
 
 

Abstract—This study introduces a comparative evaluation 
and ranking system for low-level automated vehicles (LAVs) 
using real-world trajectory data. In the framework of the 
proposed evaluation system, different LAVs' behaviors are first 
modeled based on their trajectory data. Test scenarios are 
designed according to the specific test goals. Subsequently, 
simulation tests are then conducted using extracted vehicle 
behavior models in the designed traffic scenario. Several 
measurements in terms of safety, environmental impact, and 
mobility efficiency are used to evaluate and rank the 
performance of different types of LAVs. In numerical studies, 
the Long Short-Term Memory (LSTM) models are used to 
extract LAVS’ behavior features from the OpenACC dataset, 
demonstrating high accuracy in vehicle motion prediction and 
specificity among different types of LAVs. Simulation tests on a 
real-world road corridor validate the applicability of the 
proposed framework. As more data sources on LAVs become 
available, the proposed evaluation and ranking system has the 
potential to inform customers and government agencies during 
decision-making. 

 
 

I. INTRODUCTION 

Automated vehicles (AVs) have garnered significant 
attention in recent years as a transformative technology with 
the potential in reducing environmental impact and improving 
driving experience by minimizing human error and optimizing 
vehicle operation. Particularly, low-level automated vehicles 
(LAVs), which are equipped with Level 1-2 automation 
features as defined by the Society of Automotive Engineers 
(SAE), are becoming increasingly common. Nowadays, 92% 
of new cars have Adaptive Cruise Control (ACC; Level 1 
automation), and 50% of new cars have lateral lane control 
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(Level 2 automation). The market penetration rate of 
Advanced Driver Assistance Systems (ADAS)-equipped 
vehicles is projected to increase from 2% in 2015 to 40% in 
2040 [1]. 

With the gradual emergence of LAVs on road networks, 
conducting thorough evaluations of these vehicles has become 
crucial [2]. Extensive simulations and field tests have been 
conducted in both the research and industry fields in terms of 
safety [3], mobility efficiency [3, 4], and environmental 
impact [5, 6]. One common method is to conduct experiments 
in specific, controlled scenarios, which allows for a large 
amount of repeatable testing [7]. These evaluation methods 
select representative driving conditions of various category 
and test the passability and detailed performance of the AVs 
during the testing process [7, 8]. These methods focus on a 
limited selection of scenarios with specific parameters, fail to 
reflect the comprehensive evaluation results under various 
real-world conditions [10]. Another method is to test AVs in 
comprehensive public road scenarios for long-term continuous 
random testing [9, 10]. However, due to the spatiotemporal 
complexity and high interactivity of real-world naturalistic 
driving environments, sometimes hundreds of billions of miles 
would need to be tested. Recent studies have made significant 
progress in addressing this challenge utilizing technologies 
including important sampling and dense reinforcement 
learning [13]. In addition to testing under various driving 
scenarios, sub-system failure risk assessment is also 
investigated to evaluate the reliability and robustness of AVs 
[11, 12].
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However, existing studies usually focus on developing 
tests for individual types of AVs, lacking a comparative 
evaluation across different types of AVs. A major challenge of 
the comparative evaluation lies in the limited availability of 
detailed control logic for different types of AVs. Existing 
scenario-based test methods typically require precise 
knowledge of a certain AV's driving strategies [15]. However, 
in comparative evaluations, the exact control strategies of all 
types of AVs may not always be accessible due to commercial 
secrecy concerns [16]. 

Furthermore, the behavior of AVs during controlled tests 
may differ from real-world driving conditions due to various 
factors such as the test environment, the conditions of AVs, or 
the interaction between AVs and other road users. This 
discrepancy between controlled tests and real-world 
conditions could potentially undermine the credibility of the 
test results, as they may not accurately represent the 
performance of AVs in everyday driving scenarios. 

