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We investigate multivariate bootstrap procedures for general stabilizing
statistics, with specific application to topological data analysis. The work re-
lates to other general results in the area of stabilizing statistics, including cen-
tral limit theorems for geometric and topological functionals of Poisson and
binomial processes in the critical regime, where limit theorems prove difficult
to use in practice, motivating the use of a bootstrap approach. A smoothed
bootstrap procedure is shown to give consistent estimation in these settings.
Specific statistics considered include the persistent Betti numbers of Cech
and Vietoris—Rips complexes over point sets in RY, along with Euler char-
acteristics, and the total edge length of the k-nearest neighbor graph. Special
emphasis is given to weakening the necessary conditions needed to establish
bootstrap consistency. In particular, the assumption of a continuous underly-
ing density is not required. Numerical studies illustrate the performance of
the proposed method.

1. Introduction. In recent years, a multitude of topological statistics have been devel-
oped to describe and analyze the structure of data, achieving notable success. These methods
have seen application in astrophysics [1, 36-38], cancer genomics [2, 9, 19], medical imag-
ing [17], materials science [24], fluid dynamics [25], chemistry [46], and other wide ranging
fields [44].

The use of simplicial complexes to summarize geometric and topological properties of data
culminates in the techniques of persistent homology. Summary statistics based on persistent
homology, persistent Betti numbers, persistence diagrams and derivatives thereof effectively
extract essential topological properties from point cloud data. A broad introduction to the
methods of topological data analysis can be found in [3, 5, 10, 14, 16, 20, 45].

While the use of such statistics has seen wide success, very little is currently known about
the statistical properties of these topological summaries. An initial attempt at statistical anal-
ysis using persistent homology can be seen in [8], with the later introduction of persistence
landscapes in [7]. Likewise, central limit theorems have been developed for persistence land-
scapes [12], Betti numbers [48] and persistent Betti numbers [22, 27] under a variety of
asymptotic settings. However, the form of these results is insufficient to provide for valid
confidence intervals.

For the construction of asymptotically valid confidence intervals, subsampling and boot-
strap estimation have proven successful. In [21], various techniques are given for construct-
ing confidence sets for persistence diagrams and derived statistics, including persistence di-
agrams generated from sublevel sets of the density function, as well as for the Cech and
Vietoris—Rips complexes of data constrained to a manifold embedded in R¢. In [12, 13],
bootstrap consistency is established very generally for persistence landscapes drawn from in-
dependently generated point clouds in R?, assuming that the number of independent samples
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is allowed to grow. Finally, [11] considers subsampling for novel topological statistics in the
multi-sample regime. Related results are found in [15, 31, 32].

However, even with these recent developments, the available techniques for constructing
confidence sets using topological statistics remain severely limited. The bootstrap has proven
one of the only effective tools; however, the theoretical properties of bootstrap estimation
applied to topological statistics are not well understood. For the large-sample asymptotic
regime, in particular, results are largely nonexistent.

The goal of this work is to provide the foundational theory for the bootstrap in this area.
We use the smooth bootstrap, rather than a standard bootstrap for reasons described below.
The validity of the smooth bootstrap in the multivariate setting is established, a key step
toward an eventual process-level result. However, the latter remains a significant technical
hurdle. While motivated primarily by application to topological data analysis, the results
presented here apply much more generally over a class of stabilizing statistics. As defined
in [33], a statistic stabilizes if the change in the function value induced by addition of new
points to the underlying sample is at most locally determined. This concept has lead to many
developments in topological data analysis [22, 27, 42, 47, 48] and geometric probability, as
discussed in more detail below.

Our general result allows the analysis of large-sample asymptotic properties of the boot-
strap applied to Betti numbers and Euler characteristics over Cech and Vietoris—Rips com-
plexes directly, where the underlying point cloud is a sample drawn from a common distri-
bution on R?. Another application is the convergence for the bootstrap applied to the total
edge length of the k-nearest neighbor graph. Throughout this work, a special focus is given
toward weakening the necessary assumptions compared to previous results. Specifically, the
theorems presented here apply for distributions with unbounded support, unbounded density
and possible discontinuities. We assume only a bound for an appropriate L ,-norm of the
underlying sampling density.

The first half of this paper considers stabilizing statistics in general. Section 2 introduces
the concept of stabilization, establishes intermediate technical results and presents our general
bootstrap consistency theorem. The second half introduces the main topological and geomet-
ric statistics of interest to which the general theory is applied. In particular, Section 3 connects
the general theory to persistent homology and related statistics. Toward this end, a short in-
troduction to simplicial complexes and persistent homology is presented. Section 4 analyzes
the stabilization properties of persistent Betti numbers and Euler characteristics for general
classes of distance-based simplicial complexes. Bootstrap consistency is established for each,
as well as for the total edge length of the k-nearest neighbor graph. Section 5 and Appendix
A [40] present numerical studies (simulations and a real data application), demonstrating the
finite-sample properties of the smoothed bootstrap applied to persistent Betti numbers. The
source code is available at github.com/btroycraft/stabilizing_statistics_bootstrap [39]. The
proof of all results can be found in Section 7 and Appendix B [40]. Appendices B and C
[40] contain supporting results, including a characterization of L ,-norm consistency for the
kernel density estimator, which is an interesting result in its own right.

2. Stabilizing statistics.

2.1. Central limit theorems for stabilizing statistics. Before proving bootstrap conver-
gence, we give a brief overview of the existing work regarding stabilizing statistics. For the
precise definitions used throughout this paper, see Section 2.2.

In the seminal work of [33], a stabilization property was first formally defined. In short,
we say that a functional ¥ defined on point sets in RY stabilizes if the cost of adding an
additional point, or a set of points, to the point cloud varies only on a bounded region. Specific
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definitions differ by context (precise definitions are given below). Penrose and Yukich [33]
use this concept to prove central limit theorems for certain types of geometric functionals,
including the length of the k-nearest neighbor graph and the number of edges in the sphere
of influence graph. This initial work distilled two properties key to showing central limit
theorems for geometric functionals: a stabilization property and a moment bound.

In [33], the authors distinguish between two data generating regimes: A homogenous Pois-
son process over R? and a binomial process, the latter being equivalent to an i.i.d. sample of
fixed size from an appropriate probability distribution. Here, the functional under considera-
tion is restricted to a bounded domain B,, of volume 7, where n is allowed to increase. In this
initial work, only homogenous Poisson processes and uniform binomial sampling are consid-
ered. In [34], a similar framework is used to establish laws of large numbers for graph-based
functionals, including the number of connected components in the minimum spanning tree.
Further quantitative refinements on the general central limit theorems for stabilizing statistics
are shown in [28, 29] and [30].

As pertains to topological statistics, an initial central limit theorem for Betti numbers (see
Section 3.2 for definitions) was shown in [48], establishing so-called “weak stabilization” for
Betti numbers in the homogenous Poisson and uniform binomial sampling settings. There an
alternative set-up is being used where the domain is kept fixed, while the filtration parameter
is decreasing to zero. A similar result for persistent Betti numbers is given in [22].

Finally, [27] establishes multivariate central limit theorems for persistent Betti numbers
under a flexible sampling setting. Here, a nonhomogeneous Poisson or binomial process is
generated again over a growing domain with fixed filtration radii.

With these central limit theorem results, the stabilization property plays a central role in
understanding the asymptotic behavior for wide classes of geometric and topological func-
tionals. Unfortunately, as a reoccurring trend, explicit forms for the asymptotic normal dis-
tributions are unavailable or computationally intractable. In this work, it is shown how a
smoothed bootstrap procedure allows for consistent estimation of these inaccessible limiting
distributions, and thus for any subsequent inference derived therefrom.

2.2. Stabilization. Here, we extend and rephrase existing definitions found in [33, 34,
48] and [27] to provide a more general and consistent statistical framework. Let X denote the
space consisting of multisets drawn from R with no accumulation points, with the further
restriction that no point in a given multiset may be counted more than finitely often. Any
locally-finite point process on R? can be represented as a random element of X. Let XcC
A contain the finite multisets drawn from R? and 1 : X — R be a measurable function.
Furthermore, for S, T € X define the addition cost of T to S as D(S; T) := ¥ (SUT) —y(S).
When T = {z} consists of a single point, we call

D,(S) =¥ (SU{z}) — ¥ (S)

an add-one cost or the add-z cost. Broadly, we say that v stabilizes if the addition cost of
a given T varies only on a bounded region. Examples for functionals ¥ of interest, such as
persistent Betti numbers, Euler characteristics or the length of the k-nearest neighbor graph,
are discussed in Sections 3.3 to 3.5.

In the preceding literature, the terms “strong” and “weak” stabilization are very often used,
with precise definitions changing based on circumstance. In the interest of providing more
explanatory and specific terminology, we propose the below definitions.

There, almost-sure and locally-determined almost-sure stabilization (see Definitions 2.4
and 2.6) correspond, respectively, to Definitions 3.1 and 2.1 in [33]. Here, we have general-
ized by accounting for possible measurability issues, however, the definitions are essentially
equivalent. Let B, (r) denote the closed Euclidean ball centered at z € R with radius r. For
convenience, the dependence on v is implicit in each of the following.
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DEFINITION 2.1 (Terminal addition cost). D%°: X — R is a terminal addition cost of
T € X centered at z € R? if

D*(S;T)= lim D(SNB,(£); T)
{—00
for any S € X such that the limit exists.

