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Abstract

Learning complex physical dynamics purely from data is challenging due to the
intrinsic properties of systems to be satisfied. Incorporating physics-informed
priors, such as in Hamiltonian Neural Networks (HNNs), achieves high-precision
modeling for energy-conservative systems. However, real-world systems often
deviate from strict energy conservation and follow different physical priors. To ad-
dress this, we present a framework that achieves high-precision modeling for a wide
range of dynamical systems from the numerical aspect, by enforcing Time-Reversal
Symmetry (TRS) via a novel regularization term. It helps preserve energies for
conservative systems while serving as a strong inductive bias for non-conservative,
reversible systems. While TRS is a domain-specific physical prior, we present the
first theoretical proof that TRS loss can universally improve modeling accuracy by
minimizing higher-order Taylor terms in ODE integration, which is numerically
beneficial to various systems regardless of their properties, even for irreversible
systems. By integrating the TRS loss within neural ordinary differential equation
models, the proposed model TREAT demonstrates superior performance on diverse
physical systems. It achieves a significant 11.5% MSE improvement in a challeng-
ing chaotic triple-pendulum scenario, underscoring TREAT’s broad applicability
and effectiveness. Code and further details are available at here.

1 Introduction

Dynamical systems, spanning applications from physical simulations (Kipf et al., 2018; Wang et al.,
2020; Lu et al., 2022; Huang et al., 2023; Luo et al., 2023a; Xu et al., 2024; Luo et al., 2024) to robotic
control (Li et al., 2022; Ni and Qureshi, 2022), are challenging to model due to intricate dynamic
patterns and potential interactions under multi-agent settings. Traditional numerical simulators
require extensive domain knowledge for design, which is sometimes unknown (Sanchez-Gonzalez
et al., 2020), and can consume significant computational resources (Wang et al., 2024). Therefore,
directly learning dynamics from the observational data becomes an attractive alternative.

Existing deep learning approaches (Sanchez-Gonzalez et al., 2020; Pfaff et al., 2021; Han et al.,
2022a) usually learn a fixed-step transition function to predict system dynamics from timestamp t
to timestamp t + 1 and rollout trajectories recursively. The transition function can have different
inductive biases, such as Graph Neural Networks (GNNs) (Pfaff et al., 2020; Martinkus et al.,
2021; Lam et al., 2023; Cao et al., 2023) for capturing pair-wise interactions among agents through
message passing. Most recently, neural ordinary differential equations (Neural ODEs) (Chen et al.,
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Figure 1: (a) High-precision modeling for dynamical systems; (b.1) Classification of classical
mechanical systems based on (Tolman, 1938; Lamb and Roberts, 1998);(b.2) Tim-Reversal Symmetry
illustration;(b.3) Error accumulation in numerical solvers.

2018; Rubanova et al., 2019) have emerged as a potent solution for modeling system dynamics in a
continuous manner, which offer superior prediction accuracy over discrete models in the long-range,
and can handle systems with partial observations. In particular, GraphODEs (Huang et al., 2020; Luo
et al., 2023b; Zang and Wang, 2020; Jiang et al., 2023; Luo et al., 2023c) extend NeuralODEs to
model interacting (multi-agent) dynamical systems, where agents co-evolve and form trajectories
jointly.

However, the complexity of dynamical systems necessitates large amounts of data. Models trained on
limited data risk violating fundamental physical principles such as energy conservation. A promising
strategy to improve modeling accuracy involves incorporating physical inductive biases (Raissi et al.,
2019; Cranmer et al., 2020). Existing models like Hamiltonian Neural Networks (HNNs) (Greydanus
et al., 2019; Sanchez-Gonzalez et al., 2019) strictly enforce energy conservation, yielding more
accurate predictions for energy-conservative systems. However, not all real-world systems strictly
adhere to energy conservation, and they may adhere to various physical priors. Other methods that
model both energy-conserving and dissipative systems, as well as reversible systems, offer more
flexibility (Zhong et al., 2020; Gruber et al., 2024). Nevertheless, they often rely on prior knowledge
of the system and are also limited to systems with corresponding physical priors. Such system
diversity largely limits the usage of existing models which are designed for specific physical prior.

To address this, we present a framework that achieves high-precision modeling for a wide range
of dynamical systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS)
via a novel regularization term. Specifically, TRS posits that a system’s dynamics should remain
invariant when time is reversed (Lamb and Roberts, 1998). To incorporate TRS, we propose a
simple-yet-effective self-supervised regularization term that acts as a soft constraint. This term
aligns forward and backward trajectories predicted by a neural network and we use GraphODE as
the backbone. We theoretically prove that the TRS loss effectively minimizes higher-order Taylor
expansion terms during ODE integration, offering a general numerical advantage for improving
modeling accuracy across a wide array of systems, regardless of their physical properties. It forces
the model to capture fine-grained physical properties such as jerk (the derivatives of accelerations)
and provides more regularization for long-term prediction. We also justify our TRS design choice,
showing case its superior performance both analytically and empirically. We name the model as
TREAT (Time-Reversal Symmetry ODE).

Note that TRS itself is a physical prior, that is broader than energy conservation as depicted in
Figure 1(b.1). It covers classical energy-conservative systems such as Newtonian mechanics, and
also non-conservative, reversible systems like Stokes flow (Pozrikidis, 2001), commonly encountered
in microfluidics (Kim and Karrila, 2013; Cao and Li, 2018; Cao et al., 2019). Therefore, TRS loss
achieves high-precision modeling from both the physical aspect, and the numerical aspect as shown
in Figure 1(a), making it domain-agnostic and widely applicable to various dynamical systems.
We systematically conduct experiments across 9 diverse datasets spanning across 1.) single-agent,
multi-agent systems; 2.) simulated and real-world systems; and 3.) systems with different physical
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priors. TREAT consistently outperforms state-of-the-art baselines, affirming its effectiveness and
versatility across various dynamic scenarios.

Our primary contributions can be summarized as follows:

• We introduce TREAT, a powerful framework that achieves high-precision modeling for a
wide range of systems from the numerical aspect, by enforcing Time-Reversal Symmetry
(TRS) via a regularization term.

• We establish the first theoretical proof that the time-reversal symmetry loss could in general
help learn more fine-grained and long-context system dynamics from the numerical aspect,
regardless of systems’ physical properties (even irreversible systems). This bridges the
specific physical implication and the general numerical benefits of the physical prior -TRS.

• We present empirical evidence of TREAT’s state-of-the-art performance in a variety of
systems over 9 datasets, including real-world & simulated systems, etc. It yields a significant
MSE improvement of 11.5% on the challenging chaotic triple-pendulum system.

2 Preliminaries and Related Work

We represent a dynamical system as a graph G = (V, E), where V denotes the node set of N
agents3 and E denotes the set of edges representing their physical interactions. For simplicity, we
assumed G to be static over time. Single-agent dynamical system is a special case where the graph
only has one node. In the following, we use the multi-agent setting by default to illustrate our
model. We denote X(t) ∈ R

N×d as the feature matrix at timestamp t for all agents, with d as
the feature dimension. Model input consists of trajectories of feature matrices over M historical
timestamps X(t−M :−1) = {X(t−M ), . . . ,X(t−1)} and G. The timestamps t−1, · · · , t−M < 0 can
have non-uniform intervals and take any continuous values. Our goal is to learn a neural simulator
fθ(·) :

[

X(t−M :−1),G
]

→ Y (t0:K), which predicts node dynamics Y (t) in the future on timestamps

0 = t0 < · · · < tK = T sampled within [0, T ]. We use yi(t) to denote the targeted dynamic vector of
agent i at time t. In some cases when we are only predicting system feature trajectories, Y (·) ≡ X(·).

2.1 NeuralODE for Dynamical Systems

NeuralODEs (Chen et al., 2018; Rubanova et al., 2019) are a family of continuous models that
define the evolution of dynamical systems by ordinary differential equations (ODEs). The state

evolution can be described as: żi(t) := dzi(t)
dt = g (z1(t), z2(t) · · · zN (t)), where zi(t) ∈ R

d

denotes the latent state variable for agent i at timestamp t. The ODE function g is parameterized by a
neural network such as Multi-Layer Perception (MLP), which is automatically learned from data.
GraphODEs (Poli et al., 2019; Huang et al., 2020; Luo et al., 2023b; Wen et al., 2022; Huang et al.,
2024) are special cases of NeuralODEs, where g is a Graph Neural Network (GNN) to capture the
continuous interaction among agents.

GraphODEs have been shown to achieve superior performance, especially in long-range predictions
and can handle data irregularity issues. They usually follow the encoder-processor-decoder archi-
tecture, where an encoder first computes the latent initial states z1(t0), · · · zN (t0) for all agents
simultaneously based on their historical observations as in Eqn 1.

z1(t0), z2(t0), ..., zN (t0) = fENC

(

X(t−M :−1),G) (1)

Then the GNN-based ODE predicts the latent trajectories starting from the learned initial states.
The latent state zi(t) can be computed at any desired time using a numerical solver such as Runge-
Kuttais (Schober et al., 2019) as:

zi(t) = ODE-Solver
(

g, [z1(t0), ...zN (t0)], t
)

= zi(t0) +

∫ t

t0

g (z1(t), z2(t) · · · zN (t)) dt. (2)

Finally, a decoder extracts the predicted dynamics ŷi(t) based on the latent states zi(t) for any
timestamp t:

ŷi(t) = fDEC(zi(t)). (3)

3Following (Kipf et al., 2018), we use ªagentsº to denote ªobjectsº in dynamical systems, which is different
from ªintelligent agentº in AI.
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However, vanilla GraphODEs can violate physical properties of a system, resulting in unrealistic
predictions. We therefore propose to inject physics-informed regularization term to make more
accurate predictions.

2.2 Time-Reversal Symmetry (TRS)
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Figure 2: Illustration of time-reversal symmetry based on
Lemma 2.1.The total length of the trajectory is tK − t0 = T .
t′k is the time index in the reverse trajectory, which points to
the same time as tK−k in the forward trajectory.

