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Abstract. The increasing complexity of machine learning models drives
the emergence of Machine-Learning-as-a-Service (MLaaS) solutions pro-
vided by cloud service providers. With MLaaS, customers can leverage
existing data center infrastructures for model training and inference. To
improve training efficiency, modern machine learning platforms intro-
duce communication optimization mechanisms, which can lead to infor-
mation leakage. In this work, we present a network side channel based
attack to steal model sensitive information. Specifically, we leverage the
unique communication patterns during training to learn the model archi-
tectures. To further improve accuracy, we also collect information from
software based power side channels and correlate it with the informa-
tion extracted from network. Such temporal and spatial correlation helps
reduce the search space of the target model architecture significantly.
Through evaluations, we show that we can achieve more than 90% ac-
curacy for model hyper-parameters reconstruction. We also demonstrate
that our proposed attack is robust against background noise by evaluat-
ing with memory and traffic intensive co-located applications.

1 Introduction

The demand for artificial intelligence and machine learning has grown sig-
nificantly over the past decade. This growth has been fueled by advances in
machine learning technologies and the ability to leverage hardware acceleration.
More complex models, such as deep neural networks (DNN), are required to
increase the accuracy of machine learning-based solutions so that they become
feasible for more complex applications. As the demand for complex model train-
ing and execution outpaces the growth of computation power provided by a
single machine, it has become essential to leverage distributed computing in-
frastructures. Driven by this demand, Machine-Learning-as-a-Service (MLaaS),
a collection of various cloud-based platforms that use machine learning tools to
provide machine learning solutions, is emerging. Through MLaa$S, clients can
submit their models and training datasets to service providers (e.g., an Amazon
and Google cloud service) and leverage their infrastructures for model training
and inference.

Many researchers have realized that data security and privacy are signifi-
cant concerns for these MLaaS systems, given that both model parameters and
datasets are valuable assets due to their critical roles. A large body of work
has been dedicated to stealing sensitive model information or data during ma-
chine learning inference. Such attacks include member inference attacks [1, 2]
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and attacks for stealing sensitive model information [3,4]. But little has been
done from the MLaaS platform perspectives — whether a new attacking surface
specific to MLaaS systems exists and can be leveraged to launch attacks. Many
MLaaS services are built on the fundamental building blocks of the existing
cloud infrastructures. For example, Amazon SageMaker relies on containers and
EC2 instances to train ML models. Such instances are also leveraged by AWS to
host other services, thus providing opportunities for attackers to steal sensitive
model information. Our work is among the first ones to explore answers to this
question.

In this work, we identify and explore MLaaS system-specific at-
tacking surfaces to steal sensitive information while training DNIN
models, mainly via network side channels. Our key observation is that
training models in a distributed manner generally requires sharing parameters
globally by all the participating worker nodes. With Bulk Synchronous Paral-
lel (BSP), all the participating workers are designed to send their computed
gradients to the parameter server for aggregation at the end of each training
iteration. During this iterative process, sensitive model information can be re-
vealed, such as the total number of layers and the size of parameters in each
layer. A key enabler of this attack is the need to optimize the synchronization
of distributed machine learning systems. Many prior works have verified that
the network is the bottleneck in distributed machine learning [5-7]. Modern
machine learning platforms that support distributed training, such as MXNet,
PyTorch, and TensorFlow, have introduced mechanisms to maximize compu-
tation and communication overlaps. Such mechanisms include explicit overlaps
between the backward pass calculation and synchronization and implicit over-
laps between the forward pass calculation and synchronization. The resulting
overlaps are generally at the layer-level granularity of a DNN model. Therefore,
an attacker who is monitoring network traffic passively in the system has the
opportunity to extract layer-level information.

In the proposed attack, we first seek to identify invariants in network com-
munication through an in-depth study of the design and implementation of
distributed machine learning systems. To improve accuracy, we also leverage
software-based power side channels to provide more fine-grained information on
computation. Such channels are enabled by Intel Running Average Power Limit
(RAPL) measurements. Furthermore, we also correlate the temporal and spatial
information provided by network and power side channels, respectively. Such
correlation helps eliminate noise and anomalies in our collected data. Finally,
we also leverage machine learning techniques to generate model profiles for cer-
tain operations with high variance. We implemented our attack on the MXNet
platform as a demonstrative example. Other platforms also adopt similar com-
putation and communication mechanisms, thus demonstrating similar behaviors.
Our proposed approach helps significantly limit the search space of the target
architecture of DNN models.

Our main contributions in this work are summarized as following:
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— We provide an in-depth analysis of the communication patterns of dis-
tributed machine learning and leverage the insight to extract sensitive model
information.

— We identify the unique power consumption patterns during model training.
We also develop algorithms and systematic approaches to extract these pat-
terns and correlate them with network packets to improve attack accuracy.

— The insight we provide in this work can help improve security in future
distributed machine learning systems designs.

2 Motivation

Modern DML frameworks, such as MXNet, Pytorch, and Tensorflow, gen-
erally adopt the parameter-server-based architecture to implement distributed
training. To coordinate the training process, synchronization is necessary to al-
low participating workers to aggregate their parameters. During synchronization,
workers exchange packets with the parameter server for this purpose. Upon the
receipt of the updated parameters, workers would perform local computations
for the next iteration. In our investigation, we find that such an iterative process
presents high regularity so it is at the risk of information leakage.

Designing neural network architectures is of paramount importance for im-
proving model accuracy. The introduction of deep layers of processing, convolu-
tions, and fully connected layers creates opportunities for various new applica-
tions of deep learning neural networks. Many existing efforts have demonstrated
remarkable results of neural network model performance improvement by modi-
fying their architectures [8-12]. For instance, Simonyan et al. demonstrated that
deep convolutional networks can benefit image classification accuracy signifi-
cantly [10]. Thus, we focus on reconstructing neural network architectures and
their hyperparameters in this work.

In the proposed attack, we assume that the adversarial does not need query
access to the model either; it does not know its place during the training process.
To develop our framework, we make the following assumptions.

