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AbstractÐThe main challenge in learning image-conditioned
robotic policies is acquiring a visual representation conducive
to low-level control. Due to the high dimensionality of the
image space, learning a good visual representation requires a
considerable amount of visual data. However, when learning
in the real world, data is expensive. Sim2Real is a promising
paradigm for overcoming data scarcity in the real-world target
domain by using a simulator to collect large amounts of cheap
data closely related to the target task. However, it is difficult to
transfer an image-conditioned policy from sim to real when the
domains are very visually dissimilar. To bridge the sim2real visual
gap, we propose using natural language descriptions of images
as a unifying signal across domains that captures the underlying
task-relevant semantics. Our key insight is that if two image
observations from different domains are labeled with similar
language, the policy should predict similar action distributions
for both images. We demonstrate that training the image encoder
to predict the language description or the distance between
descriptions of a sim or real image serves as a useful, data-
efficient pretraining step that helps learn a domain-invariant
image representation. We can then use this image encoder as
the backbone of an IL policy trained simultaneously on a large
amount of simulated and a handful of real demonstrations.
Our approach outperforms widely used prior sim2real methods
and strong vision-language pretraining baselines like CLIP and
R3M by 25 to 40%. See additional videos and materials at
https://robin-lab.cs.utexas.edu/lang4sim2real/.

I. INTRODUCTION

Recently, visual imitation learning (IL) has achieved sig-

nificant success on manipulation tasks in household environ-

ments [45, 5]. However, these methods rely on large amounts

of data in very similar domains to train data-hungry image-

conditioned policies [5, 6, 38]. Some researchers are attempt-

ing to generalize visual IL to any target domain by collecting

large datasets of demonstrations from mixed domains. In this

work, we explore a different approach: can we transfer a policy

trained on cheaply acquired, diverse simulation data to a real-

world target task with just a few demonstrations?

A solution to effectively leverage cheap sim data while

successfully fitting scarce real-world demonstrations is to

create a domain-agnostic visual representation and use it for

policy training. Such a representation should enable the policy

to use the simulation image-action data as an inductive bias to

learn with few-shot real world data. This representation must

allow the policy to tap into the right distribution of actions

by being broad enough to capture the task-relevant semantic

state from image observations, yet fine-grained enough to

be conducive to low-level control. For instance, a sim and
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Fig. 1. Bridging the sim2real gap with language. Robot images from
simulation and the real world with similar language descriptions (green &

purple borders) are mapped to similar features in language embedding space,
while sim and real images with different language descriptions (teal & red)
are mapped to faraway locations. We propose using language embedding
similarities to re-shape the image embeddings (center) to create a domain-
invariant image space. A policy is learned conditioned on these image
embeddings from both sim and real images (right).

real image observation, both showing the robot gripper a few

inches above a pan handle, should lie close together in the

image embedding space to lead to similar actions, even if the

two images have large differences in pixel space.

How might we acquire supervision for learning such a visual

representation? Language is an ideal medium for providing it.

Descriptions of task-relevant features in image observations,

such as whether or not a gripper is close to a pan handle,

serve as a unifying signal to align the representations of

images between sim and real. We hypothesize that if a sim

and real image have similar language descriptions (e.g., ªthe

gripper is open and right above the pan handleº), then their

underlying semantic states are also similar, and thus the actions

the policy predicts conditioned on each image should also

be semantically similar (e.g., moving downward to reach

the pan handle). The pretrained embedding space of large

language models (LLMs) offers a well-tuned signal that can



be leveraged to measure the semantic similarity between real

and sim images via their associated language descriptions (see

Fig. 1). This simple insight allows us to learn a domain-

agnostic visual representation to bridge the visual sim2real

gap.

A popular paradigm in foundation model research is to first

pretrain the backbone on large datasets, and then add and

train a task-specific head to process the backbone outputs to

perform a downstream task. We borrow from this paradigm

by first pretraining an image encoder to predict the pretrained

embeddings of language descriptions of images from roughly

a few hundred trajectories in sim and real, with language

labels on each image. Then we use this image encoder as

the backbone of our IL policy and train on action-labeled data

from both the sim and real domains simultaneously, where we

only need a few action-labeled demonstrations from the real

world.

In this paper, we introduce Lang4Sim2Real, a lightweight

framework for transferring between any two domains that

have large visual differences but contain data across a similar

distribution of tasks. Our approach has the following main

advantages over prior sim2real efforts:

1) Alleviates the need for the engineering-intensive task of

system identification, or more broadly trying to exactly

match a sim environment to the real environment both

visually and semantically.

2) Enables sim2real transfer on tasks involving deformable

objects that are hard to simulate with the same dynamics

and visual appearance as the real-world version of the

objects.

3) Bridges a wide sim2real gap that includes differences in:

camera point-of-view (1st vs 3rd person), friction and

damping coefficients, task goals, robot control frequencies,

and initial robot and object position distributions.

In the few-shot setting, on long-horizon multi-step real-

world tasks, these advantages enable Lang4Sim2Real to out-

perform prior SOTA methods in sim2real and vision repre-

sentation learning by 25-40%. To our knowledge, this is the

first work that shows that using language to learn a domain-

invariant visual representation can help improve the sample

efficiency and performance of sim2real transfer.

II. RELATED WORK

Our main contribution is a method to learn domain-invariant

image representations by exploiting natural language descrip-

tions as a bridge between domains for sim2real transfer. While

we believe this has not been explored before, significant

related research has been done in vision-language pretraining,

sim2real techniques, and domain-invariant representations for

control.

A. Vision Pretraining for Robotics

Various works have found that vision-only pretraining

improves performance on image-based robotic policies. Prior

work has explored pretraining objectives ranging from masked

image modeling [42], image reconstruction [62, 15, 47], con-

trastive learning [27, 17], video frame temporal ordering [23],

future frame prediction [62], and image classification [61, 57]

on internet-scale datasets such as ImageNet [9], Ego4D [14],

Something-Something [13], and Epic Kitchens [8]. While

these vision-only pretraining objectives learn good representa-

tions for robotic control within a specific domain distribution

(such as the real world), they are not necessarily robust to the

wide domain shifts encountered during sim2real.

In vision-language pretraining, contrastive learning [41]

has been shown to learn valuable representations for robotic

tasks [50, 51]. However, these pretrained visual representations

are often overly influenced by the semantics of language

captions. This results in a representation that is too object-

centric to differentiate between different frames of a robot

demonstration, lacking the level of granularity needed for

spatial-temporal understanding. R3M [36] addresses this by

learning semantics from language labels of videos but also

training with a time contrastive loss between video frames.

Prior work in multimodal representations [63] found language

to be effective in aligning representations learned across mul-

tiple modalities including depth and audio. Instead of using

language to bridge modalities, our approach uses language to

bridge visual representations between domains.

B. Sim2Real

While we approach sim2real through vision-language pre-

training, there are many alternative, well-researched tech-

niques. Domain randomization [3, 31, 54] involves varying

physical parameters and visual appearances of the simulation

to train a policy that functions in a wide distribution of

domains that hopefully also covers the target domain distribu-

tion. However, domain randomization requires a large amount

of diverse training data and attempts to be simultaneously

performant in an overly broad distribution of states, leading to

a suboptimal and conservative policy that takes longer to train.

System identification [60, 25] involves tuning the simulation

parameters to match the real world in order to create a custom-

tailored simulation environment that easily transfers to the real

domain. However, this process is very engineering intensive

and time consuming, and it may be intractable to simulate

all real world physical interactions with high fidelity and

throughput. In contrast, our sim2real approach can handle

large source and target domain discrepancies with a few target

task demonstrations and does not require system identification

or domain randomization.