Consider a dynamical system de-

scribed in the form of
dx(t)
dt =

F (x(t)), where x(t) ∈ Ω is the ob-
served states such as positions. The
system is said to follow the Time-
Reversal Symmetry if there exists a
reversing operator R : Ω 7→ Ω such
that (Lamb and Roberts, 1998):

d
(

R ◦ x(t)
)

dt
= −F

(

R ◦ x(t)
)

, (4)

where ◦ denote the action of func-
tional R on the function x.

Intuitively, we can assume x(t) is the
position of a flying ball and the con-
ventional reversing operator is defined as R : x 7→ R ◦ x, R ◦ x(t) = x(−t). This implies when
x(t) is a forward trajectory position with initial position x(0), x(−t) is then a position in the time-
reversal trajectory, where x(−t) is calculated using the same function F , but with the integration
time reversed, i.e. dt 7→ d(−t). Eqn 4 shows how to create the reverse trajectory of a flying ball: at
each position, the velocity (i.e., the derivative of position with respect to time) should be the opposite.
In neural networks, we usually model trajectories in the latent space via z (Sanchez-Gonzalez et al.,
2020), which can be decoded back to real observation state i.e. positions. Therefore, we apply the
reversal operator for z.

Now we introduce a time evolution operator ϕτ such that ϕτ ◦ z(t) = z(t+ τ) for arbitrary t, τ ∈ R.
It satisfies ϕτ1 ◦ ϕτ2 = ϕτ1+τ2 , where ◦ denotes composition. The time evolution operator helps us
to move forward (when τ > 0) or backward (when τ < 0) through time, thus forming a trajectory.
Based on (Lamb and Roberts, 1998), in terms of the evolution operator, Eqn 4 implies:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R, (5)

which means that moving forward t steps and then turning to the opposite direction is equivalent
to firstly turning to the opposite direction and then moving backwards t steps4. Eqn 5 has been
widely used to describe time-reversal symmetry in existing literature (Huh et al., 2020; Valperga
et al., 2022). Nevertheless, we propose the following lemma, which is more intuitive to understand
and straightforward to guide the design of our time-reversal regularizer.

Lemma 2.1. Eqn 5 is equivalent to R ◦ ϕt ◦R ◦ ϕt = I , where I denotes identity mapping.

Lemma 2.1 means if we move t steps forward, then turn to the opposite direction, and then move
forward for t more steps, it shall restore back to the same state. This is illustrated in Figure 2 where
the reverse trajectory should be the same as the forward trajectory.5 It can be understood as rewinding
a video to the very beginning. The proof of Lemma 2.1 is in Appendix A.2.

3 Method: TREAT

We present a novel framework TREAT that achieves high-precision modeling for a wide range of
systems from the numerical aspect, by enforcing Time-Reversal Symmetry (TRS) via a regularization

4Time-reversal symmetry is a property of physical systems, which requires the forward and reverse trajectories
to be generated by the same mechanism F (·). It differs from reversibility of neural networks (Chang et al., 2018;
Liu et al., 2019), which is a property of machine learning models and ensures the recovery of input from output
via a reversed operator f−1(·). We highlight the detailed discussions in Appendix F.

5We explain Figure 2 with implementation in Appendix A.1.
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Figure 3: Overall framework of TREAT. O1, O2, O3 are connected agents. It follows the encoder-
processor-decoder architecture introduced in Sec 2.1. A novel TRS loss is incorporated to improve
modeling accuracy across systems from the numerical aspect, regardless of their physical properties.

term. It improves modeling accuracy regardless of systems’ physical properties. We first introduce
our architecture design, followed by theoretical analysis to explain its numerical benefits.

TREAT uses GraphODE (Huang et al., 2020) as the backbone and flexibly incorporates TRS as a
regularization term based on Lemma 2.1. This term aligns model forward and reverse trajectories. In
practice, our model predicts the forward trajectories at a series of timestamps {tk}Kk=0 as ground truth
observations are discrete, where 0 = t0 < t1 < · · · < tK = T . The reverse trajectories are also at the
same series of K timestamps so as to be aligned with the forward one, which we denote as {t′k}Kk=0
satisfying 0 = t′0 < t′1 < · · · < t′K = T . It’s important to note that the values of the time variable
t′k in the reverse trajectories do not represent real time, but serve as indexes of reverse trajectories.
This leads to the relation t′K−k = T − tk, which means the reverse trajectories at timestamp t′K−k

correspond to the forward trajectories at time tk. For example, t′0 = T − tK = 0. It indicates t′0 and
tK are both pointing to the same real time T , which is the ending point of the forward trajectory as
shown in Figure 3. Based on Lemma 2.1, the difference of the two trajectories at any observed time
should be small, i.e. zfwd(tk) ≈ zrev(t′K−k). This serves as the guideline for our regularizer design.
The weight of the regularizer is also adjustable to adapt different systems. The overall framework is
depicted in Figure 3.

3.1 Time-Reversal Symmetry Loss and Training

Forward Trajectory Prediction and Reconstruction Loss. For multi-agent systems, we utilize
the GNN operator described in (Kipf et al., 2018) as our ODE function g(·), which drives the system
to move forward and output the forward trajectories for latent states zfwd

i (t) at each continuous time
t ∈ [0, T ] and each agent i.We then employ a Multilayer Perceptron (MLP) as a decoder to predict
output trajectories ŷfwd

i (t) based on the latent states. We summarize the whole procedure as:

żfwd
i (t) :=

dzfwd
i (t)

dt
= g(zfwd

1 (t), zfwd
2 (t), · · · zfwd

N (t)),

zfwd
i (t0) = fENC(X(t−M :−1),G), ŷfwd

i (t) = fDEC(z
fwd
i (t)).

(6)
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To train the model, we use the reconstruction loss that minimizes the L2 distance between predicted
forward trajectories {ŷfwd

i (tk)}Kk=0 and the ground truth trajectories {yi(tk)}Kk=0 as :

Lpred =

N
∑

i=1

K
∑

k=0

∥

∥

∥yi(tk)− ŷfwd
i (tk)

∥

∥

∥

2

2
. (7)

Reverse Trajectory Prediction and Regularization Loss. We design a novel time-reversal symme-
try loss as a soft constraint to flexibly regulate systems’ behavior based on Lemma 2.1. Specifically,
we first compute the latent reverse trajectories zrev(t) by starting from the ending state of the forward
one, traversed back over time. We then employ the decoder to output dynamic trajectories yrev(t).

żrev
i (t) :=

dzrev
i (t)

dt
= −g(zrev

1 (t), zrev
2 (t), · · · zrev

N (t)),

zrev
i (t′0) = zfwd

i (tK), ŷrev
i (t) = fDEC(z

rev
i (t)).

(8)

Next, based on Lemma 2.1, if the system follows Time-Reversal Symmetry, the forward and backward
trajectories shall be exactly overlap. We thus design the reversal loss by minimizing the L2 distances
between model forward and backward trajectories decoded from the latent trajectories:

Lreverse =

N
∑

i=1

K
∑

k=0

∥

∥

∥ŷ
fwd
i (tk)− ŷrev

i (t′K−k)
∥

∥

∥

2

2
. (9)

Finally, we jointly train TREAT as a weighted combination of the two losses:

L = Lpred + αLreverse =

N
∑

i=1

K
∑

k=0

∥

∥

∥yi(tk)− ŷfwd
i (tk)

∥

∥

∥

2

2
+ α

N
∑

i=1

K
∑

k=0

∥

∥

∥ŷ
fwd
i (tk)− ŷrev

i (t′K−k)
∥

∥

∥

2

2
,

(10)
where α is a positive coefficient to balance the two losses based on different targeted systems.

Remark. The computational time of Lreverse is of the same scale as the reconstruction loss Lpred.
As the computation process of the reversal loss is to first use the ODE solver to generate the reverse
trajectories, which has the same computational overhead as computing the forward trajectories, and
then compute the L2 distances.

3.2 Theoretical Analysis of Time-Reversal Symmetry Loss

We next theoretically show that the time-reversal symmetry loss numerically helps to improve
prediction accuracy in general, regardless of systems’ physical properties. Specifically, we show that
it minimizes higher-order Taylor expansion terms during the ODE integration steps.

Theorem 3.1. Let ∆t denote the integration step size in an ODE solver and T be the prediction
length. The reconstruction loss Lpred defined in Eqn 7 is O(T 3∆t2). The time-reversal loss Lreverse

defined in Eqn 9 is O(T 5∆t4).

We prove Theorem 3.1 in Appendix A.3. From Theorem 3.1, we can see two nice properties of
our proposed time-reversal loss: 1) Regarding the relationship to ∆t, Lreverse is optimizing a high-
order term ∆t4, which forces the model to predict fine-grained physical properties such as jerk (the
derivatives of accelerations). In comparison, the reconstruction loss optimizes ∆t2, which mainly
guides the model to predict the locations/velocities accurately. Therefore, the combined loss enables
our model to be more noise-tolerable; 2) Regarding the relationship to T , Lreverse is more sensitive
to total sequence length (T 5), thus it provides more regularization for long-context prediction, a key
challenge for dynamic modeling.

TRS Loss Design Choice. We define Lreverse as the distance between model forward trajectories
and backward trajectories. Based on the definition of TRS in Sec. 2.2, there are other implementation
choices. One prior work TRS-ODE (Huh et al., 2020) designed a TRS loss based on Eqn 5, where
a reverse trajectory shares the same starting point as the forward one. However, we show that our
implementation based on Lemma 2.1 to approximate time-reversal symmetry has a lower maximum
error compared to their implementation below, supported by empirical experiments in Sec. 4.2.
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Lemma 3.2. Let Lreverse be the TRS implementation of TREAT based on Lemma 2.1, Lreverse2

be the one in (Huh et al., 2020) based on Eqn 5. When the reconstruction loss defined in Eqn 7 of
both methods are equal, and the two TRS losses are equal, i.e. Lreverse = Lreverse2, the maximum
error between the reversal and ground truth trajectory for each agent, i.e. MaxErrorgt_rev =
maxk∈[K] ∥yi(tk)− ŷrev

i (t′K−k)∥2 for i = 1, 2 · · ·N , made by TREAT is smaller.