Access to the target network. We assume that attackers could access the
target network to access the traffic shape or pattern generated during ML train-
ing in a public cloud environment. Mehta et al. recently studied the network side
channel attacks in public IaaS Clouds, and they found that an unprivileged ad-
versary can also indirectly infer the victim’s traffic shape by inducing contention
with the victim’s traffic in a shared network [13]. Also, considering that the net-
work traffic can be noisy, especially in WAN, which helps hide traffic patterns.
We also assume that attackers could locate the target machine by identifying
the unique communication patterns of DML frameworks.

Co-location. Cloud service providers often assign containers leased by different
customers upon the same physical server, where these containers are referred to
as co-located containers. It is a persistent threat in the cloud whose feasibility
has been demonstrated in several works [14,15]. We assume that attackers could
leverage existing techniques to achieve co-residence, thus being able to access
the power consumption of the target system. Other existing efforts have also
adopted this assumption, such as Cache Telepathy [16] and DeepHammer [17].
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While they leverage the cache and RAM side channels, we leverage the power
side channel in our study. This work’s observations and identified patterns are
not specific to any particular DML platform. We use MXNet as an example to
implement our prototype framework.

3 Attack Overview

The overall goal of this work is to expose sensitive information and recon-
struct DNN models. The sensitive information of interest includes (1) The total
number of layers, (2) Layer types, such as fully connected and convolutional
layers, (3) Hyper-parameters for each layer, such as the number of neurons,
(4) The activation function in each layer, e.g., relu and sigmoid. Note that the
model weights are out of the scope of this paper. The central idea is to col-
lect network and power consumption information via side channels and apply
a cross-correlation approach to achieve our goal. Considering the observations
mentioned, we design and implement a framework for this purpose.

Architecture Overview. There are three main tasks in the workflow of the
proposed framework: forward pass locating, layer identification, and model re-
construction. Each main task consists of small sub-tasks that help achieve their
goals. Specifically, forward pass locating is designed to pinpoint the period dur-
ing which forward propagation is performed. Layer identification helps classify
different types of layers of the model. Model reconstruction seeks to reconstruct
the original DNN model.

Attack Procedure. First, we map the timestamps obtained from the network
trace to the power consumption trace we collect simultaneously. Then we identify
the segment where the forward pass is located by extracting the period during
which there is no communication between the worker and the server. Due to
the implicit communication and computation overlap mechanism of MXNet, the
communication of n*® iteration may overlap with the computation of (n + 1)
iteration. Also, the silent period (defined in Section 4.1) may overlap with the
beginning part of the backward pass. Therefore, to determine the exact start time
and end time of a forward pass, we need to perform lookahead and lookbehind of
the power consumption trace.

Once we identify the accurate forward pass segment, we then further divide
this segment into chunks, each corresponding to the computation of a layer of the
target model. This division is based on the DRAM power consumption patterns.
We leverage supervised learning techniques to label each power consumption
chunk and distinguish different layer types. Generally, each neuron in a layer
has an activation process to allow it to learn as per the difference w.r.t error. In
this step, we also seek to extract the activation function layer from each power
consumption chuck, if available, by leveraging their unique profiles.

In the third step, we perform layer hyper-parameter inference and model re-
construction by leveraging machine learning techniques and domain knowledge.
This step mainly relies on network information. Specifically, network informa-
tion is used to recover the number of layers and the total size of tensors. More
details are discussed in the next section.
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4 Forward Pass Locating

of different models

In this section, we leverage two key observations in network and power con-
sumption to identify the forward pass locations.

4.1 Analysis of Communication Periodicity

The communication between each individual worker and the server leverages
a pair of push/pull primitives as shown in Figure 1. In this figure, the dashed
arrows represent the time sequence, and the solid arrows represent communi-
cation directions. Specifically, the worker node initiates the communication by
sending push_send to send the current parameters to the server node (step @).
Then the server sends back a confirmation message via push_ack_send (step @).
Once the worker receives the confirmation, it sends a pull_req send to request
the updated parameters from the server (step @). The server then sends back a
pull rsp_send message after the parameters are updated (step @). This process
repeats until the worker receives the last pull rsp_send at time t; when syn-
chronization finishes. Note that these message names are only for demonstrative
purposes. After step @, the worker begins the model computations until the up-
dated parameters, such as bias and weights, are ready to be transmitted to the
server at time t1. Intuitively, t; —tg represents the time interval for computation.
On the other hand, MXNet parallelizes the backward propagation with synchro-
nization (specifically, step @ and step @) to reduce communication overhead.
Thus, backward propagation overlaps in time with synchronization, as shown
in Figure 2. We can calculate the time interval between the end of the commu-
nication of n*® iteration and the beginning of the communication of (n 4 1)
iteration, and call it silent period. This period equals t; — t¢ in practice. It is
evident that the forward pass overlaps in time with this period. We can locate
forward pass easily by leveraging this observation.

4.2 Eliminating Outliers

In practice, we can observe many different silent periods due to the dynamic
nature of network systems and certain specific operations of MXNet. To eliminate
these outliers, an intuitive solution is to filter out certain interval groups based
on predetermined thresholds. But filtering alone is not enough. This is because
certain MXNet operations introduce larger intervals similar to our target period
between pull req_send and pull_rsp_send. For example, to process pull _req_send
request, the parameter server invokes DefaultStorageResponse function to trans-
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fer the model parameters to the worker. In this function, keys must be copied
from memory to the response struct. Such operations may result in observable
intervals between pull_req_send and pull_rsp_send.

Therefore, we are motivated to leverage clustering techniques. Essentially,
the synchronization can be considered as two independent data streams, packets
from the server to the worker and the other way around. The target silent period
should be among intersections of the intervals in these two data streams. A
demonstration is shown in Figure 3, where circles and triangles represent the
two data streams, respectively. For clustering, we extract the following features:
to, t1, t] — to, tg, t3, ts — tg, t3 — to, z?:ig and % from the data streams.
We also use the sum of squared error (SSE) method to determine the number
of clusters, k. The key idea is that as k increases, each cluster’s aggregation
degree increases, and the SSE value decreases, and vice versa. Thus, we could
find the turning point when the decreasing rate of SSE value significantly reduces
and identify the corresponding k& value. In our analysis, 2 or 3 is typically the
optimal number of clusters, which conveniently helps identify the correct silent
period and outliers. We select the one with the minimum standard deviation
values to identify the correct cluster.

