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Figure 1: The open-hardware quadruped robot Solo-12 performs agile skills that are reminiscent of
parkour, such as walking, climbing high steps, leaping over gaps, and crawling under obstacles.

Abstract: Parkour poses a significant challenge for legged robots, requiring navi-
gation through complex environments with agility and precision based on limited
sensory inputs. In this work, we introduce a novel method for training end-to-
end visual policies, from depth pixels to robot control commands, to achieve agile
and safe quadruped locomotion. We formulate robot parkour as a constrained
reinforcement learning (RL) problem designed to maximize the emergence of ag-
ile skills within the robot’s physical limits while ensuring safety. We first train a
policy without vision using privileged information about the robot’s surroundings.
We then generate experience from this privileged policy to warm-start a sample ef-
ficient off-policy RL algorithm from depth images. This allows the robot to adapt
behaviors from this privileged experience to visual locomotion while circumvent-
ing the high computational costs of RL directly from pixels. We demonstrate the
effectiveness of our method on a real Solo-12 robot, showcasing its capability to
perform a variety of parkour skills such as walking, climbing, leaping, and crawl-
ing.
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1 Introduction

In recent years, training locomotion policies in simulation using reinforcement learning (RL) then
transferring them to real robots has proven highly effective in mastering agile skills [1, 2, 3, 4,
5,6,7,8,9, 10]. Notably, [11, 12, 13, 14] have successfully demonstrated a range of dynamic
skills akin to the athletic maneuvers seen in parkour, including walking, climbing, jumping, and
crawling, which necessitates tight coordination between vision and control. In this work, we are
interested in developing parkour skills from onboard depth inputs for Solo-12, a lightweight, open-
hardware quadruped robot [15], using this sim-to-real approach. Solo is a lighter prototype than
other quadruped robots experimented in parkour projects (e.g. Atlas, Go-1, or Anymal). Safe visual
locomotion with Solo is then at its highest stake, to prevent exceeding the limited torque range of its
motors and breaking the 3D-printed plastic shells and exposed electronic components in unexpected
impacts or falls.

Yet, training visual locomotion policies presents significant challenges due to the limited field of
view and dynamic, lag-prone visual perception during dynamic movements. Previous methods for
end-to-end control from pixels [16, 12, 13] typically involve a two-stage process, where a policy is
first trained with privileged information about the robot’s surroundings, then the learned behaviors
are distilled into a visual policy using imitation learning [17]. However, such an approach relies on
the unrealistic assumption that privileged information can be fully reconstructed from a history of
depth images. Indeed, such privileges may reveal information obscured behind obstacles, outside
the field of view of the egocentric camera, or simply missing from the depth image stream due
to lags. This gap between the privileged information and the actual visual inputs may result in
behaviors that a vision-based policy cannot replicate accurately. In that case, an optimal vision
policy would differ from the one using privileged information. It would, for example, try to gather
more information before crossing an obstacle to handle the occlusion. Ideally, training RL directly
from pixels would ensure the policy learns behaviors effectively based on its actual visual sensors,
but this method is impractical due to the high computational costs associated with generating depth
images in simulations [16].

To address these challenges, we propose SoloParkour, a novel approach for training parkour lo-
comotion policies using depth inputs. Our method frames parkour as a constrained reinforcement
learning problem [18, 19, 20]. This framework allows the RL agent to explore the full capabili-
ties of the robot while explicitly preventing unsafe actions, ensuring that the agent can aggressively
optimize performance without compromising the safety of the robot. We propose a novel method
to train the visual locomotion policy end-to-end from pixels using a sample-efficient off-policy RL
algorithm. Building upon recent advancements in accelerating RL using demonstrations from pre-
vious controllers [21, 22], our algorithm not only learns from its own experiences but also leverages
experience generated by the privileged policy. This approach enables the RL agent to rapidly ac-
quire agile skills and adapt behaviors from the privileged experience to suit the specific limitations
of its visual sensors, bypassing the computational burden associated with RL from pixels while still
ensuring the development of agile and safe legged locomotion skills.

We demonstrate the effectiveness of our approach in simulation. We then directly deploy the learned
policy on a real Solo-12 robot and demonstrate the effective acquisition of parkour skills such as
crawling, leaping, and climbing obstacles from depth image (see Figure 1). Our approach pushes
the robot to its limits: it manages to clear obstacles 1.5 times higher than its height despite the robot
being significantly less powerful than the ones typically used in parkour experiments.

In summary, our contributions are as follows:

* we cast parkour learning from depth images as a constrained RL problem,

» we introduce a computationally efficient RL algorithm to train end-to-end visual locomo-
tion policies with significant improvement over methods based on distillation

* and we validate the effectiveness of our approach in simulation and on a real Solo-12 robot
to perform parkour skills, outperforming the best movements ever generated with this robot



and reaching performances comparable to recent parkour achievements despite a more lim-
ited actuation range.

2 Related Work

Agile Locomotion RL has demonstrated tremendous success in obtaining robust and adaptive
controllers for legged robot [23, 3, 24, 5, 25]. This includes agile skills such as high-speed run-
ning [6, 11, 26, 8], recovering from falling [27, 28, 29, 9], jumping [2, 4, 7, 22, 30, 31, 32, 33],
climbing obstacles [1, 34, 35, 36, 37, 16, 38, 39, 20, 40, 14, 12, 13] bipedal walking with quadruped
robots [41, 30, 22, 13, 42] and walking inside confined spaces [43, 44, 40]. Learning multi-skill
locomotion policies, as required in parkour, can be done by training separate policies for each skill,
then coordinating them with a high-level planner [28, 45, 46, 14] or distilling them into a single
policy [11, 12, 42]. Instead, we follow [13] and learn multi-task policies directly through RL.

Safe Locomotion Safety mechanisms have been implemented to ensure safer outcome while per-
forming agile skills [47, 8]. Following [18, 19, 20], we employ constraints alongside rewards in
RL to deter undesired behaviors. This not only allows for aggressive optimization of agility while
ensuring safety but also simplifies the process of reward tuning for RL. In particular, we exploit the
reformulation of Constraints as Terminations [20] (CaT), which was demonstrated as an overhead
on top of on-policy RL algorithms [48], and which we extend to the off-policy formulation, more
suitable to our case as explained below.