We prove Lemma 3.2 in Appendix A.4. Another implementation is to minimize the distances
between model backward trajectories and ground truth trajectories. When both forward and backward
trajectories are close to ground-truth, they are implicitly symmetric. The major drawback is that at
the early stage of learning when the forward is far away from ground truth (Lpred), such implicit
regularization does not force time-reversal symmetry, but introduces more noise.

4 Experiments

Datasets. We conduct systematic evaluations over five multi-agent systems including three 5-body
spring systems (Kipf et al., 2018), a complex chaotic pendulum system and a real-world motion
capture dataset (Carnegie Mellon University, 2003); and four single-agent systems including three
spring systems (with only one node) and a chaotic strange attractors system (Huh et al., 2020).

The settings of spring systems include: 1) conservative, i.e. no interactions with the environments,
we call it Simple Spring; 2) non-conservative with frictions, we call it Damped Spring; 3) non-
conservative with periodic external forces, we call it Forced Spring. The Pendulum system contains
three connected sticks in a 2D plane. It is highly sensitive to initial states, with minor disturbances
leading to significantly different trajectories (Shinbrot et al., 1992; Awrejcewicz et al., 2008). The real-
world motion capture dataset (Carnegie Mellon University, 2003) describes the walking trajectories
of a person, each tracking a single joint. We call it Human Motion. The strange attractor consists of
symmetric attractor/repellor force pairs and is chaotic (Sprott, 2015). It is also highly sensitive to the
initial states (Koppe et al., 2019). We call it Attractor.

Towards physical properties, Simple Spring and Pendulum are conservative and reversible; Force
Spring and Attractor are reversible but non-conservative; Damped Spring are irreversible and non-
conservative. For Human Motion, it does not adhere to specific physical laws since it is a real-world
dataset. Details of the datasets and generation pipelines can be found inAppendix C.

Task Setup. We conduct evaluation by splitting trajectories into two halves: [t1, tM ], [tM+1, tK ]
where timestamps can be irregular. We condition the first half of observations to make predictions
for the second half as in (Rubanova et al., 2019). For spring datasets and Pendulum, we generate
irregular-sampled trajectories and set the training samples to be 20,000 and testing samples to be
5,000 respectively. For Attractor, We generate 1,000 and 50 trajectories for training and testing
respectively following Huh et al. (2020). 10% of training samples are used as validation sets and the
maximum trajectory prediction length is 60. Details can be found in Appendix C.

Baselines. We compare TREAT against three baseline types: 1) pure data-driven approaches including
LG-ODE (Huang et al., 2020) and LatentODE (Rubanova et al., 2019), where the first one is a multi-
agent approach considering pair-wise interactions, and the second one is a single-agent approach that
predicts each trajectory independently; 2) energy-preserving HODEN (Greydanus et al., 2019); and
3) time-reversal TRS-ODEN (Huh et al., 2020).

The latter two are single-agent approaches and require initial states as given input. To handle missing
initial states in our dataset, we approximate the initial states for the two methods via linear spline
interpolation (Endre Süli, 2003). In addition, we substitute the ODE network in TRS-ODEN with
a GNN (Kipf et al., 2018) as TRS-ODENGNN, which serves as a new multi-agent approach for fair
comparison. HODEN cannot be easily extended to the multi-agent setting as replacing the ODE
function with a GNN can violate energy conservation of the original HODEN. For running LGODE
and TREAT on single-agent datasets, we only include self-loop edges in the graph G = (V, E), which
makes the ODE function g a simple MLP. Implementation details can be found in Appendix D.2.
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Table 1: Evaluation results on MSE (10−2). Best results are in bold numbers and second-best results
are in underline numbers. Human Motion is a real-world dataset and all others are simulated datasets.

Multi-Agent Systems Single-Agent Systems

Dataset
Simple
Spring

Forced
Spring

Damped
Spring

Pendulum
Human
Motion

Simple
Spring

Forced
Spring

Damped
Spring

Attractor

LatentODE 5.2622 5.0277 3.3419 2.6894 2.9061 5.7957 0.4563 1.3012 0.58394
HODEN 3.0039 4.0668 8.7950 741.2296 1.9855 3.2119 4.004 1.5675 54.2912
TRS-ODEN 3.6785 4.4465 1.7595 741.4988 0.5400 3.0271 0.4056 1.5667 2.2683
TRS-ODENGNN 1.4115 2.1102 0.5951 596.0319 0.2609 / / / /
LG-ODE 1.7429 1.8929 0.9718 1.4156 0.7610 1.6156 0.1465 1.1223 0.6942
TREAT 1.1178 1.4525 0.5944 1.2527 0.2192 1.6026 0.0960 1.0750 0.5581

(Ð-Ablation of our method with different implementation of LreverseÐ-)
TREATLrev=gt-rev 1.1313 1.5254 0.6171 1.6158 0.2495 1.6190 0.1104 1.1205 0.6364
TREATLrev=rev2 1.6786 1.9786 0.9692 1.5631 0.8785 1.6901 0.0983 1.0952 0.7286

4.1 Main Results

Table 1 shows the prediction performance on both multi-agent systems and single-agent systems
measured by mean squared error (MSE). We can see that TREAT consistently surpasses other models,
highlighting its generalizability and the efficacy of the proposed TRS loss.

For multi-agent systems, approaches that consider interactions among agents (LG-ODE, TRS-
ODENGNN, TREAT) consistently outperform single-agent baselines (LatentODE, HODEN, TRS-
ODEN), and TREAT achieves the best performance across datasets.

The chaotic nature of the Pendulum system and the Attractor system, with their sensitivity to initial
states 6, poses extreme challenges for dynamic modeling. This leads to highly unstable predictions
for models like HODEN and TRS-ODEN, as they estimate initial states via inaccurate linear spline
interpolation (Endre Süli, 2003). In contrast, LatentODE, LG-ODE, and TREAT employ advanced
encoders that infer latent states from observed data and demonstrate superior accuracy. Among them,
TREAT achieves the most accurate predictions, further showing its robust generalization capabilities.

We observe that misapplied inductive biases can degrade results, which limits the usage of physics-
informed methods that are designed for individual physical prior such as HODEN. HODEN only
excels on energy-conservative systems, such as Simple Spring compared with LatentODE and TRS-
ODEN in the multi-agent setting. Its performance drop dramatically on Force Spring, Damped Spring,
and Attractor. Note that HODEN naively forces each agent to be energy-conservative, instead of the
whole system. Therefore, it performs poorly than LG-ODE, TREAT in the multi-agent settings.

For the Human Motion dataset, characterized by its dynamic ambiguity as it does not adhere to specific
physical laws, we cannot directly determine whether it is conservative or time-reversal. For such a
system with an unknown nature, TREAT outperforms other purely data-driven methods significantly,
showcasing its strong numerical benefits in improving prediction accuracy across diverse system
types. This is also shown by its superior performance on Damped Spring, which is irreversible.

(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

LG-ODE

TREAT

TRS-ODEN

HODEN

LG-ODE

TREAT

TRS-ODEN

HODEN

LG-ODE

TREAT

TRS-ODEN

HODEN

LG-ODE

TREAT

TRS-ODEN

HODEN

Figure 4: Varying prediction lengths across multi-agent datasets (Pendulum MSE is in log values).

6Video to show Pendulum is highly sensitive to initial states.
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(a) Simple Spring (b) Damped Spring (c) Forced Spring (d) Pendulum

TREAT

LG-ODE

TREAT

LG-ODE

TREAT

LG-ODE

TREAT

LG-ODE

Figure 5: Varying α values across multi-agent datasets.

4.2 Ablation and Sensitivity Analysis

Ablation on implementation of Lreverse. We conduct two ablation by changing the implementation
of Lreverse discussed in Sec. 3.2: 1) TREATLrev=gt-rev , which computes the reversal loss as the L2
distance between ground truth trajectories to model backward trajectories; 2) TREATLrev=rev2, which
implements the TRS loss based on Eqn 5 as in TRS-ODEN (Huh et al., 2020). From the last block of
Table 1, we can clearly see that our implementation achieves the best performance against the two.

Evaluation across prediction lengths. We vary the maximum prediction lengths from 20 to 60
and report model performance as shown in Figure 4. As the prediction step increases, TREAT
consistently maintains optimal prediction performance, while other baselines exhibit significant error
accumulations. The performance gap between TREAT and baselines widens when making long-range
predictions, highlighting the superior predictive capability of TREAT.

Evaluation across different α. We vary the values of the coefficient α defined in Eqn 10, which
balances the reconstruction loss and the TRS loss. Figure 5 demonstrates that the optimal α values
being neither too high nor too low. This is because when α is too small, the model tends to neglect
the TRS physical bias, resulting in error accumulations. Conversely, when α becomes too large, the
model can emphasize TRS at the cost of accuracy. Nonetheless, across different α values, TREAT
consistently surpasses the purely data-driven LG-ODE, showcasing its superiority and flexibility in
modeling diverse dynamical systems.

We study TREAT’s sensitivity towards solver choice and observation ratios in Appendix E.1 and
Appendix E.2 respectively.

LG-ODE

TREAT

HODEN

LG-ODE

TREAT

HODEN

LG-ODE

TREAT

HODEN

Ground Truth TANGO LG-ODE EnergyHODEN
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TREAT

LG-ODE
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HODEN

LG-ODE

TREAT

HODEN

LG-ODE

TREAT

HODEN

Figure 6: Visualization for 5-body spring systems (trajectory starts from light to dark colors).
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Figure 7: TRS loss visualization across multi-agent datasets (scales of two y-axes are different).

4.3 Visualizations

Trajectory Visualizations. Model predictions and ground truth are visualized in Figure 6. As
HODEN is a single-agent baseline that individually forces every agent’s energy to be constant over
time which is not valid, the predicted trajectories is having the largest errors and systems’ total energy
is not conserved for all datasets. The purely data-driven LG-ODE exhibits unrealistic energy patterns,
as seen in the energy spikes in Simple Spring and Force Spring. In contrast, TREAT, incorporating
reversal loss, generates realistic energy trends, and consistently produces trajectories closest to the
ground truth, showing its superior performance.