To verify that silent period is a universal pattern, we select 7 standard DNN
models in the image processing domain and leverage Fourier transform to calcu-
late the periodogram of silent period, which is an estimate of the spectral density
of a signal. Through this calculation, we can estimate the periodicity of this pe-
riod from tens of and hundreds of iterations of training. The results are shown in
Figure 4. Note that MLP-1 is our custom MLP model with 10 fully connected
layers. Each periodicity value represents the average values over three different
traces collected from the training of the same model. These values correspond to
the time of a complete iteration, which is generally linear with the size of a model
given the same training dataset. Note that ZFNet and AlexNet are smaller than
VGG16. But they are trained with the Caltech-101 dataset [18], and the other
models use the CIFAR-10 dataset [19].

4.3 Identify Exact Timestamps of Forward Pass

Although silent period demonstrates a strong correlation with the forward
pass, it does not always pinpoint the exact start and end points of a forward
pass. The explanation is that MXNet also implicitly overlaps communication
and computation [20] by allowing forward pass to begin as soon as the receipt
of the first layer parameters. For backward propagation, the first push_req_send
is generated after the computation begins. This phenomenon is also illustrated
in Figure 2. It is challenging to infer the exact start and end times by utilizing
network traffic without inspecting the packet payload. Thus, we leverage power
trace for this purpose (Power trace collection methods are discussed in detail in
Section 5). The specific methods are discussed below.
Lookahead Method. We first map the timestamps obtained from the silent
period to the power trace we collected simultaneously. This allows us to identify
the forward pass’s estimated end time (7.) and an estimated start time (7).
Then, we perform a lookahead method to locate the exact start time 7.. The
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motivation behind this method is the observation that the core and DRAM power
consumption increase when forward pass calculation happens. A demonstration
example is illustrated in Figure 5. This figure shows a segment of DRAM power
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trace collected from the MLP-1 model during a forward pass that overlaps with
the silent period. The blue curve represents the power consumption of DRAM,
where each data point represents the average value within a period of 0.5 ms.
Also, only data points whose value exceeds 50 joules are shown in the figure. We
can observe that there are three square-shaped power segments whose average
values are higher than the rest. They correspond to the three model layers in
the forward pass calculation that overlap with silent period. Note that the y-
axis does not show the entire spectrum of data for better visualization. The
power spikes that represent right before the forward pass are caused by memory
copy operations. Since they are not persistent for all the models, we cannot
leverage them to detect the beginning of a forward pass. Therefore, we develop
a sliding-window-based algorithm to detect the square-shaped power segments.
The details of the algorithm were omitted due to space limitations. Figure 5,
highlighted in red, shows the results of applying this algorithm in the power
trace. We can see that this algorithm helps accurately identify the exact start
point of the forward pass.

Lookbehind Method. This method helps identify the exact end time 7. of
a forward pass, given the estimated end time T,. This method also leverages
a unique observation in the power consumption trace. It has been known that
forward pass execution consumes less memory than backward propagation since
there’s more memory reuse for forward pass [21]. Therefore, we should observe
a significant memory increase upon the start of the backward pass. Such an
observation is shown in Figure 6. This segment is generated from the same
trace as that of Figure 5. After calculating the moving average, we can observe
a steep increase in DRAM power consumption around 3150 ms. To capture
this trend, the lookbehind algorithm can apply a predefined threshold or use
more sophisticated change point detection algorithms [22-24]. The results of the
detection are highlighted in red in this figure. Using this method, we can clearly
detect the exact start time of the backward pass, i.e., the exact end time of the
forward pass.

5 Layer Identification

Once we identify the location in time of the forward pass, we can extract a
segment of power trace from the entire trace that corresponds to this forward
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pass execution. Then, we further divide this segment into chunks, each of which
corresponds to the computation of a single layer of the target model. This effort
mainly relies on the power trace; thus, its accuracy is crucial to the effective-
ness of layer segmentation. We discuss our sampling method and evaluate its
performance next.

5.1 Power Consumption Sampling

Generally, root privilege is required in order to obtain accurate Intel RAPL
counters by reading Model-specific Register (MSR) Linux interfaces. But this
would require attackers to perform privilege escalation attacks to access MSR.
Alternatively, the Linux power capping framework, powercap, provides unprivi-
leged access to the MSRs through the sysfs interface. This allows unprivileged
attackers to get access to the power consumption data. There are four power
domains that are provided by RAPL: package (PKG), power planes (PP0 and
PP1), and DRAM. Among all, PP0 provides the power consumption of the cores
and DRAM provides that information of DRAM. We mainly rely on these two
pieces of information in layer segmentation and layer type classification. A key
factor that affects our analysis is the sampling frequency of power consumption
data. Without direct access to MSRs, we can sample at most 20000 data points
per second. This frequency helps guarantee that we can sample at least one data
point for all the layers given that it takes about 70 us for the smallest layer to ex-
ecute. Eventually, these data points will be used to detect layer boundaries that
we discuss next. Throughout this work, our sample frequency is at the interval
of 50 us.

5.2 Forward Pass Segmentation

To extract each layer from the forward pass, we need to identify the boundary
of each layer in the trace. Based on our observation, MXNet saves the state to
DRAM, loads up the next layer of the network, and then reloads the data to
the system for each layer. We did not test our implementation in GPUs, but
one can imagine that this memory operation would be more obvious in GPU
given that many high-performance GPU processors have only 1 KB of memory
associated with each of the processor cores. Thus, we can observe a DRAM power
consumption peak at each layer boundary. This observation can be leveraged to
perform forward pass segmentation.

For this operation, instead of using a threshold-based method, we apply a
band-pass filter [25] to preprocess the DRAM trace to signify the patterns. Band-
pass filters are widely used in wireless transmitters and receivers, whose main
function is to limit the bandwidth of the output signal to the band allocated for
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signal containing a band of frequencies, from which we can easily identify the
peaks. The processed results of the same MLP-1 model are shown in Figure 7.
In this figure, the background data highlighted in red shows the DRAM power
consumption, whose values are shown on the right y-axis. The bandpass signal
is shown on the left y-axis. The dashed vertical lines in the figure show the
identified layer boundaries. Compared with the ground truth boundaries, our
identified boundaries have an average error of 2.45 ms, which is about 1.5% of
the total duration of a layer. This pattern is universal to all the models.

