
Leveraging Simulation-Based Model Preconditions for Fast Action
Parameter Optimization with Multiple Models

M. Yunus Seker1 and Oliver Kroemer1

Abstract— Optimizing robotic action parameters is a signifi-
cant challenge for manipulation tasks that demand high levels
of precision and generalization. Using a model-based approach,
the robot must quickly reason about the outcomes of different
actions using a predictive model to find a set of parameters that
will have the desired effect. The model may need to capture the
behaviors of rigid and deformable objects, as well as objects
of various shapes and sizes. Predictive models often need to
trade-off speed for prediction accuracy and generalization. This
paper proposes a framework that leverages the strengths of
multiple predictive models, including analytical, learned, and
simulation-based models, to enhance the efficiency and accuracy
of action parameter optimization. Our approach uses Model
Deviation Estimators (MDEs) to determine the most suitable
predictive model for any given state-action parameters, allowing
the robot to select models to make fast and precise predictions.
We extend the MDE framework by not only learning sim-to-real
MDEs, but also sim-to-sim MDEs. Our experiments show that
these sim-to-sim MDEs provide significantly faster parameter
optimization as well as a basis for efficiently learning sim-to-
real MDEs through finetuning. The ease of collecting sim-to-sim
training data also allows the robot to learn MDEs based directly
on visual inputs and local material properties.

I. INTRODUCTION

Manipulation tasks often require robots to arrange objects
in a precise manner while generalizing across geometric
and material variations. For example, when placing food
on a plate according to an example picture, the robot will
need to adapt the placement parameters to the shape and
rigidity of the food being arranged. Predictive models, such
as simulators, allow the robot to estimate the outcomes
of different action parameters across various objects. By
combining such models with an optimizer, the robot can
evaluate multiple action parameters and reason about their
effects before executing an optimal action to achieve the
desired goal in the real world.

A significant limitation of such a model-based approach
is that the quality and efficiency of the outcome rely heavily
on the accuracy and speed of the predictive model. Different
predictive models trade-off between speed, versatility, and
accuracy. Analytical models are known for their speed in
making predictions, yet they often struggle to predict com-
plex interactions accurately, e.g., deformable objects. Simu-
lation models provide high precision for complex scenarios,
modeling rigid and deformable objects of any shape or
size, but they suffer from prolonged running times. Learned
models provide accuracy and swift performance; however,

*Supported by NSF Grants No. CMMI-1925130 and IIS-1956163.
1The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA

{mseker, okroemer}@andrew.cmu.edu

Fig. 1. (Top) Illustration of the plating action. The robot is equipped with
a wrist camera and a vacuum gripper. (Bottom) The robot is given initial
and target scenes; the task is to find the best action to reach the target scene.

their reliability diminishes quickly for state distributions
beyond their training data. In light of these considerations, a
prudent approach for the robot is to integrate all these models
and select the best model to make predictions during each
step of the optimization process according to the current state
and action parameters to be evaluated.

In this paper, we propose a framework that leverages
multiple predictive models by incorporating a selection
mechanism that determines the most suitable model for each
optimization step based on the state-action parameters. The
robot learns a set of Model Deviation Estimators (MDEs)
[1] to estimate the regions of the state-action space in which
each model is sufficiently accurate, i.e., its predicted values
are close to the true values. We refer to these regions as the
model’s preconditions as the model is unreliable outside of
these regions. Using the MDEs, the optimizer evaluates a
parameter setting by selecting the fastest model from the set
of models whose preconditions are fulfilled.

Previous work on MDEs [1] has focused on learning
deviations between model predictions and real-world out-
comes. We will refer to these as sim-to-real (S2R) MDEs.
We extend the MDE framework by introducing sim-to-sim
(S2S) MDEs, which compare one model’s predictions with
that of another simulation model. In particular, we focus on
learning S2S MDEs for comparing models to slow high-
fidelity simulators. While S2S MDEs do not consider real-
world prediction accuracy, we show that they are still a
valuable tool for identifying regions in which a faster model

ar
X

iv
:2

40
3.

11
31

3v
1

 [c
s.R

O
]

17
 M

ar
 2

02
4

is more suitable for evaluating parameters. The ease of
collecting large training datasets for S2S MDEs also allows
the robot to learn MDEs with visual height maps and material
property masks as inputs. Furthermore, our experiments show
that the S2S MDEs can be finetuned on limited amounts of
real-world data to acquire S2R MDEs in a more sample-
efficient manner. The contributions of this paper can thus be
summarized as:

• The utilization of multiple predictive models to speed
up the optimization of robot action parameters.