Reversal Loss Visualizations To illustrate the issue of energy explosion from the purely data-driven
LG-ODE, we visualize the TRS loss over training epochs from LG-ODE7 and TREAT in Figure 7.
As results suggest, LG-ODE has increased TRS loss over training epochs, meaning it is violating the
time-reversal symmetry sharply, in contrast to TREAT which has decreased reversal loss over epochs.

5 Conclusions

We propose TREAT, a deep learningframework that achieves high-precision modeling for a wide
range of dynamical systems by injecting time-reversal symmetry as an inductive bias. TREAT
features a novel regularization term to softly enforce time-reversal symmetry by aligning predicted
forward and reverse trajectories from a GraphODE model. Notably, we theoretically prove that
the regularization term effectively minimizes higher-order Taylor expansion terms during the ODE
integration, which serves as a general numerical benefit widely applicable to various systems (even
irreversible systems) regardless of their physical properties. Empirical evaluations on different kinds
of datasets illustrate TREAT’s superior efficacy in accurately capturing real-world system dynamics.

6 Limitations

Currently, TREAT only incorporates inductive bias from the temporal aspect, while there are many
important properties in the spatial aspect such as translation and rotation equivariance (Satorras et al.,
2021; Han et al., 2022b; Xu et al., 2022). Future endeavors that combine biases from both temporal
and spatial dimensions could unveil a new frontier in dynamical systems modeling.
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A Theoretical Analysis

A.1 Implementation of the Time-Reversal Symmetry Loss

Algorithm 1 The implementation of Lreverse

Require: latent initial states zfwd
i (t0); the ODE function g(·); number of agents N :

1: for each i ∈ N do
2: Compute the latent forward trajectory at timestamps {tk}Kk=0:

zfwd
i (tk) = ODE-Solver

(

g, [zfwd
1 (t0), z

fwd
2 (t0)...z

fwd
N (t0)], tk

)

. Reach the final state zfwd
i (tK).

3: The initial state of the reverse trajectory is defined as zrev
i (t′0) = zfwd

i (tK), and the dynamics
of the system which is the ODE function g(·) is also reversed as −g(·) .

4: Compute the latent reverse trajectory at timestamps {t′k}Kk=0,

zrev
i (t′k) = ODE-Solver

(

g, [zrev
1 (t′0), z

rev
2 (t′0)...z

rev
N (t′0)], t

′
k

)

.

5: ŷfwd
i (tk) = fDEC(z

fwd
i (tk)) ,ŷrev

i (t′k) = fDEC(z
rev
i (t′k))

6: end for

7: Lreverse =
∑N

i=1

∑K
k=0

∥

∥

∥ŷfwd
i (tk)− ŷrev

i (t′K−k)
∥

∥

∥

2

2

A.2 Proof of Lemma 1

Proof. The definition of time-reversal symmetry is given by:

R ◦ ϕt = ϕ−t ◦R = ϕ−1
t ◦R (11)

Here, R is an involution operator, which means R ◦R = I.

First, we apply the time evolution operator ϕt to both sides of Eqn 11:

ϕt ◦R ◦ ϕt = ϕt ◦ ϕ−1
t ◦R (12)

Simplifying, we obtain:
ϕt ◦R ◦ ϕt = R (13)

Next, we apply the involution operator R to both sides of the equation:

R ◦ ϕt ◦R ◦ ϕt = R ◦R (14)

Since R ◦R = I, we finally arrive at:

R ◦ ϕt ◦R ◦ ϕt = I (15)

which means the trajectories can overlap when evolving backward from the final state.

A.3 Proof of Theorem 3.1

Let ∆t denote the integration step size in an ODE solver and T be the prediction length. The time
stamps of the ODE solver are {tj}Tj=0, where tj+1 − tj = ∆t for j = 0, · · · , T (T > 1). Next

suppose during the forward evolution, the updates go through states zfwd(tj) = (qfwd(tj),p
fwd(tj))

for j = 0, · · · , T , where qfwd(tj) is position, pfwd(tj) is momentum, while during the reverse
evolution they go through states zrev(tj) = (qrev(tj),p

rev(tj)) for j = 0, · · · , T , in reverse order.
The ground truth trajectory is zgt(tj) = (qgt(tj),p

gt(tj)) for j = 0, · · · , T .

For the sake of brevity in the ensuing proof, we denote zgt(tj) by z
gt
j , zfwd(tj) by zfwd

j and zrev(tj)
by zrev

j , and we will use Mathematical Induction to prove the theorem.

A.3.1 Reconstruction Loss (Lpred) Analysis.

First, we bound the forward loss
∑T

j=0 ∥zfwd
j − z

gt
j ∥22. Since our method models the momentum and

position of the system, we can write the following Taylor expansion of the forward process, where
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for any 0 ≤ j < T :











qfwd
j+1 = qfwd

j + (pfwd
j /m)∆t+ (ṗfwd

j /2m)∆t2 +O(∆t3), (16a)

pfwd
j+1 = pfwd

j + ṗfwd
j ∆t+O(∆t2), (16b)

ṗfwd
j+1 = ṗfwd

j +O(∆t), (16c)

and for the ground truth process, we also have from Taylor expansion that















q
gt
j+1 = q

gt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2 +O(∆t3), (17a)

p
gt
j+1 = p

gt
j + ṗ

gt
j ∆t+O(∆t2), (17b)

ṗ
gt
j+1 = ṗ

gt
j +O(∆t). (17c)

With these, we aim to prove that for any k = 0, 1, · · · , T , the following hold :

{

∥qfwd
k − q

gt

k ∥2 ≤ C fwd
2 k2∆t2, (18a)

∥pfwd
k − p

gt

k ∥2 ≤ C fwd
1 k∆t, (18b)

where C fwd
1 and C fwd

2 are constants.

Base Case k = 0: Based on the initialization rules, it is obvious that
∥

∥qfwd
0 − q

gt
0

∥

∥

2
= 0 and

∥

∥pfwd
0 − p

gt
0

∥

∥

2
= 0, thus (18a) and (18b) both hold for k = 0.

Inductive Hypothesis: Assume (18a) and (18b) hold for k = j, which means:

{

∥qfwd
j − q

gt
j ∥2 ≤ C fwd

2 j2∆t2, (19a)

∥pfwd
j − p

gt
j ∥2 ≤ C fwd

1 j∆t, (19b)

Inductive Proof: We need to prove (18a) and (18b) hold for k = j + 1.

First, using (16c) and (17c), we have

∥

∥ṗfwd
j+1 − ṗ

gt
j+1

∥

∥

2
=
∥

∥ṗfwd
j − ṗ

gt
j

∥

∥

2
+O(∆t) =

∥

∥ṗfwd
0 − ṗ

gt
0

∥

∥

2
+O

(

(j + 1)∆t
)

= O(1), (20)

where we iterate through j, j − 1, · · · , 0 in the second equality. Then using (17b) and (16b), we get
for j + 1 that

∥

∥pfwd
j+1 − p

gt
j+1

∥

∥

2
=
∥

∥

(

pfwd
j + ṗfwd

j ∆t
)

−
(

p
gt
j + ṗ

gt
j ∆t

)

+O(∆t2)∥2
≤
∥

∥pfwd
j − p

gt
j

∥

∥

2
+
∥

∥ṗfwd
j − ṗ

gt
j

∥

∥

2
∆t+O(∆t2)

≤
[

C fwd
1 j +O(1)

]

∆t,

where the first inequality uses the triangle inequality, and in the second inequality we use (19b) as
well as (20). We can see there exists C fwd

1 such that the final expression above is upper bounded by
C fwd

1 (j + 1)∆t, with which the claim holds for j + 1.

Next for (18a), using (17a) and (16a), we get for any j that

∥

∥qfwd
j+1 − q

gt
j+1

∥

∥

2
=
∥

∥

(

qfwd
j + (pfwd

j /m)∆t+ (ṗfwd
j /2m)∆t2)−

(

q
gt
j + (pgt

j /m)∆t+ (ṗgt
j /2m)∆t2

)

+O(∆t3)∥2

≤
∥

∥qfwd
j − q

gt
j

∥

∥

2
+

1

m

∥

∥pfwd
j − p

gt
j

∥

∥

2
∆t+

1

2m

∥

∥ṗfwd
j − ṗ

gt
j

∥

∥

2
∆t2 +O(∆t3)

≤
[

C fwd
2 j2 +

C fwd
1

m
j +O(1)

]

∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (19a) and
(19b) as well as (20). Thus with an appropriate C fwd

2 , we have the final expression above is upper
bounded by C fwd

2 (j + 1)2∆t2, and so the claim holds for j + 1.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (18a) and (18b) holds for all k = 0, 1, · · · , T .
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With this, we finish the forward proof by plugging (18a) and (18b) into the loss function:

T
∑

j=0

∥zfwd
j − z

gt
j ∥22 =

T
∑

j=0

∥pfwd
j − p

gt
j ∥22 +

T
∑

j=0

∥qfwd
j − q

gt
j ∥22

≤
(

C fwd
1

)2
T
∑

j=0

j2∆t2 +
(

C fwd
2

)2
T
∑

j=0

j4∆t4

= O(T 3∆t2).

A.3.2 Reversal Loss (Lreverse) Analysis.

Next we analyze the reversal loss
∑T

j=0 ∥R(zrev
j ) − zfwd

j ∥22. For this, we need to refine the Taylor

expansion residual terms for a more in-depth analysis.

First reconsider the forward process. Since the process is generated from the learned network, we
may assume that for some constants c1, c2, and c3, the states satisfy the following for any 0 ≤ j < T :















qfwd
j = qfwd

j+1 − (pfwd
j+1/m)∆t+ (ṗfwd

j+1/2m)∆t2 + rem
fwd,3
j , (21a)

pfwd
j = pfwd

j+1 − ṗfwd
j+1∆t+ rem

fwd,2
j , (21b)

ṗfwd
j = ṗfwd

j+1 + rem
fwd,1
j , (21c)

where the remaining terms
∥

∥rem
fwd,i
j

∥

∥

2
≤ ci∆ti for i = 1, 2, 3. Similarly, we have approximate

Taylor expansions for the reverse process:














qrev
j = qrev

j+1 + (prev
j+1/m)∆t+ (ṗrev

j+1/2m)∆t2 + rem
rev,3
j , (22a)

prev
j = prev

j+1 + ṗrev
j+1∆t+ rem

rev,2
j , (22b)

ṗrev
j = ṗrev

j+1 + rem
rev,1
j , (22c)

where
∥

∥rem
rev,i
j

∥

∥

2
≤ ci∆ti for i = 1, 2, 3.

