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Abstract—This study introduces a comparative evaluation
and ranking system for low-level automated vehicles (LAVs)
using real-world trajectory data. In the framework of the
proposed evaluation system, different LAVs' behaviors are first
modeled based on their trajectory data. Test scenarios are
designed according to the specific test goals. Subsequently,
simulation tests are then conducted using extracted vehicle
behavior models in the designed traffic scenario. Several
measurements in terms of safety, environmental impact, and
mobility efficiency are used to evaluate and rank the
performance of different types of LAVs. In numerical studies,
the Long Short-Term Memory (LSTM) models are used to
extract LAVS’ behavior features from the OpenACC dataset,
demonstrating high accuracy in vehicle motion prediction and
specificity among different types of LAVs. Simulation tests on a
real-world road corridor validate the applicability of the
proposed framework. As more data sources on LAVs become
available, the proposed evaluation and ranking system has the
potential to inform customers and government agencies during
decision-making.

L INTRODUCTION

Automated vehicles (AVs) have garnered significant
attention in recent years as a transformative technology with
the potential in reducing environmental impact and improving
driving experience by minimizing human error and optimizing
vehicle operation. Particularly, low-level automated vehicles
(LAVs), which are equipped with Level 1-2 automation
features as defined by the Society of Automotive Engineers
(SAE), are becoming increasingly common. Nowadays, 92%
of new cars have Adaptive Cruise Control (ACC; Level 1
automation), and 50% of new cars have lateral lane control
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(Level 2 automation). The market penetration rate of
Advanced Driver Assistance Systems (ADAS)-equipped
vehicles is projected to increase from 2% in 2015 to 40% in
2040 [1].

With the gradual emergence of LAVs on road networks,
conducting thorough evaluations of these vehicles has become
crucial [2]. Extensive simulations and field tests have been
conducted in both the research and industry fields in terms of
safety [3], mobility efficiency [3, 4], and environmental
impact [5, 6]. One common method is to conduct experiments
in specific, controlled scenarios, which allows for a large
amount of repeatable testing [7]. These evaluation methods
select representative driving conditions of various category
and test the passability and detailed performance of the AVs
during the testing process [7, 8]. These methods focus on a
limited selection of scenarios with specific parameters, fail to
reflect the comprehensive evaluation results under various
real-world conditions [10]. Another method is to test AVs in
comprehensive public road scenarios for long-term continuous
random testing [9, 10]. However, due to the spatiotemporal
complexity and high interactivity of real-world naturalistic
driving environments, sometimes hundreds of billions of miles
would need to be tested. Recent studies have made significant
progress in addressing this challenge utilizing technologies
including important sampling and dense reinforcement
learning [13]. In addition to testing under various driving
scenarios, sub-system failure risk assessment is also
investigated to evaluate the reliability and robustness of AVs
[11, 12].
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However, existing studies usually focus on developing
tests for individual types of AVs, lacking a comparative
evaluation across different types of AVs. A major challenge of
the comparative evaluation lies in the limited availability of
detailed control logic for different types of AVs. Existing
scenario-based test methods typically require precise
knowledge of a certain AV's driving strategies [15]. However,
in comparative evaluations, the exact control strategies of all
types of AVs may not always be accessible due to commercial
secrecy concerns [16].

Furthermore, the behavior of AVs during controlled tests
may differ from real-world driving conditions due to various
factors such as the test environment, the conditions of AVs, or
the interaction between AVs and other road users. This
discrepancy between controlled tests and real-world
conditions could potentially undermine the credibility of the
test results, as they may not accurately represent the
performance of AVs in everyday driving scenarios.

Thanks to the increasing number of AVs in road networks,
the availability of extensive vehicle trajectory data provides a
novel avenue for a comprehensive evaluation of different AV
types. By extracting driving behavior models based on
trajectory data recorded when AVs are operating in ADAS
mode, it becomes possible to build simulations that accurately
represent their behavior. These simulations can then be
employed to test and evaluate various AV types, enabling
comparison and ranking of their performance across multiple
dimensions.

The objective of this paper is to propose a methodology for
the comprehensive and fair evaluation of different types of
LAVs, without relying on prior knowledge of their specific
control logic. First, we construct behavior models of different
types of LAVs leveraging their trajectory data. Next, we
develop realistic driving scenarios according to the test goals.
Finally, we evaluate and rank the performance of different
types of LAVs in these scenarios, using various measurements.

The remainder of this paper is organized as follows.
Section II proposes the model framework. Section III provides
the detailed process of trajectory construction, simulation
scenario development, and evaluation processes. Section IV
presents the results of numerical studies. Section V provides
concluding remarks and future research directions.