For a finite multiset S € X, the terminal addition cost centered at z € RY is D*>°(S;T) =
D(S; T), because no changes may occur once SN B,(a) = § for a > 0 sufficiently large. The
same does not hold for infinite multisets, motivating a separate definition. In the special case
where T = {z} is a singleton containing the center point z € R?, the notation D?Z° may be
used, and will appear throughout the remaining sections of the paper.

DEFINITION 2.2 (Stabilization in probability). For a given center point z € R, T X
and point process S taking value in X, Y stabilizes on S in probability if there exists a
terminal addition cost D for i such that

Jim P*[D(SN B-(6): T) # D(8: T)] = 0.

Here, P* denotes the outer probability of a set. Stabilization is said to occur in probability
because, for any sequence of nonnegative radii (¢;);en such that lim;_, o, £; = 0o, D(S N

B,(¢4;); T) L D®°(S; T) whenever both quantities are measurable. D is unique up to a null
set in this case. Stabilization in probability is difficult to show directly for many functionals
of interest. As such, we have the following.

DEFINITION 2.3 (Radius of stabilization). Given T € X , p: X — [0, 00] is a radius of
stabilization for ¥ centered at z € R? if, for any S € X and L € R such that p(S) < L < oo,

D(SNB.(L);T)=D(SNB.(p(S)): T).

Here, D°°(S; T) := D(S N B,(p(S)); T) is a valid terminal addition cost. Note that, in
the case where limy_, o, D(S N B;(£); T) does not exist, p(S) = oo necessarily, with the
stabilization criterion being satisfied vacuously. When T = {z}, we denote p = p;.

In general, forany ¥, T € X and center point z € R?, there exists a unique minimal radius
of stabilization, defined as the pointwise minimum over all such radii sharing the same center
point z. This minimum exists because ¥ (S N B;(£)) is piecewise constant in £, changing
value only when a new point of S is added, and because S has no accumulation points.

DEFINITION 2.4 (Stabilization almost surely). For S, a point process taking values in X,
Y stabilizes on S almost surely if there exists a radius of stabilization p: X — [0, oo] for ¥
centered at z € R such that

lim P*[p(S) > £] =0.
{— 00

Mirroring our previous terminology, we say stabilization occurs almost surely because,
for any sequence of nonnegative radii (¢;);en such that ¢; — oo, D(S N B;(¢;); T) s
D*®°(S; T) = D(S N B;(p(S)); T) whenever both quantities are measurable. Here, we use
outer probability, because a radius of stabilization may not be a measurable function, specifi-
cally in the case of the unique minimal radius. Almost sure stabilization implies stabilization
in probability, as shown in the following.
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PROPOSITION 2.5. For S, a simple point process taking values in X, let  stabilize on
S almost surely. Then  stabilizes on S in probability.

For our proof techniques, it is often necessary to compare the stabilization properties of
a function over a range of related point processes. For example, corresponding binomial
and Poisson processes can be shown to have essentially equivalent local properties, while
differing globally. This motivates the following.

DEFINITION 2.6 (Locally determined radius of stabilization). A radius of stabilization
p centered at z € RY is locally determined if for any S, S’ € X,

S'NB.(p($)=SNB(p(S) = p(S)=p(S).

With the local-determination criterion from Definition 2.6, we can assure that stabilization
must occur simultaneously on any two point processes, which are locally equivalent. As in
the nonlocally-determined case, there exists a unique minimal locally-determined radius of
stabilization.

PROPOSITION 2.7. For R, the set of locally-determined radii of stabilization for  cen-
tered at 7 € R, let p*: X — [0, 0o] such that p*(S) = inf,er p(S). Then p* is a locally
determined radius of stabilization for \ centered at z.

2.3. Technical results. Let F and G be distributions on R? with densities f := dF/dA
and g := dG/dA, respectively, where A is the Lebesgue measure on R?. F will be used to

refer to a fixed central distribution, whereas G may be arbitrary. Let (X;);eN S F. Then
for any n € N define the binomial point process X, := {X;}!_,, with X’ ~ F independent
of the (X;)ien. Similarly, given (Y;);en S G, for any n € N let Y, := {Y;}7_, denote the
corresponding binomial process, and let Y’ ~ G be independent of the (Y;);en.

Let | - ||§ := [pa | - |” di. We will use the following moment assumptions, where the addi-

tion cost D is based on a measurable function ¥ : X — R:

(E1) For some p > 2,

lim lim su supE[D a/-y (/1Y 21{|D 4 (/nY,)| > k}]=0.
6—>0k—>oog:”g7‘?”p58n€§ [ \/ﬁY( ”) {| ﬁY( n)‘ }]

(E2) There exist some R, U € R and u > 0 such that for any S € X and y € R4,
|Dy($)| <U(1 +#{SN By(R)}").

(E1) is primary, describing a moment bound that holds uniformly in the sample size n and
distribution G, within a neighborhood of the central data distribution F. Alternatively, (E1)
represents a form of uniform integrability. However, the form of (E1) follows purely from
technical necessity. A strictly stronger, but more concrete moment condition is as follows.

STATEMENT 2.8. For some p > 2, there exist a > 2 and § > 0 such that

sup  SUpE[|D gy, (¥ Yn)|"] < co.
g: llg—fllp<dneN

It may be shown that (E1) follows immediately from Statement 2.8 and Holder’s inequality.
Statement 2.8 is closely related to the “uniform bounded moments” condition, Definition 2.2
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in [33]. In the context of the topological statistics considered later in this work, (E1) is pri-
marily useful for proof purposes, and is instead established via the intermediate (E2) (see
Lemma 2.9), which directly relates the addition cost to a local count within the underlying
point set. However, as will be seen with the case of the k-nearest neighbor graph (Corol-
lary 4.7), there exist useful statistics which cannot be deterministically controlled via (E2),
and the more general probabilistic condition must be established directly.

LEMMA 2.9. Let ¥ satisfy (E2). Then the following hold:

L If || f llmax(2u+1,2) < 00, then r satisfies (E1).
2. If || f llmax{p,2) < o0 for some p > 2u + 1, then  satisfies Statement 2.8.

Next, we formulate the required stabilization conditions. Recall that X, and Y, denote
the binomial point process with densities f and g, respectively, where f is the fixed density.
Furthermore, X’ ~ f, Y’ ~ g are independent of X,, and Y,,, respectively.

(S1) There exists a sequence (€5)s>0 such that lims_,o €5 — 0 and

lim sup  sup IP’[D%Y,<(%Y,,) N Bg’/ﬁw({%?)) £ D%Y,(%Yn)} =0.

5=0g: |lg—flla<8 neN

(S2) There exist locally-determined radii of stabilization (p;),cga for v satisfying

. B d _
Elggo:lelg]? [p%x,(ﬁXn) > (] =0.

(S1) and (S2) can be summarized as uniform stabilization conditions, either in probabil-
ity or almost surely. (S1) mainly serves to weaken the necessary conditions providing for
bootstrap consistency. We have the following lemma linking (S1) and (S2).

LEMMA 2.10. Let ¢ satisfy (S2). Then if || f||» < 0o, ¥ satisfies (S1).

The quantities appearing in (S1) and (S2) can often be greatly simplified. For example, if
Y is translation-invariant, given a radius of stabilization pg and addition cost Dy centered at
the origin, corresponding quantities can be constructed for any other center point z € R? via
translation.

The next lemma provides a convenient tool for “de-Poissonizing” a locally-determined
radius of stabilization. Often it is easier to first establish stabilization properties on a homo-
geneous Poisson process than on a binomial process directly, and Lemma 2.11 allows us to
extend Poisson results to the binomial setting, for instance as is required for Lemma 4.1 and
Corollary 4.7. Let P, denote a homogeneous Poisson process on R¢ with intensity A.

LEMMA 2.11. Let V¥ be translation-invariant with a locally-determined radius of stabi-
lization pg and || f |2 < 0o. Suppose that for any given a, b, > 0 there exist some L < 00
and measurable A C X such that

Py {(L,ool) S A and  sup P[P, € A]<56.
A€la,b]

Then for any § > O there exist some ng € N and L < 0o such that

sup P*[po(¥/n(X, — X)) > L] <.

n=ngo
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Note that the conclusion of Lemma 2.11 is not the same as (S1), only applying for n > ng.
Some extra effort is required for the conclusion to hold for all » € N. We come now to
an important proposition, the main supporting result for our general bootstrap consistency
theorem, Theorem 2.13.

PROPOSITION 2.12.  Let i satisfy (S1) and (E1) with || f||, < oo. Then there exists a
coupling between (X;)ieN and (Y;)ieN depending on G such that

(W (YY) - (%Xn))]sy(ng—fnp),

sup Var

s 50

where the rate function y : Ry — R is increasing and depends only on f and p such that
lims— oy (8) =

The proof of this result is provided in Section 7. For any two distributions £1 and £, on
R, we may define the 2-Wasserstein distance between £1 and £, as

Wali L= [, inf  E[U V)]

where it is assumed that U and V follow a joint distribution with marginals £ and £;. For
L denoting the law or distribution of a random variable, the variance given in the conclusion
of Proposition 2.12 is an upper bound for

W3 (L{n~2 (y (YnXn) — B[y (VnXa)])}. £{n~2 (¢ (YnYa) — E[Y (YnY.)])).