• Sim-to-sim MDEs for speeding up the prediction pro-
cessing using only simulation-based training.

• Creating vision-based MDEs for selecting fast and ac-
curate predictive models based on heightmap state rep-
resentations, rather than low-dimensional state vectors.

• Incorporating material property masks as MDE inputs
to handle both rigid and deformable object.

• Demonstrating the sample-efficient transition of our
MDE framework from simulation-based training to real-
world predictions through finetuning.

II. RELATED WORK

Model and skill preconditions have been studied in various
works to detect model uncertainties for accurate action
planning, recovery, and deformable object manipulation [2],
[3], [4], [5]. More recently, MDEs [1] have been proposed as
powerful model precondition learning frameworks that allow
planning with multiple models with changing fidelity. MDEs
have also been shown to be successful in adapting dynamics
models to new environments by focusing on similar regions
of the model with the real-world [6]. Similarly, [7] used
MDEs for actively learning model preconditions in tasks
where real-world data collection is costly or risky, focusing
on areas where a dynamics model is accurate for planning. In
this study, we further extend MDEs by incorporating visual
and material property masks and employing a data-efficient
S2S approach.

Using multiple models to speed up planning tasks has
also been investigated in various robotic applications, such
as planning actions for movable objects [8] and underwater
planning an I-AUV [9]. While providing efficient planning,
these models do not require an advanced model selection. In
our work, we utilize multiple models with advanced MDEs
capable of processing high-dimensional visual data.

Integrating material properties into robotic applications is
also a commonly studied topic for various planning and
manipulation tasks, such as estimating the friction coefficient
of objects [10] and learning to slide objects [11]. These
studies mainly focus on predicting the material properties of
the objects based on real-world observations [12], [13], [14].
By contrast, our approach focuses on incorporating material
properties into the decision-making process to allow better
context-aware optimization.

Our optimization framework is designed to find the op-
timal action parameters to reach a target state. Previous re-
search in this area primarily focuses on System Identification
[15], [16] and differentiable simulations [17], [18] to predict

Fig. 2. Overview of our framework. Given an initial state, the robot employs
an optimizer guided by a reward function to predict the optimal action
to achieve a target state. Throughout this optimization process, the robot
leverages MDEs to dynamically select the most appropriate model from a
family of predictive models.

optimal actions based on real-world observations [19], [20].
While existing works mainly employ a single simulator to
find optimal actions, our approach utilizes a set of multiple
models during the optimization to enable fast and accurate
predictions.

III. TECHNICAL APPROACH
In this section, we present the optimization framework, the

multiple predictive models, and the model selection process
using MDEs. We also introduce sim-to-sim MDEs, how
they can be finetuned, and we propose an architecture for
incorporating image data as input to generalize across object
shapes and material properties.

A. Optimization Problem Formulation

We model the robot’s action selection task as a one-step
goal-based reinforcement learning problem. We assume that
the robot is provided with an initial state s0 as well as a
target state sg . The robot must select an action a, which
will result in a transition from the initial state s0 to a final
state sT . The robot then receives a reward based on the
similarity of the final state and the goal state r(sT , sg). It
should be noted that the target state sg may not actually be
reachable from the initial state s0. For example, the target
may demonstrate the task for a different object, which the
robot will try to match as closely as possible with the given
objects. The goal of the robot is to maximize the reward. The
action a is conceptualized as a collection of m parameters
a = {θ1, ...θm}.

As a model-based approach, the robot uses a predictive
model f(s0, a) to estimate the final state sT for different
action parameters a. The robot thus selects the optimal action
to execute according to a∗ = argmaxa r(f(s0, a), sg).
We perform this optimization using a GP-UCB approach
[21], [22]. We selected a Bayesian optimization approach
to encourage a global search of the action space, which will
involve evaluating the prediction model f(s0, a), the focus of
this paper, across a wider range of parameter values than in a
local search. In practice, the robot will need to find suitable
action parameters as quickly as possible to avoid delaying
the overall task.