5.3 Layer Type Classification

Another important piece of information we can derive from the power trace
is the different types of each layer in a model.

In this work, we mainly concern two types of layers: convolutional (Conv)
and fully connected (FC) layers. Intuitively, each layer should have its unique
computation characteristics. For Conv layers, assume the input in is of size
W; x H; x D; and K; filters, each of which has dimensions R; X R;, then the
estimated total amount of Conv layer computation would be in the order of
W; x H; x D; x K; x R;2. For FC layers, assume the same input of size W; x
H; x D;, and N; neurons of this layer, then the estimated total amount of FC
layer computation would be in the order of W; x H; x D; x N;. By way of rough
comparison, we can see that Conv layers are more computationally intensive than
FC layers. Such observations have also been verified by Yan et al. [16]. But Conv
layers are less memory intensive than FC layers due to their partial connections
with the neurons of the previous layers and the mechanism of sharing parameters.
In addition, there are certain reasonable considerations when designing model
architectures as pointed out by Yan et al.. For example, the number of filters for
Conv layers are typically multiple of 64. These intuitions provide an opportunity
for us to characterize and identify different layers.
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Table 1: Feature values of Conv and FC layers of the same size

Parameter Sizes |[128, 128 X 128 x 9]128, 128 X 256 X 9[256, 256 X 256 X 9| 256, 256 x 512 x 9 512, 512 X 512 X 9

Layer Type FC Conv FC Conv FC Conv FC Conv FC Conv
T; (ms) |595.0| 250894.7 | 1098.3 | 478148.7 | 1668.3 | 887469.3 | 2889.3 | 1762995.3 | 15156.7 | 3130200.3
Ptcore 17979 10401666.3 [39164.3| 20612252 |59692.3| 38246810 [122579.0|77859237.3(331440.3|143407124

Features ptdram 755 325573.7 1469.3 646293.3 2121.7 | 1198849.3 4615.7 2383537.3 9995.7 | 4708285.7
Paco?‘e 0.7 0.77 0.75 0.74 0.79 0.74 0.63 0.74 1.51 0.66
Padv‘am 25.85 31.95 26.7 31.9 28.1 31.9 26.6 32.7 33.3 30.5

Characteristics Comparison of Conv and FC Layers. For this purpose,
we extract the following features from the previously obtained power segments
and network traffic:

— Total core power consumption (P;__ __): total core power consumption within
the duration of a layer segment.

— Total DRAM power consumption (Py, . ): total DRAM power consumption
within the duration of a layer segment.

— Average core power consumption (P, _): per-us core power consumption
within a layer segment.

— Average DRAM power consumption (P
sumption within a layer segment.

— Time duration (T;): the total execution time of layer;.

: per-us DRAM power con-

airam)

Then, we leverage these features to perform supervised learning. One might
argue that these features are correlated with the number of parameters, thus
supervised learning may not be able to make distinctions between these two
types of layers of the same parameter size. For verification, we custom-build ten
Conv and FC layers of the same parameter sizes, and compare the values of these
five features, respectively. The comparison results are shown in Table 1. In this
table, the parameter sizes represent the bias size and the total size of weights,
which is calculated as W; x H; x D;. We can observe that the duration, core,
and DRAM power consumption of Conv and FC layers differ by at least two
orders of magnitude. These numbers also determine that our proposed approach
can tolerate a significant amount of forward pass segmentation errors. Although
the average core and DRAM power consumption values are similar for Conv and
FC layers, they do not affect our classification results. The detailed evaluation
results of supervised learning are presented in Section 7.

Activation Functions. In MxNet, activation functions are independent opera-
tors connected to Conv or FC layers. Compared to the Conv and FC layers, the
computation of activation functions is simpler, thus taking less time. We need to
address two key issues: 1. Determine the existence of activation functions. 2. De-
termine the activation function types, i.e. relu, tanh or sigmoid. In Section 5.2,
we associate the peaks of DRAM power consumption with the beginning of the
following forward pass calculation because MXNet needs to load the data for the
next layer before computation begins. Since DRAM operations happen before
the forward pass of the next layer, our timestamps always come a little ahead
of the ground truths, thus causing the slight error presented in Section 5.2. Our
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investigation shows that the CPU is not idle during the time between our times-
tamps and ground truth — activation functions are being executed if they exist.
If not, the CPU becomes idle, leading to a decrease in core power consumption.

An example is shown in Figure 8 and Figuthe re 9. In the figures, the dashed
red line denotes the identified layer boundaries with the same technique men-
tioned in Section 5.2, and the solid green line represents the ground truth times-
tamp. The figure on the left shows the core power consumption without activa-
tion functions. The one on the right shows the scenario with activation function
(sigmoid) between two model layers. We can leverage the differences in core
power consumption to determine the existence of activation functions. Once we
locate a DRAM power consumption peak, we can search forward from this point
with a sliding window-based algorithm similar to the Lookahead algorithm. If a
significant increase followed by a decrease in core power consumption is found,
an activation function exists; Otherwise, there is no activation function.

For the second issue, we find that the power consumption of an activation
function is often positively correlated with the size of the input vector. Given the
same parameter size, different activation functions consume different amounts of
power. We thus adopt a profiling-based approach to solve this issue. We can get
a function F,(x) for each activation function that estimates power consumption
based on parameter size x through offline model training. We use polynomial
regression to model F,(). The results of the regression model are shown in Fig-
ure 10. In this figure, the z-axis represents the total parameter size (W; + By),

—&~ tanh ground truth ==~ relu ground truth —&- sigmoid ground truth
§ —— tanh estimation —— relu estimation —— sigmoid estimation
< 15000
=
a
g 10000
=
2
S
& 5000
s
:
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Parameter Size (x106)
Fig. 10: Polynomial regression

and the y-axis shows the core power consumption values in Kilojoules. This re-
gression is performed offline with ground truth data. We can see that the total
power consumption for different activation functions is distinguishable on a given
parameter size.

During online attacks, we first reverse the parameter size of each layer (Sec-
tion 6), decide whether the activation function exists with the sliding-window
algorithm, get power consumption estimation with F,() and parameter size z,
then compare this estimated value with the collected power trace to determine
which activation function is being used. To determine the period corresponding
to the activation function, we use the sliding window as mentioned above-based
algorithm to detect the end time point of the activation function.
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6 Model Reconstruct

The ultimate goal of adversaries is to steal sensitive model information and
use them to reconstruct the same or similar models. To achieve this goal, the
adversaries need to obtain the hyper-parameters of each layer and reassemble
them together. We call this process hyper-parameters inference (HPI). This effort
requires both network and power trace analysis and background knowledge of
convolutional layer computation.