Consequently, Proposition 2.12 shows that this W5-distance can be made arbitrarily small
uniformly over a neighborhood of distributions around F. An appropriately smoothed em-
pirical distribution falls within such a small neighborhood with high probability, given suffi-
ciently large sample sizes.

Furthermore, it can be seen that Proposition 2.12 extends directly to finite sums. Given any
(A)*_, and (B;)*_,, we have that Var[Y5_; A; — Y| Bi/] <k Y¥_, Var[A; — B;]. Thus, if
the conclusion of Proposition 2.12 holds for any finite set of functions, (wi)f.;l, it also holds
for Zf: | Vi, with rate depending on the worst case ;.

It should be noted that (S1) is slightly stronger than necessary to establish Proposition 2.12.
As stated, D Yy ((¥nY,) N B Yy (l¢)) itself is compared to the terminal add-one cost

D %Y/((i/ﬁYn). As could be useful for some statistics, it is only required that an appropriate
bound displays the desired stabilization property, see the provided proof for details.

2.4. Smoothed bootstrap. The bootstrap is an estimation technique used to construct ap-
proximate confidence intervals for a given population parameter. In cases where asymptotic
approximations for the sampling distribution of a statistic are inconvenient or unavailable,
bootstrap estimation provides a general tool for constructing approximate confidence inter-
vals. Bootstrap estimation is well studied in the statistical literature, an introduction being
provided in [35]. In this section, we will show consistency for a smoothed bootstrap proce-
dure in estimating the limiting distribution of a standardized stabilizing statistic in the multi-
variate setting. We describe the general bootstrap procedure below.

Let X, = {X;}i_, Y . We estimate the sampling distribution of

—( ¥ (VnX,) — B[y (VnX,)])

&|
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using a plug-in estimator F, for the underlying data distribution F. In the standard non-
parametric bootstrap, we estimate F by the empirical distribution, giving probability to each
unique value of X, proportional to the number of repetitions. We have the bootstrap statistic

1
ﬁ(w(wx,’;) — E[y (VmX,)1Xx]).
where X = {X7}, nd F,, conditional on X,,. The sampling distribution of the bootstrap
analog provides an estimate for the distribution of the original statistic, which in the ideal
case converges to the truth in the large-sample limit. Confidence intervals for E[v (&/nX;,)]
are then constructed from the bootstrap distribution and ¥ (&/nX,,).

However, as will be seen in Section 4.1, for some classes of topological statistics the stan-
dard bootstrap may not directly replicate the correct sampling distribution asymptotically.
Consequently, we instead estimate F by a smoothed distributional approximation. Such a
smoothed bootstrap procedure can be shown to provide consistent estimation, even when the
standard nonparametric bootstrap may fail.

To define the smoothed bootstrap sampling procedure outlined here, recall first that F
has a density f :=dF/dA. Let f,, be a given estimator of f derived from X, and F, the
corresponding probability distribution. Conditional on X,,, we draw bootstrap samples X,
independently from E,. A particular choice of fn is given by a kernel density estimator
(KDE). For a kernel function Q: R — R and bandwidth & > 0, the KDE of f(x) based on
the sample (X;)7_, is fun(x) 1= 1/(nh?) 1) Q((x — X;)/ h).

In practice, when Q corresponds to a probability density, the KDE allows for convenient
sampling, as is required in later computational steps. Generating a sample following fn? nis
equivalent to first drawing from the empirical distribution on X,,, then adding independent
noise following the distribution defined by Q, scaled first by the bandwidth 7. Other density
estimators, including those using higher-order kernels, may not facilitate efficient sampling.
However, the theory established here supports the use of any density estimator, which meets
the required convergence criteria, implementation difficulties aside. More complicated data-
dependent estimators are also possible, falling under a similar sampling framework. See Sec-
tions 5 and Appendix A [40] for specifics on density estimation as pertains to this work from
a practical perspective. In algorithmic form, the bootstrap procedure for producing a nominal
level-y confidence interval for E[y (¢/nX,)] is as follows:

Smoothed Bootstrap Procedure

1. Given X, = {X1,..., Xp} ~ F and ¢ (X,,)

2: GenerateX* ...,X*’ ~ F,

3: Calculate {—— (w(fx 11//(fX ))}g}‘:1

4: Calculate sample quantlles q(oq) q(l — ap) such that y=1—a;—a

return (V (/nX,) — /nq(1 —az), ¥ (¥nX,) — /nq(ay))

Similar algorithms can be used to produce simultaneous coverage sets for multivariate
statistics. We now present our main result; the theorem establishes consistency for a smoothed
bootstrap in the multivariate setting. The result is given for a vector w of stabilizing statis-
tics. In the context of the topological statistics introduced in Section 3, this can be the per-
sistent Betti numbers or Euler characteristic evaluated at different filtration parameters or
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feature dimensions. Given a probability distribution F on R? with density f :=dF/dx, let
iid . A .

(X)ieN ~ F, with X, := {X;}_, for any n € N. f;, denotes an estimate of f such that each

of the relevant quantities are measurable, and W is a limiting multivariate distribution.

THEOREM 2.13. Suppose 1Zr: X — R has component functions X>R 1< Jj=<

k satisfying (E1) and (S1) with || f |2 < 0o. Furthermore, let fn be such that ||fn —fllp,—>0
in probability (resp., a.s.) as n — 00. For any m € N, we have a corresponding bootstrap
sample X5 = {X7}/L, S 13“"|Xn. Then for any sequence (my)yeN Such that limy,_, oo m, =
ooa

1
n

(IZ(%X”) - E[&(%Xn)]) —d> v

Bl

if and only if
1
N

Theorem 2.13 establishes the asymptotic validity of bootstrap estimation for a range of
stabilizing statistics with only very mild conditions on the underlying density. However, it
should be noted that further restrictions on the density and density estimate may be required to
satisfy Statement 2.8 and (S1); see Corollary 4.7 for example. Proposition C.1 [40] considers
the convergence of || fn n, — fllp for p > 2, either in probability or almost surely. This result
is outside the main contribution of this paper, but is interesting in its own right. Notably, no
conditions are placed on the density f except || f||, < oo.

As a point of caution, it is known that kernel density estimators suffer from a curse
of dimensionality. The convergence properties of the density estimator fn appear implic-
itly within the necessary assumptions for Theorem 2.13. In particular, diminishing perfor-
mance can be expected in higher dimensions, as shown by the provided simulations of Sec-
tion 5.

The above result holds for any choice of m,, such that lim,,_, oo m, = 00, and is stated as
such for the sake of generality. In practical application, m, = n is standard, and will be used
throughout the simulation and data analysis sections of this paper. However, given that the
computational complexity of ¥ often grows quickly with n, using a smaller m,, could prove
more feasible from a computational perspective.

Strictly speaking, convergence to a limiting distribution is not required for the bootstrap to
provide asymptotically valid confidence intervals. Proposition 2.12 gives that, with high prob-
ability, the smoothed bootstrap and true sampling distributions become close in 2-Wasserstein
distance. For ¥,, := (¥ (¢/nX,,) — E[&((’/EXH)]) /+/n, provided that the cumulative distribu-
tion functions Fy, has the property

(&(f/m_nx;;n) - E[@((’/m_nX;nMXn]) S i probability (resp., a.s.).

lim limsup sup |Fy, (x +8) — Fy, (x)| =0,
1810 n—>o00 epd

it can be shown that confidence intervals constructed from the bootstrap statistic still achieve
the stated confidence level with high probability, given a sufficiently large sample. Conver-
gence to a continuous limiting CDF is just one way to satisfy this condition. However, this
extension is unavailable for the topological statistics considered here, since the distributional
behavior of the finite sample statistics is currently very poorly understood.

In the later sections, we will show that the necessary moment and stabilization conditions
for Theorem 2.13 are satisfied for several specific statistics of interest, chiefly the Euler char-
acteristic and persistent Betti numbers for a class of simplicial complexes.
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F1G. 1. Visualization of a simplicial complex. Simplices up to dimension q = 2 are included, represented by
vertices (g =0), edges (q = 1) and triangles (q = 2), respectively.

3. Simplicial complexes and persistence homology.

3.1. Simplicial complexes. Given a vertex multiset S, each subset o = {x;,, ..., x; . a1 C
S is called a g-dimensional simplex (over S), or simply a g-simplex. An abstract simplicial
complex K over S is a collection of simplices, such that (i) {x} € K for all x € S, and (ii)
if o € K and v C o then T € K. Notice that geometrically a k-dimensional simplex T with
T C o can be thought of as a face of o, meaning that with every simplex all of its faces are
included in the complex, and also all the faces of its faces. A filtration of simplicial com-
plexes KK = {K"},¢R is a collection of simplicial complexes with K" C K’ for r < t. For
a given simplicial complex K, K, denotes the subset of K consisting of all g-simplices
{vi,..., 441} C V, consisting of g + 1 vertices. A graph or network is a simplicial com-
plex consisting of only 1-simplices (edges) and O-simplices (vertices). A visualization of a
simplicial complex can be found in Figure 1, including features of dimension up to g = 2.

