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Figure 1: The open-hardware quadruped robot Solo-12 performs agile skills that are reminiscent of
parkour, such as walking, climbing high steps, leaping over gaps, and crawling under obstacles.

Abstract: Parkour poses a significant challenge for legged robots, requiring navi-

gation through complex environments with agility and precision based on limited

sensory inputs. In this work, we introduce a novel method for training end-to-

end visual policies, from depth pixels to robot control commands, to achieve agile

and safe quadruped locomotion. We formulate robot parkour as a constrained

reinforcement learning (RL) problem designed to maximize the emergence of ag-

ile skills within the robot’s physical limits while ensuring safety. We first train a

policy without vision using privileged information about the robot’s surroundings.

We then generate experience from this privileged policy to warm-start a sample ef-

ficient off-policy RL algorithm from depth images. This allows the robot to adapt

behaviors from this privileged experience to visual locomotion while circumvent-

ing the high computational costs of RL directly from pixels. We demonstrate the

effectiveness of our method on a real Solo-12 robot, showcasing its capability to

perform a variety of parkour skills such as walking, climbing, leaping, and crawl-

ing.
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1 Introduction

In recent years, training locomotion policies in simulation using reinforcement learning (RL) then

transferring them to real robots has proven highly effective in mastering agile skills [1, 2, 3, 4,

5, 6, 7, 8, 9, 10]. Notably, [11, 12, 13, 14] have successfully demonstrated a range of dynamic

skills akin to the athletic maneuvers seen in parkour, including walking, climbing, jumping, and

crawling, which necessitates tight coordination between vision and control. In this work, we are

interested in developing parkour skills from onboard depth inputs for Solo-12, a lightweight, open-

hardware quadruped robot [15], using this sim-to-real approach. Solo is a lighter prototype than

other quadruped robots experimented in parkour projects (e.g. Atlas, Go-1, or Anymal). Safe visual

locomotion with Solo is then at its highest stake, to prevent exceeding the limited torque range of its

motors and breaking the 3D-printed plastic shells and exposed electronic components in unexpected

impacts or falls.

Yet, training visual locomotion policies presents significant challenges due to the limited field of

view and dynamic, lag-prone visual perception during dynamic movements. Previous methods for

end-to-end control from pixels [16, 12, 13] typically involve a two-stage process, where a policy is

first trained with privileged information about the robot’s surroundings, then the learned behaviors

are distilled into a visual policy using imitation learning [17]. However, such an approach relies on

the unrealistic assumption that privileged information can be fully reconstructed from a history of

depth images. Indeed, such privileges may reveal information obscured behind obstacles, outside

the field of view of the egocentric camera, or simply missing from the depth image stream due

to lags. This gap between the privileged information and the actual visual inputs may result in

behaviors that a vision-based policy cannot replicate accurately. In that case, an optimal vision

policy would differ from the one using privileged information. It would, for example, try to gather

more information before crossing an obstacle to handle the occlusion. Ideally, training RL directly

from pixels would ensure the policy learns behaviors effectively based on its actual visual sensors,

but this method is impractical due to the high computational costs associated with generating depth

images in simulations [16].

To address these challenges, we propose SoloParkour, a novel approach for training parkour lo-

comotion policies using depth inputs. Our method frames parkour as a constrained reinforcement

learning problem [18, 19, 20]. This framework allows the RL agent to explore the full capabili-

ties of the robot while explicitly preventing unsafe actions, ensuring that the agent can aggressively

optimize performance without compromising the safety of the robot. We propose a novel method

to train the visual locomotion policy end-to-end from pixels using a sample-efficient off-policy RL

algorithm. Building upon recent advancements in accelerating RL using demonstrations from pre-

vious controllers [21, 22], our algorithm not only learns from its own experiences but also leverages

experience generated by the privileged policy. This approach enables the RL agent to rapidly ac-

quire agile skills and adapt behaviors from the privileged experience to suit the specific limitations

of its visual sensors, bypassing the computational burden associated with RL from pixels while still

ensuring the development of agile and safe legged locomotion skills.