Thanks to the increasing number of AVs in road networks, 
the availability of extensive vehicle trajectory data provides a 
novel avenue for a comprehensive evaluation of different AV 
types. By extracting driving behavior models based on 
trajectory data recorded when AVs are operating in ADAS 
mode, it becomes possible to build simulations that accurately 
represent their behavior. These simulations can then be 
employed to test and evaluate various AV types, enabling 
comparison and ranking of their performance across multiple 
dimensions. 

The objective of this paper is to propose a methodology for 
the comprehensive and fair evaluation of different types of 
LAVs, without relying on prior knowledge of their specific 
control logic. First, we construct behavior models of different 
types of LAVs leveraging their trajectory data. Next, we 
develop realistic driving scenarios according to the test goals. 
Finally, we evaluate and rank the performance of different 
types of LAVs in these scenarios, using various measurements. 

The remainder of this paper is organized as follows. 
Section II proposes the model framework. Section III provides 
the detailed process of trajectory construction, simulation 
scenario development, and evaluation processes. Section IV 
presents the results of numerical studies. Section V provides 
concluding remarks and future research directions. 

II. FRAMEWORK 

This section states the trajectory-based LAV performance 
ranking problem and introduces the proposed model 
framework. This study aims to evaluate and rank different 
types of LAVs in terms of safety, efficiency, and eco-
performance, using their real-world trajectory data as input. As 
shown in Figure 1, the proposed trajectory-based LAV 
performance ranking system can be divided into 3 key 
modules: trajectory construction, scenario development, and 
performance evaluation. 

 
Figure 1. The model framework of the trajectory-based performance 

ranking system of LAVs. 

The trajectory construction module aims to derive vehicle 
behavior models for different types of LAVs based on their 
trajectory data. Let 𝑡𝑡 be the index of the time step. Let 𝑎𝑎𝑡𝑡𝜔𝜔 and 
𝑠𝑠𝑡𝑡𝜔𝜔 be the action and the states of LAV 𝜔𝜔 at time step 𝑡𝑡. The 
output of the trajectory construction module is a certain type 
of LAVs’ action function 𝑓𝑓𝜔𝜔 , as shown in Figure 1. In this 
study, only car-following behaviors are modeled for 
simplification. A long short-term memory (LSTM) model [17] 
is adopted to capture LAVs’ acceleration rate at the next time 
step 𝑎𝑎𝑡𝑡 , based on the real-time speed of the ego vehicle, its 
leading vehicle, and the distance between them. The lane-
changing choice and vehicles’ driving strategies during lane-
changing are simulated with default models. The trajectory 
construction does not need any prior information on LAV’s 
control logic. 

The scenario development module designs simulation 
scenarios for LAV performance evaluation according to the 
test goals. For instance, comprehensive scenarios can be used 
for long-term efficiency and eco-performance tests. Critical 
scenarios can be designed for safety tests to reduce the 
computational costs of evaluation. The scenario development 
module provides parameters about road elements, traffic 
demands, and traffic control strategies for the simulation 
scenarios. In this study, all vehicles are assumed to be replaced 
by one type of LAV in simulation to avoid the comprehensive 
effects of the background vehicles’ behaviors.  

Finally, the performance of different types of LAVs is 
tested in simulation, where vehicles’ driving behaviors are 
modeled by the extracted action functions. Quantitative 
measurements are designed to examine the performance of 
different types of LAVs under simulation scenarios in terms of 
safety, mobility, and other aspects. From this, comparison and 
ranking conclusions can be drawn. 

III. METHODOLOGY 

A. Trajectory construction  
First, we need to capture the driving behaviors of LAVs. In 

this study, we focus on car-following behavior to demonstrate 
the evaluation framework. There are various types of models 
to depict car-following behaviors in the existing literature. In 
this study, an LSTM model is adopted to model LAVs’ 
longitudinal driving behavior at discrete time steps. The 
structure of the LSTM model is illustrated in Figure 2. The 
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input of the LSTM model at time step 𝑡𝑡 − 1 is the traffic states 
of a LAV over historic time steps in [𝑡𝑡 − ℎ, 𝑡𝑡 − 1], including 
the speed of the ego vehicle 𝑣𝑣𝑡𝑡  its leading vehicle, and the 
distance between them 𝑑𝑑𝑡𝑡 at each time step. And the output is 
the LAV’s acceleration rate at the next step, i.e., 𝑎𝑎𝑡𝑡. 