We will be looking at simplicial complexes constructed over point clouds S  R¢. The
two prime examples are the Cech and Vietoris—Rips complexes:

Ki(S)={ocS: Iz eRY st lz—x||<rVxeo},
Kyr($)={o CS: |x =yl <2rVx,yeo}.

Each of these complexes summarizes the geometric and topological properties within a
given point cloud S. The Vietoris—Rips complex can be considered a “completion” of the
Cech complex, insomuch that the Vietoris—Rips complex is the largest simplicial complex
with the same edge set as the Cech complex. While the primary motivation for the results
given here is application to the Cech and Vietoris—Rips complexes, our main results apply for
a range of possible complexes. For example, for computational reasons it is often convenient
to limit the number of simplices present within the final complex. As such, we have two
approximations, the alpha complex and its completion,

Ki(S)={0CS:3zeR¥ st ||z —x| <rand|lz—x| <|z—y| Vx €0 Vye S},
() ={oCS: {x,y} € KL(S) Vx,y e}

These complexes avoid adding simplices between disparate points, controlling the total
size of the complex. It has been shown that the alpha and Cech complexes share equivalent
homology groups. However, for the completion, denoted here as the alpha* complex, there is
no such relationship. The alpha complex is a subcomplex of the Cech complex as well as the
Delaunay complex,

Kp(S)={ocCS:3zeR¥st. [|z—x||<z—yVxeo VyeS)
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3.2. Persistent homology. Now, of chief interest are the topological properties for a given
simplicial complex. Both the Cech and Vietoris—Rips complexes reflect the structure present
within an underlying point cloud. As such, the topology of each provides an effective sum-
mary statistic for describing the structural properties of a data set in R¢. The following pro-
vides a short introduction to homology and persistence homology as used in topological data
analysis.

Define C(K) to be the free Abelian group generated by the simplices in K. Elements
of C(K) are sums of the form ) ;.;a;o;, where o; € K and, for the purpose of this pa-
per, the coefficients ¢; are drawn from the two-element field F; = {0, 1}. Thus, C(K) is a
vector space. C(K) is equipped with a linear boundary operator 9: C(K) — C(K) where
o({x1, ..., xg41}) = Z?Zl(—l)i{xl, ey Xj—1,Xi41, ..., Xg+1}. As a fundamental property,
d o 0 = 0. With coefficients in [, the boundary of a simplex reduces to the sum of all its
faces. C4(K) = C(K,) is the subspace spanned by the g-simplices of K, with the image of
C4(K) under 9 lying in Cy_1(K). 9;: C4(K) — C4_1(K) denotes the restriction of 9 to
Cy(K).

We now construct the homology groups of K. Let Z(K) = ker(d) be the subspace of
C(K) containing the cycles, those elements whose boundary under 9 is 0. Z,(K) = Z(Ky) =
ker(dy) is the restriction of Z(K') to dimension ¢. Let B(K) =im(d) denote the subspace of
boundaries in C(K). B;(K) = B(K,) =1im(9d,41) is the subspace consisting of the bound-
aries of elements in Cy41(K), lying in C,(K).

The homology groups are given by H,(K) := Z,(K)/B4(K), the cycles Z; in dimen-
sion g modulo the boundaries B,. In words, the elements of the homology groups represent
“holes” within the simplicial complex, shown by closed loops whose interior is not filled
by other elements in the complex. These homology groups provide a topological summary
of the structure in the simplicial complex K. As stated previously, because we assume field
coefficients for C(K), each homology group is also a vector space. The Betti numbers of
the complex represent the degree or dimension of each homology space. We denote the gth
Betti number of K by B,(K) =dim(Z,(K)/B;(K)) = dim(Z,(K)) —dim(B,(K)). Moving
forward, Betti numbers and their like will be of primary interest.

Homology provides a topological invariant constructed from a single simplicial complex.
For a filtration of nested simplicial complexes, persistent homology provides more detail.
Given a filtration K = {K"},cr, the homology groups for each complex, H, (K"), are defined.
However, due to the nested structure of the filtration, simplices are shared across complexes,
and thus there exists a natural inclusion map between homology spaces. Cycles in Z,(K") are
also cycles in Z, (K") if r < t. The boundary spaces behave similarly. For a given equivalence
class, x + B, (K") € Hy(K"), x + B4(K") - x + B, (K") specifies the inclusion map from
H,(K") to Hy(K").

If a given element ¥ € H,(K") maps to y € Hy(K") upon inclusion, with § # B, (K"),
we say that X represents a persistent cycle across the filtration. Essentially, the same under-
lying element is reflected in the homology groups over a range of simplicial complexes. The
collection of homology groups and inclusion maps form a persistence module. A wide body
of work exists on the properties of these persistence modules; see [49] for an introduction.
For any cycle feature in the filtration, there is a well-defined death time, being the smallest
parameter level for which the given element lies in the kernel. The Betti numbers of a filtra-
tion form a function in the filtration parameter, . We use the notation (; (K) :=B4(K"). The
Betti numbers in this context count the number of persistent features extant at r.

It is a fundamental theorem of persistent homology that a sufficiently well-behaved persis-
tence module can be represented by a persistence diagram. A diagram D(K) is a multiset in
R? x Ny of points (b, d, q). Each point represents a single persistent feature in the module. b
denotes the birth time of the feature, being the smallest parameter level for which that feature
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sample sample
+ original - original
+  bootstrap +  transformed
0 1 0.00 0.03 006 0.09 000 0.03 0.06 0.09
X birth birth

FI1G. 2. Left: The original data set of size n = 10,000, from which a single standard bootstrap sample is drawn.
Middle: Persistence diagrams for both the original and bootstrap samples, along with lines denoting the median
birth and death in each diagram. The asymptotic bias discussed in Section 4.1 can be clearly seen. Right: Per-

sistence diagrams after application of a multiplicative correction factor of v 1 —e~" = 0.795 to the bootstrap
sample. Note that the median birth and death values correspond after this transformation is applied.

is represented in the homology groups. Likewise, d gives the death time, and g the dimension
of the feature. The collection of persistent features represented by the diagram are a basis for
the corresponding persistence module.

The persistence diagram is a simple summary statistic, which condenses the complex topo-
logical information present within a filtration. An example of a persistence diagram is shown
in Figure 2.

3.3. Persistent Betti numbers. We arrive at the main focus of this section. For r <'s,
define the persistent homology groups of a filtration K = {K" },cR as

H (K) :=Z4(K")/(By(K*) N Zg(K")).

Nonzero elements in this group represent features born at or before time r, which persist until
at least time s. The dimension of these spaces gives the persistent Betti numbers,

By* (K) :=dim(Z, (K")/By(K*) N Z4(K"))
= dim(Z,(K")) — dim(B,(K*) N Z,(K")).
Persistent Betti numbers are in one-to-one correspondence with the respective persistence
diagram. Here, B;* () counts the number of points in D(K) of feature dimension ¢ falling

within (—oo,r] X (s,00]. When s = r, we recover the regular Betti numbers, ,B;*’ K =
B4 (K"). An important result for persistent Betti numbers is given in the following lemma.

LEMMA 3.1 (Geometric lemma (Lemma 2.11 [22])). Let J = {J"};cr and K =
{K"}rer be filtrations of simplicial complexes with J" C K" for all r € R. Then

|B7° (0 — By ()] < max{#{Ky \ Iy} #{Kg 1\ Ty )}
<#HK \ I} +#H K\ T )

The geometric Lemma 3.1 relates the change in persistent Betti numbers between two fil-
trations to the additional simplices gained moving between them. As a brief explanation of
the lemma, simplices can be divided into two classes, positive and negative. For two simpli-
cial complexes J C K, if we imagine adding the additional g-simplices in K to J one by one,
a positive g-simplex will increase the dimension of Z, by one, and a negative g-simplex will
increase the dimension of B, by one. Either change can affect the persistent Betti numbers.
This dichotomy is a basic result from persistent homology (see [6]). The bound given in the
geometric lemma describes a worst case, when all g-simplices at time r are positive or all
(g + 1)-simplices at time s are negative. The geometric lemma will be critical moving for-
ward, as it allows us to control the change in persistent Betti numbers by counting appropriate
simplices.



1496 B. ROYCRAFT, J. KREBS AND W. POLONIK

3.4. Euler characteristic. For a given simplicial complex K, the Euler characteristic is
defined as

o0
X (K) =Y (=D)H#{Ky).
k=0
Provided there is an m € N such that the Betti numbers B, (K) are O for all g > m (as in
(D4) holds), it can be shown that the Euler characteristic has the following identity with the
Betti numbers:

o0
X(K) =Y (=DFBr(K).
k=0
This relationship with the Betti numbers makes the Euler characteristic an important topo-
logical invariant in its own right. Applications of the Euler characteristic and derivatives may
be found in [36, 38, 43].

3.5. k-nearest neighbor graph. The k-nearest neighbor graph KCnn i of a vertex set S
connects each point x € S with the k closest vertices to x within S \ x. This graph may
either be directed or undirected. JCnn « is commonly used to analyze the clustering structure
of a point cloud. Let the total length of the edges in this graph be denoted by INn k. The
total length of the k-nearest neighbor graph, when suitably scaled, provides a measure of
the average local “density,” or concentration of the points in S. In Section 4.5, we will show
bootstrap consistency for Inn ¢ within the stabilization framework.