II. FRAMEWORK

This section states the trajectory-based LAV performance
ranking problem and introduces the proposed model
framework. This study aims to evaluate and rank different
types of LAVs in terms of safety, efficiency, and eco-
performance, using their real-world trajectory data as input. As
shown in Figure 1, the proposed trajectory-based LAV
performance ranking system can be divided into 3 key
modules: trajectory construction, scenario development, and
performance evaluation.
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Figure 1. The model framework of the trajectory-based performance
ranking system of LAVs.

The trajectory construction module aims to derive vehicle
behavior models for different types of LAVs based on their
trajectory data. Let t be the index of the time step. Let a’ and
s{ be the action and the states of LAV w at time step t. The
output of the trajectory construction module is a certain type
of LAVs’ action function f,,, as shown in Figure 1. In this
study, only car-following behaviors are modeled for
simplification. A long short-term memory (LSTM) model [17]
is adopted to capture LAVs’ acceleration rate at the next time
step a;, based on the real-time speed of the ego vehicle, its
leading vehicle, and the distance between them. The lane-
changing choice and vehicles’ driving strategies during lane-
changing are simulated with default models. The trajectory
construction does not need any prior information on LAV’s
control logic.

The scenario development module designs simulation
scenarios for LAV performance evaluation according to the
test goals. For instance, comprehensive scenarios can be used
for long-term efficiency and eco-performance tests. Critical
scenarios can be designed for safety tests to reduce the
computational costs of evaluation. The scenario development
module provides parameters about road elements, traffic
demands, and traffic control strategies for the simulation
scenarios. In this study, all vehicles are assumed to be replaced
by one type of LAV in simulation to avoid the comprehensive
effects of the background vehicles’ behaviors.

Finally, the performance of different types of LAVs is
tested in simulation, where vehicles’ driving behaviors are
modeled by the extracted action functions. Quantitative
measurements are designed to examine the performance of
different types of LA Vs under simulation scenarios in terms of
safety, mobility, and other aspects. From this, comparison and
ranking conclusions can be drawn.

I1I1. METHODOLOGY

A. Trajectory construction

First, we need to capture the driving behaviors of LAVs. In
this study, we focus on car-following behavior to demonstrate
the evaluation framework. There are various types of models
to depict car-following behaviors in the existing literature. In
this study, an LSTM model is adopted to model LAVs’
longitudinal driving behavior at discrete time steps. The
structure of the LSTM model is illustrated in Figure 2. The



input of the LSTM model at time step t — 1 is the traffic states
of a LAV over historic time steps in [t — h,t — 1], including
the speed of the ego vehicle v; its leading vehicle, and the
distance between them d; at each time step. And the output is
the LAV’s acceleration rate at the next step, i.e., a;.

Some commonly used configurations are implemented in
the LSTM model. A normalization layer is incorporated prior
to the LSTM layers to standardize the input data, while a
denormalization layer is applied after the LSTM layers to
revert the output data to its original scale. The last hidden state
in the sequence of the LSTM is used as the model's prediction.
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Figure 2. The structure of the LSTM model.
The advantage of the trajectory-based vehicle behavior

modeling approach is that it does not require any prior
information of vehicle control logic. This makes the

framework applicable for comparing a variety of vehicle types.

In addition, the proposed framework is flexible and can
accommodate other types of models based on specific
requirements.

B. Scenario development

The design of test scenarios for LAV evaluation is a critical
aspect of the ranking system, providing a series of parameters
that describe the test road segments, traffic control strategies
[2], and so forth. Typically, the action mode of vehicles is also
included in the scenario design. However, in this study,
vehicles operate according to the extracted behavior model.

The design of test scenarios is highly dependent on the
specific test purpose. For safety testing of LAVs, a large
number of different test experiments are required if only
normal traffic scenarios are adopted due to the rarity of safety-
critical events [18]. A potential solution to this challenge is to
choose safety-critical scenarios with artificial intelligence-
based importance sampling [19]. This approach shows great
potential to accelerate the evaluation process by multiple
orders of magnitude, making it feasible to conduct
comprehensive safety evaluations despite the rarity of safety-
critical events.