We demonstrate the effectiveness of our approach in simulation. We then directly deploy the learned

policy on a real Solo-12 robot and demonstrate the effective acquisition of parkour skills such as

crawling, leaping, and climbing obstacles from depth image (see Figure 1). Our approach pushes

the robot to its limits: it manages to clear obstacles 1.5 times higher than its height despite the robot

being significantly less powerful than the ones typically used in parkour experiments.

In summary, our contributions are as follows:

• we cast parkour learning from depth images as a constrained RL problem,

• we introduce a computationally efficient RL algorithm to train end-to-end visual locomo-

tion policies with significant improvement over methods based on distillation

• and we validate the effectiveness of our approach in simulation and on a real Solo-12 robot

to perform parkour skills, outperforming the best movements ever generated with this robot

2



and reaching performances comparable to recent parkour achievements despite a more lim-

ited actuation range.

2 Related Work

Agile Locomotion RL has demonstrated tremendous success in obtaining robust and adaptive

controllers for legged robot [23, 3, 24, 5, 25]. This includes agile skills such as high-speed run-

ning [6, 11, 26, 8], recovering from falling [27, 28, 29, 9], jumping [2, 4, 7, 22, 30, 31, 32, 33],

climbing obstacles [1, 34, 35, 36, 37, 16, 38, 39, 20, 40, 14, 12, 13] bipedal walking with quadruped

robots [41, 30, 22, 13, 42] and walking inside confined spaces [43, 44, 40]. Learning multi-skill

locomotion policies, as required in parkour, can be done by training separate policies for each skill,

then coordinating them with a high-level planner [28, 45, 46, 14] or distilling them into a single

policy [11, 12, 42]. Instead, we follow [13] and learn multi-task policies directly through RL.

Safe Locomotion Safety mechanisms have been implemented to ensure safer outcome while per-

forming agile skills [47, 8]. Following [18, 19, 20], we employ constraints alongside rewards in

RL to deter undesired behaviors. This not only allows for aggressive optimization of agility while

ensuring safety but also simplifies the process of reward tuning for RL. In particular, we exploit the

reformulation of Constraints as Terminations [20] (CaT), which was demonstrated as an overhead

on top of on-policy RL algorithms [48], and which we extend to the off-policy formulation, more

suitable to our case as explained below.

Sample-Efficient Learning [49, 22] accelerate RL with demonstrations obtained from trajectory

optimization. Other works aimed at exploring RL methods sample efficient enough to train loco-

motion policies directly in the real-world [29, 50]. Our approach repurposes many of these designs

to bypass the computational cost of RL from pixels while obtaining a pure end-to-end RL method,

unlocking several advantages exhibited below.

Vision-Based Locomotion Prior methods often separate perception from control using inter-

mediate representations such as elevation maps [51, 52, 53, 54, 55, 5, 35, 56, 14, 20], trace-

ability maps [57, 58] or visual odometry [59, 60, 61, 62], for downstream planning and con-

trol [63, 64, 65, 66, 67, 68]. Recently, locomotion from pixels [69, 4, 39, 16, 12, 13] has emerged as a

powerful paradigm that more tightly coordinates vision and control, often relying on teacher-student

approaches (typically by distilling an observation-privileged policy), yet raising some limited action-

perception behaviors.

3 Method

3.1 Agile and Safe Parkour Learning Problem Formulation

Our goal is to train a parkour policy in simulation using RL and transfer it to a real Solo-12

quadruped robot. To this end, we consider an infinite, discounted, constrained Markov Decision

Process (S,A, r, γ, T , ci∈I) with state space S , action space A, reward function r : S × A → R,

discount factor γ, dynamics T : S ×A → S and constraints {ci : S ×A → R, i ∈ I}. Constrained

RL aims to find a policy π : S → A that maximizes the discounted sum of future rewards:

max
π

Eτ∼π,T

[

∞
∑

t=0

γtr(st, at)

]

, (1)

while satisfying the constraints ci∈I under the state-action policy visitation distribution:

P(s,a)∼ρ
π,T
γ

[ci(s, a) > 0] ≤ ǫi ∀i ∈ I, (2)

where any value of ci(s, a) above 0 corresponds to the magnitude of the violation of the i-th con-

straint by taking action a in state s.