B. Modeling Object Arrangement Tasks

Our evaluations focus on optimizing actions for an object
arrangement task: placing food on a plate. The initial state
consists of two heightmaps s0 = {I0, Iobj} where I0 and
Iobj are the heightmap representations of the initial scene
and the manipulated object respectively. The target state,
sg = {Ig}, consists of a single heightmap. We define the 2D
action a = (x, y) as the planar x and y coordinates at which
the grasped object will be placed. For our reward function,
we used the negative differences between the predicted and
target heightmaps, r(f(s0, a), sg) = −||Î − Ig||.

Material properties play a critical role in food manipula-
tion tasks. The properties can be estimated using interactive
perception or through observations of the objects interacting
([12]). We assume that the material properties of the objects,
such as the stiffness and density coefficients, are already
known. To capture these properties, we provide the robot
with a set of material property masks ϕ. We use three
channels to capture the object mass, Young’s modulus, and
Poisson values. These masks have the same dimensions as
the heightmap and correspond to the properties of the top
items at the corresponding heightmap locations. We do not
include the properties of any potential hidden objects with
different properties, nor do our evaluations include such
confounder objects.

C. Individual Predictive Models for Object Arrangement

We assume that the robot has access to a family of predic-
tive models, F = {f1, f2, ..., fn}, consisting of n different
analytical [23], [24], learned [25], [26], [27], and simulation
models [28], [29]. Each predictive model takes the initial
state and the action parameters and outputs a prediction for
the resulting scene, fi(s0, a) = sT . The accuracy of each
model will vary across the state-action space. We assume that
the predictive models in F are ordered by their index, i, with
respect to their computational expansiveness. A predictive
model fj is faster than fk if j < k.

For the object arrangement task, we consider a heuristic
model f1, a learned model f2, and a simulator f3. The
following describes each of the models in the set F .

Heuristic Model (f1): For our analytical model, we used
a deformable heightmap heuristic that adds the target object
heightmap on top of the initial scene according to given
placing action parameters. Algorithm 1 shows the procedure
for applying the deformable image heuristics given the initial
scene, the object, and the action parameters. First, the object
heightmap is shifted on the x and y axes according to the
given action parameters. Then, it is added on top of the initial
heightmap of the scene to predict the result of the placing
action. This model is computationally very efficient, but it
may not be accurate for cases involving complex surface
geometries or when the target object and the scene interact
in a non-linear manner. Nevertheless, this model produces
plausible predictions for scenarios where the target object is
placed on empty and flat areas of the plate.

Learned Model (f2): For our learned model, we used
a residual encoder-decoder network that predicts the final

Fig. 3. (Left) Neural network architecture of the learned model. (Right)
Neural network architecture of the MDE models.

Fig. 4. Isaac Gym Simulation model. The plate and fries are initialized at
the start of the simulation. The steak is placed at the target location, marked
by the red X, using a tray that only contacts the steak.

heightmap of the environment given the action parameters
and the heightmaps of the initial scene and the target object.
Figure 3 shows the neural network architecture we used for
our learned model. We opted for a residual prediction model
for two reasons: First, as our analytical model f0 is designed
based on a residual summation operation, we also wanted to
design the same behavior for our learned model. Second,
we wanted our model to focus on the effects of the placing
action with the deformable steak instead of predicting the
whole heightmap from scratch. We trained our learned model
with the observations collected from the simulation shown
in Figure 4 by generating a dataset with 1000 randomly
sampled french fries and steak placement locations. The
learned model is trained with the MSE loss between the
predicted heightmaps and the ground truth observed from
the simulator.

Simulation Model (f3): For our simulation model, we
chose NVIDIA Isacc Gym [29] as it provides stable de-
formable object interactions. Figure 4 shows an example
execution of a plating action. For a given initial scene
and action parameters, the plate and fries are initialized

Algorithm 1 Heuristic (Analytical) Model
1: procedure HEURISTICMODEL(scene, obj, action)
2: obj ← SHIFTIMAGE(obj, action)
3: heuristicPrediction← scene+ obj
4: return heuristicPrediction
5: end procedure

accordingly, and the steak is placed in the given location
by a decreasing tray that does not collide with the fries
and plate. In order to simulate the scenarios from the real
world, we first used the real-to-sim pipeline detailed in [12]
in order to transfer the steak object from the real world into
the simulation and initialized the fries’ location based on the
real-world positioning using SAM [30] image segmentation.