4. Bootstrapping topological statistics.

4.1. Nonparametric bootstrap. In this section, we will argue that the standard nonpara-
metric bootstrap may fail to reproduce the correct sampling distribution asymptotically when
applied to common topological statistics.

For a wide class of simplicial complexes built over point sets in R¢, the corresponding
persistence diagram is unaffected by the inclusion of repeated points within the vertex set.
This behavior holds for both the Vietoris—Rips and Cech complexes, defined in Section 3.1.
In the case of the Cech complex, this phenomenon is seen most directly. The Cech complex
under the Euclidean metric is homologically equivalent to a union of closed balls centered on
the corresponding vertex points in R¢. Additional repetitions within the set of vertex points
do not affect the union, and thus to do change the derived persistence diagram.

In cases like this where repetitions may be ignored in statistic calculations, the standard
bootstrap behaves effectively like a subsampling technique. The size of a given subsample is
random, equal to the number of unique points present in the corresponding bootstrap sam-
ple.

Given a random sample X,, = {X1, ..., X}, it can be shown using elementary arguments
that a given bootstrap sample X of size n from the empirical distribution over X,, is ex-
pected to contain n(l — (1 — 1/n)") = (1 — e Hn ~0.632n unique points. As such, X
behaves similar to a sample of size 0.632n, but is not scaled accordingly within the statis-
tic (B,° (InX%) — E[ﬂg*s(i’/ﬁXZ)an]) /&n. This discrepancy in scaling introduces a non-
negligible asymptotic bias. The effect is illustrated in Figure 2 for the Vietoris—Rips com-
plex.

Furthermore, the standard nonparametric bootstrap results in a fundamentally different
point process limit at small scales when compared to the original data generating mecha-
nism. For the original sample, when X, is drawn from a distribution with density f, the
shifted and rescaled sample ¢/n(X,, — z) approaches a homogeneous Poisson process P, with
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intensity f(z). From the preceding stabilization literature ([27, 33]), this limiting local point
process drives the asymptotic sampling distribution of (ﬂg’s({’/ﬁX,,) — E[ﬂg’s({’/ﬁXn)]) /Yn.
Considering the large-sample behavior of &/n(X* — z)|X,, the smoothed bootstrap sampling
procedure described in Section 2.4 can be shown to reproduce the same local Poisson process
P, asymptotically.

However, the same is not true for the standard bootstrap when repeated points are ignored.
In this case, &/n(X} — z)|X, is restricted to the discrete set &/n(X, — z), and thus cannot
reproduce P, whose domain is R?. For this case, we describe the resulting point process
limit Q, in two steps. First, a homogenous Poisson process P, is generated, representing
Yn(X, — 7). Defined conditionally, Q; is a random subset of P, such that P[x € Q.|P.;] =

1 — e~ 2 0.632, considering each point x € P, independently. We have &/n Xr—2) 4 Q..
This difference in local behavior, combined with the asymptotic bias effect illustrated ear-
lier, is a strong indicator that (ﬂ;’s({’/EXZ) — E[ﬁ;’s(f/ﬁXﬁ)HXn)/{’/ﬁ and (ﬂ[l*s((’/ﬁX,,) —
E[B;* (¢nX,)])/ ¥n likely do not share a weak limit. A technical treatment is omitted here,
and is outlined merely to justify the use of our smoothed bootstrap procedure in place of
the standard method. The smoothed bootstrap procedure provides for bootstrap consistency
(Corollaries 4.3 and 4.4), and in the following sections we consider only this approach.

4.2. General conditions for simplicial complexes. The results presented in the following
sections apply for a range of simplicial complexes constructed over point clouds in R¢. Here,
we will explain the specific conditions used, and for which common simplicial complexes
they apply. Let K be a function taking as input S € X (RY), giving as output a simplicial
complex with vertices in S. For a given simplex o, let the set diameter be diam(c). We have
the following conditions:

(K1) Forany S € X(R%) and z ¢ S, K(S) C K(S U {z}). Furthermore, o € K(SU {z}) \
K(S)onlyifzeo.

(K2) Forany S € X(RY) andz e RY, o0 € K(S) only if 0 —z € K(S — 2).

(D1) There exists ¢ < oo such that for any S € /XN’(R”I), o € K(S) only if diam(o) < ¢.

(D2) There exists ¢ < 0o such that for any § € X(RY) and z e R?, 0 € K (SU{z}) AK (S)
only if o C B;(¢).

(D3) There exists an 1 > 0 such that for any S € )E(]Rd) and x € Z(K(S)), diam(x) <n
only if x € B(K(S)).

(D4) There exists an m € N such that for any k > m and S € X(Rd), Zi(K(S)) =
Bi (K (S)).

(K1) means that the addition of a new point will not change the existing complex, only
add new simplices. Furthermore, any new simplices gained must contain the added point as a
vertex. (K2) gives that the complex is essentially translation invariant. (D1) sets a maximum
diameter for any simplex in the complex. (D2) gives that the influence of a new point on
the complex is confined to a local region around that point, within a fixed diameter. This
condition allows for both the addition and removal of simplices from the complex, but only
within the prescribed radius. It can be easily shown that if (D2) holds for ¢, (D1) holds for
2¢. Conversely, if both (K1) and (D1) hold for ¢, (D2) also holds for ¢. Finally, (D3) gives
that no small loops can exist with unfilled interiors, and (D4) gives that all Betti numbers are
0 in sufficiently high feature dimensions.

Now, let K = (K"),<r be a function taking as input § € X'(R?), giving as output a fil-
tration of simplicial complexes with vertices in S. As a slight abuse, we will often refer to
the function C as a filtration of simplicial complexes, even though it is a function defining
more than a single filtration, depending on the underlying point cloud. We say that a given
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condition is satisfied for K if it is satisfied by K" for any r € R. In the cases of (D1), (D2) and
(D3), ¢ and n may depend on r as increasing functions ¢: R — [0, o0) and n: R — [0, 00).

It can be shown that all of (K1)—~(D3) are satisfied for both the Vietoris—Rips complex
in R? using ¢ (r) = n(r) = 2r and for the Cech complex using ¢ (r) = 2r, n(r) =r. The
functions for the Cech complex are established via interleaving with the VR complex; see
[18] for details. The same functions apply for the alpha complex in R and its completion
K, with the notable exception that (K1) is violated. Finally, it is known that (D4) is satisfied
by the alpha, Cech and Delaunay complexes in R? form =d — 1.

While covering a wide class of distance-based simplicial complexes, there are several com-
plexes used in practice that may fail to satisfy any or all of these. For example, the addition
of a new point to the Delaunay complex, Gabriel graph, witness complex or k-nearest neigh-
bor graph can both add and remove simplices, violating (K1). Furthermore, there is not any
limit on the simplex diameter within any of these complexes, violating (D1). Likewise, the
addition of a single point can alter simplices at arbitrarily large distances, violating (D2). As
a special note, it is common in practice to consider the intersection of the Vietoris—Rips and
Delaunay complexes, which unfortunately may violate all the assumptions here. It is unclear
if an extension or special consideration could be made to incorporate these complexes.

4.3. Stabilization of persistent Betti numbers. To apply the general bootstrap theorem,
we first require a technical lemma establishing a locally-determined radius of stabilization
for persistent Betti numbers. The result given applies for general classes of simplicial com-
plexes constructed over subsets of R, under the same conditions stated in Section 4.2. The
following apply for a probability distribution F on R? with density f and a filtration of
simplicial complexes K = {K"},cr. We have the following.

LEMMA 4.1. Let || fll2 < o0 and K satisfy (K2), (D2) and (D3). Then ﬁg’s(lC) satisfies
(S82) foranyr e R, s e Rand g > 0.

4.4. Bootstrap results for persistence homology. Here, we present the main applied re-
sults of this paper. Each is derived from Theorem 2.13 and the stabilization lemma for per-
sistent Betti numbers (Lemma 4.1). For given vectors of birth and death times, 7 = (ri)f.‘:1
and § = (s )l 1» let ﬁ7 S — =( ﬂr"s") | denote the multivariate function whose components are
the persistent Betti numbers evaluated at each pair of birth and death times. For a vector of
filtration times r = (r)k _1»> let x" denote the function giving the Euler characteristic at each

time r;, with x" := (X(Kr’))

The followmg apply for a glven multivariate statistic w and a probability distribution F on
R? with density f :=dF/dA such that | f|| p <0 for some spe01ﬁed p=>2. F, is a random
distributional estimate with dens1ty fn .= dF, /dA such that || fn fllp — 0 1n probability

(or almost surely). (X; ),GN F and X, := {X;}"_, forany n e N. (X7 )ieN F is a con-

ditionally independent sequence of bootstrap samples drawn from Ey, and Xom = {X],}i

for any m, n € N. W denotes a limiting multivariate distribution, and (m,),cN is any sequence
such that lim,,_, o m, = 0o. Recalling the conclusion of Theorem 2.13, we have the follow-
ing.

STATEMENT 4.2.