We will prove via induction that for k = T, T − 1, · · · , 0,










∥R(qrev
k )− qfwd

k ∥2 ≤ C rev
3 (T − k)3∆t3, (23a)

∥R(prev
k )− pfwd

k ∥2 ≤ C rev
2 (T − k)2∆t2, (23b)

∥R(ṗrev
k )− ṗfwd

k ∥2 ≤ C rev
1 (T − k)∆t, (23c)

where C rev
1 , C rev

2 and C rev
3 are constants.

The entire proof process is analogous to the previous analysis of Reconstruction Loss.

Base Case k = T : Since the reverse process is initialized by the forward process variables at k = T ,
it is obvious that

∥

∥qfwd
T − qev

T

∥

∥

2
=
∥

∥pfwd
T − prev

T

∥

∥

2
=
∥

∥ṗfwd
T − ṗrev

T

∥

∥

2
= 0. Thus (23a), (23b) and

(23c) all hold for k = 0.

Inductive Hypothesis: Assume the inequalities (23b), (23a) and (23c) hold for k = j + 1, which
means:











∥R(qrev
j+1)− qfwd

j+1∥2 ≤ C rev
3 (T − (j + 1))3∆t3, (24a)

∥R(prev
j+1)− pfwd

j+1∥2 ≤ C rev
2 (T − (j + 1))2∆t2, (24b)

∥R(ṗrev
j+1)− ṗfwd

j+1∥2 ≤ C rev
1 (T − (j + 1))∆t, (24c)

Inductive Proof: We need to prove (23b) (23a) and (23c) holds for k = j.

First, for (23c), using (21c) and (22c), we get for any j that
∥

∥R(ṗrev
j )− ṗfwd

j

∥

∥

2

=
∥

∥(ṗrev
j+1 + rem

rev,1
j )− (ṗfwd

j+1 + rem
fwd,1
j )

∥

∥

2

≤
∥

∥R(ṗrev
j+1)− ṗfwd

j+1

∥

∥

2
+ ∥rem

rev,1
j ∥2 + ∥rem

fwd,1
j ∥2

≤ C rev
1 (T − j − 1)∆t+ 2c1∆t,
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where the first inequality uses the triangle inequality, and the second inequality plugs in (24c). Thus
taking C rev

1 = 2c1, the above is upped bounded by C rev
1 (T − j)∆t, and (23b) holds for j.

Second, for (24b), using (21b) and (22b), we get

∥

∥R(prev
j )− pfwd

j

∥

∥

2
=
∥

∥−
(

prev
j+1 + ṗrev

j+1∆t+ rem
rev,2
j

)

−
(

pfwd
j+1 − ṗfwd

j+1∆t+ rem
fwd,2
j

)

∥2
≤
∥

∥R(prev
j+1)− pfwd

j+1

∥

∥

2
+
∥

∥R(ṗrev
j+1)− ṗfwd

j+1

∥

∥

2
∆t+ ∥rem

rev,2
j ∥2 + ∥rem

fwd,2
j ∥2

≤
[

C rev
2 (T − j − 1)2 + C rev

1 (T − j − 1) + 2c2
]

∆t2,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a) and
(24b). Thus taking C rev

2 = max{C rev
1 /2, 2c2}, we have the final expression above is upper bounded

by C rev
2 (T − j)2∆t2, and so the claim holds for j.

Finally, for (24a), we use (21a) and (22a) to get
∥

∥R(qrev
j )− qfwd

j

∥

∥

2

=
∥

∥

(

qrev
j+1 + (prev

j+1/m)∆t+ (ṗrev
j+1/2m)∆t2 + rem

rev,3
j

)

−
(

qfwd
j+1 − (pfwd

j+1/m)∆t+ (ṗfwd
j+1/2m)∆t2 + rem

fwd,3
j

)

∥2

≤
∥

∥R(qrev
j+1)− qfwd

j+1

∥

∥

2
+

1

m

∥

∥R(prev
j+1)− pfwd

j+1

∥

∥

2
∆t+

1

2m

∥

∥R(ṗrev
j+1)− ṗfwd

j+1

∥

∥

2
∆t2 + ∥rem

rev,3
j ∥2 + ∥rem

fwd,3
j ∥2

≤
[

C rev
3 (T − j − 1)3 +

C rev
2

m
(T − j − 1)2 +

C rev
1

2m
(T − j − 1) + 2c3

]

∆t3,

where the first inequality uses the triangle inequality, and in the second inequality we use (24a), (24b)
and (24c). Thus taking C rev

3 = max{C rev
2 /3m,C rev

1 /6m, 2c3}, we have the final expression above is
upper bounded by C rev

3 (T − j)3∆t3, and so the claim holds for j.

Since both the base case and the inductive step have been proven, by the principle of mathematical
induction, (23b), (23a) and (23c) hold for all k = T, T − 1, · · · , 0.

With this we finish the proof by plugging (23b) and (23a) into the loss function:

T
∑

j=0

∥R(zrev
j )− zfwd

j ∥22 =

T
∑

j=0

∥R(prev
j )− pfwd

j ∥22 +
T
∑

j=0

∥R(qrev
j )− qfwd

j ∥22

≤
(

C rev
2

)2
T
∑

j=0

(T − j)4∆t4 +
(

C rev
3

)2
T
∑

j=0

(T − j)6∆t6

= O(T 5∆t4).

(25)

A.4 Proof of Lemma 3.2

b
a

b

a

𝒚$𝒊
𝐟𝐰𝐝 𝟎 = 𝒚𝒊(𝟎) 𝒚𝒊(𝟏) 𝒚$𝒊

𝐫𝐞𝐯𝟐 𝟎 = 𝒚𝒊 𝟎 = 𝒚$𝒊
𝐟𝐰𝐝 𝟎 𝒚𝒊(𝟏)

𝒚$𝒊
𝐟𝐰𝐝 𝟏𝒚$𝒊

𝐟𝐰𝐝 𝟏

𝒚$𝒊
𝐫𝐞𝐯𝟐 −𝟏

𝒚$𝒊
𝐫𝐞𝐯𝟐 𝟏

𝒚$𝒊
𝐫𝐞𝐯 𝟎

𝒚$𝒊
𝐫𝐞𝐯 −𝟏 = 𝑹(𝒚$𝒊

𝐟𝐰𝐝 𝟏 )

𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 !"#$! = max	{𝑎, 𝑏}

𝑀𝑎𝑥𝐸𝑟𝑟𝑜𝑟 !"%-'(#) = 𝑎 + 𝑏

ℒ!"#$ = 𝒚$𝒊
𝐟𝐰𝐝 𝟏  − 𝒚𝒊(𝟏) )

)
∶= 𝑎

ℒ"#*#"+# = 𝑅(	𝒚$𝒊
𝐫𝐞𝐯 𝟎 ) − 𝒚$𝒊

𝐟𝐰𝐝 𝟎   
)

)
≔ 𝑏

ℒ!"#$ = 𝒚$𝒊
𝐟𝐰𝐝 𝟏  − 𝒚𝒊(𝟏) )

)
∶= 𝑎

ℒ"#*#"+#) = 𝒚$𝒊
𝐫𝐞𝐯𝟐 𝟏 − 𝒚$𝒊

𝐟𝐰𝐝 𝟏   
)

)
≔ 𝑏

Ground truth Trajectory

Forward Trajectory

Reverse Trajectory

TREAT:	𝑅 ∘ 𝜙 ∘ 𝑅 ∘ 𝜙 = 𝐼 TRS-ODEN:	𝑅 ∘ 𝜙 = 𝜙 ∘ 𝑅

	𝒚$𝒊
𝐫𝐞𝐯𝟐 𝟏 = 𝑹(	𝒚$ 𝒊

𝐫𝐞𝐯𝟐 −𝟏 )

Figure 8: Comparison between two reversal loss implementation
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We expect an ideal model to align both the predicted forward and reverse trajectories with the ground
truth. As shown in Figure 8, we integrate one step from the initial state ŷfwd

i (0) (which is the same as

yi(0)) and reach the state ŷfwd
i (1).

The first reverse loss implementation (ours) follows Lemma 2.1 as R ◦Φt ◦R ◦Φt = I, which means
when we evolve forward and reach the state ŷfwd

i (1) we reverse it into ŷrev
i (−1) = R(ŷfwd

i (1)) and go

back to reach ŷrev
i (0), then reverse it to get R(ŷrev

i (0)), which ideally should be the same as ŷfwd
i (0).

The second reverse loss implementation follows Eqn 5as R ◦ Φt = Φ−t ◦R, which means we first
reverse the initial state as ŷrev2

i (0) = R(yi(0)), then evolve the reverse trajectory in the opposite
direction to reach ŷrev2

i (−1), and then perform a symmetric operation to reach ŷrev2
i (1), aligning it

with the forward trajectory.