D. Combining Models for Fast and Accurate Optimization

Using the multiple models in F , the robot aims to quickly
optimize the action parameters by minimizing the error
between the predicted final state sT and the target state sg . To
achieve this goal, we propose combining the multiple models
to achieve accurate and fast optimization. In particular, the
robot must select a model from the set F for each step
of the optimization process. The selected model should be
as fast as possible while also being accurate. Thus, while
computationally expensive simulations may generally be the
most accurate and versatile of the models, other faster models
should be favored if they are sufficiently precise and accurate.

Model deviation estimators (MDEs) [1] allow a robot to
estimate the magnitude of a model’s prediction error for
different state-action parameters. By only using predictive
models in scenarios where this estimated deviation is low,
the robot can avoid using poor predictions in its optimization
process. We refer to these accurate-prediction regions as the
model preconditions, as the model can only be used reliably
in these regions.

To train a sim-to-real (S2R) MDE mi(s, a) for model
fi, we provide the robot with a deviation function
d(sT , fi(s0, a)) for computing the deviation between the
predicted state fi(s0, a) and the actual ground truth final state
sT collected from the real system. For the object arrangement
task, we define the deviation function as the L1 difference
d(sT , f(s0, a)) = ||Î − IT || between the model’s predicted
heightmap Î and the ground truth final heightmap IT . The
MDE regressor is trained to directly predict this deviation
using an L1 loss:

L = ||mi(s0, a)− d(sT , fi(s0, a))||

To train the S2R MDE, the robot requires samples of both
accurate and inaccurate predictions from a suitably wide
range of the state-action parameter space. Recent works have
explored using active learning approaches to make the costly
real-world data collection process more sample efficient [7].

During each step of the optimization process, the robot
must select the best model for the current state-action
parameters and MDE outputs. A predictive model fi is
considered to be applicable, i.e., within its preconditions,
if its predicted deviation is less than a predefined threshold,
mi(s0, a) < dmax. In our experiments, the hyperparameter
dmax is set to 0.4. Excluding the models whose preconditions
are not fulfilled, the robot selects the fastest remaining model
to estimate the next step sT for the current action parameter
a. In this paper, we assume that the simulation model fn is

always within its preconditions, and thus, there is always a
model that can be queried.

After selecting a model, the robot subsequently computes
the reward function r based on this prediction and continues
its search for the optimal a∗ according to the outcomes
of the different action trials using GP-UCB. We run the
optimization for a fixed number of 50 steps before selecting
the a∗ that will be executed on the real robot. It is important
to note that the best model to use may change in each step of
the optimization as the robot considers different state-action
regions.

E. MDE Architecture for Object Arrangement Tasks

Previous approaches to learning MDEs have focused on
using low-dimensional state representations, e.g., object posi-
tions. However, generalizing over different object geometries
and material properties often requires a more versatile input
representation. Our MDE architecture therefore takes in
image inputs to capture both the scene geometry and the
corresponding material properties.

As shown in Fig. 3 right, the MDE encodes the inital scene
and object information separately using CNN encoders. The
corresponding height map I and material mask ϕ images
are combined as separate channels for the input image. This
early fusion approach allows the robot to reason about the
geometry and material properties at the pixel level. The
resulting embeddings are then concatenated together with
the action embedding. The final fully connected layers then
regress the estimated deviation value.

The proposed architecture does not segment out individual
objects, i.e., two potatoes next to each other may appear
identical to one large potato. However, segmentations can be
noisy especially for heaped objects in a scene, and the object
being placed is always a single object in our experiments.
Segmenting objects was therefore not necessary for our task.

F. S2S MDEs for Fast Optimization and Efficient Transfer

The Sim-to-Real MDEs allow the robot to select faster
models when they provide sufficiently accurate effect predic-
tions. However, for speeding up predictions, this constraint
can be unnecessarily restrictive. Instead, if two models
provide similar predictions, then the faster one should still be
used. We therefore propose using Sim-to-Sim (S2S) MDEs
to speed up the parameter optimization process.