C. Domain-Invariant Representations

Several methods have been proposed to learn domain in-

variant representations. The domain-adaptation community has

extensively researched using Generative Adversarial Net-

works (GANs) to map images from one distribution into

another, using pixel space as a medium of common represen-

tation [20, 4, 18, 44]. However, GANs require a large training

dataset and are notorious for unstable training. Additionally,

enforcing similarity on the input image side at the pixel level is



less efficient than our method, which encourages cross-domain

distributional similarity in a compact, low-dimensional image

encoder space. Furthermore, researchers in self-driving have

studied using semantic segmentation and depth maps [34, 2]

as a common representation space between domains, though

their effectiveness has only been demonstrated in navigation

tasks with binary segmentation masks, which is too simplified

for the long-horizon manipulation tasks we consider.

D. Language and Robotics

A growing body of work has investigated training mul-

titask robotic policies conditioned on language instruction

embeddings [21, 29, 32, 33, 49, 53, 52, 24], or a combina-

tion of language instructions and goal images/demonstrations

[22, 48, 59]. Our approach also involves learning a language-

conditioned policy, but unlike prior work, our main novelty

is using language for a second use-case: as scene descrip-

tors during pretraining to pull together semantically similar

image observations between two visually dissimilar domains.

Language has also been used for reward shaping in RL

[35, 11, 12, 10, 30], and as a high-level planner in long-horizon

tasks [19, 1, 7, 43]. These areas of research are more ancillary

to our contributions, as we demonstrate our approach with IL

instead of RL and with fine-grained manipulation tasks that

do not require extensive planning.

III. PROBLEM DESCRIPTION

In this work, we address the problem of few-shot visual

imitation-learning (IL): learning a visuomotor manipulation

policy in the real world based on a few real-world demonstra-

tions. We assume access to a large amount of simulation data

and cast few-shot IL as a sim2real problem. More concretely,

we render the few-shot IL problem as a k + 1 multi-task IL

problem: k tasks from simulation and the target task (with a

few demonstrations) in the real world. In general terms, we

assume a source domain in which data can be acquired cheaply

and a target domain where data is expensive to collect.

In our setting, we consider access to two datasets across two

domains: Ds, which spans multiple tasks in the source domain,

and Dt
target, which contains a small number of demonstrations

of the target task in the target domain we want to transfer

to. Thus, we assume that | Ds | >> | Dt
target |, due to how

expensive target domain data collection is (such as in the real

world). We make two assumptions about the two domains.

First, we assume the source and target tasks are all of the

same general structure, such as multi-step pick-and-place task

compositions, but with different objects and containers across

different subtasks. Otherwise, transfer would be infeasible in

the low-data regime if the source and target domain tasks

lack similarity. Second, to train a common policy for both

domains, we assume the domains share state and action space

dimensionality. We make no further assumptions about the

similarity between the two domains.

All of our datasets are in the form of expert trajectories.

Each trajectory, τ = {(It, st, [at, lt], ltask)}, is a sequence of

tuples containing an image observation, It (128× 128 RGB),

robot proprioceptive state, st (end effector position and joint

angles), and a language instruction of the task, ltask. Note

that ltask is the same over all timesteps of all trajectories in

a given task. [at, lt] denotes that a trajectory may optionally

also include robot actions (in which case we consider the

trajectory a full demonstration) and/or a language description

of the image It. In the following sections, we identify with

τ [L] a trajectory with language descriptions lt, but no actions

at. Similarly, τ [A] is a full demonstration with actions, at, but

no language descriptions, lt.
The language labels for images can be automatically gener-

ated from a programmatic function that maps image observa-

tions to language scene descriptions depending on the relative

position between the robot and the objects in the scene. We

elaborate on these language labels and how to automatically

collect them in Section IV-A. Note that these language scene

descriptions, lt, are different from the language instruction

associated with each task, ltask.

Different data elements and types of trajectories will be

used during pretraining and policy few-shot training: dur-

ing pretraining, we use τ [L] image-language (It, lt) pairs

from Ds ∪Dt
target. During policy learning, we use τ [A]

data: (It, st, at, ltask) tuples from Ds ∪Dt
target. In the next

section, we explain how these two steps are defined for

Lang4Sim2Real.

IV. LANG4SIM2REAL: FEW-SHOT IL WITH SIM&REAL

In our method, we adopt the common pretrain-then-finetune

learning paradigm (see Fig. 2). First, we pretrain an image

backbone encoder on cross-domain language-annotated image

data (Sec. IV-B). Then, we freeze this encoder and train a

policy network composed of trainable adapter modules and a

policy head to perform behavioral cloning (BC) [45] on action-

labeled data from both domains (Sec. IV-C). To leverage the

simulation data, we train a k + 1 multi-task BC policy that

learns for k tasks in the source domain (sim) and 1 in the

target domain (real, few shot).

A. Automatic Language labeling of Images

To acquire image-language pairs for pretraining, we im-

plement an automated pipeline for labeling the images of a

trajectory that occurs synchronously during scripted policy

demonstration collection (see Appendix IX-A). Each if-case in

the scripted policy corresponds to a stage index, where in pick-

and-place, the first stage corresponds to the gripper moving

to a point above the object, the second stage corresponds to

the gripper moving vertically down toward the object, and

so on. We define a list of template strings describing the

scene for each of these stages, so the stage indexes into the

template string list, giving us our language annotation for the

image. See Table III in the Appendix for all template strings,

and Appendix IX-G1 for details about our language labeling

procedure.

However, our language labeling process need not be syn-

chronously coupled with scripted policy demonstration collec-

tion. We also implemented a labeling process using off-the-
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Fig. 2. Method. (i) Top: During Image-Language Pretraining, we train
the image encoder fcnn using the language embeddings associated with
descriptions of both sim and real image observations. fd

img and fd
lang

refer to

the output features of the CNN and the LLM, respectively, in domain d. With
regression-based loss (A) the image embeddings are pushed to predict the
corresponding language embeddings whereas with distance based loss (B) the
pair of image embeddings is pushed together/apart based on the similarity of
the language embeddings. (ii) Bottom: During Multitask, Multidomain BC,
we freeze our pretrained fcnn, add adapter modules and a policy head and
allow the last layer of the CNN to finetune, then train the resulting multitask
language-conditioned policy on Ds ∪Dt

target.

shelf vision-language models to detect the location of objects

and the gripper in the image to predict the stage number.

This process can be run on previously-collected trajectories

and requires only the images of a trajectory alone, without

need for additional action or state information. We describe

this second process in Appendix IX-G2. Empirically, using

language from this second, more scalable automated approach

does not degrade the performance of our method.

B. Cross-Domain Image-Language Pretraining

After collecting trajectories with language labels, our first

step in Lang4Sim2Real involves learning a domain-invariant

representation that will enable leveraging simulation data for

few shot IL. For that, we need to learn an image observation

encoder, fcnn : It → R
dcnn , that attains the following

property: it should preserve the semantic similarity of scenes in

images between the two domains. For instance, if both image

Is from Ds (sim) and image It from Dt
target (real world) show

the robot’s gripper open and a few inches above the object to

grasp, even if from different viewing angles, then we want their

image embeddings to be close together in the learned image

encoding space. This will facilitate policy learning later, as the

policy will need to draw from a similar distribution of actions

for similar scene semantics, which are now already mapped

into similar visual features.