We assume the two reconstruction losses Lpred = ∥ŷfwd
i (1) − yi(1)∥22 := a are the same. For the

time-reversal losses, we also assume they have reached the same value b:

Lreverse = ∥R(ŷrev
i (0))− ŷfwd

i (0)∥22 + ∥R(ŷrev
i (−1))− ŷfwd

i (1)∥22 = ∥R(ŷrev
i (0))− ŷfwd

i (0)∥22 := b,

Lreverse2 = ∥ŷrev2
i (0)− ŷfwd

i (0)∥22 + ∥ŷrev2
i (1)− ŷfwd

i (1)∥22 = ∥ŷrev2
i (1)− ŷfwd

i (1)∥22 := b,

As shown in Figure 8 where we illustrate the worst case scenario MaxErrorgt_rev =
maxk∈[K] ∥yi(tk)−ŷrev

i (t′K−k)∥2 of TREAT and TRS-ODEN, we can see that in our implementation
the worst error is the maximum of two loss, while the TRS-ODEN’s implementation has the risk of
accumulating the error together, making the worst error being the sum of both:

MaxErrorTREAT = max
{∥

∥R(ŷrev
i (0))− yi(0)

∥

∥

2
,
∥

∥R(ŷrev
i (−1))− yi(1)

∥

∥

2

}

= max
{

a, b
}

,

MaxErrorTRS-ODEN = max
{∥

∥ŷrev2
i (0)− yi(0)

∥

∥

2
,
∥

∥ŷrev2
i (1)− yi(1)

∥

∥

2

}

= max
{

0,
∥

∥R(ŷrev
i (−1))− yi(1)

∥

∥

2

}

=
∥

∥ŷrev2
i (1)− ŷfwd

i (1)
∥

∥

2
+
∥

∥ŷfwd(1)− y(1)
∥

∥

2
= a+ b,

(26)
So it is obvious that MaxErrorTREAT made by TREAT is smaller., which means our model achieves
a smaller error of the maximum distance between the reversal and ground truth trajectory.

B Example of varying dynamical systems

We illustrate the energy conservation and time reversal of the three n-body spring systems used in our
experiments. We use the Hamiltonian formalism of systems under classical mechanics to describe
their dynamics and verify their energy conservation and time-reversibility characteristics.

The scalar function that describes a system’s motion is called the Hamiltonian, H, and is typically
equal to the total energy of the system, that is, the potential energy plus the kinetic energy (North,
2021). It describes the phase space equations of motion by following two first-order ODEs called
Hamilton’s equations:

dq

dt
=

∂H(q,p)

∂p
,
dp

dt
= −∂H(q,p)

∂q
, (27)

where q ∈ R
n,p ∈ R

n, and H : R2n 7→ R are positions, momenta, and Hamiltonian of the system.

Under this formalism, energy conservative is defined by dH/dt = 0, and the time-reversal symmetry
is defined by H(q, p, t) = H(q,−p,−t) (Lamb and Roberts, 1998).

B.1 Conservative and reversible systems.

A simple example is the isolated n-body spring system, which can be described by :

dqi

dt
=

pi

m
dpi

dt
=
∑

j∈Ni

−k(qi − qj),
(28)

where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a set of
momenta of each object, mi is mass of each object, k is spring constant.
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The Hamilton’s equations are:

∂H(q,p)

∂pi

=
dqi

dt
=

pi

m

∂H(q,p)

∂qi

= −dpi

dt
=
∑

j∈Ni

k(qi − qj),
(29)

Hence, we can obtain the Hamiltonian through the integration of the above equation.

H(q,p) =

N
∑

i=1

pi
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
, (30)

Verify the systems’ energy conservation

dH
(

q,p)

dt
=

1

dt
(

N
∑

i=1

pi
2

2mi

)

+
1

dt

(1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2)
= 0, (31)

So it is conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).

H(q,p) =

N
∑

i=1

pi
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
,

H(q,−p) =
N
∑

i=1

(−pi)
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
,

(32)

It is obvious H(q,p) = H(q,−p), so it is reversible

B.2 Non-conservative and reversible systems.

A simple example is a n-body spring system with periodical external force, which can be described
by:

dqi

dt
=

pi

m

dpi

dt
=

N
∑

j∈Ni

−k(qi − qj)− k1 cosωt,
(33)

The Hamilton’s equations are:

∂H(q,p)

∂pi

=
dqi

dt
=

pi

m

∂H(q,p)

∂qi

= −dpi

dt
=
∑

j∈Ni

k(qi − qj) + k1 cosωt,
(34)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N
∑

i=1

pi
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
+

N
∑

i=1

qi ∗ k1 cosωt, (35)

Verify the systems’ energy conservation

dH
(

q,p)

dt
=

1

dt
(

N
∑

i=1

pi
2

2mi

)

+
1

dt

(1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2)
+

1

dt

(

N
∑

i=1

qi ∗ k1 cosωt
)

=0 +
1

dt

(

N
∑

i=1

qik1 cosωt
)

=
(

N
∑

i=1

−ωqik1 sinωt
)

̸= 0

(36)
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So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).

H(q,p) =

N
∑

i=1

pi
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
+

N
∑

i=1

qi ∗ k1 cosωt,

H(q,−p) =

N
∑

i=1

(−pi)
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
+

N
∑

i=1

qi ∗ k1 cosω(−t),

(37)

It is obvious H(q,p, t) = H(q,−p, t), so it is reversible

B.3 Non-conservative and irreversible systems.

A simple example is an n-body spring system with frictions proportional to its velocity,γ is the
coefficient of friction, which can be described by:

dqi

dt
=

pi

m
dpi

dt
= −k0qi − γ

pi

m

(38)

The Hamilton’s equations are:

∂H(q,p)

∂pi

=
dqi

dt
=

pi

m

∂H(q,p)

∂qi

= −dpi

dt
=
∑

j∈Ni

k(qi − qj) + γ
pi

m

(39)

Hence, we can obtain the Hamiltonian through the integration of the above equation:

H(q,p) =

N
∑

i=1

pi
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
+

N
∑

i=1

γ

m

∫ t

0

pi
2

m
dt, (40)

Verify the systems’ energy conservation

dH
(

q,p)

dt
=

1

dt
(

N
∑

i=1

pi
2

2mi
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+
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dt
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∑
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0
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dt)
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γ

m

∫ t

0

pi
2

m
dt)

=
(

N
∑

i=1

γ

m

pi
2

m
) ̸= 0

(41)

So it is non-conservative.

Verify the systems’ time-reversal symmetry We do the transformation R : (q,p, t) 7→ (q,−p,−t).

H(q,p) =

N
∑

i=1

pi
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
+

N
∑

i=1

γ

m

∫ t

0

pi
2

m
dt,

H(q,−p) =
N
∑

i=1

(−pi)
2

2mi
+

1

2

N
∑

i=1

N
∑

j∈Ni

1

2
k(qi − qj)

2
+

N
∑

i=1

γ

m

∫ (−t)

0

pi
2

m
d(−t),

(42)

It is obvious H(q,p, t) ̸= H(q,−p, t), so it is irreversible
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C Dataset

In our experiments, all datasets are synthesized from ground-truth physical law via sumulation. We
generate five simulated datasets: three n-body spring systems under damping, periodic, or no external
force, one chaotic tripe pendulum dataset with three sequentially connected stiff sticks that form and
a chaotic strange attractor. We name the first three as Sipmle Spring, Forced Spring, and Damped
Spring respectively. For multi-agent systems, all n-body spring systems contain 5 interacting balls,
with varying connectivities. Each Pendulum system contains 3 connected stiff sticks. For single-agent
systems, all spring systems contain only one ball. For the chaotic single Attractor, we follow the
setting of (Huh et al., 2020).

For the n-body spring system, we randomly sample whether a pair of objects are connected, and
model their interaction via forces defined by Hooke’s law. In the Damped spring, the objects have an
additional friction force that is opposite to their moving direction and whose magnitude is proportional
to their speed. In the Forced spring, all objects have the same external force that changes direction
periodically. We show in Figure 1(a), the energy variation in both of the Damped spring and Forced
spring is significant. For the chaotic triple Pendulum , the equations governing the motion are
inherently nonlinear. Although this system is deterministic, it is also highly sensitive to the initial
condition and numerical errors (Shinbrot et al., 1992; Awrejcewicz et al., 2008; Stachowiak and
Okada, 2006). This property is often referred to as the "butterfly effect", as depicted in Figure 9.
Unlike for n-body spring systems, where the forces and equations of motion can be easily articulated,
for the Pendulum, the explicit forces cannot be directly defined, and the motion of objects can only
be described through Lagrangian formulations (North, 2021), making the modeling highly complex
and raising challenges for accurate learning. We simulate the trajectories by using Euler’s method for
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Figure 9: Illustration to show the pendulum is highly-sensitive to initial states

n-body spring systems and using the 4th order Runge-Kutta (RK4) method for the Pendulum and
Attractor . For all spring systems and Pendulum, We integrate with a fixed step size and subsample
every 100 steps. For training, we use a total of 6000 forward steps. To generate irregularly sampled
partial observations, we follow (Huang et al., 2020) and sample the number of observations n from a
uniform distribution U(40, 52) and draw the n observations uniformly for each object. For testing, we
additionally sample 40 observations following the same procedure from PDE steps [6000, 12000],
besides generating observations from steps [1, 6000]. The above sampling procedure is conducted
independently for each object. We generate 20k training samples and 5k testing samples for each
dataset. For Attractor, we integrate a total of 600 forward steps for training and subsample every
10 steps. For testing, we additionally sample 40 observations from step [600,1200].The irregularly
sampled partial observations generation is the same as above. We generate 1000 training samples
and 50 testing samples following (Huh et al., 2020). Therefore, for all datasets, condition length is
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60 steps and prediction length is 40s steps. The features (position/velocity) are normalized to the
maximum absolute value of 1 across training and testing datasets.

We also compute the Maximum Lyapunov Exponent (MLE) to assess the chaos level of the systems,
using the formula:

λ = maxt→inf(
1

t
ln

||δ(t)||
||δ(0)|| ).

We set fixed initial values for each dataset and generate 10 trajectories by perturbing the initial values
with random noise (0, 0.0001). We calculate the Maximum Lyapunov Exponent (MLE) between any
two trajectories. Finally, we compute the average and std of MLE from all pairs to gauge the chaotic
behavior of each dataset. The data is presented in the table below:

Table 2: MLE of different Multi-agent Systems

Dataset Simple Spring Forced Spring Damped Spring Pendulum

MLE(in 60 steps) 0.4031 ± 0.3944 1.0087± 1.0577 0.6307 ± 0.7065 34.1832 ± 30.1846

From the table, it’s evident that the order of MLE values is: Pendulum » three Spring datasets.
This observation is consistent with the evaluation results based on MSE presented in our previous
responses in Table 3 which indicates that as the prediction length(steps*step size) increases, there is a
more significant performance degradation of all models on Pendulum dataset.

