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For a model convection-diffusion problem, we obtain new error estimates for a
general upwinding finite element discretization based on bubble modification of
the test space. The key analysis tool is finding representations of the optimal
norms on the trial spaces at the continuous and discrete levels. We analyze
and compare three methods: the standard linear discretization, the saddle point
least square and the upwinding Petrov—Galerkin methods. We conclude that the
bubble upwinding Petrov—Galerkin method is the most performant discretization
for the one-dimensional model. Our results for the model convection-diffusion
problem can be extended for creating new and efficient discretizations for the
multi-dimensional cases.
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1. INTRODUCTION

We consider the model of a singularly perturbed convection diffusion
problem: Given data represented by f € L?(2), we look for a solution to
the problem

—eAu+b-Vu = in
W { /

v = 0 on 09,

for a positive constant ¢ and a bounded domain Q C R?. We assume ¢ < 1,
and b is a given vector chosen such that a unique solution exists.

For the one-dimensional case, we assume that f is a continuous function
on [0, 1], and we look for a solution u = u(x) such that

2) —eu(z) + b/ (x) = f(z), 0<z<]1

u(0) =0, u(1) =0,
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where b is a positive constant. Without loss of generality, we further assume
that b = 1. The model problems (1) and (2) arise when solving heat transfer
problems on thin domains, as well as when using small step sizes in implicit time
discretizations of parabolic convection diffusion type problems, see [27]. The
solutions of these two problems are characterized by boundary layers, see e.g.,
[24, 28, 32, 34]. Approximating such solutions poses numerical challenges due
to the e-dependence of the stability constants and of the error estimates. There
is a tremendous amount of literature addressing these types of problems, see
e.g. [24, 28, 31, 32, 34, 21, 5, 14]. In this paper, we analyze mixed variational
discretizations of the model convection diffusion problem (2), based on the
concept of optimal trial norms at the continuous and the discrete levels. The
concept of optimal trial norm was developed and used before, in e.g., [3]-
[5, 18, 19, 21, 23, 30]. In our study, for certain discrete test spaces, we find
new representations of such norms that allow for sharp error estimates and
new analysis for saddle point or mixed variational formulations.

We start by reviewing the standard finite element discretization and two
mixed variational formulations that are known as the Saddle Point Least Square
(SPLS) and the Upwinding Petrov—Galerkin (UPG) methods. We present new
error analysis results for the UPG method and discuss the advantages and dis-
advantages of the two mixed methods. The goal of the paper is to develop a set
of tools and ideas for robust discretization of (2) towards building efficient new
methods for the multi-dimensional version of convection dominated problems,
such as (1).

In Section 2, we review the main concepts and notation for the general
standard and mixed variational formulation and discretization. The general
concept of optimal trial space and the main related results about optimal trial
norms is reviewed in Section 3. We review approximation results for the stan-
dard linear and SPLS discretizations of (2) on uniformly distributed nodes in
Section 4. We justify the oscillatory behavior of the SPLS method for certain
data, in Section 4.3. We present a general approximation result for the UPG
method in Section 5. In Section 6, we apply the general approximation result
of Section 5 to particular test spaces constructed with quadratic bubbles and
exponential type bubbles. In Section 7, we present a summary of the ideas and
a conclusion for the standard and mixed variational formulation of (2).

2. THE GENERAL MIXED VARIATIONAL APPROACH

In this section, we review the main concepts and notation for the mixed
variational formulation and discretization. This includes the Saddle Point
Least Squares (SPLS) method and the particular case of the Petrov—Galerkin
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(PG) discretization. We follow the Saddle Point Least Squares (SPLS) termi-
nology that was introduced in [7]-]9, 10, 12, 13].

2.1. The abstract variational formulation at the continuous level

We consider the abstract mixed formulation: Find u € @ such that
(3) b(v,u) = (F,v), for allv €V,

where b(+, -) is a bilinear form, ) and V are possible different separable Hilbert
spaces, and F' is a continuous linear functional on V. We denote the dual
of V by V* and the dual pairing on V* x V by (-,-). We assume that the

inner products ag(,-) and (-,-)g induce the norms |- |y = | - | = ao(,-)"/? and
l-lle=1-1=C(, )22/2 The bilinear form b(-,-) is a continuous bilinear form
on V x @ satisfying the sup — sup condition

b
(4) sup sup (v, u) =M < oo,

ueQ vev 0] [ul]

and the inf — sup condition

b
(5) inf sup blv, u) =m > 0.
ueQ ey [v] [|uf

We assume that the functional F' € V* satisfies the compatibility condition
(6) (F,v)y=0 forallveVy:={veV|bw,q) =0 forallqeQ@}.

The following result about the existence and the uniqueness of the solution
of (3) can be found in e.g., [1, 2, 16, 17].

PROPOSITION 2.1. If the form b(-,-) satisfies (4) and (5), and the data
F € V* satisfies the compatibility condition (6), then the problem (3) has a
unique solution that depends continuously on the data F'.

It is also known, see e.g., [11]-[13, 21], that under the compatibility con-
dition (6), solving the mixed problem (3) reduces to solving a standard saddle
point reformulation: Find (w,u) € V x @ such that

(7) ap(w,v) + blv,u) = (F,v) for all v eV,
b(w, q) =0 for all ¢ € Q.

