AdaCare (20] by leveraging user behavior as an implicit input 
for the degradation status representation learning. 

Moreover, different from previous work [19, 25), we explore the 
influences of dynamic future usage on the remaining days ofservice. 
The results show that the remaining lifespan of the e-scooter is 
determined by both its current degradation status and dynamic 
future usage. 

 
4.3 Ablation Studies 
We conduct a comprehensive ablation study to further evaluate 
the status representation learning component, the future usage 
prediction component, and the impact of the user preference. We 
build the following variants of RUFE. 

• RUFE-lstm removes the LSTM module and replaces it with the 
integrated trip records, i.e., total served distance and duration, to 
evaluate the strength of the degradation learning process. 

• RUFE-FU removes the future usage prediction module (i.e., Sec.3.4) 
and predicts the remaining lifespan according to historical usage. 

• RUFE-UP removes the contributions of user preferences by (i) 
removing the user preference estimation loss in the status learn 
ing part and (ii) using LSTM only in the future usage prediction 
part without the user preferences. 

We present the results in Fig. 7 and find that: 

• RUFE outperforms RUFE-lstm, which demonstrates the impor 
tance of the degradation process (i.e., daily trip records). 

• RUFE outperforms RUFE-FU, which shows the future usage is 
inconsistent with the historical usage and predicting the future 
usage strengthens the prediction performance. 

• RUFE outperforms RUFE-UP, which verifies our intuition that 
the user preferences can serve as an implicit input to imply the 
overall status, and then improve the performance. 

Overall, the results show that the learning of the degradation 
process (i.e., LSTM module), the future usage prediction, and the 
users' preference should be considered to improve the prediction 
performance. 
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Figure 7: The Performance of Different Variants. Figure 9: The Impact of Representation Dimension. 
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hand, a larger dimension benefits to contain more information and 
learn more accurate status representation; on the other hand, a too 
large dimension significantly increases the number of parameters, 
leading to overfitting and low performance. 

5 RELATED WORK 
5.1 Remaining Lifespan Prediction. 
There are lots of works exploring the information in operational 
records for remaining lifespan prediction such as trips, billing, and 
medical records. It can be further categorized into model-based and 
data-driven methods.For model-based methods, they use mathemat 
ical models to fit a degradation curve of the target, e.g., battery life 
curves [9]. However, they typically work in an ideal environment 

Figure 8:The Impact of Momentum Coefficients. 

 
The Momentum Coefficient. One key parameter in RUFE is the 
momentum coefficient m, which influences the degradation condi 
tion representation learning. In general, the momentum coefficient 
adjusts the update rate or the encoders' consistency.If it is set to 
0, it means the parameters of the momentum encoder are always 
updated with the query encoder.Such drastic updates influences the 
consistency of the encoded positive and negative samples, which 
eventually affects the representation learning. A relatively larger 
value indicates the samples are encoded by a slowly progressing 
encoder, which ensures consistency for better learning. However, 
ifit issetclose to 1 (e.g., 0.99), the encoders tend to keep the origi 
nal parameters, which may also affect the representation learning. 
Thus, the optimal momentum coefficient needs to be neither too 
small nor too large. Fig. 8(a) and 8(b) show the effects of different 
momentumcoefficients in the New Brunswick and Newark datasets, 
respectively. We observe that RUFE achieves the best performance 
when the coefficient is set to be 0.9 and 0.5 in the New Brunswick 
and Newark dataset, respectively. This is mainly because the New 
Brunswick dataset has a much larger data capacity than the Newark 
dataset, which needs a larger momentum coefficient. Compared to 
not using the momentum encoder (i.e., set the coefficient to 0), the 
momentum encoder improves the performance by 13.6%. 
Dimension of Learned Representation Vector. Another critical 
parameter in RUFE is the dimension of the learned status represen 
tation vector, which indicates the information diversity. Fig.9(a) and 
Fig. 9(b) show the effects of dimensions of representation vector on 
the Newark and New Brunswick datasets. We observe that on one 

without noise and uncertainty. For data-driven methods, neural net 
works [38, 39] are applied to historical data to learn the non-linear 
degradation trend of sequential data. For example, MLP is useful 
for learning non-linear degradation patterns [39], but it lacks the 
ability to incorporate temporal information. Then, the RNN-based 
frameworks, e.g., RNN [39], LSTM [38), have been applied to learn 
the degradation trend of sequential data. Zhang et al. [39] utilized 
the long short-term memory (LSTM) recurrent neural network 
(RNN) to learn the long-term dependencies among the degraded 
capacities of lithium-ion batteries. 

However, those methods heavily rely on sensors to collect ex 
plicit status indicators, e.g., state of health(SOH) in batteries [9], 
which incurs two limitations in our problem. First, existing sensors 
are designed to monitor only certain components of e-scooters, 
such as batteries [39), while other components, such as wheels and 
brakes, cannot be well monitored (or need more sophisticated and 
expensive sensors). Second, the cost of sensors is proportional to 
the number of e-scooters, so it is expensive to deploy sensors at a 
large scale. 