Sample-Efficient Learning [49, 22] accelerate RL with demonstrations obtained from trajectory
optimization. Other works aimed at exploring RL methods sample efficient enough to train loco-
motion policies directly in the real-world [29, 50]. Our approach repurposes many of these designs
to bypass the computational cost of RL from pixels while obtaining a pure end-to-end RL method,
unlocking several advantages exhibited below.

Vision-Based Locomotion Prior methods often separate perception from control using inter-
mediate representations such as elevation maps [51, 52, 53, 54, 55, 5, 35, 56, 14, 20], trace-
ability maps [57, 58] or visual odometry [59, 60, 61, 62], for downstream planning and con-
trol [63, 64, 65, 66, 67, 68]. Recently, locomotion from pixels [69, 4, 39, 16, 12, 13] has emerged as a
powerful paradigm that more tightly coordinates vision and control, often relying on teacher-student
approaches (typically by distilling an observation-privileged policy), yet raising some limited action-
perception behaviors.

3 Method

3.1 Agile and Safe Parkour Learning Problem Formulation

Our goal is to train a parkour policy in simulation using RL and transfer it to a real Solo-12
quadruped robot. To this end, we consider an infinite, discounted, constrained Markov Decision
Process (S, A,r,7, T, cicr) with state space S, action space A, reward functionr : S X A — R,
discount factor v, dynamics 7 : S X A — S and constraints {¢; : S x A — R, i € I'}. Constrained
RL aims to find a policy 7 : S — A that maximizes the discounted sum of future rewards:
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t
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while satisfying the constraints c;c; under the state-action policy visitation distribution:
(s,0)~pT T [ci(s,a) > 0] < e Viel, 2)

where any value of ¢; (s, a) above 0 corresponds to the magnitude of the violation of the i-th con-
straint by taking action « in state s.
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Figure 2: Terrains used to train SoloParkour in simulation: the crawl parkour contains floating
objects the robot must crawl under, the step and hurdle parkour contain obstacles for the robot to
climb up and down, and the leap parkour contains gaps over which the robot must leap.

States and Actions The state s; corresponds to a history of proprioceptive measurements of the
positions and velocities of all 12 joints of the robot and of the orientation and angular velocity of
the base of the robot, of previous action samples, a command vector v“™ in the x-y space given by
the user, and of depth images Ig,eft‘l;. The action a; corresponds to desired joint position offsets with
respect to a default joint configuration, that are then converted to torques through a proportional-

derivative (PD) controller operating at a higher frequency than the neural policy.

Rewards We use a similar reward function to [13] that measures progress towards a direction

below a commanded velocity threshold (yet without the additional burden of defining subgoals):
,Ucmd
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where v is the velocity of the base relatively in the robot frame. We found that this design was
simple while being sufficient for the emergence of agile locomotion skills.

Constraints Greedily maximizing Eq. 3 leads to obvious impractical behaviors, in particular
exceeding the real robot capabilities and impossible to sim-to-real transfer. To achieve safe and
transferable behavior, we enforce a set of constraints ¢; that the robot should adhere to. We use
straightforward constraint formulations to limit the torques, accelerations, velocities and positions
of the joints, avoid unwanted contacts between the robot and the terrain, encourage the robot to head
toward the commanded direction and push a specific walking style. For instance, constraints for the
torque on the k-th joint and for the orientation of the base along the roll axis can be respectively
written as:

Ctorque;,, = |Tk| — 7™ and Coripn — |0riroll| - Orillorﬂa 4)
where 7™ and orifo'{} are limits that the robot should avoid exceeding. The detailed formulations of
constraints are provided Appendix A. We found that the constrained RL formulation, as opposed to
reward penalties usually done in RL for locomotion, was crucial for the effective and safe transfer

of agile locomotion skills on our real Solo-12 robot while being easier to tune.

Terrains The policy is trained to traverse diverse challenging terrains in the IsaacGym simula-
tor [70] to learn a variety of agile locomotion skills, as illustrated in Figure 2. The focus of this
work being on parkour, we consider learning locomotion skills such as walking, climbing, leaping,
and crawling with four terrain types illustrated in Figure 2. A single policy is jointly trained on a
curriculum of variations of these terrains with increasing difficulty [5].

3.2 Visual Policy Learning

Ideally, we would like to train the policy from depth pixels to actions using deep RL in order to
learn behaviors that best use the limited sensory inputs from the depth cameras. However, directly
training the vision policy end-to-end from scratch with RL is impractical, as depth images are costly
to render in simulation. An alternative approach is to first train a policy that has access to cheap-
to-compute information only accessible in simulation about the terrain surrounding the robot, then
distill the behaviors learned from this privileged information into a visual policy observing a history
of depth images using imitation learning [16, 13, 12]. While the experimental setup can be chosen
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Figure 3: SoloParkour leverages a two-stage RL approach to train visual locomotion policies in
simulation. Stage 1: we train a privileged policy that observes a heightmap scan of its surroundings
and the height of the nearby floating objects using PPO with Constraints as Terminations (CaT) [20].
Stage 2: we train a policy from depth pixels using a variant of DDPG with CaT that learns from a
dataset of privileged experience collected using the Stage 1 policy.

to reduce the distillation gap (e.g. by choosing specific sensors providing extensive observability),
there is in general no guarantee that the learned behaviors will transfer well to the visual policy due
to the observability gap between the privileged information and the visual sensors. For instance,
elevation maps may contain information about surfaces that are not visible from the camera inputs.
We then propose a generic solution mitigating these two problems.

Our approach, SoloParkour, is illustrated in Figure 3. Following prior works [16, 12, 13], we first
learn a privileged policy that has access to cheap-to-compute information about the terrain sur-
rounding the robot. Unlike [16, 12, 13], we propose to use this privileged policy to warm-start the
reinforcement learning of an end-to-end visual policy. This way, we let the RL agent decide on
the best behaviors given its limited sensory inputs while bypassing the computational complexity of
training from depth images.