The structure and training of the S2S MDEs is still largely
the same as for S2R MDEs. However, rather than using
ground truth final states sT for learning the MDEs, we
instead use the predicted state of another model. The training
loss for MDE mij between models fi and fj thus becomes

L = ||mij(s0, a)− d(fi(s0, a), fj(s0, a))||

The data collection process is however a lot easier for S2S
MDEs as their is no need for real world data collection. The
robot can simply use both models to simulate the outcomes
for a wide range of object shapes, materials, and poses
as well as action parameters. The resulting set of diverse
samples allow the robot to learn a precise MDE model across

Fig. 5. (Left) Four steaks are cooked rare to allow deformable behavior. Two T-bone steaks are cooked well-done to form rigid behavior. (Middle)
Deformable and rigid steak comparison on the plate and on the robot vacuum gripper. (Right) Example real-world initial and target scenes.

a wide range of parameter values. In our experiments, the
S2S MDEs are trained on 1000 samples.

For our optimization process, we train S2S MDEs between
each of the models and the high-fidelity simulator. As
previously noted, the simulator is always treated as being
within its preconditions to represent a fallback option. The
robot then uses the S2S MDEs rather than the S2R MDEs
to select which other models to consider. The robot chooses
the fastest model, as before, from the resulting set.

G. Fine-tuning S2S to S2R MDEs with Real-world Data

S2S MDEs provide a means of directly speeding up the
optimization process without requiring any real-world data
collection. However, in practice, S2R MDEs will ultimately
provide more accurate predictions as they take into consid-
eration the sim-to-real gap. This is especially true in cases
when a faster model is more accurate than the simulation
model, e.g., due to simulation instability.

To learn S2R MDEs, we also explore fine-tuning the S2S
MDEs using real-world data, with the S2S training serving
as a pretraining. To fine-tune our S2S MDEs, we freeze
the weights of the S2S networks except the last layer and
train our MDE models with real-world data to develop S2R
MDEs. Our experiments showed that S2S MDEs can be
quickly adapted to S2R MDEs by fine-tuning with a few
real-world observations. This adaptation capability allows
data-efficient training of S2R MDEs and creates a significant
advantage compared to the systems that rely completely on
costly real-world data collection.

IV. EVALUATIONS

In our experiments, we investigated the performance of our
framework based on two datasets: The Isaac Gym Dataset
consists of 1000 train and 300 test samples generated in the
Isaac Gym simulation environment using a single type of
deformable steak. The Real-World Dataset consists of 80

TABLE I
EVALUATION OF PREDICTIVE MODELS

Heuristic Model Learned Model Simulation Model
Isaac Gym Dataset

Heightmap RMSE (cm2)
1.7558

(0.5474)
0.4639

(0.1915)
0.023

(0.007)
Real-World Dataset

Heightmap RMSE (cm2)
5.6945

(2.8731)
7.1689

(0.0303)
1.4041

(1.6889)

train and 20 test samples collected from the real world using
six different steaks. We cooked six steaks, four of which were
cooked as rare to form deformable object behavior similar
to the simulation, and two of them (T-bone steaks) were
cooked as well-done to observe rigid object behavior (Fig.
5.left). We introduced the new type of rigid T-bone steaks to
investigate if our fine-tuning process can effectively adapt to
new out-of-distribution material properties.

A. Performance of the Predictive Models

We first evaluated the accuracy of the three predictive
models used in our framework on both Isaac Gym and Real-
world datasets. Table I shows the heightmap error mean
and std values of the three predictive models for both test
datasets.

For the Isaac Gym dataset, the performances of the three
models align with their ability to capture complex behaviors.
The analytical model performs worse overall compared to
the other two predictive models, but is the fastest (∼ 1ms
for a prediction). On the other hand, the simulation model
produces the most accurate results since it is the slowest
high-fidelity model (∼ 2.5s for rigid simulation and ∼ 5s
for deformable simulation runs). These results clearly show
the trade-off between using different quality models in terms
of speed and accuracy.

For the real-world data, we can see that the overall accu-
racy of all models was reduced significantly. This is expected
since the real-world data is more noisy and unpredictable and
includes a broader range of steak and material types. Notably,
we observe that the learned model suffers the most from
the difference between training and test distributions. Since
the learned model is trained for a steak that has a specific
shape and size from the simulation, the model predicts the

TABLE II
EVALUATION OF MDE MODELS

Outputs scaled [0-1] Heuristic MDE Learned MDE
S2S MDEs on

Isaac Gym Dataset
0.1359
(0.029)

0.0876
(0.025)

S2S MDEs on
Real-world Dataset

0.1949
(0.224)

0.2735
(0.056)

Finetuned S2R MDEs on
Real-world Data

0.1490
(0.019)

0.1472
(0.027)

Fig. 6. Example results for optimizing the plating action based on given initial and target scenes from Isaac Gym Dataset.

output as that steak even though it is given a different one.
A model trained on a wider training set may exhibit better
performance upon transfer. However, the model learning is
not the focus of this paper and we wanted to explore the
framework’s ability to handle more specialized models.