In fact, we have that w is the unique solution of (3) if and only if (w = 0,u)
solves (7).
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2.2. PG and SPLS discretizations

Let b(-,-) : V x @ — R be a bilinear form as defined in Section 2.1.
Let V, € V and My C @ be finite-dimensional approximation spaces. We
assume that the following discrete inf —sup condition holds for the pair of
spaces (V3,, Mp):
b(vn, un)

(8) inf  sup ———— =my > 0.
uhE€EMp o, €V, [on | [|un |

We define
Vio = {vn € Vi | b(vp, qn) =0,  for all g5 € My},

and let Fj, € V¥ to be the restriction of F' to Vj,, i.e., (Fy,vp) := (F,vp) for all
vp, € V3. Consider the following discrete compatibility condition

(9) (F,up) =0 for all v, € V.
As a direct consequence of Proposition (2.1), we have the following result.

PROPOSITION 2.2. If the form b(-,-) satisfies condition (8) on Vi, X My,
and the data Fj, € V;* satisfies the compatibility condition (9), then the problem
of finding uy, € My, such that

(10) b(vn, un) = (F,vp), vp € Vp,
has a unique solution up, € My, that depends continuously on the data F},.

The variational formulation (10) is the Petrov-Galerkin (PG) discretiza-
tion of (3). We note that for the case Vj, o = {0}, the compatibility condition
(9) is trivially satisfied. In this case, assuming that b(-,-) satisfies (8), the
discretization (10) leads to a square linear system. Thus, we do not need to
consider the SPLS discretization of (3).

In general, V}, o might not be a subset of Vj. Consequently, even though
the continuous problem (3) has unique solution, the discrete problem (10)
might not be well-posed if Fj, does not satisfy the compatibility condition (9).
However, if the form b(-, -) satisfies (8) on V}, x My, then the problem of finding
(wp,up) € Vi x My, satistying

(11)

ao(Wn, vn) + b(vn,un) = (f,vn) for all vy, € V},,
b(wp, qp) =0 for all g5, € My,

does have a unique solution. We call the component uy, of the solution (wp, up)
of (11) the saddle point least squares approximation of the solution u of the
original mixed problem (3).

The following error estimate for ||u — up|| was proved in [12].
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THEOREM 2.3. Let b: V x Q — R satisfy (4) and (5) and assume that
F € V* is given and satisfies (6). Assume that u is the solution of (3) and
Vi, C V, My C Q are chosen such that the discrete inf —sup condition (8)
holds. If (wp,up) is the solution of (11), then the following error estimate
holds:

M

12 — < — inf — .
12) o= unll < 20 inf, o ail

Remark 2.4. We note that the estimate (12) holds true if uy, is, in par-
ticular, the unique PG solution of (10). This is due to the fact that, if wy, is
the solution of (10), then (0, uy,) is the unique solution of (11).

For our analysis of the PG discretization of (1), we have a norm || - ||« on
() and a different norm || - ||+ on the discrete trial space My For this case,
the following version of Theorem 2.3 was proved in [5].

THEOREM 2.5. Let |-|, || ||« and || ||« be the norms on V,Q, and My,
respectively, such that they satisfy (4), (5), and (8). Assume that for some
constant cy > 0, we have

(13) vl < collvllen  forallv e Q.
Let u be the solution of (3), and let up, be the unique solution of problem (10).

Then, the following error estimate holds:

M
wh <co—— inf flu— pplls

14 uU—1u
(14) o= unllop <o imf

3. OPTIMAL TRIAL NORM FOR THE CONVECTION
DIFFUSION PROBLEM

We consider the variational formulation of (1): Find u € H}(2) such that
(15) (eVu, Vo) + (b- Vu,v) = (f,v) for all v € HL(Q).
Define V=Q =H}(Q) and b:V xQ - R, FeV*by
b(v,u) := (eVu, Vv) + (b- Vu,v), and (F,v):=(f,v).

For the analysis purpose, we allow different norms on the test and trial spaces.
On the test space V := H}(2), we consider the norm induced by ag(u,v) :=
(Vu, Vv). We can represent the antisymmetric part in the symmetric ag(-,-)
inner product. First, we define the representation operator T : Q — @ by

ao(Tu,v) = (b-Vu,v), forallveV.
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In the multi-dimensional case, we have that
|Tu| = [|b- Vull -1y < [[blll|ull22(0)-
For the one-dimensional case and b = 1, we have

—((Tw)",q) = ao(Tu,q) = (v, q), for all ¢ € Q.

By solving the corresponding differential equation, one can find that

(16) Tu =21 — /Ox u(s)ds,

where u = fol u(s)ds. Thus, (Tu) (z) =u — u(z) and

1
(17) |Tuf? = / [u(s) —a* ds = [lu —a|* = [|ul® —@* < [|ul|*.
0
Next, the optimal continuous trial norm on @ is defined by
b T
HUH* := sup (U7u) — su gao(u,v) + CL()( u, U).
veV ’7)| veV |U|

Using the Riesz representation theorem and the fact that ag(Tu,u) = 0, we
obtain that the optimal trial norm on @ is given by
(18) lullZ = ®ul® + [Tul?.

Thus, we have
]| == €(Va, V) + |- Ve[ s
Using (17) for the one-dimensional case, we get

(19) lull = &2lul + [lull® — @*.