Some commonly used configurations are implemented in 
the LSTM model. A normalization layer is incorporated prior 
to the LSTM layers to standardize the input data, while a 
denormalization layer is applied after the LSTM layers to 
revert the output data to its original scale. The last hidden state 
in the sequence of the LSTM is used as the model's prediction.  

 
Figure 2. The structure of the LSTM model. 

The advantage of the trajectory-based vehicle behavior 
modeling approach is that it does not require any prior 
information of vehicle control logic. This makes the 
framework applicable for comparing a variety of vehicle types. 
In addition, the proposed framework is flexible and can 
accommodate other types of models based on specific 
requirements. 

B. Scenario development 
The design of test scenarios for LAV evaluation is a critical 

aspect of the ranking system, providing a series of parameters 
that describe the test road segments, traffic control strategies 
[2], and so forth. Typically, the action mode of vehicles is also 
included in the scenario design. However, in this study, 
vehicles operate according to the extracted behavior model. 

The design of test scenarios is highly dependent on the 
specific test purpose. For safety testing of LAVs, a large 
number of different test experiments are required if only 
normal traffic scenarios are adopted due to the rarity of safety-
critical events [18]. A potential solution to this challenge is to 
choose safety-critical scenarios with artificial intelligence-
based importance sampling [19]. This approach shows great 
potential to accelerate the evaluation process by multiple 
orders of magnitude, making it feasible to conduct 
comprehensive safety evaluations despite the rarity of safety-
critical events. 

For evaluating the mobility and environmental cost of 
LAVs, adopting more comprehensive scenarios can provide a 
better representation of real-world conditions. In this case, we 
can design scenarios based on real-world road networks and 
traffic demand. These scenarios would simulate a wide range 
of driving conditions and situations, allowing us to assess the 
overall performance of LAVs. Besides, using real-world road 

networks and traffic demand in the test scenarios allows the 
comparison of the different LAVs’ performances in different 
cities, and the identification of the best suited type of LAV to 
the unique conditions of each city. Further, it provides insights 
into the relationship between vehicle performance and the 
structure of the road network. 

C. Simulation and evaluation 
Following the extraction of the vehicle motion model and 

the design of test scenarios, the corresponding simulations are 
conducted to assess the performance of the LAVs. The vehicle 
behavior models are trained to predict vehicles’ actions at the 
next time step. They are used in the simulation in a recursive 
approach for multiple time step prediction, which means the 
predicted vehicle behaviors at each time step become the basis 
for future predictions of vehicle behaviors. This "open-loop" 
approach can lead to larger prediction errors compared to one-
step predictions due to the cumulative effect of these errors 
over multiple time steps. To mitigate this, the feedback effect 
in the extracted car following model (i.e., vehicles tend to 
accelerate when the headway to the lead vehicle is too far, and 
vice versa) is utilized to maintain realistic vehicle trajectory 
prediction over long durations.  

A series of measures are developed to evaluate various 
aspects of LAV performance, quantifying the performance of 
various types of LAVs in a consistent and comparable way. 
Surrogate measures can be used for safety evaluation. Finally, 
we aim to integrate these different aspects into a single overall 
result, e.g., to convert the performance measures into a 
monetary value, which provides a common unit of 
measurement for comparison. This approach allows us to rank 
different types of LAVs based on their overall performance, 
providing a comprehensive and comparative evaluation of 
different types of LAVs. 