In the following subsections, we show the dynamical equations of each dataset in detail.

C.1 Spring Systems

C.1.1 Simple Spring

The dynamical equations of simple spring are as follows:

dqi

dt
=

pi

m

dpi

dt
=

N
∑

j∈Ni

−k(qi − qj)
(43)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1, the spring constantk = 0.1.

C.1.2 Damped Spring

The dynamical equations of damped spring are as follows:

dqi

dt
=

pi

m
dpi

dt
=
∑

j∈Ni

−k(qi − qj)− γ
pi

m

(44)

where where q = (q1,q2, · · · ,qN) is a set of positions of each object, p = (p1,p2, · · · ,pN) is a
set of momenta of each object, We set the mass of each object m = 1, the spring constantk = 0.1,
the coefficient of friction γ = 10.

C.1.3 Forced Spring

The dynamical equations of forced spring system are as follows:

dqi

dt
=

pi

m

dpi

dt
=

N
∑

j∈Ni

−k(qi − qj)− k1 cosωt,
(45)
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where where q = (q1,q2, · · · ,qN) is a set of positions of each object , p = (p1,p2, · · · ,pN) is a
set of momenta of each object. We set the mass of each object m = 1 , the spring constantk = 0.1,
the external strength k1 = 10 and the frequency of variation ω = 1

We simulate the positions and momentums of three spring systems by using Euler methods as follows:

qi(t+ 1) = qi(t) +
dqi

dt
∆t

pi(t+ 1) = pi(t) +
dpi

dt
∆t

(46)

where dqi

dt and dpi

dt were defined as above for each datasets, and ∆t = 0.001 is the integration steps.

C.2 Chaotic Pendulum

In this section, we demonstrate how to derive the dynamics equations for a chaotic triple pendulum
using the Lagrangian formalism.

The moment of inertia of each stick about the centroid is

I =
1

12
ml2 (47)

The position of the center of gravity of each stick is as follows:

x1 =
l

2
sin θ1, y1 = − l

2
cos θ1

x2 = l(sin θ1 +
1

2
sin θ2), y2 = −l(cos θ1 +

1

2
cos θ2)

x3 = l(sin θ1 + sin θ2 +
1

2
sin θ3), y3 = −l(cos θ1 + cos θ2 +

1

2
cos θ3)

(48)

The change in the center of gravity of each stick is:

ẋ1 =
l

2
cos θ1 · θ̇1, ẏ1 =

l

2
sin θ1 · θ̇1

ẋ2 = l(cos θ1 · θ̇1 +
1

2
cos θ2 · θ̇2), ẏ2 = l(sin θ1 · θ̇1 +

1

2
sin θ2 · θ̇2)

ẋ3 = l(cos θ1 · θ̇1 + cos θ2 · θ̇2 +
1

2
cos θ3 · θ̇3), ẏ3 = l(sin θ1 · θ̇1 + sin θ2 · θ̇2 +

1

2
sin θ3 · θ̇3)

(49)

The Lagrangian L of this triple pendulum system is:

L =T − V

=
1

2
m(ẋ1

2 + ẋ2
2 + ẋ3

2 + ẏ1
2 + ẏ2

2 + ẏ3
2) +

1

2
I(θ̇1

2
+ θ̇2

2
+ θ̇3

2
)−mg(y1 + y2 + y3)

=
1

6
ml(9θ̇2θ̇1l cos(θ1 − θ2) + 3θ̇3θ̇1l cos (θ1 − θ3) + 3θ̇2θ̇3l cos (θ2 − θ3) + 7θ̇21l + 4θ̇22l + θ̇23l

+ 15g cos (θ1) + 9g cos (θ2) + 3g cos (θ3))

(50)

The Lagrangian equation is defined as follows:

d

dt

∂L
∂θ̇

− ∂L
∂θ

= 0 (51)

and we also have:
∂L
∂θ̇

=
∂T

∂θ̇
= p

ṗ =
d

dt

∂L
∂θ̇

=
∂L
∂θ

(52)

where p is the Angular Momentum.
We can list the equations for each of the three sticks separately:

p1 =
∂L
∂θ̇1

ṗ1 =
∂L
∂θ1

p2 =
∂L
∂θ̇2

ṗ2 =
∂L
∂θ2

p3 =
∂L
∂θ̇3

ṗ3 =
∂L
∂θ3

(53)
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Finally, we have :
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






























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





θ̇1 = 6(9p1 cos(2(θ2−θ3))+27p2 cos(θ1−θ2)−9p2 cos(θ1+θ2−2θ3)+21p3 cos(θ1−θ3)−27p3 cos(θ1−2θ2+θ3)−23p1)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇2 = 6(27p1 cos(θ1−θ2)−9p1 cos(θ1+θ2−2θ3)+9p2 cos(2(θ1−θ3))−27p3 cos(2θ1−θ2−θ3)+57p3 cos(θ2−θ3)−47p2)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

θ̇3 = 6(21p1 cos(θ1−θ3)−27p1 cos(θ1−2θ2+θ3)−27p2 cos(2θ1−θ2−θ3)+57p2 cos(θ2−θ3)+81p3 cos(2(θ1−θ2))−143p3)
ml2(81 cos(2(θ1−θ2))−9 cos(2(θ1−θ3))+45 cos(2(θ2−θ3))−169)

ṗ1 = − 1
2ml

(

3θ̇2θ̇1l sin (θ1 − θ2) + θ̇1θ̇3l sin (θ1 − θ3) + 5g sin (θ1)
)

ṗ1 = − 1
2ml

(

−3θ̇1θ̇2l sin (θ1 − θ2) + θ̇2θ̇3l sin (θ2 − θ3) + 3g sin (θ2)
)

ṗ1 = − 1
2ml

(

θ̇1θ̇3l sin (θ1 − θ3) + θ̇2θ̇3l sin (θ2 − θ3)− g sin (θ3)
)

(54)

We simulate the angular of the three sticks by using the Runge-Kutta 4th Order Method as follows:

∆θ1(t) = θ̇(t,θ(t)) ·∆t

∆θ2(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ1(t)

2
) ·∆t

∆θ3(t) = θ̇(t+
∆t

2
,θ(t) +

∆θ2(t)

2
) ·∆t

∆θ4(t) = θ̇(t+∆t,θ(t) + ∆θ3(t)) ·∆t

∆θ(t) =
1

6
(∆θ1(t) + ∆θ2(t) + ∆θ3(t) + ∆θ4(t))

θ(t+ 1) = θ(t) + ∆θ(t)

(55)

where θ̇ was defined as above , and ∆t = 0.0001 is the integration steps.

C.3 Chaotic Strange Attractor

The dynamical equations of this reversible strange attractor are as follows:

dx

dt
= 1 + yz,

dy

dt
= −xz,

dz

dt
= y2 + 2yz,

x, y, x ∈ R

(56)

The above equations can be presented as (ẋ(t), ẏ(t), ż(t)) = Dynamic(x(t), y(t), z(t)).
We simulate K(t) = (x(t), y(t), z(t)) by using the Runge-Kutta 4th Order Method as follows:

∆K1(t) = Dynamic(K(t)) ∗∆t

∆K2(t) = Dynamic(K(t) +
∆K1(t)

2
) ∗∆t

∆K3(t) = Dynamic(K(t) +
∆K2(t)

2
) ∗∆t

∆K4(t) = Dynamic(K(t) + ∆K3(t)) ∗∆t

∆K(t) =
1

6
(∆K1(t) + ∆K2(t) + ∆K3(t) + ∆K4(t))

K(t+ 1) = K(t) + ∆K(t)

(57)

We sampling z(t0) randomly from uniform distribution [1, 3] while fixing x(t0) = y(t0) = 0. We set
the trajectory lengths of both training and test dataset to 600, with regular time-step size ∆t = 0.03
and the sample frequency of 10. We add Gaussian noise 0.05n, n ∼ N (0, 1) to training trajectories.
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C.4 Human Motion

For the real-world motion capture dataset(Carnegie Mellon University, 2003), we focus on the
walking sequences of subject 35. Each sample in this dataset is represented by 31 trajectories, each
corresponding to the movement of a single joint. For each joint, we first randomly sample the number
of observations from a uniform distribution U(30, 42) and then sample uniformly from the first 50
frames for training and validation trajectories. For testing, we additionally sampled 40 observations
from frames [51, 99].We split different walking sequences into training (15 trials) and test sets (7
trials). For each walking sequence, we further split it into several non-overlapping small sequences
with maximum length 50 for training, and maximum length 100 for testing. In this way, we generate
total 120 training samples and 27 testing samples. We normalize all features (position/velocity) to
maximum absolute value of 1 across training and testing datasets.

D Model Details

In the following we introduce in details how we implement our model and each baseline.

D.1 Initial State Encoder

For multi-agent systems, the initial state encoder computes the latent node initial states zi(t) for all
agents simultaneously considering their mutual interaction. Specifically, it first fuses all observations
into a temporal graph and conducts dynamic node representation through a spatial-temporal GNN as
in (Huang et al., 2020):

hl+1
j(t) = hl

j(t) + σ





∑

i(t′)∈Nj(t)

αl
i(t′)→j(t) ×Wvĥ

l−1
i(t′)





αl
i(t′)→j(t) =

(

Wkĥ
l−1
i(t′)

)T (

Wqh
l−1
j(t)

)

· 1√
d
, ĥl−1

i(t′) = hl−1
i(t′) + TE(t′ − t)

TE(∆t)2i = sin

(

∆t

100002i/d

)

, TE(∆t)2i+1 = cos

(

∆t

100002i/d

)

,

(58)

where || denotes concatenation; σ(·) is a non-linear activation function; d is the dimension of node
embeddings. The node representation is computed as a weighted summation over its neighbors
plus residual connection where the attention score is a transformer-based (Vaswani et al., 2017)
dot-product of node representations by the use of value, key, query projection matrices Wv,Wk,Wq .