Theoretically, off-the-shelf pretrained vision-language mod-

els (VLMs) [41, 36] should already possess these properties

as they were trained on a massive distribution of image and

language data. However, in the context of robot manipulation,

pretrained VLMs tend to encode all observations of the trajec-

tory into a very narrow region of the embedding space without

sufficient distinction for task-relevant, semantic aspects of the

image such as the location of the gripper in relation to the

manipulated objects. This renders them unsuitable without

additional finetuning for our application (see Sec. VI).

In Lang4Sim2Real, we propose an alternative approach to

obtain a visual representation with the aforementioned desired

property. We train a ResNet-18 [16] from scratch as our image

encoder using image-language tuples (Is, ls) from Ds and

(It, lt) from Dt
target. We denote this vision language pretrain-

ing dataset as DV L = {(Id, ld) : (Id, ld) ∈ Ds ∪Dt
target},

where d is either the source or target domain. The images

are observations collected during 100 demonstrations from

each of the tasks in Ds and 25-100 demonstrations from

Dt
target, totaling around 10k images per domain. We assume

that the two sets of language descriptions in Ds and Dt
prior are

similarly distributed; otherwise, language may not help learn

domain-invariant features between Ds and Dt.

To effectively leverage language as a bridge between

visually different domains, we need a well-tuned (frozen)

language model, flang : l → R
dlang , to map strings to

dlang−dimensional language embeddings. We use off-the-

shelf miniLM [58], since prior work [33] has demonstrated its

effectiveness for language-conditioned control policies com-

pared to other small, off-the-shelf language models.

Given the data and the language embedding described

above, we propose two variants in Lang4Sim2Real for the

image-language pretraining step that can obtain a sim-real

agnostic representation based on language supervision (see

Fig. 2(i)A-B):

1) Language-Regression: Our first variant is a straight-

forward use of language supervision to shape the image

embedding space: predicting the language embedding of the

description, ld, given the embedding of the corresponding

image, Id. We sample image-language pairs from the DV L

dataset defined above: (Id, ld) ∼ Ds ∪Dt
target. Let g :

R
dcnn → R

dlang be a single linear layer (language predictor

in Fig. 2(i)(A)) trained to minimize the following loss:

Lcnn,reg(DV L) =
∥

∥g
(

fcnn(I
d)
)

− flang(l
d)
∥

∥

2

2
(1)

We use the loss to train both the language predictor and the

CNN backbone. The loss provides strong language supervision

by encouraging fcnn to directly regress toward the frozen

language embeddings of the image descriptions, effectively



making the pretrained image encoder reflect the LLM embed-

ding space.

2) Language-Distance Learning: We also experiment with

a second variant of image-language pretraining that incorpo-

rates language with a softer form of supervision. We posit that

the exact values of the language embeddings do not themselves

convey meaning; rather, key information about the semantic

similarity of two images lies in the pairwise distances between

their corresponding two language embeddings. Thus, we de-

sign an objective to regress the image embedding distances

between a pair of images from the two domains to their

corresponding language distance:

Lcnn,dist(DV L) =
∥

∥f⊤

cnn(I
s)fcnn(I

t)− d
(

ls, lt
)∥

∥

2

2
(2)

where the language distance function we use, d : l × l → R

is BLEURT [46], a learned similarity score between two

strings commonly used in the NLP community. We normalize

d(·, ·) between 0 and 1 for all possible (ls, lt) pairs in

our image-language dataset, where 1 indicates the highest

similarity between any two strings in the dataset. The output

of fcnn is unit normalized before taking the dot product. When

comparing both variants (see Sec. VI) we would like to assess

if the additional degrees of freedom from the looser distance

supervision are beneficial later on for policy training.

C. Multitask, Multidomain Behavioral Cloning

Our second step in Lang4Sim2Real involves learning a

multi-domain, multi-task, language-conditioned BC policy

(see Fig. 2(ii)). By leveraging our learned domain-invariant

representation for robotic control, this policy should be able

to perform well in real-world task with only a few demonstra-

tions, thanks to the additional information it can extract from

simulation.

During this phase of policy learning, we freeze all but the

last layer to preserve the semantic scene information encoded

in the learned, domain-invariant representation, fcnn, while

enabling the network to adapt to the new downstream task

of low-level control. We also insert trainable FiLM layer

blocks [39] as adapter modules in fcnn to process the language

instruction embeddings between the frozen convolution layers.

Finally, we include a few fully-connected layers as a policy

head to process the image feature, fcnn(It), and proprioceptive

state, st, and train the resulting policy π with BC loss to

predict the mean and standard deviation of a multivariate

Gaussian action distribution, as described below.

Let our training dataset DBC = Ds ∪Dt
target be a set

of demonstrations τd, for domain d ∈ {source, target}. As

explained in Sec. III, each demonstration is a sequence of

tuples xt =
(

Idt , s
d
t , a

d
t , ltask

)

containing the image observa-

tion, proprioceptive state, language instruction for the task,

and action at timestep t. We train with the following standard

BC negative log probability loss [40]:

Lπ(DBC) =
1

B

∑

xt∼τd

τd
∼DBC

− log π
(

adt
∣

∣fcnn(I
d
t ), s

d
t , ltask

)

(3)

where B denotes the batch size.

The policy is trained on k+1 tasks: k from Ds (thousands of

trajectories per task) and 1 from Dt
target (≤ 100 trajectories,

see Sec. V). In each batch, we sample m tasks uniformly

at random from the k + 1 tasks, and then query DBC for a

fixed number of transitions from trajectories for each of the

m selected tasks.

We hypothesize that cross-domain image-language pretrain-

ing (Sec. IV-B) improves policy learning because it helps

ensure that image observations of different domains depicting

semantically similar scenes map into similar regions of the

learned embedding space. This accelerates learning not only on

Ds data but also helps alleviate data scarcity in Dt
target because

the pretrained image backbone encodes Dt
target images into an

in-distribution region of the learned image embedding space,

alleviating common issues with visual distribution shift and

enabling our method to leverage simulation data to compensate

for the lack of real-world action-labeled data, improving

sim2real transfer.

V. EXPERIMENTAL SETUP

We evaluate Lang4Sim2Real in two settings: a sim2sim

setting where we test the transfer abilities between two simu-

lated domains with visual and physical differences, and the

sim2real setting, where the few shot IL is defined in

the real world and we use simulation to address the data

scarcity. Sim2sim serves as a platform to evaluate in depth

the behavior of Lang4Sim2Real with a fully controlled domain

gap, while sim2real is our setting of interest for this work.

We will use three task suites that we explain below. See

Figure 5 in the Appendix for detailed frame rollouts of each

task. In a slight overload of notation from Sec. III, here we

use Ds and Dt to denote the source and target domains,

respectively.

A. Sim2Sim and Sim2Real Environment Differences

In sim2sim, Ds and Dt are both sim environments with

large differences in camera point-of-view (third person vs.

first person), joint friction, and damping. In the sim2real

setting, we employ a setup with a wide sim2real gap that

we aim to bridge using language that includes differences in

control frequency, task goals, visual observation appearance,

objects, and initial positions. More details between the two

environments in sim2sim and sim2real can be found in

Appendix IX-F.

B. Evaluation Metrics

For all sim2sim and sim2real experiments, we measure

task success rate. In sim2real, this is calculated through ten

evaluation trials for each of two seeds per task, for a total of

20 trials per table entry. In each set of ten trials, we place the

object in the same ten initial positions and orientations, evenly

distributed through the range of valid initial object positions.

In sim2sim, we also run two seeds per setting and take a

success rate averaged over 720 trials between the two seeds

in the final few hundred epochs of training.