B. Optimization Results with S2S Model Preconditions

Figure 6 shows example qualitative results of our frame-
work for the plating task with various initial and target
scenes. Each example shows four plots from left to right. In
the first plot, we can see a heightmap representation of the
initial scene and the position of the french fries. The second
plot shows the heightmap representation of the target scene
and the ground truth of the placing action (white X). In the
third plot, the optimization process is illustrated with dots
indicating the locations of the action parameters searched
by our GP-UCB algorithm. Each dot is colored to show
which model was selected to predict the target scene via
the MDE model selection algorithm. In the fourth plot, we
show the executed scene of the predicted optimal action as
a comparison to the target scene shown in the second plot.
The red X sign shows the predicted optimal location for the
plating action alongside the white ground truth.

As we can see in the plots, our framework is able to
explore the action space successfully before converging to
an optimal prediction region. The optimization process also
shows that our framework is able to switch between different
predictive models according to the initial state and the
position of the placing action, thanks to our MDE model
selection algorithm. More specifically, we can see that our

Fig. 7. Comparison of our model with the baselines for Isaac Gym dataset.
(left axis) optimized action (right axis, log scale) optimization time.

framework uses the fast analytical model for the flat and
empty regions of the plate, where the analytical model mostly
aligns with the actual outcomes because the simple planar
surface. We also see that our framework is able to switch
to other learned and simulation models according to the
state-action configuration. The learned model is especially
useful for plating locations near the edges or where the steak
interacts with the french fries. The model chooses to make
predictions with the simulation model for more complex
configurations, such as placing locations right on top of the
fries or for the gaps between the fries and the plate edges.

In order to investigate our model’s performance on switch-
ing between different models and utilizing them according
to their accuracy and speed, we compared our model with
three other baselines: Only Heuristic (H), Only Learned (L),
and Only Simulation (S). Each of these baselines uses only
one predictive model, as indicated by their names, during
the action optimization phase. Our Method (H/L/S) utilizes
all three predictive models using S2S MDEs.

Figure 7 shows the comparison of our model with the
baseline methods in terms of optimized action error and
optimization time. We calculated the optimized action error
as the Euclidean distance between the optimal prediction of
our model and the actual ground truth action parameters.
We can see that Only Heuristic (H) and Only Learned (L)
baselines optimize the actions quickly (less than 15 seconds);
however, their optimized action errors are high due to their
prediction capabilities. Only Simulation (S) model predicts
the most accurate actions; however, their optimization time

Fig. 8. Average usages of the predictive models on Isaac Gym Dataset.

Fig. 9. Real-world example results using fine-tuned MDEs for optimizing the plating action based on given initial and target scenes.

exceeds 240 seconds. Our Method (H/L/S) chooses the accu-
rate and fast models using the MDE mechanism and produces
accurate action predictions similar to the simulation baseline
while keeping the optimization time around 15 seconds.

Figure 8 demonstrates the average use of each predictive
model during the optimization. As expected, the baselines
use their corresponding predictive models for all 50 opti-
mization steps. Our method, on the other hand, uses a mix of
all models for effective optimization. Combining the insights
from our qualitative results with the average model usage
numbers, we can see that all of the models are utilized for
various cases. Our method mostly prioritizes the usage of the
learned model. This is because the learned model can provide
sufficiently accurate predictions for most of the actions as it
is trained with the simulator data.

C. Sim-to-Real Transfer by Finetuning Pretrained MDEs

To transfer our pretrained S2S MDEs to real-world S2R
MDEs, we used the Real-World Dataset that we collected
using a Franka robot with a vacuum gripper (Fig 1). We
fine-tuned our MDE models by training them using 80 real-
world data samples for 500 iterations.

Figure 9 shows the qualitative results of our fine-tuned
framework, while Figures 10 and 11 show the quantita-
tive performance and model distributions, respectively. Our

Fig. 10. Comparison of our model with the baselines for Real-World
dataset. (left axis) optimized action (right axis, log scale) optimization time.

method is able to adapt to real-world observations after the
fine-tuning process. As the figures show, our framework
utilizes all three predictive models, with more usage of the
simulation and less of the learned model after finetuning, and
successfully optimizes the action parameters to be near the
ground truth values.