3.1. Discrete optimal trial norm

We assume that V;, C V = H}(Q) and M;, C Q = H}() are discrete
finite element spaces and that M; C V. For the purpose of obtaining a
discrete optimal norm on My, we let P, : Q — V}, be the standard elliptic
projection defined by

aog(Pr u,vp) = ag(u,vy) for allvy, € V3.
The optimal trial norm on My, is
b(vp, up
(20) A
v EVR |Uh|
Similarly to the continuous case,
5a0(uh, Uh) + ao(Tuh, ’Uh) an(uh, Uh) + ao(PhTuh, ’U)

lunls.p := sup = sup
’UhEVh |Uh| ’UhEVh ’/Uh|
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From the definition of P, and the anti-symmetry of T', we have
ao(Pp, Tup,up) = ag(Tup, up) = 0.

Thus, by using the Riesz representation theorem on V}, we get

(21) [unll?,, = *unl? + [P Tun|? = &*fun|® + |up|? .

Note that for the given trial spaces M}, and @, the above norm is well defined
for any u € ). Hence, the continuous and discrete optimal trial norms can be
compared on Q.

The advantage of using the optimal trial norm on @ and Mj resides
with the fact that both inf — sup and sup — sup are equal to one at both the
continuous and the discrete levels. As a direct consequence of Theorem 3.1,
we obtain the following result.

THEOREM 3.1. Let || - ||« and || - ||«» be the norms on Q, and M; and
assume that (13) holds. Let u be the solution of (27) and let uy, be the unique
solution of problem (10). Then the following error estimate holds:

29 - < ¢ inf _ .
(22) 1w — up||«n <c inf lw = ppln

3.2. Discrete optimal trial norm for the one-dimensional case

We review some formulas and results from [5, 15].

For V. = Q = H}(0,1), we consider the standard inner product given
by ap(u,v) = (u,v)y = (uv,v"). We divide the interval [0,1] into n equal
length subintervals using the nodes 0 = zg < 1 < -+ < x, = 1 and denote
h = x;—x;_1,j = 1,2,...,n. We define the corresponding finite element
discrete space My, as the space of all continuous piecewise linear functions
with respect to the given nodes, that are zero at x = 0 and = = 1. Next, we
let M}, =V}, be the standard space of continuous piecewise linear functions.

For the purpose of error analysis, on V}, we consider the standard norm
induced by ag(-,), but on M} we choose an optimal norm from the stability
point of view. On V}, x My, we consider the bilinear from

(23)  bg(vp,up) = dao(up, vy) + (up,vy)  for all up, € My, vy € Vi,

where d = d. j is a constant that might depend on h and €. The same argu-
ments used in Section 3.1 to deduce the formula (21), can be used here with
€ = d to obtain

by(wh, up))?
(24) funlZ, = sup LACmUBDT_ oy 2 by, 2

v EMp, |Ujh‘2
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Denoting |ul.  := |PyTu|, as in [5], we obtain the explicit formula

(25) \u|zh = |P,Tul|? = ;g (% /:; u(x) d:n)2 - (/01 u(x) dx)2.

Using a Poincare inequality, we get
2 h‘2 2 2 h2 2 2 2
26) Il = (24 55 )l = u—al2 = 55 uf? < [ul2, < [lu]®

see [5] for details.

4. STANDARD AND SPLS FINITE ELEMENT VARIATIONAL
FORMULATION AND DISCRETIZATION

In this section, we review results for the standard and the SPLS finite
element discretization of (2). In addition, we justify the oscillatory behavior
of the P! — P? SPLS discretization. We use the following notation:

1

ap(u,v) = / o (z)v () f,v / f(x)v(x)dx, and
0

b(v,u) = e ap(u,v) + (v',v) forall u,v €V := H&(O, 1).

A variational formulation of (2), with b = 1, is as follows:
Find u € V := H}(0,1) such that

(27) b(v,u) = (f,v), for all v € V = H}(0,1).

4.1. Standard discretization with C° — P! test and trial spaces

We divide the interval [0, 1] into n equal length subintervals using the
nodes 0 = xg <1 <--- <z, =1 and denote h :=z; —z;_1,7 =1,2,...,n
For the above uniform distributed notes on [0, 1], we define the corresponding
finite element discrete space My, as the subspace of H& (0,1), given by

M, = {v, € V | vy, is linear on each [z, xj41]},

i.e., My, is the space of all continuous piecewise linear functions with respect
to the given nodes that are zero at x = 0 and z = 1. We consider the nodal
basis {¢; }7~ ! with the standard defining property ¢;(x;) = d;;. We couple the
above dlscrete trial space with the discrete test space V}, := Mj. Thus, the
standard C° — P! variational formulation of (27) is: Find u; € M), such that

(28) b(vp, up) = e(uy,,vp) + (up,, wp) = (f,vn)  for all vy € V.
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From (26) it is easy to obtain the following estimate

2 h \2 2
(29) ul? < (1 + (7) )Hu||* . forall u € Q.
7r bl
As a consequence of Theorem 3.1 and (29), we have the following result.

THEOREM 4.1. If u is the solution of (27), and uy the solution of the
linear discretization (28), then

lu = tnllop < elhye) it fu—vylop, where

inf
v EVY
clh,e) =41+ (i)2 R M if € <<h.
TE TE

In the next sections, we show that the optimal discrete norm and ¢(h, )
improve as we consider different test spaces. Numerical tests for the case
fol f(x)dx # 0, show that as € << h, the linear finite element solution of (28)
presents non-physical oscillations, see [5]. The behavior of the standard linear
finite element approximation of (28) motivates the use of non-standard dis-
cretization approaches, such as the saddle point least square or Petrov—Galerkin
methods.