6.1 HPI via Network Side Channel

In this subsection, we discuss the techniques leveraged to extract common
hyper-parameters of FC and Conv layers.

Number of Layers. In Section 5.2, we demonstrate that the DRAM power
consumption pattern during the forward pass computation can be leveraged to
perform layer segmentation. Thus, we can identify the number of layers accu-
rately. Alternatively, we can extract this information from the network trace
during its overlap with the backward pass computation. This approach is es-
sential because network packets carry payload information, from which we can
obtain more accurate estimations of model hyper-parameters. For this purpose,
we need to answer two questions.

1. Does communication correlate with the number of layers? To answer this
question, we must understand the backward pass computation process. Typi-
cally, backward pass computation is made from the last layer backward to the
first layer. To improve communication efficiency, MXNet parallelizes backward
passes and synchronization. Thus synchronization is performed at layer-level
granularity. This unique pattern has also been verified in prior efforts [20]. This
allows us to identify the number of layers from the network trace.

Due to the introduction of the subgraph, however, this layer-by-layer commu-
nication paradigm will be adapted to subgraph-by-subgraph, which is a coarser
granularity level. But we find that MXNet has a warm-up process for initial-
ization, during which the communication is still performed layer-by-layer. This
process generally lasts about two iterations. In other words, whether the sub-
graph is enabled or not, the number of layers correlates with communication
during the beginning two iterations of training. Note that such communication
patterns are not specific to MXNet. Our following discussions and analysis are
conducted on the first two iterations in the network trace.

2. How to extract the number of layers from communication? Intuitively, one
might think that packet intervals can identify layer boundaries in the communi-
cation of each iteration. However, there can be about 15k intervals whose length
is smaller than 20 ms. Such intervals are too small to be identified. Instead of
using packet intervals, we find that the packet payload size can be leveraged to
achieve this goal. Since backward pass computation is performed layer by layer,
when the parameters of the (n + 1) layer are being transmitted, those of the
nt™ layer are still in computation. Between the gap of parameter transmissions
of these two layers, a worker node sends a sequence of 0-payload packets to the
server node. We call this sequence Seqy. The length of Seqr, i.e. (|Seqr|), de-
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pends on the layer size — larger layers result in longer Seqy. In our observation,
the minimum length of Seqy, is 2.

Size of Tensors. In DNN, weights and biases are the learnable parameters
exchanged for synchronization in training. All parameters in a neural network
are tensors, which essentially are multidimensional arrays that typically have
three attributes, rank, shape, type. The rank attribute represents the number of
dimensions, shape represents the number of rows and columns, and type is the
data type of the tensor’s elements, which are generally either 4 bytes or 8 bytes
depending on the CPU processors. In our study, we calculate the total size of
tensors as rank X shape x type, which is the total amount of memory a tensor
takes. We attempt to obtain the total size of the weight tensor (W) and the
total size of the bias tensor (B;) from the network trace.

A key step in this effort is associating individual packets with each tensor.
During synchronization, weight and bias tensors are pushed in order from a
worker node to the server node. Therefore, as long as we can identify the sepa-
rator between the weight tensor and bias tensor, we can calculate the estimated
size of the tensors with packet payload size. We design an algorithm for this
identification. There are two key indicators of the tensor separators. The first is
the pull req_send packets. In the design of MXNet, a worker immediately sends
a pull request to the server after a tensor finishes transmission via push_send.
The size of the pull req send packet payload is 34 bytes. But in practice, Ze-
roMQ [26] merges small packets into a large ones sometimes. So the packet
payload size could also be 100 bytes. It is also possible that the pull requests
are merged with the push packets. In this case, we use the second indicator,
which is a sequence of 0-payload packets, called Seqr. It is essentially the same
as Seqy, except that |Seqr| is always smaller than |Seqy|.

There could be multiple sequences of 0-payload packets (Segr) in our trace,
but only one of them is the real Seqp. To eliminate noise, we use the payload
size of the packet that precedes each Seq). to determine whether Seq}. = Seqr.
Generally, weights and biases are sent continuously in packet streams. Thus, if
the payload size of a packet is smaller than the maximum TCP payload size, it
is likely that the transmission finishes. We leverage this intuition to ignore the
wrong Seq/. as shown in line 10 of the algorithm. This algorithm assumes that
the weight tensor is transmitted before the bias tensor, which is not always the
case in practice. But we can get the correct estimation of each tensor because
weight tensors are generally larger than bias tensors. To obtain the accurate
number of tensors, i.e., parameter sizes, we can calculate Ny, = W;/(data size)
and Np, = B;/(data size) for weight and bias tensors, respectively. The data
size is the data type of tensor elements.

6.2 HPI via Computation Processes

To accurately infer the hyper-parameters, we assume the existence of bias
in neural network models. The rationale for this assumption is the following.
Biases themselves are training parameters that can be used to adjust the feasible
region of the algorithm. Further, the impact of geometry on different datasets
is different. As a result, data needs to be pre-processed, which would be more
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challenging with no prior knowledge of the dataset, to counteract the loss of
deviation and preserve model accuracy [27]. On the other hand, bias calculation
brings little overhead compared to the calculation of weights. Therefore, the bias
parameters are essential by providing a cost-effective way for models to improve
training accuracy.

FC Layer. A one-to-one mapping exists between the number of biases and the
number of neurons in FC layers. Since we can obtain the total size of bias vectors
from network trace (Section 6.1), the number of biases, N, = B;/(data size).
The data size depends on their data types. Typically, this value aligns with the
memory address width of a processor. If each bias is a 32-bit long float number,
the data size equals 4; If they are 64-bit long numbers, the data size equals 8.
This helps adversaries limit the inferences to a small possible set. Once N, is
known, so is the number of neurons.