IV. EXPERIMENTS 

A. Trajectory construction  
The OpenACC dataset, collected by the Joint Research 

Centre, is adopted to extract LAVs’ behavior models in this 
study [5]. This dataset includes trajectories from several 
different types of LAVs with ACC engaged on a ring road. 
Vehicles’ position and speed are collected at 0.1-second 
intervals. LSTM models are developed as described above. 
The length of a time step is set at 0.1 s, and the horizon length 
of the data input is set as 15, i.e., 1.5 s. The Adam optimization 
algorithm [20] is utilized in the training process. The initial 
learning rate, set at 0.005, is designed to decrease during the 
training process. The test results demonstrate the promising 
accuracy of the proposed LSTM model in the "open-loop" 
prediction of LAVs’ longitudinal positions, achieving a root 
mean square error (RMSE) of less than 3 m. 

In addition to prediction accuracy, it is crucial to 
demonstrate the specificity of the trained LSTM models for 
different types of LAVs, which indicates that a model trained 
for one type of LAV may not be suitable for predicting the 
behavior of other types of LAVs. The specificity of the 
vehicle behavior model is essential for comparing the 
performance of different types of LAVs in the performance 
evaluation. Therefore, we employ four LSTM models, each 
trained on data from a distinct type of LAV, to predict the 
behaviors of the corresponding LAV and the other LAVs. As 
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shown in Figure 3, the matrix below presents the RMSEs in 
the predictions made by different models for various LAVs. 
The results affirm that the proposed LSTM model can not 
only accurately predict the behavior of the corresponding 
LAV but also discern the behavioral differences among 
various LAVs. 

 
Figure 3. Model specificity for different types of LAV. 

B. Simulation development 
Traffic simulation is further developed in Simulation of 

Urban MObility (SUMO) [21] based on a part of University 
Avenue in front of our university in Madison, Wisconsin, as 
shown in Figure 4. The configuration of the road network is 
established with assistance from the OpenStreetMap [22]. 

 

 
Figure 4. Simulation scenario in SUMO. 

The test corridor encompasses six signalized intersections, 
which provide a comprehensive environment with traffic 
shock waves for the test LAVs. Fixed signal timings are 
applied at these intersections, and the test focuses on three 
westward lanes on the main line. The traffic demand is set at 
3,600 passenger car units per hour (pcu/h) across the three 
lanes. In each experiment, all vehicles are set as the same type 
of LAV, and their behaviors are simulated with the extracted 
LSTM model. Five random seeds are used in the simulation 
for each type of LAV, considering the stochastic traffic 
environment. 

C. Results 
This section evaluates the performance of the 4 types of 

LAVs mentioned in terms of mobility, safety, and 
environmental effects. 

Figure 5 shows the distribution of LAVs’ travel time in 
the simulation experiments for 4 different types of LAVs. The 
distribution is presented at intervals of 10 s ranging from 60 s 
to 150 s. The vertical axis in Figure 6 represents the 

proportion of LAVs whose travel times fall within the 
corresponding intervals. And a smooth curve is used to 
connect the distribution bars for ease of comparison. The 
results indicate that a larger proportion of vehicles exhibit 
shorter travel times in the experiments for LAVs of type C 
and D, demonstrating their potential in mobility performance. 

 
Figure 5. Distribution of different types of LAVs’ travel time. 

For the safety test, we extract the minimum time-to-
collision (TTC) [23] for each LAV with its leading vehicle 
during the simulation experiment, which represents its most 
critical safety condition. Figure 6 illustrates the distribution of 
these minimum TTC values across different LAVs. The 
plotting principle for this distribution is similar to that in  
Figure 5, with intervals of 1 s ranging from 0 to 20 s. The 
results indicate that LAVs of type B and C may maintain 
larger gaps with their leaders. In contrast, the driving models 
of LAVs of type A and D are more likely to result in vehicles 
falling into conditions with shorter TTC.  