4.2. SPLS discretization

A saddle point least square (SPLS) approach for solving (27) has been
used before, for example in [11, 21, 5].
For V = Q = H}(0,1), we look for finding (w,u) € V x @ such that

ap(w,v) + bv,u) = (f,v) for all v € V,

(30) b(w,q) =0 for all ¢ € Q,

where
b(v,u) = cap(u,v) + (v, v) = e (u,v) + (v, v).

Numerical tests for the discretization of (30) with various degree poly-
nomial test and trail spaces were done in [21, 22]. Following [5], we review
the main error analysis results for M; = CY — Pl := span{cpj}?;ll, with the
standard linear nodal functions ¢;, and V}, = C% — P? on given uniformly dis-
tributed nodes on [0, 1]. To define a basis for V},, we consider a bubble function

for each interval [x;_1,x;],i = 1,2,...,n, defined by
B’L ::4@2'—1 Pis 1= 1727'”7”7

where @o(z) =1 — ¥ on [0, h], ¢n(z) =14 2L on [1 — h, 1] and are extended
by zero to the rest of the interval [0, 1]. Then, we have

Vi, == span{yp; ;L:_ll + span{ B, }7_;.
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The SPLS discretization of (30) is: Find (wp,up) € Vi, x My, such that

(31) ao(wn,vp) + bvp,up) = (f,vn) for all vy, € Vi,
b(wh, qh) =0 for all g5, € Mj,.

In this case, note that the projection P} defined in Section 3.1, is the

projection on the space Vj, = C° — P2, For any piecewise linear function

up, € My, we have that
X
Tuy, = zup, — / up(s) ds
0

is a continuous piecewise quadratic function. Consequently, Tuy € V, and
P, Tup, = Tuy,. The optimal discrete norm on M), becomes

Junll , = €unl? + |Tunl* = [Junl2-

Using the optimal norm on My, a discrete inf — sup condition is satisfied, and
the problem (31) has a unique solution. In addition, for this P! — P? SPLS
discretization, we can consider the same norm given by

lullZ = &2lul* + llu —all* = *ul® + Jul® —a* = JulZ,

on both spaces Q and M. As a consequence of the approximation Theo-
rem 2.3, we get the following optimal error estimate.

THEOREM 4.2. If u is the solution of (27), and uy, is the SPLS solution
for the (P' — P?) discretization, then

— < inf — <||lu-—
fu=unll < inf flu=pal. < u =l

where uy is the interpolant of the exact solution on the uniformly distributed
nodes on [0, 1].

4.3. The oscillatory behavior of the P! — P? SPLS discretization

For fol f(z)dr = 0, the P! — P? SPLS discretization improves on the
standard linear discretization of (27) from both the error point of view, and
from the presence of the non-physical oscillations point of view. In [5], a
detailed numerical analysis and comparison concluded that for fol f(x)dx #0,
the SPLS solution uj approximates the shift by a constant of the solution u
of (27). In addition, non-physical oscillations still appear in the plot of uy
at the ends of the interval [0,1]. An explanation of this phenomenon can be
done using simplified variational problems. More precisely, we can consider the
following continuous simplified problem obtained from (27), by letting ¢ — 0:
Find u € Q = H}(0,1) such that

(32) (v, v) = (f,v) forallv eV =H0,1).
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The problem is not well posed when fol f(x)dx # 0. In order to have the
existence and the uniqueness of the solution of (32), we can change the trial
space @ to L3(0,1) := {u € L*(0,1)] fol u = 0}. Nevertheless, in this case, the
solution space cannot see the boundary conditions of the original problem (2).
On the other hand, the discrete simplified linear system obtained from (31) by
letting e — 0 becomes: Find (wp, up) € Vi x My, such that

(wy,v) +  (uh,vn) = (f,vn) for all vy, € Vj,

(33) (wh, qn) =0 for all g, € My,

and has unique solution because a discrete inf — sup condition holds when using
the optimal trial norm on Mj,. Numerical tests in [5] showed that oscillation in
the discrete simplified solution wuy, of (33) predict oscillatory behavior of uy,-the
SPLS discrete solution of (31). In fact, for € << h, in the “eye ball measure”,
the two solutions are identical. Next, we justify why the component uy of (33)
oscillates in the case fol f(z)dz #0.

Let u be the solution of (32) with @ = L3(0,1) and V = H}(0,1))
and let up be the second component of the solution of (33). It is easy to
check that u(z) = w(x) — w, where w(z) = [ f(s)ds. By eliminating wy,
from the system (33), it follows that uj, — wy, is the L? projection of u onto
My, = {wy, —wy, |w, € Mp}. We note that M, is a space of continuous
piecewise linear functions that have the same values at the end points of [0, 1],
while u cannot have the same values at the end points if fol f(z)dx # 0. This
explains the non-physical oscillations of the SPLS discretization of (31).

In the next section, we present a particular SPLS discretization that is
free of non-physical oscillations.