Conv Layer. There are four key parameters adversaries need to recover for
Conv layers, including the number of filters (Ny), filter shape (Fy, x F},), stride,
and padding. To obtain N; and F,, X Fj,, we leverage the following calculation
rules of Conv Layers:

Ny, = Ni, = By, /data size (1)

Wti = Nki—l X Nki X Fwi X Fhi (2)

For Conv layers, both the number of filters (Ny) and the number of kernels (Ny)
equal the number of biases, which is described in Eq (1). Note that the subscript
i in Egs. (1) and (2) represents the i'! layer. Eq (2) shows how the number of
weights can be calculated with the number of kernels of the (i —1)*" and i layers
and the filter shape of the i*? layer. Given the above two equations, if W; and B,
are known, we can easily calculate Ny and Fy, x F},. The specific values of F, and
Fj, are typically the same in Conv layers. Thus, they can be calculated by taking
the square root value of F,, x F},. For padding, its size is mainly determined by
the filter shape and the stride value. Since stride values generally vary within a
reasonably small range (e.g., between 1 and 4), adversaries can generate limited
possibilities.
Reconstruct Model Architecture. Once we have all the layer types and
parameters, we can assemble them sequentially to reconstruct the model. Note
that non-sequential models are out of the scope of our work for now. We can also
leverage common practices for basic verification when performing model layer
reassembly. For example, FC layers should never come before Conv layers in
DNN. Additionally, our proposed reconstruction method is not specific to any
learning tasks or datasets.

7 Evaluations

Our evaluations are conducted from three different aspects. First, we evaluate
the accuracy of different components in our proposed solution. Second, we per-
form case studies on two models, MLP-1 and AlexNet, by comparing the reversed
model structures and the original ones. We also train the recovered models with
the same dataset to compare their accuracy with the original models. Finally,
we perform a qualitative analysis on the cost of performing the attack.
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7.1 Experiment Setup

We evaluate our work with two Dell OptiPlex-7040 and one Dell OptiPlex-
7010 machines, which have 8-core Intel i7-6700 processor with skylake micro-
architecture, and 16GB memory. These processors support the execution of Intel
RAPL measurements. Among the three machines, two of them are running as
the worker nodes, and the other one run as the parameter server and the sched-
uler. They are interconnected with 1 Gbps network. Our evaluations are tested
on Ubuntu 20.04 with MXNet 1.6.0. The ground truth in our evaluations are
obtained from application instrumentation and log files. Our evaluations are con-
ducted on 20 different DNN models, including LeNet-1, LeNet-4, LeNet-5, NIN,
MLP-1, AlexNet, convNet, mini-AlexNet, DeepNet, MLP-2, OverFeat-accurate,
Overfeat-fast, ZFNet, VGG11, VGG13, VGG16, VGG19, VGG11-BN, VGG13-
BN, VGG16-BN. All the results presented in this section are average values over
three runs.

7.2 Accuracy

For accuracy, we evaluate three perspectives that largely determine the over-
all accuracy of our reconstructed models.

Accuracy of Layer Type Identification. As discussed in Section 5.3, we
utilize the different statistical features of Conv and FC layers to identify their
layer types. For this purpose, we explore five supervised learning models, MLP,
Naive Bayes, Logistics Regression, Support Vector Machine (SVM), and Decision
Trees. To train these models, we collect 41,442 power segments of FC layers
and 42,424 power segments of Conv layers. We perform 10-fold cross-validation
over the entire dataset and summarize the results in Table 2. For the decision

Table 2: Accuracy of layer type identi-

fication
Model Precision |Recall|F1 score|Accuracy Table 3: Accuracy of layer type identi-
MLP 0.933 |0.979| 0.955 0.955 .
o fication (unseen models)
Logistics | 679 0.854| 0.754 | 0.723
Regression T 0 o e Model  |Precision|Recall|F1 score|Accuracy
Naive Bayes | 0.629 |0.977| 0.765 0.704 MLP 0.940 [0.954 | 0.947 0.997
SVM 0.670 |0.856 | 0.743 0.710 DT(gini) 0.967 |0.979| 0.973 0.998
Decnﬂon. Tree 0.976 10.955| 0.965 0.966 DT (entropy)| 0.969 |0.974| 0.9717 | 0.998
(geni)
Decision Tree| o o7 10975 | 0.976 | 0.977
(entropy)

tree models, we use geni impurity and entropy as the criteria for tree splitting,
where geni Index =1 — Zj pj2, and entropy = Zj p; - log, pj. From the table,
we can see that both decision tree and MLP models perform better than other
models. All four criteria, including precision, recall, F1 score, and accuracy can
achieve higher than 95%. To avoid overfitting, we limit the maximum depth of
the decision tree to be 10, which is selected empirically.

We further test these three models over a separate dataset that is collected
from MobileNet0.25, MobileNet0.5, ResNet101_v1, ResNet18_v1, and Resnet34 _v1.
This dataset contains 14,711 segments of FC layers and 453,118 segments of Conv
layers. The evaluation results are shown in Table 3. We can see that MLP and
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decision tree models still can achieve high precision, recall, and accuracy values.
Particularly, the decision tree models can achieve 99%-+ accuracy.

Accuracy of Tensor Size Recovery. To evaluate the accuracy of our tensor
size recovery mechanism, we compare our recovered tensor size with the original
tensor size of all 20 models. In this evaluation, the ground truth is obtained
from the Send() function invoked by MXNet for parameter synchronization. It
contains a data structure that keeps parameter IDs and their corresponding
tensor sizes. The average error rate is shown in Table 4. The error rate of each

Table 4: Accuracy of tensor size recovery
Range 500 |50331648| 100663296 | 150994944
Error Rate|0.704| 0.0148 |5.966 x10~7 [3.179 x10~"

((B; + B,,) = (Bt + Bu)|

(Bt + Bw)
bias tensor, W is the size of our recovered weight tensor, B; is the size of the
original bias tensor and W; is the size of the original weight tensor. We calculate
this error for each layer in our dataset and then present the average error rates.
From our results, we find that our mechanism achieves less accuracy when the
size of a tensor is small. Thus, we further group these errors into four ranges
based on the original tensor sizes. The table shows the maximum value of tensor
sizes in each group. Note that each layer contains two tensors, a bias tensor, and
a weight tensor.