5.2 Representation Learning 
Representationlearning aims to learn a low-dimensional vector for 
data representation, such as graphs[33], and hidden status [15, 20, 
37]. For instance, AdaCare [20] depicted the health status by captur 
ing the long and short-term variations of biomarkers and modeled 
the correlation between clinical features to enhance the oneswhich 
indicate the health status. GRASP [37] proposed a generic frame 
work for healthcare models which aims to solve data sparsity or 
low-quality data.Med2Vec [15] learned the representationsfor both 
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medical codes and visits from large EHR datasets with over a mil 
lionvisits. PNRL [33] proposed a predictive network representation 
for the structural link prediction. PTARL [31] explored the peer and 
temporal dependencies of driving behavior with GPS trajectories 
data. 

However, those frameworks focus on individual status learning 
rather thanlearning similar or dissimilar representations from data 
organized into similar or dissimilar pairs. 

5.3 Contrastive Learning. 
Contrastive representationlearningmadea great successin practice 
in classifying groups of images unsupervisedly [7, 11-13, 18, 36]. 
It benefits to identify two key properties related to the contrastive 
loss: (1) alignment (i.e., closeness) of features from positive pairs, 
and (2) uniformity of the induced distribution of the normalized 
features [28, 32]. For example, SimCLR [11] proposed two major 
components to enable the contrastive prediction tasks to learn use 
ful representations, including data augmentation and learnable non 
linear transformation. MoCo V2 [12] used an MLP projection head 
and more data augmentation with Momentum Contrast (MoCo), 
which outperformed SimCLR and did not require large training 
batches. BYOL [16] introduced a new framework for self-supervised 
representation learning, which relies on two neural networks, in 
cluding online and target networks that interact and learn from 
each other. However, contrastive methods typically have real-time 
requirements and need many explicit pairwise feature comparisons, 
which incur a high computational cost. For efficiency, SwAV [7] 
is an online algorithm without being required to compute pair 
wise comparisons. SimSiam [13] simplified the BYOL framework by 
removing: (i) negative sample pairs, (ii) large batches, (iii) momen 
tum encoders, and achieved surprising empirical results. BARLOW 
TWINS [36] did not require large batches nor asymmetry between 
the network twins, i.e., a predictor network, gradient stopping, or 
a moving average on the weight updates. 

In summary, Contrastive learning is a great self-supervised ap 
proach that benefits learning similar or dissimilar representations 
from data. It is suitable to learn the similar or dissimilar degrada 
tion status of e-scooters without explicit status measures. In this 
work, we enhance the generic contrastive learning with a newdata 
augmentation method for sequential data and introduce user pref 
erences as implicit feedback to improve representation learning. 

6 DISCUSSION 
6.1 Lessons Learned 
Based on the design, implementation, and evaluation of RUFE, we 
learned the following lessons: 
• User behavior performs well as an implicit input to mea 

sure e-scooters status. The key insight of RUFE is that user 
behavior, i.e., user preferences, can be utilized as the implicit input 
to learn the e-scooters' degradation status.That is, a less-selected 
e-scooter (i.e., low selection probability) or longer idle time e 
scooter (i.e., long idle intervals between consecutive trips) gener 
ally has a worse condition. Supported by Fig. 7, we found that 
introducing user preferences helps our model gain 24.96% and 
7.95%improvement in the New Brunswick and Newark datasets, 
respectively. 

•  Future usage dynamics should be considered in the remain 
ing lifespan prediction. Different from the existing lifespan 
prediction that the future usage generally is consistent with the 
historical usage, e-scooters' usage changes as the degradation 
status changes. Our ablation study validates the necessity of 
considering changed future usage for the remaining lifespan pre 
diction. Supported by Fig. 7, we observed that the future usage 
prediction component leads to the performance improvement of 
47.16% and 26.31%. 

• User preferences can be used to improve future usage pre 
diction. Predicting future usage can be challenging if a dynamic 
degradation process is involved. In our work, we use the learned 
status representation as an opportunity to estimate future user 
preference, which in turn supports future usage prediction. Sup 
ported by Fig. 7, we observed that the introduction of user pref 
erence estimation in the future usage prediction improves the 
performance by 27.25%and 26.39%. 

 
6.2 Practical Implications of the results 
In this work, we focus on modeling e-scooters' current status and 
future usage to provide a more accurate prediction about the re 
maininglifespan.The potential implications include that the results 
(i.e., estimated remaining lifespan) can be utilized to further study 
thee-scooters' re-balancing problem [8, 24]. For instance, we can 
re-balance the e-scooters with longer lifespan (i.e., good condition) 
to the areas with higher demand to increase the users' satisfaction. 
And we can also re-balance the e-scooters with shorter lifespan to 
low-demand areas to increase overall lifespan. 

 
6.3 Ethics and Privacy 
During the data analysis and data mining of the trip records, we 
took careful steps to address ethical and privacy concerns. First, all 
thee-scooter users have digested the Terms of Services and consent 
the platform can collect their trip trajectories for research and ser 
vice improvement. Second, all the raw data has been pre-processed 
intoaggregated anonymous statistics based on the privacy protec 
tion requirements during the data collection process. All the user 
identifiers are removed, and all the auxiliary information is strictly 
limited to GPS traces. 

 
7 CONCLUSION 
In this work, we design a framework called RUFE for remaining 
lifespan prediction of e-scooters with user preferences considera 
tion. Our RUFE validates that the user preference is beneficial to 
be explored as the implicit input for the e-scooters' degradation 
status representation learning. Moreover, future usage prediction 
contributes to prediction performance. Based on the experiment re 
sults, RUFE can improve the performance by up to 35.67%compared 
with the baseline methods.We alsodemonstrate the effectiveness of 
our RUFE with different ablation studies and parameters analysis. 
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