Stage 1: Privileged Policy Learning We first train a privileged policy 7™ that has access to
cheap-to-compute information about the terrain surrounding the robot. In place of histories of depth
images and proprioception, the robot observes the privileged state s} that includes the current
proprioceptive measures, velocity commands, and the previous action as well as a height-scan map
of its surrounding and the ceiling height. In crawl terrains, the ceiling height corresponds to the
distance from the ground to a levitating block when such a block is near the robot. In other terrains,
or when no levitating blocks are nearby, the ceiling height is set to an arbitrarily high default value.
We found that this provides sufficient information about the terrain geometry to train the privileged
policy for all the proposed terrain tracks.

The privileged policy is parameterized by a Multi-Layer Perceptron (MLP) trained using Proximal
Policy Optimization [48] (PPO), an on-policy RL method widely used in learning-based locomotion.
We use CaT [20] to enforce the constraints.

Stage 2: End-to-End Vision-Based RL from Privileged Experience To overcome the com-
putational complexity of RL from pixels, we propose to adapt Reinforcement Learning with
Prior Data [21] (RLPD) to transfer the experience from the privileged policy to visual locomo-
tion and learn from depth images in a sample efficient manner. We build on design principles
from [29, 21, 22] and implement off-policy RL with a high update-to-data ratio. Compared to
on-policy approaches such as PPO, this minimizes the number of depth image rendering steps in
simulation in favor of increased updates from the privileged and online experience.

More precisely, we employ a variant of Deep Deterministic Policy Gradient [71] (DDPG) that uses
two replay buffers: its online replay buffer D°"i"® and a privileged experience buffer DY, DPriv
is constructed by employing the fully trained 7™ from Stage 1 to generate demonstrations that in-
clude the depth modality 9P, During policy learning, batches of experiences are sampled in equal
proportion from D" and PP to train the policy 7 and its Q-function. We use REDQ [72] and



Layer Normalization [73] to stabilize Q-learning at high update-to-data ratio [74, 21, 22]. Impor-
tantly, while the visual actor 7 is trained end-to-end from a history of depth images, we found that
training the critic from privileged state s} rather than on the full state s; in an asymmetric actor-
critic fashion [75] was faster and more stable. We incorporate CaT [20] in an off-policy manner to

learn visual locomotion that keeps satisfying the constraints.

The resulting RL algorithm is sample efficient enough to train our visual policies, parameterized by
a ConvNet [76] to process depth images individually, a Gated Recurrent Unit [77] to handle histories
of observations, and an MLP head, with RL directly from pixels in simulation.

4 Experiments

4.1 Experimental setup

Simulation and robot The policies are trained in the IsaacGym [70] simulator using massively
parallel environments. The full policy learning pipeline can be trained on a single NVIDIA RTX
4090 GPU in less than 20 hours. After training in simulation, the controller is directly deployed on
areal Solo-12 quadruped robot. The policy runs at 50H z on a Raspberry Pi 5. Target joint positions
are sent to the onboard PD controller running at 10k H z. We use an Intel RealSense D-405 stereo
camera to capture depth images and process them to resolution 48 x 48. While the depth images are
rendered every 5 environment steps in simulation (i.e. 10Hz in the time reference of the simulation),
we provide the images at the speed of the depth pipeline on the real robot at 30H z.

When standing, the height of Solo is 26cm and its body length is 45cm, which is similar to the
Unitree Go-1 used in [12, 13]. However, Go-1 has a thrust-to-weight ratio 2 to 3 times superior to
Solo. Thus, we don’t expect to overcome obstacles as challenging as [12, 13].

Baselines and ablations We validate our approach in simulation and compare SoloParkour to the
following baselines and ablations.
* DAgger [17]: the method used in [13, 12, 16] to distill the privileged policy into the visual
policy using imitation learning through action relabelling with the privileged policy.
* Behavior Cloning (BC): distilling the privileged policy by training the visual policy directly
with supervised learning on the privileged experience Dpjy.
* Privileged Reconstruction: training the vision module to reconstruct the privileged infor-
mation from the history of depth and proprioceptive inputs, then reemploy the Stage 1
policy based on these reconstructions, aimed to resemble [16, 56].
* From Scratch: an ablation of our approach where we train the visual policy with RL from
scratch, without privileged experience Dpyy.
* No Priv. Critic: an ablation of our approach where the critic of Stage 2 observes histories
of depth images instead of the simplified privileged information.
* Visual RL w/o CaT: an ablation of our approach where we train the visual RL policy with-
out constraints (but from experience from the same constrained Stage 1 policy).
We first train a privileged policy from Stage 1. Then, except for BC which is much faster to train
as it doesn’t require querying the simulator, we train all these baselines and ablations with the same
computational budget. Finally, we compare their performance by executing the learned policies in
simulation and measuring the distance traveled in the terrains of Figure 2.

4.2 Simulation Experiments

Comparison to supervised distillation In Figure 4a, we compare SoloParkour against DAgger,
BC and Privileged Reconstruction. For comparison, we also report the performances of the privi-
leged policy used to train these methods. SoloParkour performs roughly as well as the privileged
policy on the hurdle, step, and crawl tracks and marginally worse on the leap track. It outperforms
the supervised distillation baselines on all terrains and at almost all levels of difficulty. The differ-
ence is particularly significant against DAgger and BC on the leap terrains, where the robot must
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Figure 4: Average terrain completion (over 4 training seeds) by obstacle dimension for each policy.

perform a complex motion to overcome the gaps, requiring perfect timing to succeed. On these ter-
rains, DAgger and BC often fail to propel themselves enough and miss the edge of the landing side
of the platform, or ignore the gap and fall into it. Meanwhile, Privileged Reconstruction struggles
on the crawl and climb terrains, where occlusions hinder accurate reconstruction of the surrounding
terrain geometry. We attribute these differences to our end-to-end training from pixels with the RL
objective, which results in tighter coordination between vision and control, understood as a local
action-perception refinement.