3







Layer Normalization [73] to stabilize Q-learning at high update-to-data ratio [74, 21, 22]. Impor-

tantly, while the visual actor π is trained end-to-end from a history of depth images, we found that

training the critic from privileged state s
priv
t rather than on the full state st in an asymmetric actor-

critic fashion [75] was faster and more stable. We incorporate CaT [20] in an off-policy manner to

learn visual locomotion that keeps satisfying the constraints.

The resulting RL algorithm is sample efficient enough to train our visual policies, parameterized by

a ConvNet [76] to process depth images individually, a Gated Recurrent Unit [77] to handle histories

of observations, and an MLP head, with RL directly from pixels in simulation.

4 Experiments

4.1 Experimental setup

Simulation and robot The policies are trained in the IsaacGym [70] simulator using massively

parallel environments. The full policy learning pipeline can be trained on a single NVIDIA RTX

4090 GPU in less than 20 hours. After training in simulation, the controller is directly deployed on

a real Solo-12 quadruped robot. The policy runs at 50Hz on a Raspberry Pi 5. Target joint positions

are sent to the onboard PD controller running at 10kHz. We use an Intel RealSense D-405 stereo

camera to capture depth images and process them to resolution 48× 48. While the depth images are

rendered every 5 environment steps in simulation (i.e. 10Hz in the time reference of the simulation),

we provide the images at the speed of the depth pipeline on the real robot at 30Hz.

When standing, the height of Solo is 26cm and its body length is 45cm, which is similar to the

Unitree Go-1 used in [12, 13]. However, Go-1 has a thrust-to-weight ratio 2 to 3 times superior to

Solo. Thus, we don’t expect to overcome obstacles as challenging as [12, 13].

Baselines and ablations We validate our approach in simulation and compare SoloParkour to the

following baselines and ablations.

• DAgger [17]: the method used in [13, 12, 16] to distill the privileged policy into the visual

policy using imitation learning through action relabelling with the privileged policy.

• Behavior Cloning (BC): distilling the privileged policy by training the visual policy directly

with supervised learning on the privileged experience Dpriv.

• Privileged Reconstruction: training the vision module to reconstruct the privileged infor-

mation from the history of depth and proprioceptive inputs, then reemploy the Stage 1

policy based on these reconstructions, aimed to resemble [16, 56].

• From Scratch: an ablation of our approach where we train the visual policy with RL from

scratch, without privileged experience Dpriv.

• No Priv. Critic: an ablation of our approach where the critic of Stage 2 observes histories

of depth images instead of the simplified privileged information.

• Visual RL w/o CaT: an ablation of our approach where we train the visual RL policy with-

out constraints (but from experience from the same constrained Stage 1 policy).

We first train a privileged policy from Stage 1. Then, except for BC which is much faster to train

as it doesn’t require querying the simulator, we train all these baselines and ablations with the same

computational budget. Finally, we compare their performance by executing the learned policies in

simulation and measuring the distance traveled in the terrains of Figure 2.

4.2 Simulation Experiments

Comparison to supervised distillation In Figure 4a, we compare SoloParkour against DAgger,

BC and Privileged Reconstruction. For comparison, we also report the performances of the privi-

leged policy used to train these methods. SoloParkour performs roughly as well as the privileged

policy on the hurdle, step, and crawl tracks and marginally worse on the leap track. It outperforms

the supervised distillation baselines on all terrains and at almost all levels of difficulty. The differ-

ence is particularly significant against DAgger and BC on the leap terrains, where the robot must
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A Implementation Details

A.1 Rewards and Constraints

We use the reward function 3 from [13] that measures progress toward a specific direction. To

always have positive rewards, we add a survival bonus of 0.5 at each time step, and, following [5],

we clip total rewards below 0.0.