5. THE PETROV-GALERKIN METHOD WITH BUBBLE TYPE
TEST SPACE

For improving the stability and approximability of the standard linear
finite element approximation for solving (27), various Petrov—Galerkin dis-
cretizations were considered, see e.g., [5, 20, 29, 33, 34]. In this section, we
analyze a general class of Upwinding Petrov—Galerkin (UPG) discretizations
based on a bubble modification of the standard C° — P! test space. The idea
is to define V}, by adding to each ¢;, a pair of polynomial bubble functions.
According to Section 2.2.2 in [34], this idea was first suggested in [25] and
used in the same year in [20] with quadratic bubble modification. The method
is known in literature as upwinding PG method or upwinding finite element
method, see [33, 34]. Next, we build on the description of UPG introduced in
[15] emphasizing on a new error analysis of the method.
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The standard variational formulation for solving (2) with b = 1, is: Find
u € Q = H}(0,1) such that
(34) b(v,u) = cag(u,v) + (v',v) = (f,v) forallveV = Hi(0,1).
A general Petrov—Galerkin method for solving (34) chooses a test space of type
Vi, CV = H(0,1) that is different from the trial space M, C Q = H{(0,1).
For describing the general UPG discretization, we consider a continuous
(bubble) function B : [0,h] — R with the following properties:

(35) B(0) = B(h) =0,

(36) /h B(x)dx = byh, with b; > 0.
0
h

(37) /0 (B'(z))*dx = % with by > 0.

By translating B, we generate n bubble functions that are locally supported.
For i = 1,2,...,n, we define B; : [0,1] — R by Bj(z) = Bz — zj_1) =
B(x — (i — 1)h) on [z;_1,x;], and we extend it by zero to the entire interval
[0,1]. Note that By = B on [0,h]. For i =1,2,...,n, we have

(38) Bi(xi_l) = Bz(l'z) = 0, and Bi =0 on [O, 1]\(xi_1,xi),
(39) / " Bi(x)dx = bih, with by > 0,

Ti—1
and

z;
(40) / (BY(x))? do = 2.
Ti—1 h
Next, we consider a particular class of Petrov—Galerkin discretizations of the
model problem (34) with trial space M, = span{g; }?;11 and the test space V},
obtained by modifying M}, using the bubble functions B;. We define the test
space V}, by
Vi, :=span{y; + (Bj — Bj+1) ’]7:_11,

where {B;}i=1,. n satisfy (38)-(40). We note that both M}, and V}, have the
same dimension of (n — 1).

The upwinding Petrov—Galerkin discretization with general bubble func-

tions for (2) with b =1 is: Find wu;, € M}, such that
(41) b(vp, up) = € ao(up,vp) + (up,vp) = (f,vp)  for all vy, € V.

As presented in [15], we show that the variational formulation (41) admits a
reformulation that uses a new bilinear form defined on standard linear finite
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element spaces. We let
n—1
up =Y ajpj,
j=1

and consider a generic test function vy, defined by

n—1 n—1
vh =Y Bigi+ Y Bi(Bi — Bit1) Z Bipi + Z = Bi-1)
i—1 i—1

where, we define 5y = 3, = 0. Next, we use the splitting of vy in a linear part
plus a bubble part:

n

n—1
vy, = wp, + By, with wy, 1= Zﬂz(pz and By = Z(ﬂz — ﬂi_l)B

i=1 i=1

Based on formulas (38), (39) and (40), the fact that u},wj, are constant on

Bi=Bi—1 Bz

each of the intervals [z;_1,;], and that w) = on [x;_1,x;], we obtain

i=1 7 Ti-1

Thus,
(42) (u),, By) = bih(up,wy,), where v, = wp, + By,.

In addition, since uj, is constant on [z;_1, z;], we have
z;
(u;l,BZ{):u;l/ Bi(z)dz = Oforalli=1,2,...,n
Ti—1

Hence,

(43) (u, By,) = 0, for all up, € My, vy, = wp, + By € V.
From (42) and (43), for any uj, € Mp, v, = wp, + By € V}, we get
(44) b(vp, up) = (e + bih) (up, wy,) + (uh, wp).

Introducing the notation d = d.; = ¢ + hb; and using the notation of Sec-
tion 3.2, we have

(45) b(vp, up) = bg(up,wp), where vy, = wp, + By, and up, wp, € My,

Using (43) and (40), we note that for any vy, = wy, + By, € V}, the energy norm
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of vy, is a multiple of the energy of the linear part wy. Indeed,

(v, vy) = (wy, + By, wh + By) = (wy,, wy,) + (B}, By,)

(W), wh) +Z — Bi_1)%(Bl, B)

= (wp,, wy,) + bghz (%)2

i=1
n x; 9
= (whowh) #0230 ([ Wh)?) = (whuh) + ba(wh 0f).
i=1 vl

Consequently,
(46) ”Uh’2 = (1 + bg)"wh|2.

The formulas (45) and (46) lead to the following result.

THEOREM 5.1. For the bilinear form b(-,-) of (34) on My, x V}, with the
bubble enriched test space Vi, the discrete optimal norm on My is given by

(E—I- hbl)

2
1+ by unl” + 135,

(47) lunllZ 5 = [unl? p-

1+ by
where |”h|i,h is defined in (25).
Proof. Using the definition of ||uy||. s along with the work of Section 3,

we can reduce the supremum over V}, to a supremum over Myp. Indeed, using
the splitting v, = wy, + By, the equations (45) and (46), we have

b(vn, up))? ba(wh, up))? ba(wh, up))?
ol — sup PO Gt ) an m)?
v EVR ”Uh’ v EVY ”Uh| wp EMy, (1 + b2)‘wh’

Next, by combining this formula with (24) we obtain (47). O
PROPOSITION 5.2. Assume that h is chosen such that

h2
(48) €2+ﬁ < (e+hb)

Then, the following inequality between ||ull« and ||ul/«p holds on Q.
(49) w2 < (1 + ba) ||ul? o forallu e Q= H(0,1).