Ablative analysis In Figure 4b, we examine the importance of two design choices for SoloParkour
given the same computation budget. Training the visual policy from scratch without privileged
experience (from Scratch) is much less sample-efficient and achieves poor performances overall,
validating the importance of transferring privileged experience from the Stage 1 policy. Having
the critics process the full-depth observation instead of only the privileged information (No Priv.
Critic) causes additional computation overheads during Q-learning, which are yet unnecessary to
train good visual policies in our setting. As a result, given the same computation budget, No Priv.
Critic processes fewer samples and achieves lower performances than the full SoloParkour method.

Constraints satisfaction In Figure 5, we examine the vio-  giep | Leap | Crawl | Average
lation of the torque constraint for the front left shoulder joint

and the base origntation constraint, as outlined in (4). WJe fo- 85% | 70% | 100% | 85%
cused excluswe%y on succegsful trajef:torles where the robot  Tyhle 1: Success rates achieved by
managed to navigate the entire level in order to exclude data the policies for different obstacles
from extreme states, such as when the robot is falling outside on the real robot, averaged over 2
of the track or gets endlessly stuck on a high obstacle. Hence, training seeds and 10 trials per ob-
we report results for only two gap lengths on the leap track stacle per seed.

for DAgger, as it fails to overcome larger gaps. Thanks to

off-policy CaT, SoloParkour maintains constraint compliance effectively after visuomotor RL, with
torque violations under 4% and base orientation violations under 10% on most levels, despite the
highly dynamic skills involved to overcome the obstacles. These results are comparable to those of
the privileged policy and supervised distillation baselines. By contrast, Visual RL w/o CaT achieves
higher terrain completion rates but at the cost of significantly increased constraint violations, ren-
dering the policies unsuitable for real-world robot transfer. Additional results on the satisfaction of
a broader set of constraints are discussed in Appendix C.
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Figure 5: Constraint violations (in %) when the policies successfully traverse the terrain level by
obstacle dimension, averaged across 4 training seeds.

4.3 Real-Robot Experiments

We deploy SoloParkour directly on the real Solo-12 and evaluate it to traverse challenging obstacles
that involve climbing, crawling, and leaping (see Figure 1). We found that the policy handled the
depth vision signals sent by the camera, responding synchronously to obstacles at the right time.
Table 1 reports the results achieved by SoloParkour. Our approach successfully climbs a 40cm step
(1.5 times the robot’s height), leaps over a 35cm gap (78% of its length), and crawls under obstacles
20cm above the ground with high repeatability.

5 Limitations

The experiments on the real hardware have revealed that our policy, while respecting the motor
limitations, is likely hitting the battery current limits. This issue was not anticipated, hence not
modeled neither in the simulation nor in the imposed constraints. It likely was amplified during the
course of the experimental study by damaging the batteries when exceeding their capabilities. An
exciting direction is to properly model this physical effect in the constrained-MDP, which has the
potential to improve the performances of all other robots in future parkour research.

Moreover, current parkour learning approaches, including ours, require that simulation terrains be
manually constructed for each specific skill. Consequently, robots can only learn new skills by
designing new types of terrain. Future work could explore procedural or generative simulators to
create more diverse and realistic environments for training locomotion policies and transition from
depth-based to RGB vision for legged robots.

6 Conclusion

We introduced SoloParkour, a novel method that combines constraints and sample-efficient RL from
privileged experience to train agile and safe locomotion for legged robots end-to-end from depth
pixels. We found that constraints simplify the work of designing the MDP while leading to more
consistent results. The end-to-end resolution leads to better training convergence compared to previ-
ous teacher-student approaches.We also experimentally brought the lightweight robot Solo-12 closer
to its limit than ever before, achieving various parkour stages despite severe actuator limitations.



Acknowledgements

This work was funded in part by ANITI (ANR-19-P3IA-0004), COCOPIL (Région Occitanie,
France), PEP# O2R (AS2 ANR-22-EXOD-0006), Dynamograde (ANR-21-LCV3-0002), ROBO-
TEX 2.0 (ROBOTEX ANR-10-EQPX-44-01 and TIRREX-ANR-21-ESRE-0015) and the National
Science Foundation (grants 2026479, 2222815 and 2315396). It was granted access to the HPC
resources of IDRIS under the allocations AD011012947 and AD011015316 made by GENCI.

References

[1] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal locomo-
tion over challenging terrain. Science robotics, 5(47):eabc5986, 2020.

[2] G. Bellegarda, C. Nguyen, and Q. Nguyen. Robust quadruped jumping via deep reinforcement
learning. arXiv preprint arXiv:2011.07089, 2020.

[3] Z. Fu, A. Kumar, J. Malik, and D. Pathak. Minimizing energy consumption leads to the emer-
gence of gaits in legged robots. In Conference on Robot Learning (CoRL), 2021.

[4] G. B. Margolis, T. Chen, K. Paigwar, X. Fu, D. Kim, S. Kim, and P. Agrawal. Learning to
jump from pixels. arXiv preprint arXiv:2110.15344, 2021.

[5] N. Rudin, D. Hoeller, P. Reist, and M. Hutter. Learning to walk in minutes using massively
parallel deep reinforcement learning. In Conference on Robot Learning, pages 91-100. PMLR,
2022.

[6] G. Bellegarda, Y. Chen, Z. Liu, and Q. Nguyen. Robust high-speed running for quadruped
robots via deep reinforcement learning. In IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2022.

[7] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Robust and ver-
satile bipedal jumping control through multi-task reinforcement learning. arXiv preprint
arXiv:2302.09450, 1, 2023.

[8] T. He, C. Zhang, W. Xiao, G. He, C. Liu, and G. Shi. Agile but safe: Learning collision-free
high-speed legged locomotion. arXiv preprint arXiv:2401.17583, 2024.

[9] S.Inoue, K. Kawaharazuka, K. Okada, and M. Inaba. Body design and gait generation of chair-
type asymmetrical tripedal low-rigidity robot. In 2024 IEEE 7th International Conference on
Soft Robotics (RoboSoft), pages 593-600. IEEE, 2024.

[10] Y. J. Ma, W. Liang, H. Wang, S. Wang, Y. Zhu, L. Fan, O. Bastani, and D. Jayaraman.
Dreureka: Language model guided sim-to-real transfer. In Robotics: Science and Systems
(RSS), 2024.