To enforce the constraints, we follow CaT [20] and reformulate the constrained RL problem 1 into

the following RL problem:

max
π

E
τ∼π

[

∞
∑

t=0

(

t
∏

t′=0

γ(1− δ(st′ , at′))

)

r(st, at)

]

, (5)

with termination probabilities δ(st, at). Following CaT, we define the termination probabilities as:

δ = max
i∈I

pmax
i clip(

c+i
cmax
i

, 0, 1), (6)

where c+i = max(0, ci(s, a)) is the violation of constraint i, cmax
i is an exponential moving average

of the maximum constraint violation over the last batch of experience collected in the environment,

and pmax
i a hyperparameter that controls the maximum termination probability for the constraint i.

Table 2 lists all the constraints used. Following [20], we separate constraints between hard con-

straints, where pmax
i = 1.0, and soft constraints, where pmax

i increases throughout the course of

training, allowing the RL agent to discover agile locomotion during the early stage of training while

enforcing more the constraints later on to ensure safe behaviors. To encourage the emergence of a

specific locomotion style, some constraints are activated only in specific settings. For instance, the

Stand still constraints cstill are only active when no velocity command is provided, whereas the Base

orientation and Number of foot contacts are only active on flat terrains and on early terrain levels.

We found that rescaling the constraint violations by the square root function ci ←
√

c+i helps CaT

be less sensitive to extreme values of constraint violations.

Type Expression Hard Cond.

Knee or base collision cknee/base contact = 1knee/base contact X ×
Foot contact force cfoot contactj = ‖f footj‖2 − f lim X ×

Foot stumble cstumblej = ‖f
footj
xy ‖2 − 4|f

footj
z | × ×

Heading cheading = |anglebase − anglecmd| − anglelim × ×
Torque ctorquek

= |τk| − τ lim × ×
Joint velocity cjoint velocityk

= |q̇k| − q̇lim × ×
Joint acceleration cjoint accelerationk

= |q̈k| − q̈lim × ×

Action rate caction ratek =
|∆qdes

t,k−∆qdes
t−1,k|

dt
− q̇des lim × ×

Joint limits min cjoinmin
j

= jointmin
j − jointj × ×

Joint limits max cjoinmax
j

= jointj − jointmax
j × ×

Foot air time cair timej = tdes
air time − tair timej × ×

Base orientation (roll-axis) coriroll
= |oriroll| − orilimroll × ×

Base orientation cori = ‖base orixy‖2 − baselim × X

Number of foot contacts cn foot contacts = |nfoot contact − ndes
foot contact| × X

Stand still cstill = ‖q − q⋆‖2 − ǫstill × X

Table 2: List of constraints, where Hard indicates whether each row corresponds to a hard constraint
and Cond. indicates whether a constraint is active only under certain conditions.
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A.2 Policy Learning

We built our RL algorithm with the CleanRL [78] implementations of PPO and DDPG. During priv-

ileged policy learning, we linearly increase the damping parameter (Kd) of the PD controller from

0.05 to 0.2 but keep it fixed at 0.2 during visual policy learning. Indeed, we empirically observed

that RL discovers agile skills more easily with lower Kd but policies with higher Kd transfer better

to the real Solo-12.

Privileged Policy Learning An MLP parametrizes the privileged policy with hidden dimensions

[512, 256, 128] and elu activations. We use PPO [48] with 4096 actors in parallel in simulation. The

training procedure is very similar to [5, 13, 20].

Visual Policy Learning The actor processes depth images using a vision neural network consist-

ing of three blocks of a convolution with leaky ReLU activations, followed by max pooling and

a linear layer to produce the depth embeddings. Random translation, random noise, and random

cutout are applied to the depth images during training. The actor then processes the history of pro-

prioceptive information, actions, and depth embeddings with a one-layer Gated Recurrent Unit [77]

(GRU) of hidden size 256. This GRU is followed by a MLP with hidden dimensions [512, 256, 128]
and elu activations. The output of the final layer is processed by a tanh activation function and

rescaled to produce the 12-dimensional action vector. We used the action bounds observed in the

privileged experience buffer to rescale the actions given by the actor.