For evaluating the mobility and environmental cost of
LAVs, adopting more comprehensive scenarios can provide a
better representation of real-world conditions. In this case, we
can design scenarios based on real-world road networks and
traffic demand. These scenarios would simulate a wide range
of driving conditions and situations, allowing us to assess the
overall performance of LAVs. Besides, using real-world road

networks and traffic demand in the test scenarios allows the
comparison of the different LAVs’ performances in different
cities, and the identification of the best suited type of LAV to
the unique conditions of each city. Further, it provides insights
into the relationship between vehicle performance and the
structure of the road network.

C. Simulation and evaluation

Following the extraction of the vehicle motion model and
the design of test scenarios, the corresponding simulations are
conducted to assess the performance of the LAVs. The vehicle
behavior models are trained to predict vehicles’ actions at the
next time step. They are used in the simulation in a recursive
approach for multiple time step prediction, which means the
predicted vehicle behaviors at each time step become the basis
for future predictions of vehicle behaviors. This "open-loop"
approach can lead to larger prediction errors compared to one-
step predictions due to the cumulative effect of these errors
over multiple time steps. To mitigate this, the feedback effect
in the extracted car following model (i.e., vehicles tend to
accelerate when the headway to the lead vehicle is too far, and
vice versa) is utilized to maintain realistic vehicle trajectory
prediction over long durations.

A series of measures are developed to evaluate various
aspects of LAV performance, quantifying the performance of
various types of LAVs in a consistent and comparable way.
Surrogate measures can be used for safety evaluation. Finally,
we aim to integrate these different aspects into a single overall
result, e.g., to convert the performance measures into a
monetary value, which provides a common unit of
measurement for comparison. This approach allows us to rank
different types of LAVs based on their overall performance,
providing a comprehensive and comparative evaluation of
different types of LAVs.

V. EXPERIMENTS

A. Trajectory construction

The OpenACC dataset, collected by the Joint Research
Centre, is adopted to extract LAVs’ behavior models in this
study [5]. This dataset includes trajectories from several
different types of LAVs with ACC engaged on a ring road.
Vehicles’ position and speed are collected at 0.1-second
intervals. LSTM models are developed as described above.
The length of a time step is set at 0.1 s, and the horizon length
of the data input is set as 15, i.e., 1.5 s. The Adam optimization
algorithm [20] is utilized in the training process. The initial
learning rate, set at 0.005, is designed to decrease during the
training process. The test results demonstrate the promising
accuracy of the proposed LSTM model in the "open-loop"
prediction of LAVs’ longitudinal positions, achieving a root
mean square error (RMSE) of less than 3 m.

In addition to prediction accuracy, it is crucial to
demonstrate the specificity of the trained LSTM models for
different types of LAVs, which indicates that a model trained
for one type of LAV may not be suitable for predicting the
behavior of other types of LAVs. The specificity of the
vehicle behavior model is essential for comparing the
performance of different types of LAVs in the performance
evaluation. Therefore, we employ four LSTM models, each
trained on data from a distinct type of LAV, to predict the
behaviors of the corresponding LAV and the other LAVs. As



shown in Figure 3, the matrix below presents the RMSEs in
the predictions made by different models for various LAVs.
The results affirm that the proposed LSTM model can not
only accurately predict the behavior of the corresponding
LAV but also discern the behavioral differences among
various LAVs.

RMSE

Test Objective

Model

Figure 3. Model specificity for different types of LAV.

B. Simulation development

Traffic simulation is further developed in Simulation of
Urban MObility (SUMO) [21] based on a part of University
Avenue in front of our university in Madison, Wisconsin, as
shown in Figure 4. The configuration of the road network is
established with assistance from the OpenStreetMap [22].

University Avenue

Figure 4. Simulation scenario in SUMO.

The test corridor encompasses six signalized intersections,
which provide a comprehensive environment with traffic
shock waves for the test LAVs. Fixed signal timings are
applied at these intersections, and the test focuses on three
westward lanes on the main line. The traffic demand is set at
3,600 passenger car units per hour (pcu/h) across the three
lanes. In each experiment, all vehicles are set as the same type
of LAV, and their behaviors are simulated with the extracted
LSTM model. Five random seeds are used in the simulation
for each type of LAV, considering the stochastic traffic
environment.

C. Results
This section evaluates the performance of the 4 types of
LAVs mentioned in terms of mobility, safety, and

environmental effects.

Figure 5 shows the distribution of LAVSs’ travel time in
the simulation experiments for 4 different types of LAVs. The
distribution is presented at intervals of 10 s ranging from 60 s
to 150 s. The vertical axis in Figure 6 represents the

proportion of LAVs whose travel times fall within the
corresponding intervals. And a smooth curve is used to
connect the distribution bars for ease of comparison. The
results indicate that a larger proportion of vehicles exhibit
shorter travel times in the experiments for LAVs of type C
and D, demonstrating their potential in mobility performance.
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Figure 5. Distribution of different types of LAVs’ travel time.