[11] K. Caluwaerts, A. Iscen, J. C. Kew, W. Yu, T. Zhang, D. Freeman, K.-H. Lee, L. Lee, S. Sal-
iceti, V. Zhuang, et al. Barkour: Benchmarking animal-level agility with quadruped robots.
arXiv preprint arXiv:2305.14654, 2023.

[12] Z.Zhuang, Z. Fu, J. Wang, C. Atkeson, S. Schwertfeger, C. Finn, and H. Zhao. Robot parkour
learning. In Conference on Robot Learning (CoRL), 2023.

[13] X. Cheng, K. Shi, A. Agarwal, and D. Pathak. Extreme parkour with legged robots. arXiv
preprint arXiv:2309.14341, 2023.

[14] D. Hoeller, N. Rudin, D. Sako, and M. Hutter. Anymal parkour: Learning agile navigation for
quadrupedal robots. Science Robotics, 2024.



[15] F. Grimminger, A. Meduri, M. Khadiv, J. Viereck, M. Wiithrich, M. Naveau, V. Berenz,
S. Heim, F. Widmaier, T. Flayols, et al. An open torque-controlled modular robot architec-
ture for legged locomotion research. IEEE Robotics and Automation Letters, 5(2):3650-3657,
2020.

[16] A. Agarwal, A. Kumar, J. Malik, and D. Pathak. Legged locomotion in challenging terrains
using egocentric vision. In Conference on robot learning, pages 403—415. PMLR, 2023.

[17] S. Ross, G. Gordon, and D. Bagnell. A reduction of imitation learning and structured predic-
tion to no-regret online learning. In Proceedings of the fourteenth international conference on
artificial intelligence and statistics, pages 627-635. JMLR Workshop and Conference Proceed-
ings, 2011.

[18] J.Lee, L. Schroth, V. Klemm, M. Bjelonic, A. Reske, and M. Hutter. Evaluation of constrained
reinforcement learning algorithms for legged locomotion. arXiv preprint arXiv:2309.15430,
2023.

[19] Y. Kim, H. Oh, J. Lee, J. Choi, G. Ji, M. Jung, D. Youm, and J. Hwangbo. Not only rewards but
also constraints: Applications on legged robot locomotion. IEEE Transactions on Robotics,
2024.

[20] E. Chane-Sane, P.-A. Leziart, T. Flayols, O. Stasse, P. Soue¢res, and N. Mansard. Cat:
Constraints as terminations for legged locomotion reinforcement learning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2024.

[21] P. J. Ball, L. Smith, I. Kostrikov, and S. Levine. Efficient online reinforcement learning with
offline data. In International Conference on Machine Learning, pages 1577-1594. PMLR,
2023.

[22] L. Smith, J. C. Kew, T. Li, L. Luu, X. B. Peng, S. Ha, J. Tan, and S. Levine. Learning and
adapting agile locomotion skills by transferring experience. Proceedings of Robotics: Science

and Systems, 2023.

[23] X. B. Peng, E. Coumans, T. Zhang, T.-W. Lee, J. Tan, and S. Levine. Learning agile robotic
locomotion skills by imitating animals. arXiv preprint arXiv:2004.00784, 2020.

[24] A. Kumar, Z. Fu, D. Pathak, and J. Malik. Rma: Rapid motor adaptation for legged robots.
arXiv preprint arXiv:2107.04034, 2021.

[25] M. Aractingi, P.-A. Léziart, T. Flayols, J. Perez, T. Silander, and P. Soueres. Controlling the
solo12 quadruped robot with deep reinforcement learning. Scientific Reports, 13(1):11945,
2023.

[26] G. B. Margolis, G. Yang, K. Paigwar, T. Chen, and P. Agrawal. Rapid locomotion via rein-
forcement learning. The International Journal of Robotics Research, 43(4):572-587, 2024.

[27] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hutter. Learn-
ing agile and dynamic motor skills for legged robots. Science Robotics, 4(26):eaau5872, 2019.

[28] C. Yang, K. Yuan, Q. Zhu, W. Yu, and Z. Li. Multi-expert learning of adaptive legged locomo-
tion. Science Robotics, 5(49):eabb2174, 2020.

[29] L. Smith, J. C. Kew, X. B. Peng, S. Ha, J. Tan, and S. Levine. Legged robots that keep on
learning: Fine-tuning locomotion policies in the real world. In International Conference on
Robotics and Automation (ICRA), 2022.

[30] C. Li, M. Vlastelica, S. Blaes, J. Frey, F. Grimminger, and G. Martius. Learning agile skills
via adversarial imitation of rough partial demonstrations. In Conference on Robot Learning,
pages 342-352. PMLR, 2023.

10



[31] R. Yang, Z. Chen, J. Ma, C. Zheng, Y. Chen, Q. Nguyen, and X. Wang. Generalized ani-
mal imitator: Agile locomotion with versatile motion prior. arXiv preprint arXiv:2310.01408,
2023.

[32] Z. Li, X. B. Peng, P. Abbeel, S. Levine, G. Berseth, and K. Sreenath. Reinforcement
learning for versatile, dynamic, and robust bipedal locomotion control. arXiv preprint
arXiv:2401.16889, 2024.

[33] C.Zhang,J. Sheng, T. Li, H. Zhang, C. Zhou, Q. Zhu, R. Zhao, Y. Zhang, and L. Han. Learning
highly dynamic behaviors for quadrupedal robots. arXiv preprint arXiv:2402.13473, 2024.

[34] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst. Blind bipedal stair traversal via sim-
to-real reinforcement learning. arXiv preprint arXiv:2105.08328, 2021.

[35] T. Miki, J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning robust per-
ceptive locomotion for quadrupedal robots in the wild. Science Robotics, 7(62):eabk2822,
2022.

[36] D. Hoeller, N. Rudin, C. Choy, A. Anandkumar, and M. Hutter. Neural scene representation
for locomotion on structured terrain. IEEE Robotics and Automation Letters, 7(4):8667-8674,
2022.