Proof. Using the inequality (26) for |ju||. and the formula (47) for |||« n,

we have )

h
= (L4 bo) [l < (2 + 5 = (e + hb)?) ul?
Now, under the assumption (48), we obtain (49). O
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As a consequence, we have the following error estimate.

THEOREM b5.3. If u is the solution of (27), uy the solution of the UPG
formulation (41), and h is chosen such that (48) holds, then

(50) ”U_uhH*,h S \/1+b2 inf \|u—th*7h.
prhEMp,

Proof. The estimate is a direct consequence of the approximation Theo-
rem 3.1 and Proposition 5.2. [

Remark 5.4. Based on (44), the linear system associated with the UPG
method (41) is

(51) «%+bOS+C)U:P@,
where U, F,, € R*"! and
u (f,e1) (f, B1 — B2)
. U'2 | Fee (fs '902) N (f, Bz.— Bs) |
Up—1 (f, en-1) (f, Bn—1— By)

1 1
S = tridiag(—1,2, —1), and C = tridiag ( — 5,0, 5)

By using the notation d = d.; = ¢ + hb;, the matrix of the finite element
system (51) is
d d 1)

d 1
2 M, = tridi (—f—7,2f,—f+f.
(52) f tridiag h 2" h h 2

6. UPWINDING PG WITH PARTICULAR BUBBLE
FUNCTIONS

6.1. Upwinding PG with quadratic bubble functions

We consider the model problem (27) with the following discrete space
M, = span{yp; };‘;11 and V} a modification of My, using quadratic bubble func-
tions. The method can be found in e.g., [29]. In [15], we related the quadratic
bubble UPG method to the general upwinding Finite Difference (FD) method
and presented ways to improve the performance of upwinding FD methods.
In this section, we establish error estimates for the quadratic bubble UPG
method.
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First, for a parameter 8 > 0, we define the bubble function B on [0, k] by
4p
2

Using the function B and the general construction of Section 5, we define
the set of bubble functions {By, B, ..., By} on [0,1] and

B(z) = —<x(h — x).

Vi, := span{p; + (B; — Bj41)}j- L

Elementary calculations show that (36) holds with b; = %, and (37) holds

with by = 16’5 . In this case, we have

d=d.p, =c+hb =¢c+ fh and 1+ by = —ﬁQ
According to (47), the optimal norm on My, is given by
3 268 \2
(53) ol = g5 (= + 5 1)l a2 )

In this case, we note that the restriction (48) is satisfied for any h > 0 if,
for example, § > 2—‘/7% ~ 0.28. As a consequence, we have the following result.

THEOREM 6.1. Ifu is the solution of (27), uy, the solution of the upwind-

ing PG formulation (41), with quadratic bubble test space and > 2—\/3, then by
using the discrete norm (53), we have

19 , .
(54) o= wnlln <458 inf Ju =Dl

Equivalently, by squaring and rescaling the estimate (54), we have

9 2
(5 + fh) lu — uh]2 +|u — uh\ih

19 , . 28 \2
< f (( ——h) — pnl? + Ju— pa? ).
< 5B Jnf (et lu—pal” + [u—pnls

(55)

For implementation purposes, according to (52), the matrix of the finite

element system (51) with quadratic bubble upwinding is
- e 26 1 2e 45 e 20
M, = tridiag (— >~ = — - ooos 2 )

(56) fo = tridiag et h+3’ A 3+2
We note that for § = 0, we obtain the matrix corresponding to the standard
finite element discretization (28). The case § = 1 was studied in [5]. The
possibility of choosing 3 = (g, h) allows for further simplification.
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6.2. Special cases for quadratic bubble upwinding

Using the settings of Section 6.1, we choose 3 such that the upper diagonal
in the matrix M?e of (56) is zero. This implies

=30-5).

To satisfy 8 > 0 and (48) for a fixed ¢, we restrict the range for h to
h>26¢.

This case is interesting because the matrix M of the FE system (51) becomes
a bidiagonal lower triangular matriz

(57) M = tridiag(—1,1,0).
As a direct consequence of Theorem 6.3 and € + ? h = h/2, we have that the
solution wuy, of the upwinding PG formulation (41), satisfies

YA
(58) h2|u—uh|2—|—4\u—uh|ih < — inf (h2 |u—ph|2+4|u—ph|ih) )
prREMp,

In addition, the system M U = F), can be solved forward to obtain:
(59) uj = (f,p1+p2+-+¢;)+(f, B1— Bj1), j=1,2,...n— 1.

We introduce the nodal function ¢ corresponding to x¢ = 0, i.e., @q is
the continuous piecewise linear function such that ¢g(x;) = doj, 7 =1,2,...n.
Using that ¢o + @1+ -+ ¢; =1 on [0, z;], the formula (59) leads to

Tj+1

(60) u; = /Omf f(f'?) dr + /Ozl f(Bl _ (po) dx —l—/ f((,Oj — Bj+1) dx,

J

B =3(1- ) (2)(1-7). v

BjJrl(x) = Bl(x _]h)v T € [$j7xj+1]’ ] = 1a2a ...n—L
-1
The next result shows that the discrete solution up = Zn L Wi P is close to the
]:

where

and

interpolant of w(x) := fox f(t)dt, hence it is free of non-physical oscillations.