Fig. 3. The columns depict the three task suites while each row represents an
image domain. Rows from Top to Bottom: Simulation Ds, sim2sim Dt

target,

sim2real Dt
target. Columns from Left to Right: Stack Object, Multi-step

Pick and Place, and Wrap Wire tasks. While similar enough to transfer prior
knowledge between them, our Ds and Dt task versions have a considerable
gap (Sec. V-A) that we are able to bridge using language as regularization
for the image representations.

C. Data

1) Environments: For each of our tasks, we design simu-

lation environments on top of Robosuite [64] in Mujoco [55].

For the real environment, we use Operational Space Con-

trol [26] to control the position of the end-effector of the robot

in Cartesian space. In both simulation and real, we work with

a 7-DOF Franka Emika Panda arm and use a common action

space consisting of the continuous xyz delta displacement

and a continuous gripper closure dimension (normalized from

[−1, 0]). The robot proprioception space is 22-dimensional,

consisting of the robot’s xyz end-effector position, gripper

state, and sine and cosine transformations of the 7 joint angles.

The image observation space is 128× 128 RGB images.

2) Overview of Tasks: For each task suite, we collect data

from simulated domain Ds and real target domain Dt (for

sim2real) or sim target domain Dt (for sim2sim). All

demonstrations in sim and real are collected with a scripted

policy (see Appendix for further details). Sim trajectories

range from 200-320 timesteps long, operated at 50Hz, while

real trajectories run at 2Hz and range from 18-45 timesteps.

Our three task suites allow us to test the effectiveness of

Lang4Sim2Real for sim2real in a wide variety of control

problems ranging from simple stacking in task suite 1, to

multi-step long-horizon pick and place in task suite 2, to

deformable, hard-to-simulate objects in task suite 3.

D. Task Suite 1: Stack Object

In our first suite of tasks, the robot must move an object to

a target. In the simulated domain Ds, the target is on top of a

wooden coaster, and there are four objects: milk carton, soda

can, bread, and cereal box, which correspond to the four tasks.

Both the object and coaster positions are randomized over the

entire workspace. We collect and train on 400 demonstrations

per task (1600 total) as our Ds simulation data.

1) sim2sim: For sim2sim experiments on this task

suite, we define a new Dt simulated environment with differ-

ences from Ds as enumerated in Sec. V-A. Policies are trained

with the 1600 Ds demonstrations and 100 target task Dt
target

demonstrations.

2) sim2real: For sim2real, Ds remains the same as

sim2sim. Dt is a real world environment in which the object

is randomly placed on the left mat and the target task Dt
target

is to move the object onto the right mat and open the gripper

by the end of 20 timesteps.

E. Task Suite 2: Multi-step Pick and Place

Our second suite of tasks is longer-horizon. In simulation,

the robot must first put an object in the pot, then grasp the pot

by its handle and move it onto the stove. We categorize this as

a 2-step pick-and-place task. We use the same four object-task

mappings from Sec. V-D. The object, pot, and stove locations

are all randomized within a quadrant of the workspace. Since

this task is longer horizon, we train on more dataÐ1, 400
trajectories per task in Ds.

1) sim2sim: Similar to the stacking task, in the

sim2sim setting, we define a new Dt environment with

differences from Ds enumerated in Sec. V-A and evaluate over

the four tasks when given 100 target-task Dt
target demonstra-

tions.

2) sim2real: In the sim2real setup, Ds remains the

same, while Dt is the real task of putting a carrot into a bowl,

then putting the bowl onto a plate (see Fig. 3), and ending

with the gripper open after 50 timesteps. In addition to success

rate (Section V-B), we measure average number of consecutive

subtasks completed from the beginning, allowing partial credit

if the robot only succeeds in the first step of placing the carrot

in the bowl. However, if the robot does not finish the first step

but finishes the second step, we do not count this as having

completed any subtasks.

F. Task Suite 3: Wrap Wire

Our final suite of tasks involves wrapping a long deformable

wire around a fixed object. In simulation Ds, we approximate a

wire with a chain of spheres connected with free joints, and the

task is to wrap the chain around a fixed cylinder (see Fig. 3).

A trajectory is successful if the first link of the chain has

traveled ≥ 5π
3

radians (5/6ths of a full revolution) around the

cylinder. Our simulation data consists of two tasks: wrapping

counterclockwise and clockwise. The initial position of the

end of the chain is randomized over a region to the left of the

cylinder. Ds contains 400 trajectories per task.



TABLE I
SIM2REAL : PERFORMANCE BY NUMBER OF REAL WORLD TRAJECTORIES

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt) ± ✓ 20 30 45 0 30 35 0.45 1.05 1.05 20 15 45

No Pretrain (Ds +Dt) ✓ ✓ 35 20 55 45 25 55 1.15 1.0 1.4 25 20 20

MMD ✓ ✓ 25 35 80 20 10 35 0.8 0.9 1.1 5 10 20
Domain Random. ✓ ✓ 40 60 40 10 10 25 0.7 0.6 0.7 0 0 0

ADR+RNA ✓ ✓ 35 30 35 15 25 40 0.85 0.8 1.3 0 10 0

Lang Reg. (ours) ✓ ✓ 40 75 80 60 80 90 1.45 1.8 1.9 45 40 45
Lang Dist. (ours) ✓ ✓ 60 45 80 55 70 75 1.35 1.65 1.6 30 25 75

Stage Classif. ✓ ✓ 40 60 60 50 60 50 1.45 1.55 1.5 30 40 50

CLIP (frozen) ✓ ✓ 25 5 15 10 15 40 0.3 0.45 1.0 35 35 30
R3M (frozen) ✓ ✓ 30 45 65 15 60 55 0.7 1.4 1.5 5 25 25

TABLE II
SIM2SIM : SUCCESS RATE BY TASK (%)

Pretraining Stack Object Multi-step Pick and Place Wrap Wire

1 2 3 4 avg 1 2 3 4 avg 1

None (Dt data only) 15.2± 6.5 18.9± 6.7 31.9± 8.5 25.4± 9.2 22.9 20.8± 7.5 17.7± 4.4 16.3± 5.0 17.3± 8.1 18.0 69.2± 8.3
None (Ds +Dt data) 22.5± 9.2 32.3± 9.8 37.9± 8.8 29.2± 8.3 30.5 28.4± 10.9 31.3± 10.7 13.9± 5.5 27.8± 10.2 25.4 82.1± 6.8

Lang Reg. (ours) 20.6± 8.1 57.3 ± 8.1 63.1± 7.7 32.5 ± 6.3 43.4 54.0± 7.2 62.5 ± 12.1 76.0± 8.7 58.5± 9.3 62.8 90.7± 5.4
Lang Dist. (ours) 23.8± 5.4 57.3 ± 10.6 66.9± 5.6 27.9± 10.8 44.0 65.5 ± 13.1 56.7± 9.9 78.6 ± 5.1 54.4± 11.5 63.8 90.0± 5.0

Stage Classif. 30.4 ± 10.4 52.7± 6.0 67.5 ± 8.3 27.9± 7.1 44.6 63.1± 9.9 62.1± 9.3 55.4± 8.5 67.7 ± 9.7 62.1 91.4 ± 3.6

CLIP (frozen) 1.7± 0.4 1.9± 1.9 3.8± 2.5 4.0± 2.7 2.9 36.1± 14.3 39.9± 8.9 28.8± 8.9 48.4± 11.9 38.3 75.6± 7.7
R3M (frozen) 4.5± 3.3 9.0± 4.8 19.8± 6.9 15.4± 5.4 12.2 49.4± 11.6 36.5± 11.9 47.0± 14.1 56.0± 10.0 47.2 90.2± 4.4

1) sim2sim: For our Dt sim environment, we again apply

the changes specified in Sec. V-A. We additionally swapped

the spheres for capsules and changed the color and texture

of the table, robot arm, and objects. This task has a wider

sim2sim gap from additional visual and dynamics changes.
2) sim2real: In our sim2real experiments, the target

task Dt
target is to first grasp the plug, then wrap the cord

around the base of a blender in the middle of the workspace,

and finally put the plug down, similar to what one might do

before putting the appliance away. Like the sim environment,

we define success if the following two conditions are met:

(1) the plug travels ≥ 5π
3

radians around the blender, and (2)

the plug is placed and the gripper is open at the end of 50

timesteps.