For the safety test, we extract the minimum time-to-
collision (TTC) [23] for each LAV with its leading vehicle
during the simulation experiment, which represents its most
critical safety condition. Figure 6 illustrates the distribution of
these minimum TTC values across different LAVs. The
plotting principle for this distribution is similar to that in
Figure 5, with intervals of 1 s ranging from 0 to 20 s. The
results indicate that LAVs of type B and C may maintain
larger gaps with their leaders. In contrast, the driving models
of LAVs of type A and D are more likely to result in vehicles
falling into conditions with shorter TTC.

Note that the vehicle behavior models are extracted based
on limited data in this study, without any input regarding LAV
behavior under dangerous conditions, such as crashes.
Therefore, these models may not fully simulate safety-critical
behaviors that rarely occur. The experiment primarily
demonstrates the applicability of the proposed framework in
safety testing. It can be seen in Figure 6 that even in the most
dangerous conditions, the TTC remains larger than 2 seconds.
Additional data and experiments are necessary for more
dependable safety evaluations.
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Figure 6. Distribution of different types of LAVs’ minimum time-to-
collision (TTC).

Figure 7 shows the distribution of LAVs’ fuel
consumption efficiency in the simulation experiments for 4
different types of LAVs. The fuel consumption model for the
passenger car in reference [21] is applied for the estimation of
fuel economy. The distribution is calculated with intervals of
1 L/100km ranging from 0 to 18 L/100km. The results
indicate that LAVs of type B and C have significant
advantages in terms of fuel consumption efficiency than
LAVs A and D. More LAVs of type B and C can traverse the
corridor with lower energy consumption.
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Figure 7. Distribution of different types of LAVs’ fuel consumption
efficiency.

To further evaluate the driving experience of different
LAVs, we use the standard deviation of vehicle speeds to
represent the fluctuation in driving conditions. Figure 8 shows
the distribution of these speed standard deviations, with
intervals of 1 m/s ranging from 0 to 8 m/s. The results reveal a
trend similar to that observed in the fuel economy evaluation.
Specifically, LAVs of type B and C are able to maintain a more
stable speed along the signalized corridor, contributing to a
smoother driving experience.
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Figure 8. Distribution of different types of LAVs’ speed standard deviation.

In summary, LAVs of types B and C show significant
advantages over A and D in terms of both safety and
environmental effects. C and D have a slight edge in terms of
mobility efficiency. LAVs of type C have the best overall
performance in the simulation.

V. CONCLUSION

This study presented a comprehensive evaluation and
ranking system for LAV based on their real-world trajectory
data. The behavior models of different LAVs are extracted
from their trajectory data using an LSTM model. Test
scenarios for the LAVs are designed based on specific test
goals. Subsequently, the extracted vehicle behavior model is
employed in a simulation constructed based on the designed
scenario in an "open-loop" mode. A range of performance
measurements is utilized to evaluate the performance of
different LAVs in terms of mobility efficiency, safety, and
environmental impact. The conducted simulation experiments
validate the applicability of the proposed framework.

Our study introduces an evaluation and ranking
framework for LAVs, serving as a starting point and paving
the way for several potential avenues for future research.
Firstly, there is potential for the development of more
sophisticated models for vehicle behavior modeling than the
LSTM model used in this study. One promising approach is
to construct a physical-aware artificial intelligence (AI)
model since the physical nature of the control logic of ACC.
The AI model could enhance the precision of the physical
model under various conditions [24]. Other than model type,
the data inputs in this study are also limited. Better models
could be captured with the enriched trajectory dataset
including LAVs’ behaviors under various conditions [25, 26,
27]. In addition to the model type, the data inputs used in this
study are limited. As the trajectory dataset expands to include
LAYV behaviors under a broader range of conditions, more
accurate and comprehensive models could be developed.

Secondly, more sophisticated test scenarios could be
developed for more dependable evaluations of LAVs. For
mobility testing, more comprehensive scenarios could be
designed, such as simulating the network of an entire city. For
safety testing, scenarios that generate crucial or safety-critical



situations could be developed to provide a more rigorous
evaluation of LAV performance.

Finally, future work could investigate the integrated
performance measurements that capture multiple aspects of
LAV performance in a single number, such as a monetary
value. This would provide a more comprehensive
understanding of LAV performance and further enhance the
utility of the evaluation and ranking system for customers and
government agencies.
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