[37] N.Rudin, D. Hoeller, M. Bjelonic, and M. Hutter. Advanced skills by learning locomotion and
local navigation end-to-end. In 2022 IEEE/RSJ International Conference on Intelligent Robots
and Systems (JROS), pages 2497-2503. IEEE, 2022.

[38] R. Yang, G. Yang, and X. Wang. Neural volumetric memory for visual locomotion control. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
1430-1440, 2023.

[39] A. Loquercio, A. Kumar, and J. Malik. Learning visual locomotion with cross-modal super-
vision. In 2023 IEEE International Conference on Robotics and Automation (ICRA), pages
7295-7302. IEEE, 2023.

[40] Y. Cheng, H. Liu, G. Pan, L. Ye, H. Liu, and B. Liang. Quadruped robot traversing 3d complex
environments with limited perception. arXiv preprint arXiv:2404.18225, 2024.

[41] Y. Fuchioka, Z. Xie, and M. Van de Panne. Opt-mimic: Imitation of optimized trajectories
for dynamic quadruped behaviors. In 2023 IEEE International Conference on Robotics and
Automation (ICRA), pages 5092-5098. IEEE, 2023.

[42] X.Huang, Y. Chi, R. Wang, Z. Li, X. B. Peng, S. Shao, B. Nikolic, and K. Sreenath. Diffuse-
loco: Real-time legged locomotion control with diffusion from offline datasets. arXiv preprint
arXiv:2404.19264, 2024.

[43] T. Miki, J. Lee, L. Wellhausen, and M. Hutter. Learning to walk in confined spaces using 3d
representation. International Conference on Robotics and Automation (ICRA), 2024.

[44] Z. Xu, A. H. Raj, X. Xiao, and P. Stone. Dexterous legged locomotion in confined 3d spaces
with reinforcement learning. arXiv preprint arXiv:2403.03848, 2024.

[45] S. Kim, M. Sorokin, J. Lee, and S. Ha. Humanconquad: human motion control of quadrupedal
robots using deep reinforcement learning. In SIGGRAPH Asia 2022 Emerging Technologies,
2022.

[46] X. Huang, Z. Li, Y. Xiang, Y. Ni, Y. Chi, Y. Li, L. Yang, X. B. Peng, and K. Sreenath. Cre-
ating a dynamic quadrupedal robotic goalkeeper with reinforcement learning. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2023.

11



[47] T.-Y. Yang, T. Zhang, L. Luu, S. Ha, J. Tan, and W. Yu. Safe reinforcement learning for legged
locomotion. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 2454-2461. IEEE, 2022.

[48] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[49] M. Bogdanovic, M. Khadiv, and L. Righetti. Model-free reinforcement learning for robust
locomotion using demonstrations from trajectory optimization. Frontiers in Robotics and Al,
9:854212, 2022.

[50] P. Wu, A. Escontrela, D. Hafner, P. Abbeel, and K. Goldberg. Daydreamer: World models for
physical robot learning. In Conference on Robot Learning, pages 2226-2240. PMLR, 2023.

[51] A.Kleiner and C. Dornhege. Real-time localization and elevation mapping within urban search
and rescue scenarios. Journal of Field Robotics, 24(8-9):723-745, 2007.

[52] X. B. Peng, G. Berseth, K. Yin, and M. Van De Panne. Deeploco: Dynamic locomotion skills
using hierarchical deep reinforcement learning. Acm transactions on graphics (tog), 36(4):
1-13, 2017.

[53] P. Fankhauser, M. Bloesch, and M. Hutter. Probabilistic terrain mapping for mobile robots
with uncertain localization. IEEE Robotics and Automation Letters, 3(4):3019-3026, 2018.

[54] S. Gangapurwala, M. Geisert, R. Orsolino, M. Fallon, and I. Havoutis. Real-time trajectory
adaptation for quadrupedal locomotion using deep reinforcement learning. In 2021 IEEE
International Conference on Robotics and Automation (ICRA), pages 5973-5979. IEEE, 2021.

[55] V. Tsounis, M. Alge, J. Lee, F. Farshidian, and M. Hutter. Deepgait: Planning and control of
quadrupedal gaits using deep reinforcement learning. IEEE Robotics and Automation Letters,
5(2):3699-3706, 2020.

[56] H. Duan, B. Pandit, M. S. Gadde, B. J. van Marum, J. Dao, C. Kim, and A. Fern. Learning
vision-based bipedal locomotion for challenging terrain. IEEE International Conference on
Robotics and Automation (ICRA), 2024.

[57] R. O. Chavez-Garcia, J. Guzzi, L. M. Gambardella, and A. Giusti. Learning ground traversabil-
ity from simulations. IEEE Robotics and Automation letters, 3(3):1695-1702, 2018.

[58] B. Yang, L. Wellhausen, T. Miki, M. Liu, and M. Hutter. Real-time optimal navigation planning
using learned motion costs. In IEEE International Conference on Robotics and Automation
(ICRA), pages 9283-9289. IEEE, 2021.

[59] M. Bloesch, S. Omari, M. Hutter, and R. Siegwart. Robust visual inertial odometry using a
direct ekf-based approach. In 2015 IEEE/RSJ international conference on intelligent robots
and systems (IROS), pages 298-304. IEEE, 2015.

[60] D. Wisth, M. Camurri, and M. Fallon. Robust legged robot state estimation using factor graph
optimization. IEEE Robotics and Automation Letters, 4(4):4507—4514, 2019.

[61] D. Wisth, M. Camurri, and M. Fallon. Vilens: Visual, inertial, lidar, and leg odometry for
all-terrain legged robots. IEEE Transactions on Robotics, 39(1):309-326, 2022.

[62] R. Buchanan, M. Camurri, F. Dellaert, and M. Fallon. Learning inertial odometry for dynamic
legged robot state estimation. In Conference on Robot Learning, pages 1575-1584. PMLR,
2022.

[63] M. Wermelinger, P. Fankhauser, R. Diethelm, P. Kriisi, R. Siegwart, and M. Hutter. Navigation
planning for legged robots in challenging terrain. In IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2016.