Here hl
j(t) is the representation of agent j at time t in the l-th layer. i(t′) is the general index for

neighbors connected by temporal edges (where t′ ̸= t) and spatial edges (where t = t′ and i ̸= j).
The temporal encoding (Hu et al., 2020) is added to a neighborhood node representation in order
to distinguish its message delivered via spatial and temporal edges. Then, we stack L layers to get
the final representation for each observation node: ht

i = hL
i(t). Finally, we employ a self-attention

mechanism to generate the sequence representation ui for each agent as their latent initial states:

ui =
1

K

∑

t

σ
(

aT
i ĥ

t
iĥ

t
i

)

, ai = tanh

((

1

K

∑

t

ĥt
i

)

Wa

)

, (59)

where ai is the average of observation representations with a nonlinear transformation Wa and

ĥt
i = ht

i + TE(t). K is the number of observations for each trajectory. Compared with recurrent
models such as RNN, LSTM (Sepp and Jürgen, 1997), it offers better parallelization for accelerating
training speed and in the meanwhile alleviates the vanishing/exploding gradient problem brought by
long sequences. For single-agent Systems, there only left the self-attention mechanism component.

Given the latent initial states, the dynamics of the whole system are determined by the ODE function
g which we parametrize as a GNN as in (Huang et al., 2020) for Multi-Agent Systems to capture the
continuous interaction among agents. For single-agent systems, we only include self-loop edges in
the graph G = (V, E), which makes the ODE function g a simple MLP.

We then employ Multilayer Perceptron (MLP) as a decoder to predict the trajectories ŷi(t) from the
latent states zi(t).
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z1(t), z2(t), z3(t) · · · zN (t) = ODEsolver(g, [z1(t0), z2(t0) · · · zN (t0)], (t0, t1 · · · tK))

ŷi(t) = fdec(zi(t))
(60)

D.2 Implementation Details

TREAT

For multi-agent systems, our implementation of TREAT follows GraphODE pipeline. We implement
the initial state encoder using a 2-layer GNN with a hidden dimension of 64 across all datasets.
We use ReLU for nonlinear activation. For the sequence self-attention module, we set the output
dimension to 128. The encoder’s output dimension is set to 16, and we add 64 additional dimensions
initialized with all zeros to the latent states zi(t) to stabilize the training processes as in (Huang et al.,
2021). The GNN ODE function is implemented with a single-layer GNN from (Kipf et al., 2018)
with hidden dimension 128. For single-agent systems, we only include self-loop edges in the graph
G = (V, E), which makes the ODE function g a simple MLP. To compute trajectories, we use the
Runge-Kutta method from torchdiffeq python package s(Chen et al., 2021) as the ODE solver and a
one-layer MLP as the decoder.

We implement our model in pytorch. Encoder, generative model, and the decoder parameters are
jointly optimized with AdamW optimizer (Loshchilov and Hutter, 2019) using a learning rate of
0.0001 for spring datasets and 0.00001 for Pendulum. The batch size for all datasets is set to 512.

TREATLrev=gt-rev and TREATLrev=rev2 share the same architecture and hyparameters as TREAT,
with different implementations of the loss function. In TREATLrev=gt-rev, instead of comparing
forward and reverse trajectories, we look at the L2 distance between the ground truth and reverse
trajectories when computing the reversal loss.

For TREATLrev=rev2, we implement the reversal loss following (Huh et al., 2020) with one difference:
we do not apply the reverse operation to the momentum portion of the initial state to the ODE function.
This is because the initial hidden state is an output of the encoder that mixes position and momentum
information. Note that we also remove the additional dimensions to the latent state that TREAT has.
To reproduce our model’s results, we provide our code implementation link here.

LatentODE

We implement the Latent ODE sequence to sequence model as specified in (Rubanova et al., 2019).
We use a 4-layer ODE function in the recognition ODE, and a 2-layer ODE function in the generative
ODE. The recognition and generative ODEs use Euler and Dopri5 as solvers (Chen et al., 2021),
respectively. The number of units per layer is 1000 in the ODE functions and 50 in GRU update
networks. The dimension of the recognition model is set to 100. The model is trained with a learning
rate of 0.001 with an exponential decay rate of 0.999 across different experiments. Note that since
latentODE is a single-agent model, we compute the trajectory of each object independently when
applying it to multi-agent systems.

HODEN

To adapt HODEN, which requires full initial states of all objects, to systems with partial observations,
we compute each object’s initial state via linear spline interpolation if it is missing. Following the
setup in (Huh et al., 2020), we have two 2-layer linear networks with Tanh activation in between as
ODE functions, in order to model both positions and momenta. Each network has a 1000-unit layer
followed by a single-unit layer. The model is trained with a learning rate of 0.00001 using a cosine
scheduler.HODEN is a single-agent model, we compute the trajectory of each object independently
when applying it to multi-agent systems.

TRS-ODEN

Similar to HODEN, we compute each object’s initial state via linear spline interpolation if it is
missing. As in (Huh et al., 2020), we use a 2-layer linear network with Tanh activation in between as
the ODE functions, and the Leapfrog method for solving ODEs. The network has 1000 hidden units
and is trained with a learning rate of 0.00001 using a cosine scheduler. TRS-ODEN is a single-agent
model, we compute the trajectory of each object independently when applying it to multi-agent
systems.
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TRS-ODENGNN

For TRSODENGNN, we substitute the ODE function in TRS-ODEN with a GraphODE network. The
GraphODE generative model is implemented with a single-layer GNN with hidden dimension 128.
As in HODEN and TRS-ODEN, we compute each object’s missing initial state via linear spline
interpolation and the Leapfrog method for solving ODE. For all datasets, we use 0.5 as the coefficient
for the reversal loss in (Huh et al., 2020), and 0.0002 as the learning rate under cosine scheduling.

LGODE

Our implementation follows (Huang et al., 2020) except we remove the Variational Autoencoder
(VAE) from the initial state encoder. Instead of using the output from the encoder GNN as the
mean and std of the VAE, we directly use it as the latent initial state. That is, the initial states are
deterministic instead of being sampled from a distribution. We use the same architecture as in TREAT
and train the model using an AdamW optimizer with a learning rate of 0.0001 across all datasets.

E Additional Experiments

E.1 Comparison of different solvers

We next show our model’s sensitivity regarding solvers with different precisions. Specifically, we
compare against Euler and Runge-Kutta (RK4) where the latter is a higher-precision solver. We show
the comparison against LGODE and TREAT in Table 3.

We can firstly observe that TREAT consistently outperforms LGODE, which is our strongest baseline
across different solvers and datasets, indicating the effectiveness of the proposed time-reversal
symmetry loss. Secondly, we compute the improvement ratio as LGODE−TREAT

LGODE . We can see that
the improvement ratios get larger when using RK4 over Euler. This can be understood as our reversal
loss is minimizing higher-order Tayler expansion terms (Theoreom 3.1) thus compensating numerical
errors brought by ODE solvers.

Table 3: Evaluation results on MSE (10−2) over different solvers for multi-agent systems.

Dataset Simple Spring Forced Spring Damped Spring Pendulum
Solvers Euler RK4 Euler RK4 Euler RK4 Euler RK4

LGODE 1.8443 1.7429 2.0462 1.8929 1.1686 0.9718 1.4634 1.4156
TREAT 1.4864 1.1178 1.6058 1.4525 0.8070 0.5944 1.3093 1.2527
% Improvement 19.4057 35.8655 21.5228 23.2659 30.9430 38.8352 10.5303 11.5075

E.2 Evaluation across observation ratios.

For LG-ODE and TREAT, the encoder computes the initial states from observed trajectories. To show
models’ sensitivity towards data sparsity, we randomly mask out 40% and 80% historical observations
and compare model performance. As shown in Table 4, when changing the ratios from 80% to 40%,
we observe that TREAT has a smaller performance drop compared with LG-ODE, especially on the
more complex Pendulum dataset (LG-ODE decreases 22.04% while TREAT decreases 1.62%). This
indicates that TREAT is less sensitive toward data sparsity.

Table 4: Results of varying observation ratios on MSE (10−2) of multi-agent datasets.

Dataset Simple Spring Forced Spring Damped Spring Pendulum
Observation Ratios 0.8 0.4 0.8 0.4 0.8 0.4 0.8 0.4

LG-ODE 1.7054 1.6889 1.7554 2.0370 0.9305 1.0217 1.4314 1.7469
TREAT 1.1176 1.1429 1.3611 1.5109 0.6920 0.6964 1.2309 1.2110

F Discussion about Reversible Neural Networks

In literature, there is another line of research about building reversible neural networks (NNs). For
example, (Chang et al., 2018) formulates three architectures for reversible neural networks to address
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the stability issue and achieve arbitrary deep lengths, motivated by dynamical system modeling. (Liu
et al., 2019) employs normalizing flow to create a generative model of graph structures. They all
propose novel architectures to construct reversible NN where intermediate states across layer depths
do not need to be stored, thus improving memory efficiency.

However, we’d like to clarify that reversible NNs (RevNet) do not resolve the time-reversal symmetry
problem that we’re studying. The core of RevNet is that input can be recovered from output via a
reversible operation (which is another operator), similar as any linear operator W (·) have a reversed
projector W−1(·). In the contrary, what we want to study is that the same operator can be used for
both forward and backward prediction over time, and keep the trajectory the same. That being said,
to generate the forward and backward trajectories, we are using the same g(·), instead of g(·), g−1(·)
respectively.

In summary, though both reversible NN and time-reversal symmetry share similar insights and
intuition, they’re talking about different things: reversible NNs make every operator g(·) having a

g−1(·), while time-reversible assume the trajectory get from ẑfwd = g(z) and ẑbwd = −g(z) to be
closer. Making g to be reversible cannot make the system to be time-reversible.

G Impact Statement

This paper presents work whose goal is to advance the field of Machine Learning. TREAT is trained
upon physical simulation data (e.g., , spring and pendulum) and implemented by public libraries in
PyTorch. During the modeling, we neither introduces any social/ethical bias nor amplify any bias in
the data. There are many potential societal consequences of our work, none which we feel must be
specifically highlighted here.
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