G. Baselines

To evaluate the effectiveness of Lang4Sim2Real, we con-

sider two sets of baselines: non-pretrained baselines where

the CNN is initialized from scratch, and baselines with pre-

trained visual encoders. For the non-pretrained baselines, we

examine training with only Dt data, and training with both Ds

and Dt data. This enables us to understand the benefits of our

proposed training procedure. In sim2real, we also compare

to three popular prior sim2real approaches:

• MMD [56], which aims to minimize the distance between

the mean embedding of all sim images and all real images

of a batch to prevent the real images from being out-of-

distribution relative to the sim images.

• Domain randomization [54] of the colors, textures, and

physics of the Ds environment.

• Automatic Domain Randomization with Random Net-

work Adversary (ADR+RNA) [37], which keeps increas-

ing/decreasing domain randomization bounds depending

on the agent’s performance, and also introduces a ran-

domly initialized network for each trajectory to inject

correlated noise into the agent’s action conditioned on

the state input.

For the pretrained baselines, we consider two strong founda-

tion models as the visual backbone, CLIP [41] and R3M [36],

commonly used visual representations for robotics that are,

like our approach, also shaped by language descriptions of

images/videos.

For each task in sim2real, we train and evaluate with 25,

50, or 100 Dt
target demonstrations.

H. Our Method Variants and Ablations

In our evaluations, we compare language regression (Sec-

tion IV-B1) and language distance (Section IV-B2), the two

pretraining variants of our approach. We also ablate away the

effects of language on our pretraining approach in a method

called ªstage classification,º where the pretraining task is to



predict the stage index of an image (see Section IV-A) instead

the language embedding or embedding distance.

VI. EXPERIMENTAL RESULTS

Our results for sim2sim experiments are shown in Table II,

and the results for sim2real are shown in Table I. In both

tables, the methods (rows) are grouped into non-pretrained

baselines, our method variants and ablations, and pretrained

SOTA baselines. In sim2real, we additionally include a

group of three rows to show the performance of prior sim2real

approaches.

A. Experimental Questions and Analysis

Across the three task suites in both sim2real and

sim2sim, our method generally achieves the highest success

rates. To further analyze the effectiveness of our method, we

pose and investigate the following experimental questions.

What is the impact of our pretraining approach? Our

method nearly doubles the success rate of both non-pretrained

baselines in most task suites in sim2real and sim2sim.

This indicates that Lang4Sim2Real can bridge a wide sim2real

gap. One factor that may allow our method to perform well

is that image observations with similar language descriptions

may also have similar action labels. In Appendix IX-C, we

further investigate this hypothesis with an analysis of the

action distributions between images, split by their language

descriptions.

Between the non-pretrained baselines, training on Ds sim

demonstrations in sim2real provides little benefit on stack

object, increases average performance by ≈ 20% on multi-

step pick-and-place, but decreases average performance by

≈ 10% on wrap wire. However, in sim2sim, it provides a 10-

15% increase on most tasks. This suggests that the sim2sim

gap is small enough to benefit from using Ds even without

pretraining, but that the sim2real gap is large enough for

pretraining to be needed to leverage Ds.

How does our method compare to prior sim2real base-

lines? Our method outperforms all of the prior sim2real base-

lines we tested against (second row-group in Table I), which

collectively do relatively poorly in most settings, highlighting

the difficulty of the sim2real problem in our setup.

MMD averages the best performance across the three

sim2real baselines and even achieves competitive performance

on the easiest task of stacking an object. However, on the two

other more difficult tasks, its performance does not scale well

with more trajectories, which we suspect arises from stability

issues in trying to push together the mean of all sim and real

image embeddings in each batch. Domain randomization only

exacerbates the sim2real gap since enabling all randomiza-

tions does not move the distribution of simulation trajectories

closer to the real world trajectories due to the large visual

dissimilarity between our simulation and real environments.

ADR+RNA, which only randomizes the environment as much

as possible without severely hurting the scripted policy per-

formance, averages slightly better performance than domain

randomization, perhaps because the data is less diverse and

easier to fit a policy to than the data from full-scale domain

randomization.

How does our method compare to prior vision-language

pretrained representations? In sim2real, our method out-

performs both pretrained baselines across the board, includ-

ing R3M, which is the strongest baseline on stack object

and multi-step pick-and-place. When trained on increasing

amounts of real-world data, both R3M and CLIP tend to

plateauÐCLIP performs no better than 40% on any task, R3M

has an apparent ceiling of 65%, while our method achieves

up to 90%. This suggests that CLIP and R3M do not scale as

well as our method when provided more data, despite being

pretrained on internet-scale video and image data while our

method was pretrained on images from just a few hundred

sim and real trajectories.

In sim2sim, our method also outperforms R3M and CLIP

across the board. Averaging the performance on stacking and

multi-step pick-and-place, our method outperforms R3M by

15-30% and CLIP by 25-40%. On the wrap wire task, our

method and R3M perform comparably, probably because the

task is quite a bit easier for all methods in simulation.

What is the effect of language in learning shared represen-

tations? We ablate the effect of language on our pretraining as

the ªstage classificationº row in Tables I and II, as mentioned

in Section V-H. In sim2sim, we see similar performance

in language regression pretraining and stage classification

pretraining. However, in sim2real, where the domain gap is

larger, we see language providing a measurable benefit in all

task suites, especially in multi-step pick-and-place, perhaps

because pretraining with language leverages similarities in

language descriptions between the first and second steps of

the pick-and-place task.

How do our two image-language pretraining variants

compare? We compare our two pretraining variants introduced

in Sections IV-B1 and IV-B2, where language regression

directly predicts language embeddings while language dis-

tance is encouraged to maintain pairwise distances based on

BLEURT similarity scores. Again in sim2sim, there is no

clear winner between the two, but in sim2real, language

regression performs better on average. This suggests that when

performing language pretraining for visual representations, the

more constraining regression loss outperforms the less con-

straining distance-matching loss on sim2real performance.

B. Additional Experimental Questions and Results

Finally, we examine a few questions to better understand

the performance of our method under slight changes to the

data and problem setup.

What is the effect of pretraining on image-language pairs

where the language granularity is reduced? We evaluate

the impact of reduced language granularity on sim2real

performance. See Appendix IX-H for results.

How does our method perform if we cannot pretrain

directly on image-language pairs from the target task?

There are scenarios in which we might not have access

to the real-world target task Dt
target during the pretraining



phase, as pretraining is often done without knowledge of the

downstream task. To investigate this, we introduce a real-world

prior task Dt
prior that we pretrain on, and use real-world target

task data Dt
target only during imitation learning. The advantage

of this problem setup is that we can reuse the same fcnn for

multiple downstream real-world target tasks as long as they

are sufficiently similar to the real-world prior task. In this

modified problem setup, our method still mostly outperforms

all baselines, which demonstrates that our method does not

overfit to the real-world task it sees during pretraining. See

Appendix IX-I for full results.