-1
THEOREM 6.2. If up = E n L Wi P 1s the solution of the UPG formula-
J:
tion (41), with quadratic bubble test space and = % ( - %), then

T 2¢ .
uj = [ 5@ de| <l (2= 25 G =120 L
0



344 C. Bacuta, C. Bacuta, and D. Hayes 18

Proof. We note that

T T4 2 h T Tjt1 h
/ Bldx:/] Bj+1d:r:<1—6>and/ goldx:/J Yj==.

J J

Thus, assuming f is continuous on [0, 1], by using the formulas (60) and the
triangle inequality, we have
z;
- [ ) aal
0

_}/ f(B1 = o) du +/f7+1f(90j—Bj+1)dzn)§Hf||oo(2_h)h O

Theorem 6.2 proves that the components u; of the PG solution (60) ap-
proximate w(z;) fo ) dx with O(h). If f is independent of e, then w
is independent of e, and consequently, the PG solution given by (60) is free of
non-physical oscillations.

6.3. Upwinding PG with exponential bubble functions

As presented in [15], we consider the model problem (27) with the discrete
space My, = span{yp; }”,1 and a basis for V}, obtained by modifying the basis
of M, using eacponentzal bubble functions. We define the bubble function B on
[0, k] as the solution of

(61) —eB" — B' =1/h, B(0) = B(h) = 0.

Using the function B and the general construction of Section 5, we define
the set of bubble functions {Bi, B,...,B,} on [0,1] by translations of the
function B. The test space V}, is defined by

(62) Vi += span{ip; + (Bj — Bj1)}j2) = span{g;}j=),
where g; := ¢; + (Bj — Bj41), j = 1,2,...,n — 1. The idea of using a local
dual problem for building the trial space is also presented in Section 2.2.3 of
[33], where an earlier reference [26] is acknowledged. However, in [26, 33] the
concept of discrete Green’s function was used to produce basis functions that
span the test space V}. Here, we managed to build a basis for our test space
Vi, using the general construction of Section 5 with the bubble B defined in
equation (61).

In order to deal with efficient computations of coefficients and the fi-
nite element matrix of the exponential bubble UPG method, we introduce the
following notation

h h _h 1 _h
2 — 2e — 5

(63) go = tanh (—) == - c — = c =,
2e ez +e 2 14+e =
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1+go 1 —9g0
4 = = .
(64) lo 2% and ug 2%
The unique solution of (61) is
(65) B(z) =l(1—e %) = 7, x € [0 h].

It is easy to check that

h R
h 2 1 /1 2e
66 B(z da:——a,and/ B'(z dxz—(———).
(66) /0 (@) 290 0(()) 2e \go h
Thus, (36) holds with b1 = 55 — £, and (37) holds with by = =7t — 1.
In this case, we have
1
d=d.p, =+ hb = s and 14 by = ﬁ—.
290 2¢ go

According to (47), the optimal norm on My, is given by

e/ h?
(67) Junlp = 2007 (ol + hunl? )

Since tanh(z) € (0,1) for > 0, the condition (48) is satisfied with no
restriction for h. Consequently, we have the following result.

THEOREM 6.3. If u is the solution of (27), wuy, the solution of the up-
winding PG formulation (41) with exponential bubble test space, then using the
discrete norm (67), we have

h 1
68 — wh <4/ =—— inf — .
(68) Ju—unllog <y /5o inf = palles

Equivalently, by squaring and rescaling the estimate (68), we have

R Ju — up|? + 492 |u — uh]z’h
(69) ho1
< —— inf (h?|u—pnl® +462 lu—pnl?,) -
= 9% go preM, ( | hl 90 | ph\*,h)
For implementation purposes, we include the matrix of the finite element

system (51) with exponential bubble upwinding. From (52), we get

(70) My, = tridiag ( — 1;‘%, l, - go) = tridiag < — o, l, —u0>.
90 9o 290 90
As presented in [15, 33, 32], the exponential UPG method produces the
exact solution at the nodes. Thus, the solution uy of the UPG formulation
(41) with exponential bubble test space, satisfies up = Ij,(u), with u the exact
solution of (27). In spite of that, the error estimate (68) does not guaranty

approximation in the energy norm, especially when € << h.
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First, we emphasize that for € << h, the computed solution uy, .. is close to
the interpolant of w(x) = [ f(t) dt on [0, z,_1] and the energy error |u — up,|
could be large. Indeed due to the behavior of go = go(e, h) and g; = gj(e, h)
as ; — 0, we have

go — 1, and gj = @ + Bj — Bjt1 = X,

j—1.24)
and the convergence, in both cases, is exponentially fast. Here, Xliw o] is the
J—1:%j
characteristic function of [z;_1,x;]. This implies fast convergence in
Tj e
(71) M5, — tridiag(—1,1,0), and (f,g;) — f(z)dz, as 7 0.

Tj—1

Thus, if accurate quadratures are used, uy . is very close to the solution of

(72)  [tridiag(—1,1,0)|U = [/:1 f(z) d:c,...,/mnl f(2) dxr.

Tn—2

An immediate forward solve for the system gives

T
U; = z)dr, j=1,2,...,n— 1.
J f() y J ) )

0

This implies that, when ¢ << h, the computed solution uj . € M;, satisfies

z;
uh,c(xj)%uj—/ flz)dz, 7=1,2,...,n— 1.
0

Based on the above observation, we show that, for a particular example, the
energy error for the computed solution uy . does not present a well established
error order. We solve (2) for f =1 and b = 1. The exact solution is

e -1
u(z) =z — el .
e —1
In this case, (f, gj) =(1,95) =(1,pj) =h= fIJ x) dz is computed exactly.