7( U (nX,)) — E[¥ (¥nX,)]) > w
if and only if

(1}(\/_ X m,) — [ (Ymu X5 0 )| ) 4w in probability (resp., a.s.).

f
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For cases with a corresponding central limit theorem, W is a limiting normal distribution.
For each of the following, I = (K”), <R is a filtration of simplicial complexes.

COROLLARY 4.3 (Persistent Betti numbers). Let ¢ > 0 and p > 2q + 3. Let K satisfy
(K1), (K2), (D1) and (D3). Then for any given r, s, Statement 4.2 holds for ,B(;*

COROLLARY 4.4 (Persistent Betti numbers—Alt.). Let g >0 and p >2q +5. Let K
satisfy (K2), (D2) and (D3). Then for any given 7, 5, Statement 4.2 holds for ,82’3 .

The only differences between the above corollaries are the conditions satisfied by the un-
derlying simplicial complex and the necessary norm bound on the density. The corresponding
results for Betti numbers follow as special cases of Corollaries 4.3 and 4.4, when the given
birth and death parameters are equal (8, = B;"). Also, although the statements of Corollar-
ies 4.3 and 4.4 are given in terms of a fixed feature dimension ¢, a direct extension exists if
q = q; is allowed to differ for each (r;, s;). The form as given shows the dependence of the
density norm assumption on the chosen feature dimension.

Note, throughout this work, including Corollaries 4.3 and 4.4, the asymptotic regime we
consider consists of a fixed statistic and a rescaled underlying sample. However, for the per-
sistent Betti numbers of the Cech and Vietoris—Rips complexes, we can equivalently shift the
scaling factor from the sample to the filtration parameters (7, 5,) = (¥ / &/n, s/ ¥n).

The higher value of p required in Corollary 4.4 compared to Corollary 4.3 can be explained
intuitively based on the assumptions used. For the persistent Betti numbers, the main quantity
controlling convergence is the expected number of simplices altered or introduced when a
new data point is added to the sample. (D2) ensures that these simplices fall within a small ball
around the new data point. The stated density norm conditions control the expected number
of points, and by extension possible simplices, that can lie within that small ball. Introducing
(K1) further controls the number of possible simplices, and allows for a weakening of the
necessary norm condition. (K1) requires that, as the sample grows by a single point, any
additional simplices must contain the new point as a vertex, and no deletion of simplices is
possible. This means that every added simplex has one less “free” vertex, and a weaker norm
condition is required for control. The same intuition applies whenever (K1) is assumed.

In the specific case of the alpha complex, both of the above Corollaries 4.3 and 4.4 apply.
While the alpha complex does not satisfy (K1), it has equal persistent Betti numbers to the
Cech complex, which does. Thus, the weaker conditions of Corollary 4.3 are sufficient in this
unique case.

COROLLARY 4.5 (Euler characteristic). Letm < 0o and p > 2m + 3. Let K be a filtra-
tion of simplicial complexes satisfying (K1), (K2), (D1), (D3) and (D4). Then for any given
7, Statement 4.2 holds for x".

COROLLARY 4.6 (Euler characteristic—Alt.). Letm < oo and p >2m + 5. Let K be a
filtration of simplicial complexes satisfying (K2), (D2), (D3) and (D4). Then for any given r,
Statement 4.2 holds for x".

It is suspected that some of the simplicial complex assumptions can be relaxed in the per-
sistent Betti number and Euler characteristic cases, but the extent to which this is possible is
still unknown. Specifically, Corollary 4.3 requires a translation-invariant simplicial complex
(K2), along with the elimination of small loops via (D3). Furthermore, (D4) is necessary for
the Euler characteristic to grow polynomially, as in (E2). See [26] for an analysis of the Euler
characteristic where this assumption can be relaxed.
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To strengthen Corollaries 4.3—4.6 with rates, we require more specific knowledge about
the convergence to G of the original statistic. For persistent Betti numbers in the multivariate
setting, general central limit theorems have been shown in [27], but little is known at this time
with regards to rates of convergence. Proposition 2.12 and Statement 2.8 together do allow
for rates of convergence in 2-Wasserstein distance between the bootstrap and true sampling
distributions for finite sample sizes, but is phrased in terms of a tail probability for the radius
of stabilization. See the proofs of Corollaries 4.3—4.6 for details. For persistent Betti numbers,
the tail behavior of the radius of stabilization is poorly understood. Owing to these difficulties,
we may only conclude consistency of the smoothed bootstrap for the functions considered.

4.5. Bootstrap results for k-nearest neighbor graphs. In the following, let D,, ,,(C) be
the class of distributions G with support on a bounded C  R¢ such that [ B.(r) 4G = yré
for all » <rg and x € C for some y > 0. This set of criteria is widely used and sometimes
known as the “standard asssumption” for probability measures (see [14, 33]).

COROLLARY 4.7 (Total edge length of the k-nearest neighbor graph). Let p > 2. Fur-
thermore, let F € Dy, ;,(C) and 1{F,, € D, ;,(C)} — 1 in probability (resp., a.s.). Then State-
ment 4.2 holds for INN k-

The conditions of Corollary 4.7 are in particular satisfied when C is known and convex,
with f bounded below on C by a positive constant, provided further that || fn — flloo = Oin
probability (resp., a.s.). We include this final result to demonstrate the utility of stabilization
as a general tool for proving bootstrap convergence theorems outside of topological data
analysis. The k-nearest neighbor graph does not fall under the general simplicial complex
conditions provided in Section 4.2, thus special treatment is needed to show the required
stabilization and moment conditions. Here, we rely on previous results from the literature;
see [33] for stabilization results and the corresponding central limit theorem.

5. Simulation study. In this section, we present the results of a series of simulations
illustrating the finite-sample properties of the smoothed bootstrap applied to persistent Betti
numbers B, of the Vietoris—Rips complex constructed over point sets in R?. Precise def-
initions and an introduction to the properties of these statistics may be found in Section 3.
Source code is available at github.com/btroycraft/stabilizing_statistics_bootstrap [39].

We investigate the coverage probability of bootstrap confidence intervals on the expected
persistent Betti numbers E[ﬂ;’s (&/nX,)] for a variety of feature dimensions, sample sizes,
data generating mechanisms and bandwidth selectors. Table 1 lists brief descriptions of the

TABLE 1
Description of densities or distributions considered for the simulation study of Section 5. For the distributions
based on manifolds, we first draw uniformly from the manifold, then apply the prescribed additive noise. Detailed
explanations of the distributions considered, along with precise definitions are provided in Appendix D [40]

Label Description

Fi Rotationally symmetric in R2, finite Lg norm

P Rotationally symmetric in R2, finite L, norm, infinite Lg norm
F3 S! embedded in R2, additive Gaussian noise

Fy Uniformly distributed over By(1) in R3, additive Gaussian noise
Fs 5 clusters in R3, additive exponential noise

Fg S? embedded in R, additive Cauchy noise

F7 Flat figure-8 embedded in Rlo, additive Gaussian noise
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TABLE 2
Coverage proportions for 95% smoothed bootstrap confidence intervals on the mean persistent Betti numbers;
coverage is estimated using N = 1000 independent base samples with B = 500 bootstrap samples each. True
mean persistent Betti numbers are estimated using a large (N = 100,000) number of independent samples from
the true distribution. For each case, the values from top to bottom: Coverage proportions using “Hpi.diag,”
“Hlscv.diag,” “Hscv.diag” and “bw.silv” bandwidth selectors, respectively (see Section 5)

Fy F F3 Fy Fs Fe Fr Fy Fs Fe Fr

Distr. g=1 qg=2
r 4.94 5.20 3.03 1.92 0.30 1.78 1.28 2.96 0.39 2.71 1.46
K 5.36 5.60 3.28 2.12 0.31 1.91 1.32 3.04 0.40 2.80 1.47
n=100 0.896 0.965 0.921 0.859 0954 0.19 0.908 0.705 0.038

0.931 0.959 0914 0.809 0.941 0.133 0.903 0.604 0.045

0.903 0.97 0.91 0.859 0.927 0.049 0902 0.363 0.002

0.359 0.931 0942 0864 O 0 0.656 0902 O 0 0.045
n=200 0908 0.971 0.94 0.898 0942 0.159 0.878 0.795 0.125

0.92 0.972 0.946 0.891 0.923 0.106 0.872 0.707 0.074

0.888 0975 0959 0906 0.892 0.06 0908 0.277 0.031

0.299 0954 0.903 0.899 0 0 0.766 0.882 O 0 0.537
n=300 09 0.971 0926 0.921 0.94 0.183 0.854 0906 0.225

0.94 0.971 0.938 0.896 0.94 0.087 0.854 0.917 0.072

0.913 0.971 0.94 0.896 0922 0.054 0.855 0.964 0.074

0.283 0.956 0.925 0906 O 0 0.835 0856 O 0 0.508
n=400 0918 0.961 0947 0934 0.96 0.175 0.851 0.883  0.259

0.927 0.951 0938 0.92 0.955 0.063 0.839 0.88 0.076

0908 0976 0.933 0.924 0939 0.062 0.863 0.958  0.099

0.266 0.961 0909 0922 0.114 O 0.891 0859 O 0 0.584

data distributions considered. For more detailed explanations, see Appendix D [40]. Simu-
lation results are given in Table 2. For the persistent Betti numbers, a single choice of (r, s)
was made for each combination of distribution and feature dimension, chosen to lie within the
main body of features in the corresponding persistence diagram. For computational reasons,
only feature dimensions ¢ = 1 and ¢ = 2 are considered.

