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Abstract

Mean field games (MFGs) are developed to model the
decision-making processes of a large number of interact-
ing agents in multi-agent systems. This paper studies mean
field games on graphs (G-MFGs). The equilibria of G-MFGs,
namely, mean field equilibra (MFE) are challenging to solve
for their high-dimensional action space, because each agent
has to make decisions when they are at junction nodes or on
edges. Furthermore, when the initial population state varies
on graphs, we have to recompute MFE, which could be
computationally challenging and memory-demanding. To im-
prove the scalability and avoid repeatedly solving G-MFGs
every time when its initial state changes, this paper pro-
poses physics-informed graph neural operators (PIGNO).
The PIGNO utilizes a graph neural operator to generate popu-
lation dynamics, given initial population distributions. To bet-
ter train the neural operator, it leverages the physics knowl-
edge to propagate population state transitions on graphs. A
learning algorithm is developed and its performance is eval-
uated on autonomous driving games on road networks. Our
results demonstrate that the PIGNO is scalable and general-
izable when tested on unseen initial conditions.

Introduction
Multi-agent systems (MAS) are prevalent in engineering and
robotics applications. With a large number of interacting
agents in the MAS, solving agents’ optimal control could be
computationally intractable and not scalable. To solve this
challenge, MFGs are (Lasry and Lions 2007; Huang, Mal-
hamé, and Caines 2006) developed to model strategic inter-
actions among many agents who make dynamically optimal
decisions, while a population distribution is propagated to
represent the state of interacting agents. Since its inception,
MFGs have been widely applied to social networks, (Yang
et al. 2018), swarm robotics (Elamvazhuthi and Berman
2019) and intelligent transportation (Calderone and Sastry
2017; Huang et al. 2021; Cabannes et al. 2022).

MFGs are micro-macro games that bridge agent dynam-
ics and population behaviors with two coupled processes:
individuals’ dynamics solved by optimal control (i.e., agent
dynamic), and system evolution arising from individual
choices (i.e., population behaviors).
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In this work, we focus on a class of MFGs (Guéant 2015),
namely, mean field games on graphs (G-MFG) where the
state space of the agent population is a graph, and agents
select a sequence of nodal and edge transitions with a min-
imum individual cost. Solving these G-MFGs, however,
poses the following challenges: (1) With a graph-based state
space, the action space expands significantly encompassing
both nodes and edges, resulting in a high-dimensional search
space. More specifically, the decision-making of a represen-
tative agent in G-MFG consists of not only en-route choices
at nodes, but also continuous velocity control on edges sub-
ject to congestion effects. (2) Existing work mainly assumes
that the initial population distribution is fixed. The change
of initial population states leads to re-computation of mean
field equilibra (MFE), a task that requires computational and
memory resources and hinders the practicality of deploying
MFG solutions.

To address these challenges, this paper proposes a new
learning tool for G-MFGs, namely, physics-informed graph
neural operator (PIGNO). The key element is a graph neu-
ral operator (GNO), which can generate population dynam-
ics given the initial population distribution. To enhance the
training process, the GNO incorporates physics knowledge
regarding how agent and population dynamics propagate
over the spatiotemporal domain.

Related Work
Researchers have explored various machine learning meth-
ods, such as reinforcement learning (RL) (Guo et al. 2019;
Subramanian and Mahajan 2019; Perrin et al. 2022; Lauriere
et al. 2022), and Physics-Informed Neural Networks (PINN)
(Ruthotto et al. 2020; Carmona and Laurière 2021; Germain,
Mikael, and Warin 2022; Chen, Liu, and Di 2023a). How-
ever, it can be time-consuming and memory-demanding for
these learning tools to adapt to changes in initial popula-
tion density. Specifically, each unique initial condition may
require the assignment and retraining of a dedicated neu-
ral network to obtain the corresponding MFE. To enhance
the scalability of the learning framework for MFGs, Chen
et al. (Chen et al. 2023) introduced a physics-informed neu-
ral operator (PINO) framework. This framework utilizes a
Fourier neural operator (FNO) to establish a functional map-
ping between mean field equilibrium and boundary condi-
tions. However, the FNO fails to solve G-MFGs because



Figure 1: PIGNO for G-MFGs

it cannot directly project information over a graph into a
high-dimensional space and generate population dynamics
in the graph state space. Therefore, in this paper, we pro-
pose a graph neural operator (GNO) that learns mappings
between graph-based function spaces to solve G-MFGs. The
GNO leverages message passing neural networks (MPNNs)
to handle state space and propagate state information effi-
ciently by aggregating the neighbourhood messages.

Our contributions include: (1) We propose a scalable
learning framework leveraging PIGNO to solve G-MFGs
with various initial population states; (2) We develop a learn-
ing algorithm and apply it to autonomous driving games on
road networks to evaluate the algorithm performance.