For ¢ << h, e.g., > 36.05, the computed matrix M6 of the finite element
system (51) is trldlag( 1,1,0) and w(z) = x. Thus,

uh,c(xj) = Ty, j: 1,2,...,n—1.

Direct computation of |u — uy, .|* shows that

|2_1 l+el/e 21—ehe 1

v = e T TR e TR

Hence, for € << h,

(73) lu —up, >~ — — —.
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Thus, the error is large, and decreases slowly as h decreases.

Second, using the same arguments, fast convergence in (71) for e << h
and the solution of the limit system (72), the discrete UPG solution uj, = Ip,(u)
is also very close to Ij(w), hence to up,c.

For the same problem with f = 1, b = 1, elementary calculations give

1 +e1/€< 1 11— eh/f)

o 2: o 2:7 - =
fu = Tn()]” = |u —un|” = ———

2 h1l4e1e

which leads to . )
\u—uh|2%2—€—ﬁ, for e << h.

Not surprisingly, we obtained the same estimate for |u — uy¢|? in (73).

This example shows that, even though the exponential bubble UPG
method reproduces the exact solution at the nodes, the energy error could
be quite large for ¢ << h, for both the computed and the exact solution. The
large energy error is mainly related to the inability of the interpolant to ap-
proximate well the exact solution on uniform meshes and is less related to the
computation error in approximating wu; by wup .. The energy error improves if
we compute the error on subdomains away from the boundary layer.

7. REMARKS AND CONCLUSIONS FOR EXTENDING THE
RESULTS TO MUTI-DIMENSIONAL CASES

We analyzed and compared mixed variational formulations for a model
convection-diffusion problem. The key ingredient in our analysis is the repre-
sentation of the optimal norm on the trial spaces at the continuous and discrete
levels. The ideas presented for the one-dimensional model problem can be used
for developing new and efficient discretizations for the multi-dimensional cases
of convection dominated problems.

Below, we list the most useful ideas that our study concluded it help de-
signing new and more efficient discretization methods for convection dominated
problems in the multi-dimensional case.

I) First, we note that for any type of discrete variational formulation we
use to approximate the solution of (27), the discrete solution uy, is independent
of the norms we choose on the test and trial spaces. However, for the standard
linear test space method, the SPLS method and the UPG method, the discrete
optimal trial norm identifies what can be approximated with the given choice of
test and trial spaces. For example, for the standard linear test space method,
only a weighted energy norm e|u| can be used to measure the error. The
second part of the discrete optimal norm is a semi-norm that is weaker than
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the L2-norm, see (26). Consequently, we cannot expect an optimal L2-error
approximation for this discretization.

The weight for the energy norm improves from ¢ to & + ?h for the
quadratic UPG, see (53), and to % for the exponential UPG, see (67). As
shown by our results in (55) and (69), this improvement leads to better norm
estimates for the UPG discretizations.

IT) The continuous and discrete optimal trial norms and the dependence
co = co(g,h) in the error estimate (22) can predict approximability of the
continuous solution for the given choice of the discrete test and trial spaces.
For example, for the standard linear test space method, the norms (19) and (24)
are weak when compared to the standard unweighted H'-norm. In addition,
for e << h, ¢ = g could be very large. For the SPLS method ¢y = 1,
but the optimal continuous and discrete norms given by (19) are still weak.
However, the error approximation for the SPLS improves when compared with
the standard linear case, as presented in [5, 6].

IIT) We can choose the test space to create upwinding diffusion from the
convection part in the variational formulation as done in the bubble UPG
method. We can see how this idea works by comparing (28) and (44). The FE
upwinding process can be done at the basis level by adding locally supported
upwinding functions to each nodal function of the trial space. The upwinding
process leads to the elimination of the non-physical oscillation in the discrete
solutions, and to better approximation. The idea can be extended to the multi-
dimensional case.

IV) For the P! — P2-SPLS method, we have that the continuous and the
discrete optimal trial norms agree and have a simple representation, making
the error analysis more elegant. However, the UPG method performs better in
spite of the fact that the test space for the UPG is a subspace of the test space
C° — P? for the SPLS. The construction of a test space that creates upwinding
diffusion from the convection part and leads to a simple optimal discrete norm,
remains to be investigated even in the one-dimensional case.

V) According to recent work in [5, 15], the UPG method, the Streamline
Diffusion (SD) method, and the Upwinding Finite Difference (UFD) method
may lead to the same matrix of the resulting linear systems. For an UPG versus
SD comparison see [5], and for an UPG versus UFD comparison see [15]. In
spite of that, for both comparisons it was observed that UPG performs better
than SD, and better than UFD. This can be justified by the fact that the UPG
is a global variational method, SD is a local residual stabilization method, while
the UFD is a a particular version of the UPG method where the dual vector of
UPG is approximated by using a low order quadrature, such as the trapezoid
rule, see [15].
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We conclude by declaring the bubble UPG method as the most perfor-

mant discretization for the one-dimensional model, and we believe that the
ideas of the bubble UPG approach can be successfully extended to the multi-
dimenional case to outperform the existing methods for convection dominated
problems, in particular, the stream-line diffusion method.
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