VII. CONCLUSION

Vision-based policies struggle with distributional shift dur-

ing sim2real transfer. To address this challenge, we introduced

a low-data-regime visual pretraining approach that leverages

language to bridge the sim2real visual gap with only 25-100

real-world trajectories with automatically generated language

labels. We evaluate the effectiveness of our approach on

multi-step long-horizon tasks and hard-to-simulate deformable

objects. In the few-shot setting, our approach outperforms

state-of-the-art vision-language foundation models and prior

sim2real approaches across 3 task suites in both sim2sim

and sim2real.

VIII. LIMITATIONS AND FUTURE WORK

One of the main limitations of our work is that the learned

representation may have limited generalizability compared to

existing pretraining methods that leverage internet-scale data

to enable a large degree of generalization. Our approach

targets a specific distribution and domain of real-world tasks

and operates in the low-data regime for both pretraining and

policy learning, so it does not yield general-purpose visual

representations that can be applied to a wide distribution of

target tasks.

Our method also assumes that the template language de-

scriptions used by the automatic labelling process describe

similar aspects of images across the two domains, and may

perform worse if the language between sim and real de-

scribed images at extremely different levels of granularity.

Furthermore, our approach relies on segmenting all trajectories

of a task into stages of a certain granularity so that the

associated template language is diverse enough to prevent the

learned visual representation from mapping the entire input

image distribution to a collapsed point. On contact-rich tasks

involving continuous motions or complex object deformations,

it may be harder to segment a trajectory and label these

segments with language.

Another avenue for future work involves exploring sim2real

by combining existing pretraining approaches such as time-

contrastive learning and masked image modeling in conjunc-

tion with the language-based pretraining we propose, as adding

temporal or masked prediction terms to the objective may

enable more fine-grained representations that complement the

coarseness of language.
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APPENDIX

A. Scripted Policy for Real-World Data Collection

Algorithm 1 Scripted Wrap Wire

1: centerPos ← blender center position
2: placeAttempted ← False
3: targetDistToCenter ← 0.15
4: numTimesteps ← 45
5: direction ← true if clockwise, false if counterclockwise
6: for t in [0, numTimesteps) do

7: wirePos ← position of the graspable part of the wire
8: eePos ← end effector position
9: pickPosDist ← ∥eePos− wirePos∥2

10: done ← is wrapped > 11π
6

from the start to end of wire around
centerPos in direction

11: if placeAttempted then

12: action ← 0
13: else if object not grasped AND pickPosDist > distThresh then

14: // Move toward wire
15: action ← wirePos − eePos
16: else if object not grasped then

17: // gripper is very close to wire
18: action ← pickPos − eePos
19: close gripper // Object is in gripper
20: else if wire not lifted then

21: action ← [0, 0, 1] // Move up
22: else if not done then

23: relPos ← eePos− centerPos
24: distToCenter ← ∥relPos∥2
25: normRelPos ← (relPos/distToCenter) ∗ targetDistToCenter
26: actionMaintainDistance ← relPos ∗ (targetDistToCenter −

distToCenter) // move toward/away from center
27: actionMoveTangent ← [−normRelPos[1], normRelPos[0], 0.0]

// Move tangent to the blender
28: if direction then

29: actionMoveTangent ← actionMoveTangent ∗ −1
30: end if

31: action ← actionMaintainDistance + actionMoveTangent
32: else

33: action ← open gripper // Drop wire
34: placeAttempted ← True
35: end if

36: end for

Algorithm 2 Scripted Pick and Place Function

function PICKPLACE(pickPos, dropPos, distThresh, placeAttempted)
eePos ← end effector position
dropPosDist ← ∥eePos− dropPos∥2
pickPosDist ← ∥eePos− pickPos∥2
if placeAttempted then

action ← 0
else if object not grasped AND pickPosDist > distThresh then

// Move toward target object
action ← pickPos − eePos

else if object not grasped then

// gripper is very close to object
action← (pickPos − eePos, close gripper) // Object is in gripper

else if object not lifted then

// Move gripper upward to avoid hitting other objects/containers
action ← [0, 0, 1]

else if dropPosDist > distThresh then

// Move toward target container
action ← dropPos − eePos

else

action ← open gripper // Object falls into container
placeAttempted ← True

end if

noise ∼ N (0, 0.1)
action ← action + noise

return action, placeAttempted
end function



Algorithm 3 Stack Object

1: pickPos ← target object position
2: dropPos ← target container position
3: numTimesteps ← 18
4: distThresh ← 0.02
5: placeAttempted ← False
6: for t in [0, numTimesteps) do

7: action, placeAttempted ← PICKPLACE(pickPos, dropPos, dist-
Thresh, placeAttempted)

8: s′ ← env.step(action)
9: end for

Algorithm 4 Scripted 2-step Pick and Place

1: pickPos ← [object position, first container position]
2: dropPos ← [first container position, second container position]
3: numTimesteps ← 45
4: distThresh ← 0.02
5: placeAttempted ← [False, False]
6: si ← 0 // step index (starts at 0, and increments to 1 when first

pick-place step is complete)
7: stepCompleted ← [False, False]
8: for t in [0, numTimesteps) do

9: action, placeAttempted[si] ← PICKPLACE(pickPos[si],
dropPos[si], distThresh, placeAttempted[si])

10: if stepIsSuccessful(si) AND not stepsCompleted[si] then

11: stepsCompleted[si] ← True
12: si ← 1
13: end if

14: s′ ← env.step(action)
15: end for

B. Detailed Policy Network Architecture & Hyperparameters

For the policy backbone, we use a ResNet-18 architecture

but made changes to the strides and number of channels

to adapt the network to our 128 × 128 × 3 image size.

Hyperparameters are shown in Table V. A detailed layer-by-

layer architecture figure of our policy is shown in Figure 6.

During policy training, only the last CNN layer, FiLM blocks,

and policy head (FC layers) are finetuned, while all other

layers are kept frozen.

C. Does Language Similarity Imply Action Distribution Sim-

ilarity?

We hypothesize that one of the ways language is an effective

bridge for sim2real transfer is that the sim and real action

distributions of the demonstrations are similar when the image

observations have similar language descriptions. Figure 4

shows the action distribution similarities between sim and real

when the language descriptions are similar (top row), and

when the language descriptions are different (bottom row).

Each column represents a component of the action distribu-

tion. We plot three components: z-axis actions, xy-magnitude

(which is the ℓ2 norm of the (x, y) action dimensions), and

the gripper dimension. We observe that action distributions are

indeed more similar for images described by similar language

than for images described by different language.

D. Task and Data Details

Figure 5 provides film strips of trajectories from the source

domain data Ds, target domain prior task data Dt
prior, and

target domain target task data Dt
target, for each of the three

task suites.

E. Training Hyperparameters

Table VI shows our BC training hyperparameters.

In each training iteration, we sample 4 random tasks from

our training buffer and get 57 samples per task, for a total

batch size of 228.

TABLE VI
IMITATION LEARNING HYPERPARAMETERS.

Attribute Value

Number of Tasks per Batch 4
Batch Size per Task 57

Learning Rate 3× 10−4

F. Sim2Sim and Sim2Real Differences

In our sim2sim experiments, Ds and Dt are both sim

environments with the following differences:

1) Camera point-of-view: Ds image observations are third

person (looking toward the robot), and Dt image obser-

vations are first person (over the shoulder), a large change

of viewing angle.

2) Friction and Damping: Joint friction and damping co-

efficients are 5× and 50× higher in Dt than Ds, which

significantly changes the dynamics.

In our sim2real experiments, Ds in sim and Dt in real

have the following differences:

1) Control frequency: The simulated Ds policy runs at

50Hz while the real world Dt policy runs at 2Hz.

2) Objects: The objects on the scene in each task differ

between simulation and real data, except the robot itself.