We can observe that most tensors fall in the range between 500 and 50331648.
For the models with more small tensors, such as VGG11-BN, VGG13-BN, and
VGG16-BN. Their error rates are not affected much since the size of most of
these tensors is close to 500. In practice, adversaries can leverage domain knowl-
edge, such as the size of a tensor is typically a multiple of 64. For example, one
of the tensors we collected from LeNet-4 is of size 64 bytes, but our recovery
mechanism determines that its size is 105 bytes. In this case, we can generate
2 possible values, 64 and 128, since they are multiples of 64 that are closest to
105. Therefore, the correct tensor size can still be identified by adversaries.

layer is calculated as , By is the size of our recovered

To identify the activation function, we leverage a sliding-window-based algo-
rithm and polynomial regression models for this purpose. We evaluate these two
key components separately. The sliding-window-based algorithm is designed to
detect the existence of activation functions.

We further evaluate the accuracy of our method in identifying activation func-
tion types. The accuracy is calculated based on the condition that the existence
of activation functions is validated. In other words, we calculate the percentage
of correct function type identifications among all the true positive detection re-
sults. The overall identification accuracy is high for most models. But for the
VGG models, all of their activation functions are Relu functions — their duration
is too short to be captured by our method effectively. For instance, we can only
sample two power data points during the execution of a Relu function in an
extreme case. It is difficult to make a decision based on so little information. As
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a result, many of their activation functions are identified as “unknown” in our
evaluations.

In summary, we can identify the layer types and tensor sizes accurately.
Our sliding-window-based algorithm can also detect the existence of activation
functions accurately. The effectiveness of these components helps lay a strong
foundation for our case studies of reconstructing each individual model.

7.3 Case Study

In this section, we use two models, MLP-1 and AlexNet, as examples to
demonstrate how our method can be applied in practice for model reconstruction.
We also compare the reconstructed models with the original models from two
different aspects.
Model Structure Comparison. We compare the reconstructed model struc-
tures with the original ones by showing their layer types and layer hyperparam-
eters. The results of the MLP-1 model are shown in Table 5. Since MLP

[ Original _[FC, 4096, Relu| FC, 4096, Relu_|FC, 4096, Sigmoid|FC, 4096, ReluFC. 4096, Relu]FC, 4096, Tanh|FC, 4096, Sigmoid[FC, 4096, Sigmoid|FC. 2000, Sigmoid|FC, 1000, Relu|
[ Reconstructed|FC, 4006, Relu|FC, 4096, Sigmoid [FC. 4096, Sigmoid|FC, 4006, Relu|[FC, 4096, ReluFC, 4096, Tanh|FC, 4096, Sigmoid|FC, 4096, Sigmoid|[FC, 1984, Sigmoid|FC, 1024, Relu]

Table 5: MLP-1 reconstructed structure v.s. original structure

[ Original [Convap, 64, 11, Relu|Convap, 192, 5, Relu[Conv2D, 381, 3, Relu[Conv2D, 256, 3, Relu|Conv2D, 236, 3, Relu[FC, 4096, Relu[FC, 4096, Relu[FC, 100, Relu]
[ Reconstructed|Conv2D. 64, 10, Relu|Conv2D, 192, 3. Relu|Conv2D, 384, 3, Relu|Conv2D, 256, 3, Relu|Conv2D, 256, 3, Relu[FC, 4096, Relu|FO, 4096, Relu[FC, 121, Relu]

Table 6: AlexNet reconstructed structure v.s. original structure

Original Conv2D, 96, | Conv2D, |Conv2D, | Conv2D, | Conv2D, SE% 4F0§é FC,
riina 11 256, 5 512,3 | 1024,3 | 1024, 3 ' " | 1000
Relu Relu
FC, FC,
Recon- | Conv2D, 96, Conv2D, |Conv2D, | Conv2D, | Conv2D, 3072 4096 FC,
structed 10, 256, 4 512,3 | 1024,3 | 1024, 2 ’ 11024
Relu Relu

Table 7: OverFeat-fast reconstructed structure v.s. original structure

models only consist of fully connected layers, they have three hyperparameters:
layer type, tensor (neuron) size, and activation function. Each row in the table
shows the hyperparameters of a corresponding layer in the model. It is obvious
that we can reconstruct this model structure accurately. The results of AlexNet
are shown in Table 6. AlexNet contains both FC and Conv2D layers. For the
Conv2D layers, we demonstrate the number of kernels, the kernel shape, and
the activation functions. In our tested models, all the kernels have equal width
and height, thus using one value for brevity. These layers also have stride and
padding parameters, which are not recovered by our proposed methods. But
they generally fall within a limited range. AlexNet also has max pooling layers,
which contain pool size, stride size, and padding size. Given that they are lim-
ited in range, we will discuss the size of the possible set in search space later.
Through this comparison, we can see that our method can provide accurate
hyperparameter values.

Search Space Reduction. Our method has shown promising results in recov-
ering hyper-parameters of FC and Conv layers. This is particularly useful for
adversaries to reconstruct models that contain only FC layers, such as MLP
models. Given that we might need to find multiples of 64 that are closest to our
reconstructed value, we have two possible values for each layer. Therefore, the
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possible search space for FC layers = 2V7¢ where N tc represents the total num-
ber of layers. For Conv layers, we currently reconstruct max pooling, stride, and
padding-related hyperparameters based on our domain knowledge. For example,
max pooling layers are generally located between Conv layers, and the padding
size is typically within the range of 0 to 2. We can thus calculate an estimated
search space for Conv layers = (Stride_Size x Padding_Size)Neonv x 2Neonv =1 x
Mp_Size x Mp_Stride x Mp_Padding. In this calculation, N, represents the
number of Conv layers, and Mp represents the max pooling Layers. In practice,
this possible set could be further reduced. Because certain stride and padding
sizes may become unavailable given the input shapes.

7.4 Robustness of the Attack

To evaluate the robustness of the proposed attack, we run another back-
ground application, i.e., Redis database, that is both communication and mem-
ory intensive in a separate container that runs on the same worker node. Specif-
ically, we run a client that issues GET/SET requests to a Redis server by exe-
cuting memtier benchmark [28]. We vary the memory consumption (between 10%
and 20%) and traffic rate of this client by adjusting the read:write ratios, data
sizes, the number of concurrent threads, and test time. We then evaluate the im-
pact of this application on two critical steps in the attack: locating forward pass
and forward pass segmentation. This experiment is conducted on three models:
MLP-1, VGG11, and VGG16. The results are summarized in Table 8.