In the real world, Only Heuristic (H) works better than
Only Learned (L) because the heuristic model is more
adaptive to the different steak shapes. Figure 10 shows that
the S2S model achieves similar performance to the only
learning approach, as the MDE underestimates the sim-to-
real deviations for this model. However, by finetuning the
S2S into an S2R model, our approach achieves prediction
values closer to the only simulation model while still signif-
icantly reducing the computation time. Table II, bottom two
rows, shows the accuracy of the MDE models before and
after fine-tuning, highlighting the data-efficient adaptation
capabilities of our framework.

D. Effect of sample size on Training MDE models

In this experiment, we investigated the effectiveness of
using a pretrained S2S MDE model to fine-tune an S2R MDE

Fig. 11. Average usages of the three models on Real-world dataset.

Fig. 12. Using pretrained Sim-to-Sim MDEs to fine-tune real-world data
vs. training Sim-to-Real MDE from scratch.

on real-world observations. We compared these pretrained
MDE models with MDEs that we trained from scratch with
only real-world data. Figure 12 shows the test errors of
both types of training approaches for the learned model
with increasing numbers of real-world data. As we can see,
the test error of the pretrained MDE decreases significantly
as the real-world sample size increases. However, the test
error of the from-scratch model fluctuates around the initial
value even when the sample size increases. This shows that
our method is able to utilize the information it gathered
in the pretraining process and smoothly adapt to real-world
observations with little data. On the other hand, the from-
scratch model quickly overfits the small amount of real-
world training data as it is difficult to generalize images
with few observations. As a consequence, our framework
lightens the burden of collecting costly real-world data to
learn S2R MDEs and allows quick and effective adaptation
to real-world applications.

V. CONCLUSION

This paper proposes a framework that efficiently optimizes
robotic action parameters by integrating multiple predictive
models, demonstrated in a robotic food arrangement task.
The framework extends the original MDE framework by
integrating visual input with material property masks, and
uses it as an advanced model selection mechanism for fast
and accurate action optimization. This paper also introduces
sim-to-sim (S2S) MDEs as one of its main contributions in
order to enable faster parameter optimization without require
real-world training data. The experiments show that S2S
MDEs provide a strong foundation for the efficient transition
to sim-to-real (S2R) MDEs through fine-tuning.

REFERENCES

[1] A. L. LaGrassa and O. Kroemer, “Learning model preconditions for
planning with multiple models,” in Conference on Robot Learning.
PMLR, 2022, pp. 491–500.

[2] P. Mitrano, D. McConachie, and D. Berenson, “Learning where to
trust unreliable models in an unstructured world for deformable object
manipulation,” Science Robotics, vol. 6, no. 54, 2021.

[3] D. McConachie, T. Power, P. Mitrano, and D. Berenson, “Learning
when to trust a dynamics model for planning in reduced state spaces,”
IEEE Robotics and Automation Letters, vol. 5, no. 2, 2020.

[4] M. Sharma and O. Kroemer, “Relational learning for skill precondi-
tions,” in Proceedings of the 2020 Conference on Robot Learning,
2021, pp. 845–861.

[5] O. Kroemer and G. S. Sukhatme, “Learning spatial preconditions of
manipulation skills using random forests,” in 2016 IEEE-RAS 16th
International Conference on Humanoid Robots (Humanoids), 2016.

[6] P. Mitrano, A. LaGrassa, O. Kroemer, and D. Berenson, “Focused
adaptation of dynamics models for deformable object manipulation,”
2023.

[7] A. LaGrassa, M. Lee, and O. Kroemer, “Task-oriented active learning
of model preconditions for inaccurate dynamics models,” 2024.

[8] M. S. Saleem and M. Likhachev, “Planning with selective physics-
based simulation for manipulation among movable objects,” 2020.

[9] D. Youakim, A. Dornbush, M. Likhachev, and P. Ridao, “Motion
planning for an underwater mobile manipulator by exploiting loose
coupling,” in 2018 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 2018, pp. 7164–7171.

[10] Q. Le Lidec, I. Kalevatykh, I. Laptev, C. Schmid, and J. Carpentier,
“Differentiable simulation for physical system identification,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3413–3420, 2021.

[11] C. Song and A. Boularias, “Learning to slide unknown objects with
differentiable physics simulations,” 2020.