3) Visual Observation: Backgrounds and camera angles are

markedly different between the two domains.

4) Initial positions: The initial object and robot positions

are different across sim and real.

G. Labeling Image Observations with Language

1) Language labeling during Scripted Policy: We auto-

matically label image observations with language descriptions

during the scripted policy data collection process. Each image

is assigned a stage number based on the if-case of the

scripted policy, which corresponds to a semantic positional

arrangement between the gripper and the relevant objects on

the scene. Stage numbers map 1-to-1 to the template language

strings shown in Table III.

For example, for the pick-and-place/stack object task, we

define 7 stages and 7 corresponding language string templates,

where the first stage is when the gripper moves toward a point

above the object, the second stage is when the gripper moves

downward toward the object, and so on. For the 2-step pick-

and-place task, we use 14 stagesÐ2 consecutive lists of the 7

individual pick place string templates, where the object and

container variables of each template are filled in with the

proper names.

Though our approach to labeling image observations with

language was done during demonstration collection, we em-

phasize that images can be automatically labeled with lan-

guage in hindsight after demonstrations are collected. For



TABLE III
LANGUAGE DESCRIPTION TEMPLATES OF IMAGE OBSERVATIONS

Task Template String

Pick and Place gripper open, reaching for {objName}, out of {contName}
gripper open, moving down over {objName}, out of {contName}
gripper closing, with {objName}, out of {contName}
gripper closed, moving up with {objName}, out of {contName}
gripper closed, moving sideways with {objName}, out of {contName}
gripper closed, with {objName}, above {contName}
gripper open, dropped {objName}, in {contName}

Wrap Wire gripper open, reaching for {graspObjName}
gripper open, moving down over {graspObjName}
gripper closing around {graspObjName}
gripper closed, moving up with {graspObjName}
{direction} left
{direction} front
{direction} right
{direction} back
gripper open, above {graspObjName} with {flexWraparoundObjName} fully wrapped
gripper open, above {graspObjName} with {flexWraparoundObjName} fully unwrapped

Variable Possible Values

objName milk, bread, can, cereal, pot, carrot, bowl, bridge
contName coaster, pot, stove, bowl, plate

flexWraparoundObjName beads, cord, ethernet cable
graspObjName last bead, white plug, bridge
direction clockwise, counterclockwise

Fig. 4. These plots show the action distribution of demonstrations across both sim and real, broken down by each component of the action: xy-action
magnitude, z-axis actions, and gripper actions. The first row shows simulation (green) and real world (blue) action distributions for images described by
similar language. The second row shows the same distribution of simulation actions (green) as in the first row, but compared with real-world action distributions
from images labeled with very different language from the sim actions (blue). Notably, the action distributions are generally similar for images with similar
language (first row), and different for images with different language (second row). This suggests that pretraining our CNN on language embedding prediction
benefits downstream policy learning because it allows the domain-invariant learned representations to tap into similar action distributions for completing a
task.
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Fig. 5. This table builds on Figure 3 and depicts the 3 datasets for each task with filmstrips. The rows show the three task suites while each column
represents one of the three datasets we use during pretraining or policy learning. Our main results in Tables I and II use Ds ∪Dt

target for pretraining and

policy learning, whereas our results in Table IV use Ds ∪Dt
prior for pretraining and Ds ∪Dt

target for policy learning. This table shows the visual differences

between sim and real, as well as the task in Dt
prior versus Dt

target.

instance, one can run an object detector on the images to

estimate the position of the gripper in relation to the scene

objects. This information can be used to determine what stage

in a pick-and-place trajectory an image observation falls into.

2) Alternative Approach: Language labeling with off-the-

shelf VLMs: To relax the requirement that our automated

language labeling process must occur synchronously with a

scripted policy collecting demonstrations, we implemented an

alternative approach that is decoupled from the demonstra-

tion collection process. First, we use an off-the-shelf open-

vocabulary object detector model, GroundingDINO [28], to

output bounding boxes for the relevant objects on the scene.

No finetuning of GroundingDINO is required. Second, we

train a CNN-based gripper state predictor to predict the gripper

position (x, y, z) as well as whether the gripper is opened or

closed in a given image. This network is trained on previously

collected (image, gripper position, gripper opened/closed) data

from 100 trajectories, and takes one minute to train on a single

A5000 GPU. Using these two models, we can get the gripper

state and position relative to the objects, enabling us to predict

a stage number that corresponds fairly closely with the actual

stage number as outputted by our scripted policy. Finally, we

verified that training our method on VLM-derived language

annotations does not degrade performance. We performed

image-language pretraining with language labels from either

labeling method and tested on 2-step pick-and-place with 100

real-world trajectories. Both methods achieve 90% success rate

averaged over 2 seeds.

H. Impact of Language Granularity on Performance

To examine the impact of decreasing language granularity

on sim2real performance, we segment the trajectories into

fewer and fewer stages, until the extreme case where the

entire trajectory has only a single stage, which means that

all images across all trajectories of a task have the same exact

language description embedding. The language descriptions

we use for each stage, for varying numbers of stages per task,

are displayed in Tables VIII (2-step pick-and-place) and IX

(wire wrap).

Results are shown in Table VII. The trend is noisy, but

in general, decreasing language granularity hurts performance

slightly. Still, our method is robust to lower granularity, which

matches our hypothesis that our pretraining approach provides

significant performance gains simply by pushing sim and



TABLE IV
SIM2REAL : PERFORMANCE IN Ds ∪Dt

target ∪D
t
prior SETTING BY NUMBER OF TARGET TASK DEMONSTRATIONS

Method Action-labeled Data Stack Object Multi-step Pick and Place Wrap Wire

Sim Real Success Rate (%) Success Rate (%) Subtasks Completed Success Rate (%)

Ds Dt
target Dt

prior 25 50 100 25 50 100 25 50 100 25 50 100

No Pretrain (Dt data only) ± ✓ ✓ 45 30 65 40 20 30 1.15 0.9 1.15 25 45 35

No Pretrain (Ds +Dt data) ✓ ✓ ✓ 20 55 25 45 30 50 1.25 1.2 1.4 15 30 30

MMD ✓ ✓ ✓ 35 30 40 70 45 35 1.65 1.25 1.2 15 0 20
Domain Random. ✓ ✓ ✓ 25 45 60 15 15 20 0.9 0.55 0.85 0 5 5

ADR+RNA ✓ ✓ ✓ 15 10 20 50 5 50 1.35 0.7 1.25 15 10 20

Lang Reg. (ours) ✓ ✓ ± 50 55 85 55 80 95 1.2 1.8 1.95 25 50 55
Lang Dist. (ours) ✓ ✓ ± 30 65 70 25 50 65 0.95 1.4 1.5 15 25 60

Stage Classif. ✓ ✓ ± 70 60 70 20 60 85 0.9 1.5 1.8 15 20 70

CLIP (frozen) ✓ ✓ ✓ 30 25 35 25 45 35 0.55 0.95 0.95 35 40 45
R3M (frozen) ✓ ✓ ✓ 80 70 80 75 75 85 1.6 1.55 1.75 30 25 20

TABLE V
POLICY π HYPERPARAMETERS.

Attribute Value

Input Height 128
Input Width 128
Input Channels 3
Number of Kernels [16, 32, 64, 128]
Kernel Sizes [7, 3, 3, 3, 3]
Conv Strides [2, 2, 1, 1, 1]
Maxpool Stride 2
Fully Connected Layers [1024, 512, 256]
Hidden Activations ReLU
FiLM input size 384
FiLM hidden layers 0
Spatial Softmax Temperature 1.0

Learning Rate 3× 10−4

Policy Action Distribution Multivariate Isotropic Gaussian N (µ, σ)
Policy Outputs (µ, σ)
Image Augmentation Random Crops
Image Augmentation Padding 4

real images into a similar embedding distribution even if the

language granularity is extremely coarse.