12



[64] C. Mastalli, M. Focchi, I. Havoutis, A. Radulescu, S. Calinon, J. Buchli, D. G. Caldwell,
and C. Semini. Trajectory and foothold optimization using low-dimensional models for rough
terrain locomotion. In IEEE International Conference on Robotics and Automation (ICRA),
2017.

[65] O. A. V. Magana, V. Barasuol, M. Camurri, L. Franceschi, M. Focchi, M. Pontil, D. G. Cald-
well, and C. Semini. Fast and continuous foothold adaptation for dynamic locomotion through
cnns. IEEE Robotics and Automation Letters, 4(2):2140-2147, 2019.

[66] F.lJenelten, T. Miki, A. E. Vijayan, M. Bjelonic, and M. Hutter. Perceptive locomotion in rough
terrain—online foothold optimization. IEEE Robotics and Automation Letters, 5(4):5370-5376,
2020.

[67] D. Kim, D. Carballo, J. Di Carlo, B. Katz, G. Bledt, B. Lim, and S. Kim. Vision aided dynamic
exploration of unstructured terrain with a small-scale quadruped robot. In IEEE International
Conference on Robotics and Automation (ICRA), 2020.

[68] A. Agrawal, S. Chen, A. Rai, and K. Sreenath. Vision-aided dynamic quadrupedal locomo-
tion on discrete terrain using motion libraries. In International Conference on Robotics and
Automation (ICRA), 2022.

[69] W. Yu, D. Jain, A. Escontrela, A. Iscen, P. Xu, E. Coumans, S. Ha, J. Tan, and T. Zhang. Visual-
locomotion: Learning to walk on complex terrains with vision. In 5th Annual Conference on

Robot Learning, 2021.
[70] V. Makoviychuk, L. Wawrzyniak, Y. Guo, M. Lu, K. Storey, M. Macklin, D. Hoeller, N. Rudin,

A. Allshire, A. Handa, et al. Isaac gym: High performance gpu-based physics simulation for
robot learning. arXiv preprint arXiv:2108.10470, 2021.

[71] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra.
Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971, 2015.

[72] X. Chen, C. Wang, Z. Zhou, and K. W. Ross. Randomized ensembled double g-learning:
Learning fast without a model. In International Conference on Learning Representations, 2021.

[73] J.L.Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,
2016.

[74] L. Smith, I. Kostrikov, and S. Levine. A walk in the park: Learning to walk in 20 minutes with
model-free reinforcement learning. arXiv preprint arXiv:2208.07860, 2022.

[75] L. Pinto, M. Andrychowicz, P. Welinder, W. Zaremba, and P. Abbeel. Asymmetric actor critic
for image-based robot learning. Proceedings of Robotics: Science and Systems, 2018.

[76] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.

[77] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio. Empirical evaluation of gated recurrent neural
networks on sequence modeling. arXiv preprint arXiv:1412.3555, 2014.

[78] S.Huang, R. F.J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta, and J. G. Aratijo. Cleanrl:
High-quality single-file implementations of deep reinforcement learning algorithms. Journal
of Machine Learning Research, 23(274):1-18, 2022. URL http://jmlr.org/papers/v23/
21-1342.html.

13



A Implementation Details

A.1 Rewards and Constraints

We use the reward function 3 from [13] that measures progress toward a specific direction. To
always have positive rewards, we add a survival bonus of 0.5 at each time step, and, following [5],
we clip total rewards below 0.0.

To enforce the constraints, we follow CaT [20] and reformulate the constrained RL problem 1 into
the following RL problem:

[e’g) t

mf?XTINEW Z V(1 = 0(se,av)) | r(se, ar) |, &)
0

t=0 \t'=

with termination probabilities d(s¢, a;). Following CaT, we define the termination probabilities as:

+
C.:
§ = max pi*clip(—+-,0,1) (6)
: 7 ax ) U+ )y
i€l C;
where ¢ = max(0, ¢; (s, a)) is the violation of constraint i, ¢ is an exponential moving average

of the maximum constraint violation over the last batch of experience collected in the environment,
and p"™* a hyperparameter that controls the maximum termination probability for the constraint i.

Table 2 lists all the constraints used. Following [20], we separate constraints between hard con-
straints, where pi"®* = 1.0, and soft constraints, where p;*®™ increases throughout the course of
training, allowing the RL agent to discover agile locomotion during the early stage of training while
enforcing more the constraints later on to ensure safe behaviors. To encourage the emergence of a
specific locomotion style, some constraints are activated only in specific settings. For instance, the
Stand still constraints cg; are only active when no velocity command is provided, whereas the Base
orientation and Number of foot contacts are only active on flat terrains and on early terrain levels.

We found that rescaling the constraint violations by the square root function ¢; < 4/ cj helps CaT
be less sensitive to extreme values of constraint violations.

Type \ Expression | Hard | Cond.
Knee or base collision Cknee/base contact = Lknee/base contact v X
Foot contact force Cfoot contact; = || flooti ||y — flim v X
foot ; foot ;

Foot stumble Csumble; = || fxy 2 —4lfz 7] ' X X
Heading Cheading = |angley,., — angle 4| — angle™ | x X
Torque Ctorque, = |Tke| = 7™ X X
. . _ . .1'

Joint velocity Cjoint velocity, — |G| — g™ X x

. . _ . ..1‘

Joint acceleration Cioint acceleration, = |Gk| — G X X
) Agl, —Agt ) )
Action rate Caction rate, = [y | T el gdes lim X X
Joint limits min Cioinmin = joint"" — joint; X X
J
Joint limits max Cjoinen = joint; — Jomt?‘ax X X
. . - d <
Foot air time Cair time; = U ime — tair time; X X
Base orientation (roll-axis) Coriyy = |OTiron| — ori'r'ori‘1 X X
Base orientation Cori = |[base oriyy ||, — base™ X v
_ d
Number of fOOt. contacts Cn foot contacts — |nfoot contact — nfs(s,t contact| X v
Stand still Cstill = ||q - q*||2 — Egill X v

Table 2: List of constraints, where Hard indicates whether each row corresponds to a hard constraint
and Cond. indicates whether a constraint is active only under certain conditions.
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A.2 Policy Learning

We built our RL algorithm with the CleanRL [78] implementations of PPO and DDPG. During priv-
ileged policy learning, we linearly increase the damping parameter (Kd) of the PD controller from
0.05 to 0.2 but keep it fixed at 0.2 during visual policy learning. Indeed, we empirically observed
that RL discovers agile skills more easily with lower Kd but policies with higher Kd transfer better
to the real Solo-12.