We consider four data-driven bandwidth selectors. First are the “Hpi.diag” (plug-in),
“Hlscv.diag” (least-squares cross-validation) and “Hscv.diag” (smoothed cross-validation)
selectors from the ks package in R. Each of these selectors are available for data dimen-
sion up to d = 6. Last, we consider Silverman’s rule of thumb (see [41]) via “bw.silv”’ from
the kernelboot package in R, which accepts data in any dimension.

For the two cross-validation selectors, note that a bandwidth is not always selected, throw-
ing errors on some data sets. To accommodate the automatic setting of this simulation study,
any error-producing data sets were simply rejected for each of these cases.

There is a noticeable drop-off in coverage as the data dimension increases. This is ex-
pected, as the kernel density estimator is known to suffer from a “curse of dimensionality.”
Furthermore, there is a similar decrease for increasing feature dimension, as well. This is
also expected, because the W;-convergence rate bounds of Proposition 2.12 are slower with
increased feature dimension (see Appendix B.5 [40] for details.)

For distribution Fg, which exhibits heavy tails, performance generally is very low, due to
poor performance of the underlying selectors. It is likely that performance will suffer gener-
ally in the presence of heavy-tailed data when using one of these common selectors which
does not account for the prevalence of outliers in heavy-tailed data. Furthermore, error due
to boundary effects can be expected for highly discontinuous distributions, for example, as
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seen in the case of Fj in feature dimension g = 2. Here, the probability mass near the support
boundary is more highly spread after smoothing than in the original distribution, leading to
an upward shift in the scale of the associated topological features and a corresponding bias
in the persistent Betti numbers.

The coverage proportion is generally smaller than the nominal level of 95%. Therefore, it
is recommended to use a larger than desired level, especially for limited sample sizes. In terms
of general performance, we recommend any of “Hpi.diag,” “Hlscv.diag” or “Hscv.diag.”
These selectors provide the most consistent coverage, and effectively replicate the nominal
95% level in many cases, especially for the largest sample size n = 400. Silverman’s rule
performs badly in several cases, and should only be used in the absence of better alternatives.

A real data application using Galaxy data can be found in Appendix A [40].

6. Discussion. In this work, we have shown the large-sample consistency of multivariate
bootstrap estimation for a range of stabilizing statistics. This includes the persistent Betti
numbers, the Euler characteristic and the total edge length of the k-nearest neighbor graph.
However, many open questions still remain.

In Section 4.1, it was argued that the standard nonparametric bootstrap may fail to directly
reproduce the correct sampling distribution asymptotically for topological statistics like the
persistent Betti numbers. However, there remains the possibility that a corrected version of
the standard bootstrap could provide for consistency. As discussed in Section 4.1, standard
bootstrap sampling results in a fundamentally different point-process limit at small scales.
Previous stabilization results primarily consider Poisson and related processes, meaning a full
theoretical treatment of the standard bootstrap would likely require reconstructing much of
the previous stabilization and central limit theorem results for the alternative limiting process.

The results for the smoothed bootstrap presented here apply only in the multivariate set-
ting, the obvious extension being to stochastic processes. Essential to a process-level result
concerning the persistent Betti numbers would be a convenient tail bound for the radius of
stabilization, which is yet unavailable. In the case of persistent Betti numbers, there is a
strong relationship between the persistent Betti function and an empirical CDF in two dimen-
sions. As such, there is much established theory in that regard, which may be applied once
stochastic equicontinuity is established.

In practice, it is common that data comes not from a density in R¢, but instead from a
manifold. It is suspected that a version of the results in this paper could apply in the manifold
setting. However, this requires a bootstrap that adapts to a possibly unknown manifold struc-
ture, similar to that found in [23]. Combined with the inherent challenges of working with
manifolds, this extension presents many technical hurdles. Alternatively, variance estimation
using subsampling or the jackknife may provide for consistent variance estimation in cases
where the support manifold of the data distribution is not known a priori. Subsampling in
this data context was initially developed in [21]; however, the resulting confidence sets are
given for the persistence diagram of the manifold, as opposed to the expected persistent Betti
number considered in this work. Furthermore, these confidence sets are conservative, stem-
ming from their reliance on the so-called “stability theorem.” However, beyond establishing
consistency for these procedures, several factors require theoretical consideration, including
both the choice of subsample size and rates of convergence.

Furthermore, in this work we have shown only consistency for bootstrap estimation to a
common limiting distribution. The rates of convergence in the 2-Wasserstein distance regard-
ing the persistent Betti numbers rely on the unknown tail properties of the corresponding
radius of stabilization. Quantifying these tail properties is a challenging open problem, and
seems to be a key step toward an eventual rate calculation, as well as the previously mentioned
process-level result.
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Finally, there are several statistics of interest, including those based on the Delaunay com-
plex, which do not fit into the specific frameworks provided here. It may be that these statis-
tics still satisfy Theorem 2.13 in the general case, by techniques other than those provided
here.

7. Technical results. PROOF OF LEMMA 2.11. We refer to Appendix B.1 [40] for a
reference list of the general inequalities used here. Define two independent sets of random

variables (U;){2, ~ i Fand (U2, ~ i F. For N ~ Pois(n), denote by P, the Poisson pro-
cess given by {U; }l 1» Which has intensity nf over R?, where f :=dF/di. We will couple
this Poisson process to X,,. {U; }N M UU *}(" n* has the same distribution as X,,, thus
we assume that the two random varlables are equal almost surely. For a given random vari-
able U; or U} and L > 0, conditional on X' the probability of falling within By/(L/{/n) is
Iy £ X = (V4L /n)M f(X'). Here, V is the volume of a unit ball in R? and M is
the Hardy-Littlewood maximal operator such that M f (x) := sup,cg, (1/ Vard) /, B.(r) S dA.
Via the strong type Hardy-Littlewood maximal inequality, there exists a universal constant
C> < oo such that the unconditional probability is bounded by

CszL
< £ 13-
The expected number of points within By/(L/ (1/5) that contribute to P, AX,, is then at
most
CszLd Csz
B[ IV -0 20 11 < 113/ Var ]
C2Vde

N 1£15.
This expectation bounds the probability that X,, and P, differ within Bx:(L/¢/n). For suffi-
ciently large n, this bound can be made arbitrarily small.

Next, we will couple the Poisson process P,, with a conditionally homogeneous approxi-
mation. Let T be a homogeneous Poisson process on R? x R, with unit intensity. The point
process given by {U; s.t. (U;, T;) € T, T; <nf(U;)} is a nonhomogeneous Poisson process
with intensity nf. Without loss of generality, this process is assumed to equal P, almost
surely. Define the point process H,, := {U; s.t. (U;, T;) € T and T; < nf (X')}.

Conditional on X', H,, is a homogeneous Poisson process with intensity 7 f (X"). The num-
ber of observations within By (L/{/n) that contribute to P, AH,, follows a Poisson distribu-
tion with parameter n || By 4 | — (X )] dA. Removing the conditioning on X', the ex-
pected number is nffo(L/ U [ f(y) — f()]f(x)dydx > P[(P,AH,) N Bx/(L/n) # &].
We will show that this quantity can be made arbitrarily small. Consider C, the set of Lebesgue
points of f.For C), g :=
MNr<glx € R st (1/Var®) [z oy |f = F(OIdA <y}, we have C° = U,-0MNg=0CS x-
Thus, for any y > 0, by the Lebesgue differentiation theorem A((z~o C;’ rR) SACH=0
for any y > 0. Also, (1/ Vard) / By (r) | f — f(x)| dA is continuous in r, thus via the separabil-
ity of R¢ C, may be expressed using only countably many sets. By continuity of measure,
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lim, |C;| = 0. We have
”//m/%)’f(” — f)|f@)dydx
syVatlsn [ [0 - s@ldvas

— VL + [ 1re+0= feol e dra

/BO<L/ ¢y Jc

<vat!(y+20fla [ r2an)

This quantity does not depend on n. Because || f||» < 0o, by the dominated convergence
theorem this bound goes to 0 as y — 0. Combining with the previous steps, we have coupled
X,, and H,, to be equal with arbitrarily high probability.

By assumption, for any given a, b, § > 0, L may be chosen so that there exists A C X
such that for any homogenous Poisson process Q; on R? with intensity A € [a, b] we have

o ((L,00]) C A and P[Q; € A] < 3.
Because ¢/n(H, — X’) is a conditionally homogeneous Poisson process, we have

P*[po(¥/n(Hy — X')) > L and f(X) € [a, b]]
<P[Vn(H, — X') € Aand f(X') € [a, b]]
=E[P[Vn(H, — X') € Aand f(X') € [a, b]|X]]
<SP[f(X)ela,bl] <6
Combining the pieces, we have that
P*[oo(¥/n (X, — X)) > L]
< P[0 (Y/n(H, — X)) > L and f(X') € [a, b]]
+ P[(Xn,AP,) N By (L/ /) # @]
+P[(P,AH,) N By/(L/V/n) # 2]
+P[f(X') <a] +P[f(X') > b].