Background
Mean Field Games on Graphs (G-MFG)
Mean field games on graphs (G-MFG) model population
dynamics and a generic agent’s optimal control on both
nodes and edges. A G-MFG consists of a forward FPK
and backward HJB equations, which are defined on a graph
G = {N ,L} as follows: A G-MFG with discrete time graph
states (Chen, Liu, and Di 2023b) is:

[G-MFG] :

(FPK) ρτ+1 = [P τ ]Tρτ , ρ0 ≡ ρ̃ (1a)

(HJB) V τ = min
u,β

P τV τ+1 + rτ , V T ≡ Ṽ (1b)

ρτ = [ρτij ]
T is the population density on each edge (i, j) ∈

L at time step τ . ρ̃ denotes the initial population density
over the graph. The Fokker–Planck (FPK) equation cap-
tures the evolution of population state on the graph. The
Hamilton–Jacobi–Bellman (HJB) equation captures the op-
timal control of a generic agent, including the velocity con-
trol on edges and route choice on nodes. V τ = [V τ

ij ]
T

is the value function at each edge. Ṽ denotes the termi-
nal cost. uτ = [uτ

ij ]
T denotes the exit rate at each edge,

which represents the agent’s velocity control. βτ = [βτ
ij ]

T

is the probability of choosing node j as the next-go-to node
at node i, i.e., route choice. rτ = [rτij ]

T is the cost in-
curred by the agent at time step τ . The transition matrix
P τ is determined by uτ and βτ . The MFE is denoted by
SOL([G-MFG]) = {ρ∗,V ∗,u∗,β∗}, satisfying Equ. 1.

Graph Neural Operator (GNO)
The graph neural operators (GNOs) are generalized neural
networks that can learn functional mappings between high-
dimensional spaces (Li et al. 2020). GNO utilizes an MPNN
to update space representation according to messages from
neighbourhood. In this paper, we adopt a GNO to establish
mappings between initial population state ρ0 and population
ρ∗ at MFE. We leverage the physics knowledge (i.e., FPK
and HJB equations) to train the GNO for solving MFE with
various initial population densities, eliminating the need to
recompute MFE.

Scalable Learning Framework
In this section, we propose a physics-informed graph neural
operator (PIGNO) to learn G-MFGs. Figure 1 illustrates the
workflow of two couple modules: GNO for population be-
haviors and HJB for agent dynamics. The GNO and the HJB
modules internally depend on each other. In the GNO mod-
ule, we estimate population density ρ0:T over the graph and
update the GNO using a residual defined by the physical rule
that captures population dynamics triggered by the transition
matrix defined in the FPK equation. In the HJB module, the
transition matrix P 0:T is obtained given the population den-
sity ρ0:T . We adopt backward induction (Perrin et al. 2021)
to solve the HJB equation since the dynamics of the agents
and the cost functions are known in the MFG system. We
now delve into the details of the proposed PIGNO.

PIGNO for Population Behaviors
The PIGNO learns a mapping between the initial population
distribution and the population distribution over the graph



from time 0 to T . The input of PIGNO is the initial popula-
tion density ρ0 along with the transition information to prop-
agate population dynamics. The output of PIGNO is the pop-
ulation dynamics over the spatiotemporal domain, denoted
by ρ̂ ≡ ρ̂0:T . The PIGNO is instantiated as the following
MPNN: ∀(i, j) ∈ L, τ = 0, 1, ..., T

ρ̂τij = ρθ(ρ
0
ij ,

X
∀(k,l)∈Lτ

ij

κϕ(ρ
0
ij , ρ

0
kl, e

τ
ij,kl)) (2)

where, ρ̂τij is the population density of edge (i, j) at time
τ , Lτ

ij is the set of neighbourhood edges of edge (i, j) at
time τ , κϕ is the graph kernel function for ρθ, eτij,kl denotes
the cumulative message used to propagate population dy-
namics from time 0 to time τ . eτij,kl indicates the ratio of
population entering from edge (k, l) to edge (i, j) till time
τ , which is determined by the ratio of population exiting the
edge (k, l) (i.e., the velocity control u) and the ratio of pop-
ulation choosing the edge (i, j) as the next-go-to edge (i.e.,
the route choice β). The MPNN utilizes the initial popula-
tion distribution and the message to propagate population
dynamics in the G-MFG system. The neighbourhood mes-
sage is transformed by a kernel function κϕ and aggregated
as an additional feature to estimate population density.

The PIGNO adopts a physics-informed training scheme,
which combines both model-driven and data-driven meth-
ods. The training of PIGNO is guided by the residual
(marked in red in Figure 1) determined by physical rules of
population dynamics. Mathematically, the residual rθ is:

rθ =
1

|ρD|
X

ρ0∈ρD

Lρ0 , (3)

where, the set ρD contains various initial densities over the
graph. Lρ0 is calculated as:

Lρ0 = α0·
1

T

T−1X
τ=0

||ρ̂τ+1−[P τ ]T ρ̂τ ||+α1·||ρ̂0−ρ0||2, (4)

The first term in Lρ0 evaluates the physical discrepancy
based on Equ. 1a. It integrates the residual of the FPK equa-
tion, ensuring that the model adheres to established laws of
motion. When predicted ρ becomes closer to ρ∗ satisfying
the FPK equation, the residual gets closer to 0. The second
term quantifies the discrepancy between the estimations and
the ground truth of the initial density. The observed data
comes from the initial distribution of population ρ0. The
training of ρθ based on observed data follows the traditional
supervised learning scheme. α0 and α1 are the weight coef-
ficients.