Privileged Policy Learning An MLP parametrizes the privileged policy with hidden dimensions
[512, 256, 128] and elu activations. We use PPO [48] with 4096 actors in parallel in simulation. The
training procedure is very similar to [5, 13, 20].

Visual Policy Learning The actor processes depth images using a vision neural network consist-
ing of three blocks of a convolution with leaky ReLU activations, followed by max pooling and
a linear layer to produce the depth embeddings. Random translation, random noise, and random
cutout are applied to the depth images during training. The actor then processes the history of pro-
prioceptive information, actions, and depth embeddings with a one-layer Gated Recurrent Unit [77]
(GRU) of hidden size 256. This GRU is followed by a MLP with hidden dimensions [512, 256, 128]
and elu activations. The output of the final layer is processed by a tanh activation function and
rescaled to produce the 12-dimensional action vector. We used the action bounds observed in the
privileged experience buffer to rescale the actions given by the actor.

The critic network is parameterized by a MLP with hidden dimensions [512, 256, 128], layer nor-
malization and elu activations. While the actor observes the full state s;, which includes a history of
depth images, the critics process the privileged state s}, which includes privileged heightmap scan

and ceilings instead of high-dimensional images.

We generate trajectories from the privileged policy that amounts to 2 million state-action samples
and store them in the privileged experience buffer DP"V whereas online experience is collected by
256 actors in parallel into the online replay buffer D", We store the constraint violations cj‘ of
both online and privileged experience in their respective replay buffers to recompute the termination
probabilities & on the fly during off-policy learning. Both DP and D°"i" store privileged infor-
mation at every step and depth image every 5 environment steps. During training, we only give the
vision network one image every five timesteps and then replicate the depth latent five times to match
the sequence length of the other observations. The online replay buffer stores the GRU hidden latent
produced by the online actors whereas the privileged replay buffer stores zeros for these latents. This
is done to initialize the first hidden of the DDPG actor correctly during off-policy training.

We train the visual policy using a variant of RLPD [21]. We build upon DDPG [71] with an update-
to-data ratio of 8 during policy evaluation. We use REDQ [72] with 10 critics and an ensemble of 2
random critic targets.

A.3 Baselines

The BC baseline uses the same neural network architecture as SoloParkour, as described in Section
A.2. We train the BC policies to regress the action based on the history of observations on the same
dataset of demonstrations DP™ generated by the privileged policy 7™ as SoloParkour.

The DAgger baseline uses the same neural network architecture as SoloParkour and BC. We employ
the Stage 1 policy 7P™ as teacher for action relabelling. We found that starting the DAgger policy
from the BC-pretrained weights greatly improves online learning efficiency.

For the Privileged Reconstruction baseline, we use the same observation space and neural archi-
tecture as SoloParkour, BC and DAgger for the vision module except that the output of the GRU is
projected to the privileged information space through a linear layer. We employ the privileged policy
7P as frozen MLP head and only train the vision module to reconstruct the privileged information
from the history of past observations and actions. Similar to [16] and unlike [56], we found it highly
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beneficial to train the vision network with experience generated by the resulting online policy, rather
than training solely on the fixed dataset DP™¥ generated by the privileged policy.

The No Priv. Critic ablation processes visual input in the critic network instead of privileged infor-
mation. Its vision module follows the same architecture as the visual policy.

For the Visual RL w/o CaT ablation, we use the same dataset of privileged experience DP™" as the
one used to train all other methods (except for the From Scratch ablation that doesn’t learn from any
demonstration), but we remove the constraints for Stage 2 RL. Note that the privileged experience
DPV was generated with 7P which was trained with Constrained RL and therefore satisfies the
constraints.

B Real Robot Setup

We use the Solo-12 quadruped robot for our experiments. We built a custom 3D-printed plastic
piece to mount the Intel RealSense D405 stereo camera observing in front of the robot. We use the
Python wrapper of librealsense to capture depth images at resolution 424 x 240. We resize and crop
the images to 48 x 48 and apply the librealsense postprocessing hole-filling filter. Depth images
are preprocessed in a separate thread on a separate CPU as they come, at around 30Hz. The visual
policy runs at S0Hz using ONNX and produces target joint angles to torque by a PD controller
with stiffness Kp = 4.0 and damping K'd = 0.2 running at 10KHz. Hence, depth embeddings
are updated at a higher frequency at inference than during training. All the computation is done
through Python scripts by the onboard Raspberry Pi 5. Velocity commands are sent to the embedded
controller via a wireless gamepad.

C Additional Results

In Figure 6 and 7, we present further results on constraint satisfaction for SoloParkour and the base-
lines introduced in Section 4.1. SoloParkour demonstrates high constraint satisfaction, highlighting
the effectiveness of our approach in achieving safe yet agile locomotion skills over challenging ter-
rains using vision.
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(b) Joint velocity constraint for the front left knee
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(c) Joint limit max constraint for the front left shoulder

. Climb Crawl Hurdle Leap

X

c

I}

220

°

>

<10

‘©

=3

2 0 . A__é L

S T T T T T T T T T T T T T
10 20 30 40 34 32 30 28 26 10 20 30 20 40 60
Obstacle height (cm) Ceiling height (cm) Obstacle height (cm) Gap length (cm)

= Privileged policy = —— Dagger  —=— BC e Visual RL w/o CaT  —=— Privileged Reconstruction =~ —e— SoloParkour
(d) Joint limit min constraint for the front left knee

Figure 6: Constraint violations (in %) when the policies successfully traverse the terrain level by
obstacle dimension, averaged across 4 training seeds.
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Figure 7: Constraint violations (in %) when the policies successfully traverse the terrain level by
obstacle dimension, averaged across 4 training seeds.
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