Choose a, § — 0 and b — o0. Because our previous choice of L is possibly unbounded,
let y — 0 and n — o0 so that the entire expression goes to 0. The result follows. [

PROOF OF PROPOSITION 2.12. Our proof technique is inspired by that of Proposi-
tion 5.4 [27]. We expand using a martingale difference sequence. Let {(X;,Y;)}2, be

iid. such that {X;}°, ** F and {¥;}2°, " G. For f := dF/dA and g := dG/da, denote
S1:=g— fllh,02:=llg— fll2and 6, := g — fll, < 6. By Proposition B.1 [40], there are
increasing functions &1 : Ry — R, and & : Ry — R, depending only on f and p such that
limg—0&1(a) =limg—0&2(c) =0, 81 <§1(8p) < &1(8) and &2 < £2(5) < §2(6).

Each pair (X;, Y;) can be identically coupled such that P[X; # Y;] = %81. Specifically,
conditional on the event {X; # Y;}, X; and Y; follow the respective marginal densities
2(f — g)*/81 and 2(g — f)*/81. For each j € N, define X; := {X;}/_,, Y; := {Y}l 0>
and F; := o0 ({X;,Y,}), where o signifies the generated o -algebra. Likewise, F¢ := {2, &}.
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For (X', Y’) an independent copy of the (X;, Y;), let

Xl/’l,j = {Xla---»Xj—l,X/, Xj.g.],...Xn},

Y, i ={Y, .. Y, Y Y, Y

We apply the condensed notation H, (S, T) := ¥ (&/nS) — ¥ (¢/nT). Using the pairwise
orthogonality of a martingale difference sequence and the conditional version of Jensen’s

inequality,
2i|

1 | n
Hn(XnaYn)] = ;E ZE[Hn(Xn» Yn)lfj] _E[Hn(xn» Yn)|]:j—1]

Llj=1
2]

Var[%

1 n
=-E Y E[H,(X,. Y,) — Ho (X, ;. Y, )| F]
Llj=1

ey
1 & / /
— Y E[E[Hu (X, Yo) — (X, .Y, )T

< E[|Ha(Xa, Yo) — Ha (X, 0, Yy ) ).
The above holds for any 1 < ¢ < n. We have an upper bound for (1) of
2E([|H, (X, UX', X,,) — Hy (YUY, Y,) ]
) +2E[|Hy(Xa UX". X, ;) — Ho (Y, UY Y, ;)]
= 4E[|H, (X, U X", X,) — H,(Y, UY", Y,)]*].

We will decompose the expectation in (2) using the stabilization of 1. For L > 0, we have
the following events:

—{r'=x).
={Yu N By/(L/¥/n) =X, N By (L/V/n)},
{Dw«fx ) VB gy (L) = D gy (X)),
Cysx 1= {D%Y’((ﬁY’l) n B%Y/(L)) = D%Y’(%Yﬂ)}'

Note when all four are satisfied, H,(X, U X', X,,) = H,(Y,UY’,Y,).Let Cx C Cx, and
Cy C Cy be measurable with P[C§,] = P*[C,] and P[C} ] =P*[CY,]. Then for any k > 0,

E[|H, (X, U X', X,) — H,(Y, UY".Y,)|]
=E[|H, (X, UX", X,)) — Hy (Y, UY, Y, 1{A U B U C§ U CS ]
< 2(E[H,(X, UX',X,)* 1{A°U B UC§ UCS}]
+E[H, (Y, UY',Y,)* 1{A° U B°UC§ UC$}])
v < 2(E[Hy (X U X', X)) 1{| H (X U X', X,)| > K}]
+k*P[A°UB U C{ UCY]
+E[H, (Y, VY. Y, 1{|H, (Y, UY".Y,)| > k}]
+ k> P[A°U B U C% UCY])
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Because (E1) holds, it suffices to show that each of A¢, B, C§ and Cy, can be made to
occur with small probability, uniformly in G and n. Then k = ks may be chosen such that
lims_, g ks = 0o and (3) goes to 0 uniformly.

For A, this is satisfied because P[X’ # Y’] 25 1(8). Consider B¢ next. The sample pairs,
which contribute to X;, N By (L/&/n) but not Y N Bx/(L/¢n), are those (X;, Y;) for which
X; # Y; and either | X; — X'|| < L/¥n or ||Y; — X'|| < L/¢/n. Conditional on X’, their
count follows a binomial distribution with expectation at most n [ By (L) ) lg — fldr <
VaLiM|g — f|(X’). Here, M is the Hardy-Littlewood maximal operator. Removing the
conditioning on X', the expected count is at most

Val! [(Mlg = f1)f di < Val/|Mlg = fIl,11f 12 < CoVaL ‘@)1 1112

The above follows from the strong type Hardy-Littlewood maximal inequality for some
constant Cy < oo. This final expression provides an upper bound on P[ B€]. Then from (S1),
there exists a choice L = Lg such that limg_, ¢ Lg’éz (6) =0and each of P[B‘] — 0, P[C%] —
0, and P[C}] — 0, uniform in n and G. The result follows. [J

PROOF OF THEOREM 2.13. Let any bounded, Lipschitz function v: R¥ — R be given.
Then for some M > 0, v is bounded within [—M, M] with a Lipschitz constant of M . For
any m € N, define the functional V,, as follows. We use the condensed notation Hm j(8) =

(Y (YmS) — E[Y;(&/mS)])//m with H, = (Hm,])J: . For a probability distribution G
on R, let (Yi)ien i G and Y,, :={Y;}/_,. Define V,,,(G) := E[v(ﬁm(Ym))].

First, assuming that fln X)) —d> W, we have lim,,_, o V,,(F) = [ vdW. Now, let (X;),-eN S
F be independent of F,, and define X}, ;= {X]}/_, for any m € N. Via Proposition 2.12 and
Chebyshev’s inequality, for any € > 0 we have almost surely that

an(ﬁ):E[U(ﬁ ( nm”))|X]

E[v

(K ) L Hon, (X5 ,) = Hin, (X,) | < £11X0]

-

(Hn,
+ E[v(H, ( ) L Hon, (X5 ,) = Hon, (X,)| > €]1X,]
(

E[v(Hp, (X,,))] + Me

+MZP[IHmH Xim,) = Hny,j(X,)] > %m]

Jj=1
k

SE[v(ﬁmn(x;in)HMH 2 (1o = F1l1p)-

Here, foreach j € {1, ..., k}, yj: Ry — Ry is as given in Proposition 2.12 applied to v/;.
Similarly, almost surely

k

Vin, (Fn) = E[v(Hy, (X, )] — —me - MK Z (I fa = £1Ip)

Because || fn — fllp = 0, we have that the lower bound for V,, (ﬁn) converges to
Jrvd¥ — Me and the upper bound converges to [p vdW + Me, either in probability or
almost surely, depending on assumptions. Since this holds for any & > 0, we have that
Vin, (F,) — Jgr vdW in probability (or a.s.).
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Now we will show the converse direction. By similar arguments, for any ¢ > 0 we have
Vin, (F) = E[E[v(Hp, (X,,))X,]]
< E[E[v(Hn, (X;,,,,))1Xa]] + Me

+ME[min=§2iyj(nf; ~ 1l 1”

i=1
Vin, (F) = E[E[v(H, (X}, ))Xa]] — Me

kK .
- ME[min{g—ZZyj(nfn — flp), 1”
i=1

Each expectation involves only bounded variables, thus the lower bound tends to [ vdW¥ —
Me and the upper bound to [pvdW¥W + Me, assuming either E[v(H,,, (Xz,mn))|Xn] —
JgvdW¥ in probability or almost surely. Since this holds for any & > 0, we have that

lim, o0 Vin, (F) = [rvdW. Since our initial choice of v was arbitrary, the desired result
follows. [l

Acknowledgments. Thank you to the Associate Editor, Editor and reviewers for their
helpful comments and thorough examination of this work.

Funding. Benjamin Roycraft was partially supported by the National Science Founda-
tion (NSF), grant number DMS-1148643. Johannes Krebs was partially supported by the
German Research Foundation (DFG), grant number KR-4977/2-1. Wolfgang Polonik was
partially supported by the National Science Foundation (NSF), grant number DMS-2015575.

Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan
Foundation, the U.S. Department of Energy Office of Science and the Participating Institu-
tions. SDSS-IV acknowledges support and resources from the Center for High-Performance
Computing at the University of Utah. The SDSS website is www.sdss.org.

SUPPLEMENTARY MATERIAL

Supplement to “Bootstrapping persistent Betti numbers and other stabilizing statis-
tics” (DOI: 10.1214/23-A0S2277SUPP; .pdf). A data application is made to a cosmic web
data set from the Sloan Digital Sky Survey (SDSS) [4]. Proofs for results in the main paper
are included. Furthermore, we give extended results beyond those presented in the main text.
Specifically, we make a more detailed examination of the 2-Wasserstein distance in Proposi-
tion 2.12 for all statistics considered, and provide a proof for the L ,-convergence of kernel
density estimation. Specific generating functions for the simulation study of Section 5 are
also provided.
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