[12] M. Y. Seker and O. Kroemer, “Estimating material properties of
interacting objects using sum-gp-ucb,” arXiv:2310.11749, 2023.

[13] C. Matl, Y. Narang, R. Bajcsy, F. Ramos, and D. Fox, “Inferring the
material properties of granular media for robotic tasks,” 2020.

[14] S. Clarke, T. Rhodes, C. G. Atkeson, and O. Kroemer, “Learning
audio feedback for estimating amount and flow of granular material,”
in Conference on Robot Learning, vol. 87, 2018.

[15] A. Sanchez-Gonzalez, N. Heess, J. T. Springenberg, J. Merel, M. Ried-
miller, R. Hadsell, and P. Battaglia, “Graph networks as learnable
physics engines for inference and control,” 2018.

[16] Y. Li, J. Wu, R. Tedrake, J. B. Tenenbaum, and A. Torralba, “Learning
particle dynamics for manipulating rigid bodies, deformable objects,
and fluids,” 2019.

[17] K. M. Jatavallabhula, M. Macklin, F. Golemo, V. Voleti, L. Petrini,
M. Weiss, B. Considine, J. Parent-Levesque, K. Xie, K. Erleben,
L. Paull, F. Shkurti, D. Nowrouzezahrai, and S. Fidler, “gradsim:
Differentiable simulation for system identification and visuomotor
control,” 2021.

[18] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available:
https://drake.mit.edu

[19] R. Antonova, J. Yang, K. M. Jatavallabhula, and J. Bohg, “Rethinking
optimization with differentiable simulation from a global perspective,”
in Proceedings of The 6th Conference on Robot Learning, 2023.

[20] P. Ma, T. Du, J. B. Tenenbaum, W. Matusik, and C. Gan, “Risp:
Rendering-invariant state predictor with differentiable simulation and
rendering for cross-domain parameter estimation,” 2022.

[21] N. Srinivas, A. Krause, S. M. Kakade, and M. W. Seeger,
“Information-theoretic regret bounds for gaussian process optimization
in the bandit setting,” IEEE Transactions on Information Theory, 2012.

[22] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the human out of the loop: A review of bayesian optimiza-
tion,” Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[23] “Planar sliding with dry friction part 1. limit surface and moment
function,” Wear, vol. 143, no. 2, pp. 307–330, 1991.

[24] Z. Pan and K. Hauser, “Decision making in joint push-grasp action
space for large-scale object sorting,” 2020.

[25] D. Hafner, T. Lillicrap, I. Fischer, R. Villegas, D. Ha, H. Lee, and
J. Davidson, “Learning latent dynamics for planning from pixels,”
2019.

[26] A. Nagabandi, K. Konoglie, S. Levine, and V. Kumar, “Deep dynamics
models for learning dexterous manipulation,” 2019.

[27] A. E. Tekden, A. Erdem, E. Erdem, M. Imre, M. Y. Seker, and E. Ugur,
“Belief regulated dual propagation nets for learning action effects on
groups of articulated objects,” 2020.

[28] E. Coumans and Y. Bai, “Pybullet, a python module for physics
simulation for games, robotics and machine learning,” 2016–2021.

[29] J. Liang, V. Makoviychuk, A. Handa, N. Chentanez, M. Macklin, and
D. Fox, “Gpu-accelerated robotic simulation for distributed reinforce-
ment learning,” in Conference on Robot Learning, CoRL 2018, 2018.

[30] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson,
T. Xiao, S. Whitehead, A. C. Berg, W.-Y. Lo et al., “Segment
anything,” arXiv preprint arXiv:2304.02643, 2023.

https://drake.mit.edu

	INTRODUCTION
	RELATED WORK
	TECHNICAL APPROACH
	Optimization Problem Formulation
	Modeling Object Arrangement Tasks
	Individual Predictive Models for Object Arrangement
	Combining Models for Fast and Accurate Optimization
	MDE Architecture for Object Arrangement Tasks
	S2S MDEs for Fast Optimization and Efficient Transfer
	Fine-tuning S2S to S2R MDEs with Real-world Data

	EVALUATIONS
	Performance of the Predictive Models
	Optimization Results with S2S Model Preconditions
	Sim-to-Real Transfer by Finetuning Pretrained MDEs
	Effect of sample size on Training MDE models

	Conclusion
	References