The critic network is parameterized by a MLP with hidden dimensions [512, 256, 128], layer nor-

malization and elu activations. While the actor observes the full state st, which includes a history of

depth images, the critics process the privileged state s
priv
t , which includes privileged heightmap scan

and ceilings instead of high-dimensional images.

We generate trajectories from the privileged policy that amounts to 2 million state-action samples

and store them in the privileged experience buffer Dpriv whereas online experience is collected by

256 actors in parallel into the online replay buffer Donline. We store the constraint violations c+i of

both online and privileged experience in their respective replay buffers to recompute the termination

probabilities δ on the fly during off-policy learning. Both Dpriv and Donline store privileged infor-

mation at every step and depth image every 5 environment steps. During training, we only give the

vision network one image every five timesteps and then replicate the depth latent five times to match

the sequence length of the other observations. The online replay buffer stores the GRU hidden latent

produced by the online actors whereas the privileged replay buffer stores zeros for these latents. This

is done to initialize the first hidden of the DDPG actor correctly during off-policy training.

We train the visual policy using a variant of RLPD [21]. We build upon DDPG [71] with an update-

to-data ratio of 8 during policy evaluation. We use REDQ [72] with 10 critics and an ensemble of 2

random critic targets.

A.3 Baselines

The BC baseline uses the same neural network architecture as SoloParkour, as described in Section

A.2. We train the BC policies to regress the action based on the history of observations on the same

dataset of demonstrations Dpriv generated by the privileged policy πpriv as SoloParkour.

The DAgger baseline uses the same neural network architecture as SoloParkour and BC. We employ

the Stage 1 policy πpriv as teacher for action relabelling. We found that starting the DAgger policy

from the BC-pretrained weights greatly improves online learning efficiency.

For the Privileged Reconstruction baseline, we use the same observation space and neural archi-

tecture as SoloParkour, BC and DAgger for the vision module except that the output of the GRU is

projected to the privileged information space through a linear layer. We employ the privileged policy

πpriv as frozen MLP head and only train the vision module to reconstruct the privileged information

from the history of past observations and actions. Similar to [16] and unlike [56], we found it highly
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beneficial to train the vision network with experience generated by the resulting online policy, rather

than training solely on the fixed dataset Dpriv generated by the privileged policy.

The No Priv. Critic ablation processes visual input in the critic network instead of privileged infor-

mation. Its vision module follows the same architecture as the visual policy.

For the Visual RL w/o CaT ablation, we use the same dataset of privileged experience Dpriv as the

one used to train all other methods (except for the From Scratch ablation that doesn’t learn from any

demonstration), but we remove the constraints for Stage 2 RL. Note that the privileged experience

Dpriv was generated with πpriv which was trained with Constrained RL and therefore satisfies the

constraints.

B Real Robot Setup

We use the Solo-12 quadruped robot for our experiments. We built a custom 3D-printed plastic

piece to mount the Intel RealSense D405 stereo camera observing in front of the robot. We use the

Python wrapper of librealsense to capture depth images at resolution 424× 240. We resize and crop

the images to 48 × 48 and apply the librealsense postprocessing hole-filling filter. Depth images

are preprocessed in a separate thread on a separate CPU as they come, at around 30Hz. The visual

policy runs at 50Hz using ONNX and produces target joint angles to torque by a PD controller

with stiffness Kp = 4.0 and damping Kd = 0.2 running at 10KHz. Hence, depth embeddings

are updated at a higher frequency at inference than during training. All the computation is done

through Python scripts by the onboard Raspberry Pi 5. Velocity commands are sent to the embedded

controller via a wireless gamepad.

C Additional Results

In Figure 6 and 7, we present further results on constraint satisfaction for SoloParkour and the base-

lines introduced in Section 4.1. SoloParkour demonstrates high constraint satisfaction, highlighting

the effectiveness of our approach in achieving safe yet agile locomotion skills over challenging ter-

rains using vision.
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