Note that the vehicle behavior models are extracted based 
on limited data in this study, without any input regarding LAV 
behavior under dangerous conditions, such as crashes. 
Therefore, these models may not fully simulate safety-critical 
behaviors that rarely occur. The experiment primarily 
demonstrates the applicability of the proposed framework in 
safety testing. It can be seen in Figure 6 that even in the most 
dangerous conditions, the TTC remains larger than 2 seconds. 
Additional data and experiments are necessary for more 
dependable safety evaluations. 
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Figure 6. Distribution of different types of LAVs’ minimum time-to-

collision (TTC). 

Figure 7 shows the distribution of LAVs’ fuel 
consumption efficiency in the simulation experiments for 4 
different types of LAVs. The fuel consumption model for the 
passenger car in reference [21] is applied for the estimation of 
fuel economy. The distribution is calculated with intervals of 
1 L/100km ranging from 0 to 18 L/100km. The results 
indicate that LAVs of type B and C have significant 
advantages in terms of fuel consumption efficiency than 
LAVs A and D. More LAVs of type B and C can traverse the 
corridor with lower energy consumption. 

 
Figure 7. Distribution of different types of LAVs’ fuel consumption 

efficiency. 

To further evaluate the driving experience of different 
LAVs, we use the standard deviation of vehicle speeds to 
represent the fluctuation in driving conditions. Figure 8 shows 
the distribution of these speed standard deviations, with 
intervals of 1 m/s ranging from 0 to 8 m/s. The results reveal a 
trend similar to that observed in the fuel economy evaluation. 
Specifically, LAVs of type B and C are able to maintain a more 
stable speed along the signalized corridor, contributing to a 
smoother driving experience. 

 
Figure 8. Distribution of different types of LAVs’ speed standard deviation. 

In summary, LAVs of types B and C show significant 
advantages over A and D in terms of both safety and 
environmental effects. C and D have a slight edge in terms of 
mobility efficiency. LAVs of type C have the best overall 
performance in the simulation. 

V. CONCLUSION  

This study presented a comprehensive evaluation and 
ranking system for LAVs based on their real-world trajectory 
data. The behavior models of different LAVs are extracted 
from their trajectory data using an LSTM model. Test 
scenarios for the LAVs are designed based on specific test 
goals. Subsequently, the extracted vehicle behavior model is 
employed in a simulation constructed based on the designed 
scenario in an "open-loop" mode. A range of performance 
measurements is utilized to evaluate the performance of 
different LAVs in terms of mobility efficiency, safety, and 
environmental impact. The conducted simulation experiments 
validate the applicability of the proposed framework. 

Our study introduces an evaluation and ranking 
framework for LAVs, serving as a starting point and paving 
the way for several potential avenues for future research. 
Firstly, there is potential for the development of more 
sophisticated models for vehicle behavior modeling than the 
LSTM model used in this study. One promising approach is 
to construct a physical-aware artificial intelligence (AI) 
model since the physical nature of the control logic of ACC. 
The AI model could enhance the precision of the physical 
model under various conditions [24]. Other than model type, 
the data inputs in this study are also limited. Better models 
could be captured with the enriched trajectory dataset 
including LAVs’ behaviors under various conditions [25, 26, 
27]. In addition to the model type, the data inputs used in this 
study are limited. As the trajectory dataset expands to include 
LAV behaviors under a broader range of conditions, more 
accurate and comprehensive models could be developed. 

Secondly, more sophisticated test scenarios could be 
developed for more dependable evaluations of LAVs. For 
mobility testing, more comprehensive scenarios could be 
designed, such as simulating the network of an entire city. For 
safety testing, scenarios that generate crucial or safety-critical 
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situations could be developed to provide a more rigorous 
evaluation of LAV performance. 

Finally, future work could investigate the integrated 
performance measurements that capture multiple aspects of 
LAV performance in a single number, such as a monetary 
value. This would provide a more comprehensive 
understanding of LAV performance and further enhance the 
utility of the evaluation and ranking system for customers and 
government agencies. 
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