In this table, Rate represents the traffic rate in packets per second (pps).
This rate combines the request sending rate and response arrival rate so that
it includes the total amount of packets the worker node needs to process per
second; Duration represents the ground truth forward pass duration in seconds;
F, represents the time difference between our identified forward pass and ground
truth; L. calculates the average error rate of each layer. We define the length
of an identified layer ¢ as L; and the ground truth length as L,4,. Then L. =

7
(> |L"L_7L‘7"‘) /i. In this experiment, we separately calculate the error rate for
n=1 gn

the first 4 — 1 layers and the last layer.

Table 8: Accuracy of forward pass locating and segmentation

. L. (%)

Memory| Model |Rate (pps)|Duration (s)|Fe (ms) Sthor Tast
MLP-1 12030 2.76 1.24 |4.72|3.7

15% |VGGI11 9827 4.13 2.64 1.1 |15.7
VGG16| 14270 6.59 2.62 2.2 120.3
MLP-1| 10389 3.28 1.52 |5.89|7.8

20% |VGGI11 9435 5.04 2.92 | 1.36 |20.3
VGG16| 11482 6.94 2.84 |3.17|21.3
MLP-1 10120 3.46 2.40 6.2 |54

25% |VGGI11 9928 5.29 3.44 | 1.44123.3
VGG16| 13839 7.26 3.65 | 4.6 |21.6

There are three key observations we can obtain from this table. First, both
forward pass locating and segmentation errors increase as the memory consump-
tion and traffic rate increase due to resource contention. Second, for forward pass
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segmentation, the error rate of the last layer is always higher than that of the
other layers. The reason is that the last layers of all three models are FC layers.
So it takes them only about 2 ms to finish. Third, despite the interference of
the background application, our proposed attack can still achieve high accuracy
in detecting forward pass and layer boundaries. In practice, it is not likely to
have another co-located background application consuming more than 20% of
memory because training complex machine learning models generally requires
abundant memory resources.
7.5 Comparison with SOTA

Many similar efforts have been dedicated to obtaining sensitive model infor-
mation during training. To demonstrate the capabilities of our proposed attack,
we make both qualitative and quantitative comparisons with the state-of-the-art
techniques, CSI NN [29] and Cache Telepathy [16]. Table 9 shows the informa-

Table 9: Comparison of attack capabilities

Solutions Our Work| CSI NN |Cache Telepathy|
Hyperparameters

Number of layers 4 v v
Layer boundaries 4 v v
Layer type v N/A v
Number of neurons - FC layer v v v
Number of filters - Conv layer v N/A 4
Filter shape v N/A v
Relu identification v v 4
Sigmoid identification v v X
Tanh identification v v X
Weights X v X
Strides X N/A v
Padding X X v
Max pooling detection X v v

Dropout detection X N/A N/A
Residue connection detection X X 4

tion that can be obtained from our work compared to the others.

In this table, “N/A” means that the work does not mention the corresponding
information. Overall, our proposed attack can obtain similar information with
other existing work in the literature. However, our proposed attack is built on en-
tirely different assumptions than previous work. For example, CSI NN leverages
the timing and electromagnetic (EM) emanations information of an embedded
device where an ML model is trained to reconstruct the model architectures,
which is not feasible to do on typical server machines. While Cache Telepathy
relies on the execution of OpenBLAS and Intel MKL libraries during ML infer-
ence, which limits the scope of the attack to specific ML frameworks running on
CPUs. In contrast, our proposed attack leverages the inherent execution patterns
of ML training that are independent of the utilized hardware and software.

Quantitatively, we also reconstruct VGG16 in our study, which allows us to
make a fair comparison with Cache Telepathy. The structure of VGG16 can be
fully reconstructed with the techniques proposed in Cache Telepathy. With our
proposed approach, we can also fully reconstruct the Conv and FC layers and
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their corresponding activation functions, number of neurons, and kernel size. But
we could not reconstruct the dropout layers and the max pooling layers.

8 Limitations

Although we have shown that network and power side channels reveal sensi-
tive information about models, there are limitations to the type of models we can
recover. So far, our solution is limited to sequential models. For non-sequential
models, a layer can be connected to multiple layers, resulting in sub-models or
blocks. The power and network data we collected do not provide more fine-
grained information that allows us to recover the connectivity of layers within
a block. Additionally, the mitigation solutions provided by Intel may reduce
the attack surface, resulting in potential attack failures. However, attackers can
perform this attack from any worker node among all the participating nodes.
Given that distributed machine learning or federated learning is gaining popu-
larity among different data stakeholders in various domains, attackers can locate
a vulnerable machine to perform the proposed attack.

9 Related Work

Network side-channel attacks are not novel concepts; they have been applied
in various domains. Recently, Gu et al. proposed a video identification method
using network traffic while streaming [30]. Through this attack, adversaries can
extract video features. Xu et al. proposed a similar effort to infer mobile ABR
video adaptation behavior based on packet size and timing information [31].
Network traffic generated by IoT devices has also been leveraged by Apthorpe
et al. to infer in-home activities [32].

Leveraging side-channel information for DNN model reconstruction has also
been explored. Wei et al. exploited the GPU side-channel based on context-
switching penalties to extract the structural secret of DNN [33]. Power side
channels have also been leveraged by Wei et al. to reconstruct input images
without the knowledge of model parameters [34]. In addition to power, elec-
tromagnetic side channels were also utilized to reverse model structures [29].
Hu et al. leveraged off-chip memory buses to reconstruct the neural network
architectures [35].

10 Conclusion

In this paper, we proposed an effective black-box attack to reconstruct the
DNN model architectures. We identified that network communication between
a worker node and the server node has unique patterns. We leveraged these pat-
terns to successfully extract the layer hyperparameters, including the number of
neurons, the size of bias tensors, and the number of layers. We further correlate
the timestamps extracted from network communication with power consumption
data collected via software-based power side channels. Such correlation helps re-
duce the search space of the target model architecture significantly. Through
evaluations, we showed that our methods can recover highly accurate hyper-
parameters. For example, we can identify layer types at 99.9% accuracy with
decision tree models. We can also fully recover the size of each tensor of both
FC and Conv layers.
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