I. sim2real results with no pretraining on Dt
target

In Tables I and II, we presented results in a setting where

we both pretrained and did policy learning on two datasets,

Ds and Dt
target. Sometimes it is unrealistic to assume that

during pretraining, we have access to the downstream target

task we are ultimately interested in. In such scenarios, it may

be more realistic to assume we instead have real-world data

for a prior task, Dt
prior. Thus, in this setting, we experiment

with pretraining on Ds ∪Dt
prior and training our policy on

Ds ∪Dt
target.

Our method uses extra language labels during pretraining

that the baselines do not have access to. While these language

labels can be acquired at scale, to compensate for this data

advantage, we decided to give all baselines an augmented

Dt
prior dataset that includes action-labeled demonstrations, in

addition to the target task, Dt
target. Note that our method is not

given Dt
prior action-labeled data: it is trained only on Dt

prior

images with language labels during image-language pretrain-

ing (Sec. IV-B) but not during BC policy learning. Therefore,

the baselines in a sense serve as upper bounds as they are

given
∣

∣Dt
prior

∣

∣ = 50 additional action-labeled demonstrations.

In other words, during policy learning, the baselines train

on action-labeled demonstrations from Ds ∪Dt
prior ∪Dt

target

while ours are only trained on Ds ∪Dt
target. Results are shown

in Table IV.

How different are Dt
prior and Dt

target? In sim2sim and

sim2real for stack object and 2-step pick-and-place, the

robot interacts with different objects in the two real-world

tasks. Instead of a carrot as in Dt
target, in Dt

prior, the robot

interacts with a paper box for the stack object task suite and

a rigid toy wooden block for 2-step pick-and-place.

In sim2sim on wire wrap, Dt
prior contains data of the

beads being wrapped clockwise, instead of counterclockwise

in Dt
target. In sim2real for wire wrap, the plug, cord, and

blender in Dt
target are replaced by a wooden block, ethernet

cable, and spool, respectively, in Dt
prior data. The differences

between Dt
prior and Dt

target can be visually examined in

Figure 5.

What trends are different between Table IV (with Dt
prior)

and Table I (without Dt
prior)? Most of the trends are similar.

Re-examining our main experimental questions, we see that

our method still nearly doubles the success rate of both

non-pretrained baselines, outperforms all three prior sim2real

baselines, and that using language regression is important to

achieve the most gains from pretraining (language regression

outperforms stage classification and language distance, on

average). However, in this new problem setting in sim2real,

R3M outperforms our method in the lowest data regime

with 25 target task demonstrations, perhaps because of the

additional 50 Dt
prior demonstrations that our method does not

train on. However, on 50 and 100 trajectories for the longer-

horizon multi-step pick and place task, our method achieves

higher sim2real performance than the best of either pretrained

baseline.



TABLE VII
SIM2REAL : PERFORMANCE WITH VARYING LANGUAGE GRANULARITY

Method Multi-step Pick and Place Wrap Wire
Success Rate (%) Subtasks Completed Success Rate (%)

25 50 100 25 50 100 25 50 100

No Pretrain (Dt) 40 20 30 1.15 0.9 1.15 25 45 35

No Pretrain (Ds +Dt) 45 30 50 1.25 1.2 1.4 15 30 30

all-stages 55 80 95 1.2 1.8 1.95 25 50 55

half-stages 45 60 65 1.15 1.45 1.55 5 35 25
2-stages 35 45 75 1.05 1.3 1.6 20 50 40
1-stage 55 65 80 1.3 1.55 1.75 15 15 45

1 stage per domain 10 50 50 0.65 1.3 1.25 15 15 20

TABLE VIII
SIM2REAL : LANGUAGE ANNOTATIONS AND LANGUAGE GRANULARITY ON 2-STEP REAL-WORLD PICK-AND-PLACE

All-stages Half-stages 2-stage 1-stage

gripper open, reaching for carrot,
out of bowl

gripper open, reaching for carrot,
out of bowl

picking carrot and putting in bowl

random language embedding

gripper open, moving down over
carrot, out of bowl

gripper closing, with carrot, out of
bowl

gripper closing, with carrot, out of
bowl

gripper closed, moving up with car-
rot, out of bowl

gripper closed, moving up with
carrot

gripper closed, moving sideways
with carrot, out of bowl

gripper closed, with carrot, above
bowl

gripper open, dropped carrot, in
bowl

gripper open, dropped carrot, in
bowl

gripper open, reaching for bowl, out
of plate

gripper open, reaching for bowl,
out of plate

picking bowl and putting in plate
gripper open, moving down over
bowl, out of plate

gripper closing, with bowl, out of
bowl

gripper closing, with bowl, out of
plate

gripper closed, moving up with
bowl, out of plate

gripper closed, moving up with
bowl

gripper closed, moving sideways
with carrot, out of bowl

gripper closed, with bowl, above
plate

gripper open, dropped bowl, in plate gripper open, dropped bowl, in plate

TABLE IX
SIM2REAL : LANGUAGE ANNOTATIONS AND LANGUAGE GRANULARITY ON WIRE WRAP

All-stages half-stages 2-stage 1-stage

gripper open, reaching for plug
gripper open, reaching for plug

picking and wrapping beads
around cylinder

random language embedding

gripper open, moving down over
plug

gripper closing around plug
gripper closing and lifting plug

gripper closed, moving up with plug

counter-clockwise left

counter-clockwise
counter-clockwise front

counter-clockwise right

counter-clockwise back

clockwise left

clockwise
clockwise front

clockwise right

clockwise back

gripper open, above plug with wire
fully wrapped

gripper open, above blender with
wire fully wrapped

beads fully wrapped

gripper open, above plug with wire
fully unwrapped

gripper open, above blender with
wire fully unwrapped
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𝑧

𝑥: 𝑐, ℎ/𝑠, 𝑤/𝑠

𝛾

learned
projection

𝛽

learned
projection

∗

+

𝑜𝑢𝑡: 𝑐, ℎ/𝑠, 𝑤/𝑠

𝐹𝑖𝐿𝑀𝐵𝑙𝑜𝑐𝑘(𝑐)

conv7x7 (stride 2)

BatchNorm, ReLU

MaxPool3x3 (stride 2)

𝑥: 16,64,64

𝑥: 16,32,32

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,16,2

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,16,1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 16,32, 1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 32,32, 1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 32,64, 1

𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 64,64, 1

🔥𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 64,128, 1

🔥𝑅𝑒𝑠𝑁𝑒𝑡𝐵𝑙𝑜𝑐𝑘 128,128, 1

𝑥: 128,16,16

Spatial Softmax

𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑃𝑜𝑖𝑛𝑡𝑠: 256,

𝑟𝑜𝑏𝑜𝑡	𝑠𝑡𝑎𝑡𝑒: 22,Concat

🔥FC Layers [1024, 512, 256]

𝑎𝑐𝑡𝑖𝑜𝑛: 𝑥, 𝑦, 𝑧, 𝑔𝑟𝑖𝑝𝑝𝑒𝑟

𝐼𝑚𝑎𝑔𝑒	𝑜𝑏𝑠: 3,128,128

𝑧 :	 (384, )

LLM

𝑙 :	“put carrot in bowl”

CNN

Fig. 6. Detailed Policy Network Architecture. Fire denotes layers trained during policy learning. The early CNN modules are kept frozen to maintain the
intermediate representations learned from the pretraining phase.
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