Solution Approach
In this section, we present our learning algorithm (Alg. 1).
We first initialize the PIGNO ρθ, parameterized by θ. Dur-
ing the ith iteration of the training process, we first sample
a batch of initial population densities ρ0. We use each ρ0 to
generate the population density over the entire domain ρ̂0:T .
Given ρ̂0:T , we obtain the spatiotemporal transition P for

Algorithm 1: PIGNO-MFG

1: Initialize: PIGNO ρθ parameterized by θ;
2: for i← 0 to I do
3: Sample a batch of initial population densities ρ0

from the set ρD of density distribution;
4: Generate ρ̂0:T (i) using the PIGNO ρθ corresponding

to each ρ0 in the batch;
5: for each ρ̂0:T (i) generated by ρθ do
6: Obtain P 0:T−1(i) by solving the HJB.
7: end for
8: Obtain residual rθ(i) according to Equ. 3;
9: Update the PIGNO ρθ;

10: Check convergence (Equ. 5).
11: end for
12: Output MFE

all nodes on the graph by solving the HJB equation. We then
update the parameter θ of the neural operator according to
the residual. At the end of each iteration, we check the con-
vergence according to:P

ρ0∈ρD |ρ̂0:T (i) − ρ̂0:T (i−1)|
|ρD|

< ϵ (5)

Numerical Experiments
In this section, we employ our algorithm to facilitate au-
tonomous driving navigation in traffic networks. As illus-
trated in Figure 3, a substantial number of autonomous ve-
hicles (AVs) move to destination node 4, with an objective
to minimize total costs subject to the congestion effect. We
use a representative agent as an example to elaborate on
the speed control and density dynamics of the population
in this scenario. At node 1, the representative agent first se-
lects edge l12. The agent then drives along edge l12 and se-
lects continuous-time-space driving velocities on the edge.
The agent selects her next-to-go edge at node 2, following
this pattern until she reaches her destination at node 4. These
choices regarding her route and speed actively will influence
the evolution of population density across the network. The
mathematical formulation of this autonomous driving game
can be found in (Chen, Liu, and Di 2023b).

Figure 3: Autonomous driving game on the road network

We construct the initial population state over the network
as follows: We assume at time 0, the traffic network is empty.
Vehicles enter the road network at origin nodes 1, 2, 3 and
move toward the destination 4. Travel demands at each ori-
gin satisfy di ∼ Uniform[0, 1], i = 1, 2, 3. Therefore, each
initial population distribution over the network consists of



(a) 1 → 2 → 3 → 4 (b) 1 → 2 → 4, demand: .6, .4, .2 (c) 1 → 3 → 4

(d) 1 → 2 → 3 → 4 (e) 1 → 2 → 4, demand: .4, .4, .4 (f) 1 → 3 → 4

(g) 1 → 2 → 3 → 4 (h) 1 → 2 → 4, demand: .2, .4, .6 (i) 1 → 3 → 4

Figure 2: Population density ρ∗ along each path on the road network with various travel demands [d1, d2, d3]

travel demands at origins (i.e. [d1, d2, d3]), which are sam-
pled from three independent uniform distributions.

Figure. 4 demonstrates the convergence performance of
the algorithm in solving G-MFG. The x-axis represents the
iteration index during training, the y-axis displays the con-
vergence gap and the 1-Wasserstein distance, which mea-
sures the closeness between our results and the MFE ob-
tained by numerical methods (Chen, Liu, and Di 2023b).
The results demonstrate that our algorithm is able to con-
verge stably after 50 iterations.

(a) Convergence gap (b) W1-distance

Figure 4: Algorithm performance

Figure 2 demonstrates the population density at MFE
along three paths on the road network, i.e., (1 → 2 →
3 → 4), (1 → 2 → 4), and (1 → 3 → 4). The x-axis
is the spatial position on the path and the y-axis represents
the time. The z-axis represents the population density ρ∗

at MFE. The running cost functional form follows a non-
separable cost structure with a crossing term of the agent



action and the population density. We visualize the popula-
tion density at MFE in G-MFG with three initial population
states, which are constructed by travel demands [d1, d2, d3]:
[.6, .4, .2] (See Figure 2a, 2b, 2c), [.4, .4, .4] (See Figure 2d,
2e, 2f) and [.2, .4, .6] (See Figure 2g, 2h, 2i).

Conclusion
In this paper, we propose a scalable learning framework G-
MFGs. We apply PIGNO to estimate the population dynam-
ics. We demonstrate the efficiency of this method in au-
tonomous driving games. Our contribution lies in the scal-
ability of PIGNO to handle various initial population den-
sities without recomputing MFEs. Our framework offers a
memory, data-efficient approach for solving G-MFGs.
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